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Summary

e The root economics space is a useful framework for plant ecology, but rarely considered for
crop ecophysiology. In order to understand root trait integration in winter wheat, we
combined functional phenomics with trait economic theory utilizing genetic variation, high-
throughput phenotyping, and multivariate analyses.

e We phenotyped a diversity panel of 276 genotypes for root respiration and architectural traits
using a novel high-throughput method for CO; flux and the open-source software
RhizoVision Explorer for analyzing scanned images.

e We uncovered substantial variation for specific root respiration (SRR) and specific root
length (SRL), which were primary indicators of root metabolic and construction costs.
Multiple linear regression estimated that lateral root tips had the greatest SRR, and the
residuals of this model were used as a new trait. SRR was negatively correlated with plant
mass. Network analysis using a Gaussian graphical model identified root weight, SRL,
diameter, and SRR as hub traits. Univariate and multivariate genetic analyses identified
genetic regions associated with aspects of the root economics space, with underlying gene
candidates.

e Combining functional phenomics and root economics is a promising approach to understand
crop ecophysiology. We identified root traits and genomic regions that could be harnessed to

breed more efficient crops for sustainable agroecosystems.
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Introduction

Functional phenomics is an emerging transdisciplinary field that integrates physiology,
high-throughput phenotyping, and computational biology in order to fill knowledge gaps about
plant functioning (York, 2019). High-throughput phenotyping allows for large-scale data
collection on plant form and function, and is often used for genetics within a species. Phenomics
focuses on understanding variation in plant phenotypes, but often lacks analysis of the relation of
phenotypes to function, even if quantitative genetics are employed. Therefore, functional
phenomics is needed using statistical associations within high-dimensional phenomics data to
infer how traits influence one another and physiological processes important for crop growth.
Especially, root phenomics data and conceptual frameworks are lacking to understand their
interactions and integration as described in York ef al. (2013). The trait economics spectrum is a
conceptual framework from ecology that could help explore trait integration in crops. In this
context, economics refers to the balance among traits for resource acquisition and utilization,
with an explicit treatment of the tradeoffs between pairs of traits (Reich, 2014). For example, in a
controlled study of 74 plant species, a root economics spectrum was found in which root
respiration correlated to percent nitrogen, root length per unit mass, and the decomposition rate
of dried roots in soil (Roumet et al., 2016). Recently, a root economics space was proposed
formed by one axis representing whether to cooperate with fungal partners and a second
representing the ‘fast’ or ‘slow’ strategies (Bergmann ez al., 2020). Interestingly, the first axis
was partially driven by specific root length relating to construction cost, and the second axis by
root nitrogen content, a proxy of specific root respiration and metabolic cost. Therefore, the root
economics space is a useful framework for understanding carbon use efficiency in crop roots.

Roots are the interface between plants and soil, with a key function to extract nutrients and
water that are required for plant productivity (Smith & De Smet, 2012; Meister et al., 2014).
However, there is a complex relationship between investing in the root system and plant
productivity because roots have a cost. The fraction of newly fixed carbon from photosynthesis
allocated to roots can exceed 50%, and this proportion to roots significantly increases under
edaphic stress (Lambers e al., 1996; Rachmilevitch e al., 2015). Root system carbon costs can

be classified as construction costs, including the structure of the roots and growth respiration,
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and maintenance costs, primarily respiration and exudation (Mooney, 1972; Sun et al., 2020).
For example, in wheat seedlings, 30% of net photosynthesis was measured as root construction
and maintenance costs, such as respiration (Sawada, 1970). Therefore, optimizing construction
and metabolism of the root system would have a significant impact on plant carbon use
efficiency.

Specific root length is a measure of carbon expenditure to construct root length, often in
units of m g!. Specific root respiration standardizes respiration based on root length or mass,
typically with units of nmol CO2 s cm™ or mg™!, respectively. Specific root length was found to
have variation among a set of barley and wheat lines but the genetic contribution was not
considered explicitly (Lges & Gahoonia, 2004), and was used for QTL analysis in common bean
(Ochoa et al., 2006). Across the plant kingdom, as much as 52% of photosynthates may be
respired by plant roots during the same day, depending on species and environmental conditions
(Lambers et al., 1996). Plants respire photosynthetic substrates to produce carbon skeletons,
usable energy, and chemical reduction needed for development (Amthor, 2000), which results in
the consumption of oxygen and the release of carbon dioxide. A multicomponent framework has
been suggested to divide respiration into (1) growth fraction, biosynthesis of new structural
biomass and exudates, (2) maintenance fraction, translocation of photosynthate from sources to
sinks, and cellular ion-gradient maintenance, (3) ion-uptake fraction, including uptake of ions,
assimilation of N and S, and protein turnover (McCree, 1970; Thornley, 1970; Johnson, 1983;
Poorter et al., 1991; Amthor, 2000). As up to 60% of assimilated carbon is lost through
respiration, strategies to minimize unnecessary respiratory activity could lead to substantial gains
in crop productivity by enhancing plant carbon use efficiency (Amthor ez al., 2019; Weber &
Bar-Even, 2019; Roell & Zurbriggen, 2020).

Variation in root respiration rates among crop species is due to the differences in root
tissue density, anatomy, activity, chemistry, and structure (Ben-Noah & Friedman, 2018).
Studies have shown that reducing root respiration through anatomical changes such as root
cortical senescence of barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.)
(Schneider et al., 2017) or reduction in root secondary growth of common bean (Phaseolus
vulgaris L.) (Strock et al., 2018) permit greater plant growth by improving phosphorus capture
from low-phosphorus soils. Strategies have been proposed or used to reduce root respiratory

carbon cost for improving plant performance, including making ion transport more efficient
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(Amthor et al., 2019), manipulation of genes or enzymes involved in carbon metabolism in plant
roots (Dorion et al., 2017; Florez-Sarasa et al., 2020), and using arbuscular mycorrhizal
symbiosis to reduce root respiratory rate as well as increasing photosynthesis (Romero-Munar et
al., 2017). Root respiration that is not accounted for necessary plant functions might be referred
to as luxury respiration.

Understanding the genetic bases of specific root length and respiration, among other traits,
and their relationship to plant performance is of key importance for breeding more productive
and resilient crop varieties to adapt to climate change. However, these traits have rarely been
considered as a unit of phenotype for breeding or genetic mapping. Genome-wide association
studies (GWAS) for respiratory traits will typically require many hundreds of plant variants, and
measurement of respiratory traits at the same time of day and developmental stage (Scafaro et
al.,2017). Infrared gas analyzers for portable leaf photosynthesis or Oz-electrodes techniques are
commonly used to measure rates of root respiration (Poorter ef al., 1991; Strock et al., 2018), but
most of those protocols are low-throughput with costly instruments that have less flexibility for
outputting convenient data formats. Addressing the need for rapid, cost-effective, large-scale root
respiratory screening will require the development of both high-throughput root respiration
measurement and data analysis capabilities, the combination of which will greatly strengthen
functional phenomics by increasing statistical power and enabling genetic mapping (Y ork,
2019).

Wheat, a member of the grass family, is an important cereal grown globally. Winter wheat
in the Southern Great Plains of the United States is often grown as a dual-purpose crop for forage
and grain production (Maulana ef al., 2019). Yield, protein content (Rajaram, 2001), disease
resistance (Ellis ef al., 2014), and heat resistance (Maulana ef al., 2018) are major targets for
modern wheat breeding and genetic improvement. Significant marker-trait associations for
aboveground traits, such as yield and its components (Sukumaran ef al., 2018) and nitrogen use
efficiency (Cormier et al., 2016; Hawkesford & Griffiths, 2019), have been reported across the
wheat genome. Indeed, considerable quantitative trait loci (QTL) associated with wheat root
traits have been identified on nearly all chromosomes in variable environments (Hamada ez al.,
2012; Bai et al., 2013; Atkinson et al., 2015; Maccaferri et al., 2016; Xie et al., 2017; Beyer et
al.,2019; Soriano & Alvaro, 2019). However, the genetic and functional basis of root traits still

lag behind aboveground traits, and genetic variation of root construction and metabolic traits
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remains less explored. Accordingly, this study was conducted to (1) develop a high-throughput
phenotyping platform that integrates a hydroponics growth system, infrared gas analyzers,
custom gas chambers, a bead bath, flatbed scanners, analytical scales, and an R script for
measuring specific root respiration, specific root length, and other root traits, (2) validate the
platform using winter wheat to uncover heritable variation of root respiration and architectural
traits, (3) emply functional phenomics to identify relations among traits and tissue-type
dependencies, and (4) identify associated QTL/genes that drive root respiration and other root
traits by performing GWAS.

Materials and Methods

Plant materials

The plant materials were selected from the hard winter wheat association mapping panel
(HWWAMP) by the Triticeae Coordinated Agricultural Project (T-CAP). Two hundred seventy-
six hard winter wheat cultivars and breeding lines were selected from the panel, which covers a
broad range of selection and breeding history in the Great Plains of the USA.

Experimental design

The 276 wheat lines were grown as two replicates in a single growth chamber with 552
plants, with the entire procedure repeated twice, for a total of four replicates and 1104 plants
evaluated in this study. Each replicate was treated as a block for an overall experiment with a
randomized complete block design. The two transplanting dates of seedlings into the growth
hydroponics boxes were June 19 and October 4 in 2019. The details of the germination, growth,
and sampling are given below.

Growth conditions

Seeds were surface-sterilized in 0.5% NaOCI for 10 min and rinsed three times using
deionized (DI) water, then pre-germinated in petri dishes with filter paper placed in darkness at 25
°C for 3 d. Uniformly germinated seedlings were selected (Figure 1a), wrapped around the root-
shoot junction with L800-D Identi-Plugs foam (Jaece Industries, NY, USA), plugged in a 15 mL
conical centrifuge tube (VWR, Falcon®, catalog number: 21008-918) with the bottoms cut away
from the “6 ml” mark, and transplanted to a hole cut into the lid of the growth system as described
below (Figure 1b). A unique barcode label was affixed to each tube for sample identification. The
hydroponics growth system consisted of a polypropylene divider box (inside dimensions: length

of 38.10 cm, width of 22.86 cm, and height of 20.32 cm with a volume of 17.7 L) and a custom
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lid made from a PVC panel cut to fit in the top of a box (4.5 mm thick, by 250 mm wide, by 392
mm long with the corners cut off to accommodate the box’s rounded corners). Forty-eight holes
with 18 mm diameter were drilled into the lid with a hole saw with equal spacing among holes.
Twelve growth boxes were placed in a Conviron E-15 growth chamber (Conviron, Winnipeg,
Canada) with a day:night cycle of 16:8 h, 25:20 °C, at a flux density at canopy level of ~400 pmol
m 25!, Each box was filled to the bottom of the lid with a nutrient solution containing (uM) 125
KH2PO4, 1125 KNO3, 500 CaClz, 250 MgSOs4, 11.5 H3BO3, 1.75 ZnSO4- 7TH20, 2.25 MnClz-4H>0,
0.08 CuSO4-5H20, 0.03 (NH4)6M07024-4H20, and 19.25 Fe(III)-EDTA (Ci10H12N2NaFeOs). The
nutrient solution was continuously aerated with an air pump attached to airstones submerged in
each growth box, and the solution pH was maintained between 5.9 and 6.1 by additions of KOH
or HCI throughout the experiment.

High-throughput root respiration measurements

Ten days after transplanting (Figure 1c¢), plants were removed from the nutrient solution.
Roots were immediately excised from shoots, blotted using tissue paper to remove excess water,
placed in a 19 ml custom chamber, and then the chamber connected to an LI-850 CO»/H,0O
Analyzer (LI-COR Inc., NE, USA) (Figure 1d). The custom chamber was made from a 12.70
mm internal diameter clear polyvinyl chloride (PVC) pipe nipple (United States Plastic Corp.,
OH, USA ) that was 152.4 mm in length with threaded ends. Holes were drilled into %2 inch
FNPT nylon threaded caps (United States Plastic Corp., OH, USA) in order to accommodate
insertion of quick-connect bulkhead male or female fittings (LI-COR Inc., NE, USA) with rubber
grommets to create a seal. A Balston filter (LI-COR Inc., NE, USA) was inserted between the
chamber and the analyzer to filter air. The chamber was buried in a Lab Armor bead bath (Model
No 74300-714) filled with Lab Amor metallic beads with the temperature set at 28 °C. Beads
were preferred to water in order to prevent contamination of the system with water. The chamber
CO:z concentration was continuously recorded using LI-850 Windows software v 1.0.2 for 90
seconds at a rate of one reading per second. A USB barcode scanner (Taotronics, Fremont, CA)
was connected to each laptop to acquire and save the datafile with the appropriate sample name
encoded by the barcode affixed to the cut tube described above. Three infrared gas analyzers

were used to allow simultaneous measurements in parallel to increase throughput.
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Figure 1 Platform for phenotyping root respiration and other root traits of wheat seedlings. (a)
Wheat seeds were surface sterilized and pre-germinated in plate, (b) Seedlings were grown in
aerated hydroponics for 10 days, (c) Shoot and roots of seedling 10 days after transplanting, (d)
Root respiration was measured in bead bath using Li-850, (e) Distinguish axial roots (blue) from
lateral roots (red) of the scanned image using RhizoVision Explorer. IRGA: Infrared gas analyzer,
RC: Root chamber, BB: Bead bath, BF: Balston filter.

In order to calculate the total respiration rate of a root sample from the individual text files
containing the time series molar fraction of CO», an R (R Core Team, 2018) script was
developed in order to load each text file in a directory, do a series of computations, and output

the total respiration rate. Total respiration rate (CO2 flux) was calculated using Equation 1.

)

Where F is the CO» flux in nmol s, P is the pressure in the chamber in kPa, V is the corrected

__PVdC
T RT dt

chamber volume in milliliters, R is the ideal gas law constant in L kPa K mol!, T is air
temperature in K, and dC/dt is the change in CO» concentration on a molar basis with time (umol
mol™ s). Chamber volume (V) was determined by subtracting the total root volume estimated

using RhizoVision Explorer from the chamber volume. For root respiration analysis, the dead band
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(Iength of initial time to ignore) was set at 20 s. The slope of a linear regression fit to water-
corrected CO» concentration provided by the LI-850 analyzer over the corresponding observation
time (20-90 s) using the /m function in R (R Core Team, 2018) is dC/dt. The protocol for the root
respiration measurements and the R script for calculating total flux from a directory of text files

are available at https://doi.org/10.5281/zenodo.4247873 (Guo et al., 2020a).

After the root respiration measurements, roots from each plant were spread in a 5 mm layer
of water in transparent acrylic trays and imaged with a flatbed scanner equipped with a
transparency unit (Epson Expression 12000XL, Epson America) at a resolution of 600 dpi. Images
were analyzed using RhizoVision Explorer version 2.0.2 (Seethepalli & York, 2020) with
algorithms described by Seethepalli et al. (2020) with the options for image thresholding level,
filter noisy components, threshold for root pruning being set at 205 pixel intensity, 0.2 mm?, and
1 pixel, respectively. A root diameter threshold of 0.30 mm was used to distinguish axial roots
from lateral roots (Figure le).

Root traits extracted by the RhizoVision Explorer used in this study were number of root
tips (Tip), number of branching points (BP), branching frequency (BF), total root length (TRL),
axial root length (ARL), lateral root length (LRL), average diameter (AvgD), total root volume
(TRYV), axial root volume (ARYV), lateral root volume (LRV), total root surface area (TSA), axial
root surface area (ASA), and lateral root surface area (LSA). Branching frequency is determined
by the software by dividing the number of branching points by total root length. Roots following
scanning and shoots were dried at 60 °C for 3 days prior to dry weight determination. The oven-
dried root mass and root length quantified using RhizoVision Explorer were used to calculate the
specific root respiration (SRR) per unit of root dry mass (SRR_M; nmol g"! s!) and the specific
root respiration per unit of root length (SRR_L; nmol m s, respectively.

Root mass fraction (RMF) was calculated as root dry weight proportion of total plant dry
weight. Specific root length (SRL) was calculated by dividing root length by the corresponding
root dry weight. Lateral-to-axial root length ratio was calculated by dividing lateral root length by
corresponding axial root length based on the diameter threshold provided during image analysis,
and lateral-to-axial root volume ratio was calculated by dividing lateral root volume by
corresponding axial root volume. Branching density (BD) was calculated by dividing root tips by
axial root length. Root tissue density (RTD) was calculated by dividing root dry weight by root

volume, which brought the total number of traits reported to 25 in this study.
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Broad-sense heritability (H?) of each trait was calculated based on Falconer and Mackay
(1996) as:
2
o
2 _ g
H* = —2 o2
o5 + ==

T

The variables aj, 02, and rrepresent the variance of the genotype effect, variance of the
local environment effect, and the number of replicates (blocks), respectively. The variances were
obtained by fitting to a mixed model including genotype as a random effect and block as a fixed
effect using the Ime4 package (Bates er al., 2014).

Principal component (PC) analysis and visualization of outputs were performed on the trait
means of the 25 traits using the base function “prcomp” and the R package “factoextra”
(Kassambara & Mundt, 2017). The first ten principal component scores were extracted for
clustering and PC-based GWAS analysis (PC-GWAS).

Network analysis

Due to highly correlated variables and singularities, root volume, surface area related traits,
and lateral-to-axial root length ratio were dropped for network analysis. To assess the
relationships among all the remaining 17 traits, we estimated pairwise Pearson’s correlation
coefficients (r) of the traits and constructed a Gaussian graphical model for network analysis.
Network analysis with a Gaussian graphical model is more likely to capture causality and
precursor/product relationships in trait networks relative to standard correlation analyses
(Krumsiek ef al., 2011; Carlson et al., 2019). The network analysis and the visualization of trait
relationships were carried out with the R package ‘qgraph’ (Epskamp et al., 2012). Outdegree is
the number of connections that a trait node has to other trait nodes. Betweenness centrality
quantifies the number of times a trait node acts as a bridge along the shortest path between two
other trait nodes.

Multiple linear regression analysis

Multiple linear regression analysis was employed to determine how total respiration can be
partitioned into the contributions from root tissue types. The total axial root volume, lateral root
axis volume (minus the tip volume), and lateral root tip volume were considered as the
dependent variables while the total root respiration was the independent variable. The number of
lateral root tips was estimated by subtracting 4 from the number of root tips supplied by

RhizoVision Explorer, assuming that the typical wheat seedling had 4 seminal roots. This
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number of lateral roots was multiplied by 0.01 mm? in order to assign a small volume to the
lateral root tips, which were assumed to be more active based on previous research. Lateral root
axis volume was determined by subtracting lateral root tip volume from the total lateral root
volume. Based on visual evaluation of feature images in RhizoVision Explorer, total lateral root
volume and total axial root volume were assumed as the volumes of the diameter ranges < 0.3
mm or > 0.3 mm, respectively. The “stepAIC” function as implemented in R package “MASS”
(Ripley et al., 2013) was used for the stepwise regression and revealed this full model as being
the most parsimonious, so residuals of this model were used as an additional trait (SRR_R) for
subsequent analysis. SRR_R is the respiration that is not accounted for after considering root
system architecture and root tissue dependency.

SNP Genotyping

High-density single-nucleotide polymorphism (SNP) markers from the wheat 90K SNP
genotyping array were obtained from Genotype Experiment “TCAP90K_HWWAMP” of The
Triticeae Toolbox database (https://triticeaetoolbox.org/wheat/). Data constituting 21,555 SNPs
were filtered to exclude markers with missing data greater than 50% and minor allele frequency
less than 5%, resulting in 16,058 makers that were used in the association analysis. The map
positions for the SNP markers used in this study were based on the consensus map developed
using a combination of eight mapping populations (Wang ef al., 2014).

Genome-Wide Association Analysis

Three genome-wide association analysis approaches were employed to identify genomic
regions associated with various root traits. The linear mixed model (LMM) in GEMMA (Zhou &
Stephens, 2012; Zhou & Stephens, 2014) was used to test for association between SNPs and
traits. The population relatedness matrix was estimated using the centered relatedness algorithm
within GEMMA, and was chosen as a covariate in the model. A Wald test was performed to
determine p-values.

Single-trait (Univariate) association testing was run for each of the 25 traits using mean
phenotypic values and PC-GWAS was conducted using each of the first 10 PCs. Multi-trait
(Multivariate) GWAS was carried out to increase the power of the association tests and to detect
polymorphisms with potentially pleiotropic effects of trait-associated loci using the multivariate
linear mixed effect modeling capabilities of GEMMA. The 25 traits were grouped into six multi-

trait combinations based on their genetic correlations, or their structural and functional
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relationships (McCormack et al., 2017; Ben-Noah & Friedman, 2018). Root dry weight and
shoot dry weight were combined to form a biomass-related multi-trait set (biomass). Total root
respiration, root dry weight, root mass fraction, number of root tips, axial root length, and
branching density were combined to form a root-respiration-related multi-trait set (root
respiration) because these traits had functional relationships based on network analysis and
provide a broader picture of root respiration. Axial root length, lateral root length, axial root
volume, lateral root volume, axial root surface area, and lateral root surface area were combined
to form a root-morphology-related multi-trait set (morphology). Branching point, branching
frequency, and branching density were combined to form a root-topology-related multi-trait set
(topology). Specific root length, root tissue density, and average root diameter were combined to
form a root-construction-related multi-trait set (construction). Root mass fraction, lateral-to-axial
root length ratio, and lateral-to-axial root volume ratio were combined to form an allocation-
related multi-trait set (allocation). Multi-trait association was conducted with GEMMA using the
multivariate version of the same model used for single-trait associations.

Outputs from GEMMA were used to generate Manhattan and Quantile—quantile (QQ) plots
using the R package “qqman” (Turner, 2014). As mentioned in many wheat studies (Maulana et
al.,2018; Beyer et al., 2019), determining a significance cutoff threshold is one of the biggest
challenges for GWAS. Significant QTL were initially tested based on a false discovery rate of
0.05 following a stepwise procedure, which is very stringent (Miiller e al., 2011). So, an
unadjusted significance level of -logio P > 3.5 was used for detecting SNPs that are significantly
associated with the traits.

Identification of candidate genes

The sequences of significant markers associated with phenotypic traits were downloaded
from the The Triticeae Toolbox database (Wang ef al., 2014), and were BLAST searched against
Phytozome’s version 2.2 of the wheat genome and identified candidate genes located £250 kb
proximal to each identified marker. Candidate genes of interest were selected based on the
criteria of close proximity to the SNP, and possible involvement in the regulation of root
development.

Data and statistical code availability
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All trait data, GEMMA output, and R analysis scripts necessary for doing the statistical
analysis and plotting are available at https://doi.org/10.5281/zenodo.4247894 (Guo et al.,
2020b).

Results

Variations of root respiratory and architectural traits

Shoot dry weight (SDW), RDW, TDW, TRR, SRL, L-to-A_L, ASA, L-to-A_V, PC2, PC3,
PC4, and PC7 exhibited normal distribution. Near normal distributions were observed for other
root traits (Fig. S1). The root traits with more than 5-fold variation between maximum and
minimum values in the wheat population were SRR_L, TRL, LRL, LRV, LSA, and BP. 3.2-fold
and 2.2-fold variations were also observed in SRR_M and SRL in the wheat population,
respectively. Broad-sense heritabilities ranged from 0.25 to 0.57 for the 25 traits (Table 1). The
respiration residual, SRR_R, of a multiple regression fit (Figure 2a) that accounts for respiration
not explained by root system architecture, had a heritability of 0.44. The maximum heritability
was observed for SDW (0.57). The root traits with heritabilities greater than 0.50 were SRL, BP,
and AvgD. Many strong correlations were observed among traits. Total root respiration had
correlation values greater than 0.50 with RDW and TDW. Interestingly, specific root respiratory
traits (SRR_L and SRR_M) had significant negative correlations with shoot, root, and total dry
weight (Figure 2b, Figure 3).
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Figure 2 (a) The relationship between predicted total root respiration and total root respiration,
and deviations from the relationship results in new trait SRR_R, (b) Regression between specific
root respiration by length and shoot dry weight.
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Table 1. Summary statistics and units for shoot dry weight, total dry weight, and the 24 root
traits characterized in this study.

Trait Abbreviation  Unit Mean Min Max H?
Shoot dry weight SDW g 0.039 0.018 0.059 0.57
Total dry weight TDW g 0.053 0.024 0.080 0.51
Root dry weight RDW g 0.014 0.006 0.022 0.39
Total root respiration TRR nmol CO; s™! 0.54 0.23 0.91 0.42
SRR per root length SRR_L ?mOI O 0.14 0.04 0.34 0.48
SRR per root mass SRR_M nmol COs!' g! 39.86 23.32 74.79 0.32
SRR residual SRR_R nmol CO; s™! -0.0039  -0.3623  0.27 0.44
Specific root length SRL mg’! 299.7 182.21  398.36 0.55
Root mass fraction RMF % 26.48 19.05 36.17 0.43
Total root length TRL mm 412591 1315.65 7861.83 0.47
Axial root length ARL mm 1456.2 65559  2537.42 0.48
Lateral root length LRL mm 2669.71 660.06  5494.75 0.48
Lateral-to-axial root length ratio  L-to-A_L mm mm’! 1.82 0.83 2.66 0.48
Total root volume TRV mm? 329.49 13578  610.24 0.45
Axial root volume ARV mm? 2439 113.64  459.5 0.46
Lateral root volume LRV mm? 85.59 22.15 164.09 0.40
Lateral-to-axial root volume

) L-to-A_V mm?® mm 0.36 0.17 0.53 0.45
ratio
Total root surface area TSA mm? 3680.62 1348.64 647728 045
Axial root surface area ASA mm? 2034.03 93442  3639.73 047
Lateral root surface area LSA mm? 1646.59 414.22 326623 0.44
Average root diameter AvgD mm 0.29 0.25 0.37 0.53
Number of root tips Tip n 399.61 161.67 710 0.40
Number of branch points BP n 931.66 283 1992.5 0.54
Branching frequency BF n mm’! 0.22 0.18 0.31 0.45
Branching density BD ncm’! 2.81 1.75 5.83 0.25
Root tissue density RTD g cm™ 0.04 0.03 0.06 0.30

H?, broad-sense heritability.
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Figure 3 Pairwise Pearson correlation of selected traits of TCAP winter wheat seedlings. The
number represents the correlation values. Value marked with symbol x means correlation is not
significant at p = 0.05. Bright red to bright blue indicates highly positive to highly negative
correlations, respectively. Trait abbreviations are as in Table 1.

Principal component analysis of the traits was conducted to further identify the major
linear trait combinations that maximize the multivariate variation, and the first ten PCs
collectively explained 98.8% of the total variance. PC1, PC2, PC3, and PC4 explained 49.9%,
17.5%, 9.3%, and 7.7% of the total variance, respectively (Figure 4a). Plant size-related traits
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including TSA, TRL, TRV, TDW, RDW, and SDW had important contributions (>5%) to PC1.
In contrast, PC2 was largely driven by two construction cost related traits AvgD and SRL, which
had contributions of 18% and 15%, respectively (Figure 4b). Traits with greater than 7%
contributions to PC3 were the construction cost trait RTD (22%), three root respiration traits
(TRR, SRR_L, and SRR_M), and branching trait BF (14%). PC4 was predominantly driven by
SRR_M and SRR_L that represent metabolic costs, which had contributions of 24% and 14% to

the component, respectively (Figure 4c).
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Figure 4 (a) Scree graph showing the percentage of variance explained by each of the first 10
principal components, PCA variable contribution plots showing the (b) first and second PCs and
(c) third and fourth PCs, where vectors indicate relative weightings of the variables. Trait
abbreviations are as in Table 1.

Multiple linear regression partitions respiration among root tissue types

Multiple linear regression analysis was employed to determine the respective contributions
of lateral root tip, lateral root axis, and toal axial root volumes to total root respiration, and to
provide the SRR_R trait. The resulting model (p < 2.2e-16) explains 14.5% of the variation in
total root respiration. Axial root volume, lateral root volume, and lateral root tip volume were all
significant explanatory variables (p = 0.001, 1.37e-05, and 0.033, respectively). The average
specific root respiration rate on a volume basis of lateral root tips was 30.5 and 8.1 times the
rates of axial roots and lateral roots, respectively, as determined from comparing slopes in the
model. The residuals represent respiration not accounted for by average tissue dependencies
within the diversity panel, which we hypothesized to have a genetic component.

Trait correlation network

In addition to the correlation analyses, a network analysis based on a Gaussian graphical

model was performed to account for the conditional dependencies between the investigated
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traits. The traits exhibiting outdegree greater than 2.0 were AvgD, RTD, ARL, SRR_M, and SRL
in descending order (Table S1). Average root diameter showed the highest betweenness,
connecting a root branching subnetwork via ARL, and a biomass subnetwork via RMF. SRL also
exhibited a high betweenness, by connecting other groups of traits belonging to root respiration,
biomass, root morphology, and topology. Consistent with Pearson correlation analysis, SRR_M
was weakly connected with root dry weight, total dry weight, and RMF. SRL was negatively and
positively correlated with SRR_L and SRR_M, respectively (Figure 5). In contrast to the Pearson
correlation analysis (Figure 3), no direct network connection was observed between shoot dry

weight and root respiratory and architectural traits (Figure 5).

Figure 5 Trait correlation network constructed from Gaussian graphical model. Red and green
edges show negative and positive correlations, respectively. Cutoff was set at 0.15. Trait
abbreviations are as in Table 1.

Genome-wide association analysis
Multi-trait GWAS on the six sets of traits identified 140 SNPs while the single-trait
GWAS of 25 traits identified 234 significantly associated SNPs (-logio P = 3.5). GWAS based on
the first 10 PCs identified 79 SNPs that passed the -logioP of 3.5, and the majority of these
detected SNPs were associated with PC1, PC2 or PCO (Figure 6a, Table S2). Sixty-nine percent
of the significantly associated SNPs in multi-trait approach and 56% of the SNPs in PC-GWAS

16


https://doi.org/10.1101/2020.11.12.380238
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.12.380238; this version posted November 13, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

were represented in the single-trait GWAS (Figure 6). Overall, multi-trait GWAS and PC-
GWAS identified 77 additional, unique SNPs that were not uncovered by the 25 univariate
analyses (Figure 6a, Figure S2).

() Multivariate Univariate (b) Multivariate Univariate
(140 SNPs) (234 SNPs) (264 genes) (393 genes)
76 150
42 114 77 176
21 36
1 23 1 31

34 49

PCs PCs

(79 SNPs) (117 genes)

Figure 6 Venn diagram of (a) associated SNPs cutoff set at —logioP=3.5, (b) genes identified
using cutoff set at —logioP= 3.5 comparing significantly univariate of mean 25 traits, univariate
analyses of 10 principal components (PCs), and multivariate of 6 trait combinations.

Four significant markers associated with SRR_M were identified on chromosomes 1B, 4B
and 4D (Figure 7a). There were no genes underlying the top two largest —logioP signals on
chromosomes 1B and 4B, while the third largest —logioP signal (IWA430) on chromosome 4D
was encoding for four underlying proteolysis genes involved in cellular protein catabolic process
(Table S3). Seven significant markers associated with SRR_L were identified on chromosomes
4B and 5A. The marker (Excalibur_c100336_106) with the largest -logioP signal on
chromosome 4B, which co-associated with SRR_M, had no known underlying gene. Six genes
underlying the next two largest -logioP signals on chromosome 5SA were annotated with
functions as ATP binding, protein binding, and protein kinase activity (Table S3). Three
additional significant markers associated with SRR_R were detected on chromosomes 1A and
1B (Table 2). Three genes underlying the largest -logioP signal (Kukri_c10453_875) on
chromosome 1A were associated with processes of DNA transcription regulation (Table S3).
There were no genes underlying the other two markers. Multi-trait GWAS for root respiration
identified 20 additional markers on chromosomes 1A, 1B, 2B, 3D, 4A, 4B, 5B, 6A, and 7A
(Figure 7a). There were no known genes underlying the largest —logioP signal

Excalibur_c5139_198 on chromosome 1A, and four genes underlying the following two largest -
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logioP signals on chromosomes 1A and 1B were annotated with functions as protein kinase
activity and ADP binding (Table S3).

Ten significant markers associated with single-trait SRL were identified on chromosomes
2A (9 markers) and 7A, and seventeen genes underlying the top three largest —logioP signals on
chromosome 2A and 7A have functions related to protein binding, calcium ion binding,
polysaccharide binding, and ATP binding (Figure 7b, Table S3). Five significant markers
associated with single-trait AvgD were identified on chromosomes 6B, 7A, and 7B. Only one of
the top three largest —logioP signals on chromosome 7Ahad three underlying genes, which were
annotated with function as protein binding. Seven significant markers associated with single-trait
RTD were identified on chromosomes 1B, 1D, and 7A, and eight genes underlying the top three
largest —log10P signals on chromosomes 1B, 1D, and 7A were annotated as zinc finger CW-type
coiled-coil domain protein and integral membrane Yipl family protein. Multi-trait GWAS for
root construction identified eight markers on chromosomes 1A, 1B, 2B, 3B, and 7A, with one
marker (GENE-0249_161) on 1B co-associated with single-trait RTD, and another marker
(RAC875_c63889_486) on 7A co-associated with single-trait SRL (Table 2). Eight genes
underlying the top three largest —logioP signals on chromosomes 1B, 2B, and 3B were annotated
as regulators of VPS4 activity protein-related and potassium ion transmembrane transport (Table
S3).

Thirty-four significant markers associated with single-trait BF were identified on
chromosomes 1A, 2A, 2D, 6A, and 6D, and seven genes underlying the top two largest —logioP
signals on chromosome 1A involved in biological processes such as oxidation-reduction, steroid
biosynthetic process, and DNA-binding process. We detected 134 markers for single-trait BP on
chromosomes 1A, 1D, 2A, 2D, 5A, 5B, and the top three largest —logioP signals and underlying
nine genes were all observed on chromosome 1D, which also co-associated with multi-trait root
topology. Three significant marker associations were detected for single-trait branching density
on chromosomes 2D, 4B, and 5A (Figure 7c), and five genes underlying the three markers had
annotations indicating involvement in oxidation-reduction biological processes. Multi-trait
GWAS for root topology identified 84 significant markers, with 80 markers co-associated with
single-trait BF or BP (Figure 7c). Significant marker associations and underlying genes were also
detected for multi-trait biomass, multi-trait allocation, multi-trait morphology, for all PC-traits

except PC8, and for the other single traits (Figure 6, Figure S2, Table S3).
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Table 2. Subset of significant SNP markers identified from multi-trait GWAS and univariate
GWAS of single-trait by selecting top three SNPs of each trait.

Trait Model Markers Chr MAF pvalue

SRR M Univariate Excalibur_c100336_106 4B 0.110 1.91E-05
SRR_M Univariate IAAVS5776 1B 0.056 9.95E-05
SRR_M Univariate IWA430 4D 0438 2.11E-04
SRR_L Univariate Excalibur_c100336_106 4B  0.110 1.70E-05
SRR_L Univariate CAPI12_¢c956_61 5A  0.112 2.04E-04
SRR_L Univariate BS00066434_51 5A 0.146 2.19E-04
SRR_R Univariate Kukri_c10453_875 1A 0.281 7.51E-05
SRR_R Univariate IWA6965 1B 0.064 9.86E-05
SRR_R Univariate RAC875_c42206_305 1B 0.064 9.86E-05
Respiration Multivariate Excalibur_c5139 198 1A 0.213 5.69E-06
Respiration Multivariate  tplb0048b10_1365 1B  0.064 4.35E-05
Respiration Multivariate Ex_c4876_1221 1A 0.248 9.36E-05
SRL Univariate RACS875_c63889_486 7A  0.202 7.58E-05
SRL Univariate GENE-1220_457 2A  0.064 1.29E-04
SRL Univariate RFL_Contig5917_2369 2A  0.071 1.73E-04
AvgD Univariate IWA7907 7B 0.190 1.95E-04
AvgD Univariate IWA4438 7A  0.083 1.97E-04
AvgD Univariate Tdurum_contigb1864_1352 7A  0.082 2.03E-04
RTD Univariate GENE-0249 161 1B 0272 6.84E-05
RTD Univariate IWA614 7A 0277 1.97E-04
RTD Univariate Kukri_c20062_389 1D 0.165 2.06E-04
Construction Multivariate BS00082644 51 3B 0.247 4.91E-05
Construction Multivariate GENE-0249_161 1B 0272 1.65E-04
Construction Multivariate IWA6076 2B 0273 1.72E-04
BF Univariate CAP7_c1083_283 1A 0.140 1.74E-05
BF Univariate Kukri_c29121_226 1A 0.140 1.98E-05
BF Univariate Kukri_c53935_265 1A 0.136 3.47E-05
BP Univariate IWA1464 1D 0.147 6.00E-07
BP Univariate BS00032149_51 1D 0.133  7.39E-07
BP Univariate IWA2164 1D 0.150 1.31E-06
BD Univariate Tdurum_contigd9608_1185 4B 0.143 1.59E-04
BD Univariate BS00063973_51 5A 0404 2.63E-04
BD Univariate Excalibur_c33173_557 2D 0.205 291E-04
Topology Multivariate BS00032149_51 1D 0.133  6.15E-06
Topology Multivariate ~ IWA1464 ID  0.147 6.95E-06
Topology Multivariate  IWA2164 ID  0.150 1.74E-05

Chr, Chromosome; MAF, minor allele frequency.
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Figure 7 Manhattan plot of GWAS conducted on traits (a) SRR by mass, SRR by length,
residuals of total respiration vs volume of different segments, and multi-trait combination for
root respiration, (b) SRL, AvgD, RTD, and multi-trait combination for root construction, (c) BP,
BF, BD, and multi-trait combination for root topology of TCAP wheat population. Each dot
represents a SNP. The horizontal black line indicates the threshold of significance at - logioP =
3.5. Trait abbreviations are as in Table 1.
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Discussion

Reducing the metabolic and construction carbon costs of roots has become a realistic
engineering strategy for crop breeding to increase yield and promote plant growth (Lynch, 2013;
Lynch, 2018; Amthor er al., 2019). However, the genetic and functional basis of root respiration
traits still lags behind architectural root traits. Scaling up the throughput of root respiration
phenotyping will strengthen functional phenomics greatly by increasing statistical power and
enabling genetic mapping (York, 2019). The platform we developed facilitates high-throughput
phenotyping of root respiration, with integration of cost-effective equipment and an R script for
data processing, and allowed throughput of about 25 samples person hour™. The use of a bead
bath for controlling temperature avoids the risk found when using a water bath of water entering
the respiration chamber and contaminating the gas analyzer. We observed 8.5-fold variation for
SRR_L and 3.2-fold variation for SRR_M in the wheat panel. In previous work, root respiration
was measured mostly using single root segments (Poorter ef al., 1991; Strock et al., 2018), and
there was little information about how different root types impact respiration of whole root
systems. Considering the difficulty of separating different root tissue segments from whole root
systems for maintaining high-throughput, multiple linear regression was used to predict the
contributions of root tissue types to total root respiration of wheat seedlings on average within the
panel. We found that the lateral root tips had much greater respiration than axial root tissue or
lateral root axis tissue(< 0.3 mm), which supports findings in woody plants that root tip meristems
consume about 15 times more O than the rest of the root system (Mancuso & Boselli, 2002;
Aguilar et al., 2003; Burton et al., 2012).

Correlation network analyses have been widely used in biology and social sciences to
capture causality and precursor/product relationship patterns in functional traits. Despite the
elegance of this approach, only a few studies applied network theory to plant root traits (Poorter
et al.,2014; Messier et al., 2017; Carlson et al., 2019; Kleyer et al., 2019). In addition to root dry
weight, SRL, and average diameter, SRR_M, which is rarely used in functional trait analysis,
was identified as one of the hub traits and had substantial effects on the plant phenotype as a
whole. Consistent with previous work, SRL correlated with root dry weight, root diameter,
branching, and root tissue density (Reich, 2014; Kramer-Walter et al., 2016). In addition, we
found that SRL also can be an indicator of root respiration on either a mass or length basis. Shoot

biomass only had a strong positive correlation with total biomass and a negative correlation with

21


https://doi.org/10.1101/2020.11.12.380238
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.12.380238; this version posted November 13, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

root mass fraction in the network, which may indicate that the formation of wheat seedling shoot
biomass was mostly independent, and also indicates that reducing or otherwise optimizing the
allocation of resources to the root could be a strategy to improve shoot growth (Guo & York,
2019). Counterintuitively, driving shoot growth with such a strategy may actually maintain root
mass and total metabolic burden, or even increase these total costs, but with less proportion
relative to the shoot. This framework of carbon use efficiency represents an untapped positive
feedback loop for plant growth. Interestingly, network, principal component, and regression
analyses all showed that SRR_M was negatively correlated with total dry weight, suggesting that
reducing respiratory carbon could potentially increase whole-plant growth (Lynch, 2015; Amthor
et al., 2019).

Multi-trait GWAS has recently gained more attention because it often boosts the power to
detect SNPs and assesses the full spectrum of traits that are affected by trait-associated variants
(Porter & O’Reilly, 2017), which can be particularly useful for challenging physiological traits
(Chhetri et al., 2019). Combining traits related to respiration, multi-trait association analysis
identified 20 unique significant associations while single-trait GWAS detected 13 unique
significant associations for all SRR traits. The findings potentially reveal the pleiotropic effects
of genes near significantly associated SNPs on root respiration. The marker tplb0048b10_1365,
the second-largest -logioP signal associated with multi-trait root respiration, was reported to be
associated with nitrogen deficiency tolerance in wheat seedlings (Ren e al., 2018). Multiple
annotated genes underlying significant SRR_L and SRR_M associated SNPs are annotated with
functions in protein catabolism, protein binding, ADP, and ATP binding, which are related to
cellular respiration (Aratjo et al., 2011), root meristem activity (Xu ef al., 2017) or root
senescence (Liu er al., 2019).

GWAS for root architectural traits have gained increasing attention in wheat, and several
QTL/genes in wheat have been found to associate with root architectural and morphological
traits such as root length, root number, and root diameter across the genome (Maccaferri et al.,
2016; Ayalew et al., 2018; Beyer et al., 2019). Specific root length (SRL), AvgD, and RTD are
important components of the root economic spectrum because they potentially provide
information about root morphology and construction costs (Kramer-Walter et al., 2016;
McCormack et al., 2017). Multiple genes underlying associated significant SNPs were identified

as zinc finger protein, cytochrome p450 family member, and haloacid dehalogenase-like
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hydrolase family protein, which all play important roles in controlling wheat root growth and
development (Kulkarni ef al., 2017; Li & Wei, 2020). Multiple genes underlying two markers
(Kukri_c24648_262 and Kukri_c5113_1082), which were co-associated with TRL, LRL, TRV,
LRV, TSA, LSA, BP, PC1, and multi-trait allocation and topology (Table S3), were annotated as
a nucleoporin autopeptidase domain containing protein. Those genes may play distinct roles in
nuclear transport and root elongation (Parry, 2014).

Root branching is a necessary developmental process for increasing the number of growing
tips and defining the distribution of their meristem sizes (Pages, 2014), with a large metabolic
cost. Root branching was critical for plant survival and performance under abiotic conditions
(Schneider er al., 2020). Two genes (Traes_1AL_9CC946A58 and Traes_1DL_7EF27C52F)
underlying the largest -logioP signal of BF were annotated as being involved in steroid
biosynthesis, which may play a role in interacting with auxin signaling to promote lateral root
growth (Vriet et al., 2012; Wang et al., 2018). Four genes underlying the marker
BS00013534_51, which was co-associated with BF, BP, and multi-trait topology, were annotated
as encoding protein kinase activity in wheat and threonine-protein kinase receptor precursor in
rice. Interestingly, different genes with similar functions were found playing fundamental roles
in lateral root formation and development (Atkinson et al., 2014; Yu et al., 2016; Pan et al.,
2020). Three candidate genes underlying single-trait branching frequency and multi-trait
topology co-associated SNP (tplb0025105_1836) were annotated as being involved in the activity
of Rho guanine nucleotide exchange factors. Rho family members are well known as regulators
of extracellular stimulus-dependent signaling pathways that affect gene expression, cell
proliferation, actin cytoskeleton, cell cycle progression, and cell polarity (Berken &
Wittinghofer, 2008).

A recent review outlined the emerging possibilities for targeted reducing unnecessary
carbon loss for increasing yields (Amthor ez al., 2019), which was further supported by new
simulation results indicating that substantial gains could be made by targeting plant respiration
(Holland et al., 2019). Therefore, an optimal root system will conform to economic cost-benefit
analysis where the cost increment of allocation to the root system equals the benefit increment,
measured as nutrient and water capture, or marginal photosynthesis (Bloom ez al., 1985). Recent
work from the RIPE project has also shown it’s possible to increase photosynthesis by reducing

photorespiration (South e al., 2019) and increasing photosynthetic induction (Acevedo-Siaca et
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al., 2020). We propose that combining strategies that increase photosynthesis and decrease
‘luxury’ root respiration could have synergistic and compounding influences on plant growth.
The root economics space discussed above provides a useful framework for this strategy.

Conclusions

We developed a high-throughput platform for measuring multiple traits within the root
economics space, including root respiration and specific root length which are aspects of root
metabolic and construction costs, respectively. Substantial, heritable variation exists within
wheat, providing further evidence for intraspecific economics spectra. Employing the functional
phenomics approach allowed leveraging genetic and phenotypic diversity to infer the increased
contribution of lateral root tips to respiration, the negative relation of SRR to seedling mass, and
network analysis that identified hub traits. Genome-wide association studies for the univariate
traits uncovered several underlying genetic regions, while multivariate and PCA-based GWAS
provided increased power to detect genetics of the root economics space itself for the first time to
our knowledge. The SNPs associated with the traits may be useful for marker-assisted breeding.
Candidate genes underlying significant SNPs associated with root respiratory, construction, and
topology traits will require further research for reducing respiratory carbon loss and construction
costs. We provide evidence that combining functional phenomics methods and trait economic

theory has substantial potential to advance plant biology and crop breeding.
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Figure legends

Figure 1 Platform for phenotyping root respiration and other root traits of wheat seedlings.
(a) Wheat seeds were surface sterilized and pre-germinated in plate, (b) Seedlings were grown in
aerated hydroponics for 10 days, (c) Shoot and roots of seedling 10 days after transplanting, (d)
Root respiration was measured in an airtight chamber using a LI-850 with temperature control
using a bead bath, (e) Distinguished axial roots (blue) from lateral roots (red) of scanned image
using RhizoVision Explorer. IRGA: Infrared gas analyzer, RC: Root chamber, BB: Bead bath,
BF: Balston Filter.

Figure 2 (a) The relationship between predicted total root respiration and total root
respiration, and deviations from the relationship results in new trait SRR_R, (b) Regression
between specific root respiration by length and shoot dry weight.

Figure 3 Pairwise Pearson correlation of selected traits of TCAP winter wheat seedlings.
The number represents the correlation values. Value marked with symbol x means correlation is
not significant at p =0.05. Bright red to bright blue indicates highly positive to highly negative
correlations. Trait abbreviations are as in Table 1.

Figure 4 (a) Scree graph showing percentage of variance explained by each of the first ten
principal components, PCA variable contribution plots showing the (b) first and second PCs and
(c) third and fourth PCs, where relative weightings of the variables are indicated by vectors. Trait
abbreviations are as in Table 1.

Figure 5 Trait correlation network constructed from the Gaussian graphical model. Red

and green edges show negative and positive correlations, respectively. The cutoff was set at 0.15.
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Figure 6 Venn diagram of (a) associated SNPs cutoff set at —log10P=3.5, (b) genes
identified using cutoff set at —logioP= 3.5 comparing significantly univariate of mean 25 traits,
univariate analyses of 10 principal components (PCs), and multivariate of 6 trait combinations.

Figure 7 Manhattan plot of GWAS conducted on traits (a) SRR by mass, SRR by length,
residuals of total respiration vs. volume of different segments, and multi-trait combination for
root respiration, (b) SRL, AvgD, RTD, and multi-trait combination for root construction, (c) BP,
BF, BD, and multi-trait combination for root topology of TCAP wheat population. Each dot
represents a SNP. The horizontal black line indicates the threshold of significance at - logioP =

3.5.
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Supporting Information

Figure S1 Histograms for the frequency distribution of 26 traits and 10 PC scores
Figure S2 Manhattan plots of GWAS conducted on all traits

Figure S3 Quantile-quantile (Q-Q) plots for all traits

Table S1 Centrality measures of 17 traits from Gaussian graphical model

Table S2 List of SNPs using a cutoff value set at —logi10P=3.5

Table S3 List of nearest genes underlying SNPs using a cutoff value set at —logi1oP=3.5
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