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Summary  

● The root economics space is a useful framework for plant ecology, but rarely considered for 

crop ecophysiology. In order to understand root trait integration in winter wheat, we 

combined functional phenomics with trait economic theory utilizing genetic variation, high-

throughput phenotyping, and multivariate analyses. 

● We phenotyped a diversity panel of 276 genotypes for root respiration and architectural traits 

using a novel high-throughput method for CO2 flux and the open-source software 

RhizoVision Explorer for analyzing scanned images. 

● We uncovered substantial variation for specific root respiration (SRR) and specific root 

length (SRL), which were primary indicators of root metabolic and construction costs. 

Multiple linear regression estimated that lateral root tips had the greatest SRR, and the 

residuals of this model were used as a new trait. SRR was negatively correlated with plant 

mass. Network analysis using a Gaussian graphical model identified root weight, SRL, 

diameter, and SRR as hub traits. Univariate and multivariate genetic analyses identified 

genetic regions associated with aspects of the root economics space, with underlying gene 

candidates.  

● Combining functional phenomics and root economics is a promising approach to understand 

crop ecophysiology. We identified root traits and genomic regions that could be harnessed to 

breed more efficient crops for sustainable agroecosystems. 
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Introduction 

Functional phenomics is an emerging transdisciplinary field that integrates physiology, 

high-throughput phenotyping, and computational biology in order to fill knowledge gaps about 

plant functioning (York, 2019). High-throughput phenotyping allows for large-scale data 

collection on plant form and function, and is often used for genetics within a species. Phenomics 

focuses on understanding variation in plant phenotypes, but often lacks analysis of the relation of 

phenotypes to function, even if quantitative genetics are employed. Therefore, functional 

phenomics is needed using statistical associations within high-dimensional phenomics data to 

infer how traits influence one another and physiological processes important for crop growth. 

Especially, root phenomics data and conceptual frameworks are lacking to understand their 

interactions and integration as described in York et al. (2013). The trait economics spectrum is a 

conceptual framework from ecology that could help explore trait integration in crops. In this 

context, economics refers to the balance among traits for resource acquisition and utilization, 

with an explicit treatment of the tradeoffs between pairs of traits (Reich, 2014). For example, in a 

controlled study of 74 plant species, a root economics spectrum was found in which root 

respiration correlated to percent nitrogen, root length per unit mass, and the decomposition rate 

of dried roots in soil (Roumet et al., 2016). Recently, a root economics space was proposed 

formed by one axis representing whether to cooperate with fungal partners and a second 

representing the 8fast9 or 8slow9 strategies (Bergmann et al., 2020). Interestingly, the first axis 

was partially driven by specific root length relating to construction cost, and the second axis by 

root nitrogen content, a proxy of specific root respiration and metabolic cost. Therefore, the root 

economics space is a useful framework for understanding carbon use efficiency in crop roots. 

Roots are the interface between plants and soil, with a key function to extract nutrients and 

water that are required for plant productivity (Smith & De Smet, 2012; Meister et al., 2014). 

However, there is a complex relationship between investing in the root system and plant 

productivity because roots have a cost. The fraction of newly fixed carbon from photosynthesis 

allocated to roots can exceed 50%, and this proportion to roots significantly increases under 

edaphic stress (Lambers et al., 1996; Rachmilevitch et al., 2015). Root system carbon costs can 

be classified as construction costs, including the structure of the roots and growth respiration, 
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and maintenance costs, primarily respiration and exudation (Mooney, 1972; Sun et al., 2020). 

For example, in wheat seedlings, 30% of net photosynthesis was measured as root construction 

and maintenance costs, such as respiration (Sawada, 1970). Therefore, optimizing construction 

and metabolism of the root system would have a significant impact on plant carbon use 

efficiency.  

Specific root length is a measure of carbon expenditure to construct root length, often in 

units of m g-1. Specific root respiration standardizes respiration based on root length or mass, 

typically with units of nmol CO2 s
-1 cm-1 or mg-1, respectively. Specific root length was found to 

have variation among a set of barley and wheat lines but the genetic contribution was not 

considered explicitly (Løes & Gahoonia, 2004), and was used for QTL analysis in common bean 

(Ochoa et al., 2006).  Across the plant kingdom, as much as 52% of photosynthates may be 

respired by plant roots during the same day, depending on species and environmental conditions 

(Lambers et al., 1996). Plants respire photosynthetic substrates to produce carbon skeletons, 

usable energy, and chemical reduction needed for development (Amthor, 2000), which results in 

the consumption of oxygen and the release of carbon dioxide. A multicomponent framework has 

been suggested to divide respiration into (1) growth fraction, biosynthesis of new structural 

biomass and exudates, (2) maintenance fraction, translocation of photosynthate from sources to 

sinks, and cellular ion-gradient maintenance, (3) ion-uptake fraction, including uptake of ions, 

assimilation of N and S, and protein turnover (McCree, 1970; Thornley, 1970; Johnson, 1983; 

Poorter et al., 1991; Amthor, 2000). As up to 60% of assimilated carbon is lost through 

respiration, strategies to minimize unnecessary respiratory activity could lead to substantial gains 

in crop productivity by enhancing plant carbon use efficiency (Amthor et al., 2019; Weber & 

Bar-Even, 2019; Roell & Zurbriggen, 2020).  

Variation in root respiration rates among crop species is due to the differences in root 

tissue density, anatomy, activity, chemistry, and structure (Ben-Noah & Friedman, 2018). 

Studies have shown that reducing root respiration through anatomical changes such as root 

cortical senescence of barley (Hordeum vulgare L.) and wheat  (Triticum aestivum L.)  

(Schneider et al., 2017) or reduction in root secondary growth of common bean (Phaseolus 

vulgaris L.) (Strock et al., 2018) permit greater plant growth by improving phosphorus capture 

from low-phosphorus soils. Strategies have been proposed or used to reduce root respiratory 

carbon cost for improving plant performance, including making ion transport more efficient 
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(Amthor et al., 2019), manipulation of genes or enzymes involved in carbon metabolism in plant 

roots (Dorion et al., 2017; Florez-Sarasa et al., 2020), and using arbuscular mycorrhizal 

symbiosis to reduce root respiratory rate as well as increasing photosynthesis (Romero-Munar et 

al., 2017). Root respiration that is not accounted for necessary plant functions might be referred 

to as luxury respiration.  

Understanding the genetic bases of specific root length and respiration, among other traits, 

and their relationship to plant performance is of key importance for breeding more productive 

and resilient crop varieties to adapt to climate change. However, these traits have rarely been 

considered as a unit of phenotype for breeding or genetic mapping. Genome-wide association 

studies (GWAS) for respiratory traits will typically require many hundreds of plant variants, and 

measurement of respiratory traits at the same time of day and developmental stage (Scafaro et 

al., 2017). Infrared gas analyzers for portable leaf photosynthesis or O2-electrodes techniques are 

commonly used to measure rates of root respiration (Poorter et al., 1991; Strock et al., 2018), but 

most of those protocols are low-throughput with costly instruments that have less flexibility for 

outputting convenient data formats. Addressing the need for rapid, cost-effective, large-scale root 

respiratory screening will require the development of both high-throughput root respiration 

measurement and data analysis capabilities, the combination of which will greatly strengthen 

functional phenomics by increasing statistical power and enabling genetic mapping (York, 

2019). 

Wheat, a member of the grass family, is an important cereal grown globally. Winter wheat 

in the Southern Great Plains of the United States is often grown as a dual-purpose crop for forage 

and grain production (Maulana et al., 2019). Yield, protein content (Rajaram, 2001), disease 

resistance (Ellis et al., 2014), and heat resistance (Maulana et al., 2018) are major targets for 

modern wheat breeding and genetic improvement. Significant marker-trait associations for 

aboveground traits, such as yield and its components (Sukumaran et al., 2018) and nitrogen use 

efficiency (Cormier et al., 2016; Hawkesford & Griffiths, 2019), have been reported across the 

wheat genome. Indeed, considerable quantitative trait loci (QTL) associated with wheat root 

traits have been identified on nearly all chromosomes in variable environments (Hamada et al., 

2012; Bai et al., 2013; Atkinson et al., 2015; Maccaferri et al., 2016; Xie et al., 2017; Beyer et 

al., 2019; Soriano & Alvaro, 2019). However, the genetic and functional basis of root traits still 

lag behind aboveground traits, and genetic variation of root construction and metabolic traits 
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remains less explored. Accordingly, this study was conducted to (1) develop a high-throughput 

phenotyping platform that integrates a hydroponics growth system, infrared gas analyzers, 

custom gas chambers, a bead bath, flatbed scanners, analytical scales, and an R script for 

measuring specific root respiration, specific root length, and other root traits, (2) validate the 

platform using winter wheat to uncover heritable variation of root respiration and architectural 

traits, (3) emply functional phenomics to identify relations among traits and tissue-type 

dependencies, and (4) identify associated QTL/genes that drive root respiration and other root 

traits by performing GWAS. 

Materials and Methods 

Plant materials  

The plant materials were selected from the hard winter wheat association mapping panel 

(HWWAMP) by the Triticeae Coordinated Agricultural Project (T-CAP). Two hundred seventy-

six hard winter wheat cultivars and breeding lines were selected from the panel, which covers a 

broad range of selection and breeding history in the Great Plains of the USA. 

Experimental design 

The 276 wheat lines were grown as two replicates in a single growth chamber with 552 

plants, with the entire procedure repeated twice, for a total of four replicates and 1104 plants 

evaluated in this study. Each replicate was treated as a block for an overall experiment with a 

randomized complete block design. The two transplanting dates of seedlings into the growth 

hydroponics boxes were June 19 and October 4 in 2019. The details of the germination, growth, 

and sampling are given below.  

Growth conditions 

Seeds were surface-sterilized in 0.5% NaOCl for 10 min and rinsed three times using 

deionized (DI) water, then pre-germinated in petri dishes with filter paper placed in darkness at 25 

°C for 3 d. Uniformly germinated seedlings were selected (Figure 1a), wrapped around the root-

shoot junction with L800-D Identi-Plugs foam (Jaece Industries, NY, USA), plugged in a 15 mL 

conical centrifuge tube (VWR, Falcon®, catalog number: 21008-918) with the bottoms cut away 

from the <6 ml= mark, and transplanted to a hole cut into the lid of the growth system as described 

below (Figure 1b). A unique barcode label was affixed to each tube for sample identification. The 

hydroponics growth system consisted of a polypropylene divider box (inside dimensions: length 

of 38.10 cm, width of 22.86 cm, and height of 20.32 cm with a volume of 17.7 L) and a custom 
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lid made from a PVC panel cut to fit in the top of a box (4.5 mm thick, by 250 mm wide, by 392 

mm long with the corners cut off to accommodate the box9s rounded corners). Forty-eight holes 

with 18 mm diameter were drilled into the lid with a hole saw with equal spacing among holes. 

Twelve growth boxes were placed in a Conviron E-15 growth chamber (Conviron, Winnipeg, 

Canada) with a day:night cycle of 16:8 h, 25:20 °C, at a flux density at canopy level of ~400 µmol 

m−2 s−1. Each box was filled to the bottom of the lid with a nutrient solution containing (µM) 125 

KH2PO4, 1125 KNO3, 500 CaCl2, 250 MgSO4, 11.5 H3BO3, 1.75 ZnSO4·7H2O, 2.25 MnCl2·4H2O, 

0.08 CuSO4·5H2O, 0.03 (NH4)6Mo7O24·4H2O, and 19.25 Fe(III)-EDTA (C10H12N2NaFeO8). The 

nutrient solution was continuously aerated with an air pump attached to airstones submerged in 

each growth box, and the solution pH was maintained between 5.9 and 6.1 by additions of KOH 

or HCl throughout the experiment. 

High-throughput root respiration measurements 

Ten days after transplanting (Figure 1c), plants were removed from the nutrient solution. 

Roots were immediately excised from shoots, blotted using tissue paper to remove excess water, 

placed in a 19 ml custom chamber, and then the chamber connected to an LI-850 CO2/H2O 

Analyzer (LI-COR Inc., NE, USA) (Figure 1d). The custom chamber was made from a 12.70 

mm internal diameter clear polyvinyl chloride (PVC) pipe nipple (United States Plastic Corp., 

OH, USA ) that was 152.4 mm in length with threaded ends. Holes were drilled into ½ inch 

FNPT nylon threaded caps (United States Plastic Corp., OH, USA) in order to accommodate 

insertion of quick-connect bulkhead male or female fittings (LI-COR Inc., NE, USA) with rubber 

grommets to create a seal.  A Balston filter (LI-COR Inc., NE, USA) was inserted between the 

chamber and the analyzer to filter air. The chamber was buried in a Lab Armor bead bath (Model 

No 74300-714) filled with Lab Amor metallic beads with the temperature set at 28 °C. Beads 

were preferred to water in order to prevent contamination of the system with water. The chamber 

CO2 concentration was continuously recorded using LI-850 Windows software v 1.0.2 for 90 

seconds at a rate of one reading per second. A USB barcode scanner (Taotronics, Fremont, CA) 

was connected to each laptop to acquire and save the datafile with the appropriate sample name 

encoded by the barcode affixed to the cut tube described above. Three infrared gas analyzers 

were used to allow simultaneous measurements in parallel to increase throughput.  
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Figure 1 Platform for phenotyping root respiration and other root traits of wheat seedlings. (a) 

Wheat seeds were surface sterilized and pre-germinated in plate, (b) Seedlings were grown in 

aerated hydroponics for 10 days, (c) Shoot and roots of seedling 10 days after transplanting, (d) 

Root respiration was measured in bead bath using Li-850, (e) Distinguish axial roots (blue) from 

lateral roots (red) of the scanned image using RhizoVision Explorer. IRGA: Infrared gas analyzer, 

RC: Root chamber, BB: Bead bath, BF: Balston filter. 

 

In order to calculate the total respiration rate of a root sample from the individual text files 

containing the time series molar fraction of CO2, an  R (R Core Team, 2018) script was 

developed in order to load each text file in a directory, do a series of computations, and output 

the total respiration rate. Total respiration rate (CO2 flux) was calculated using Equation 1. 

                                                       F = 
���� ý�ý�                                                        (1) 

Where F is the CO2 flux in nmol s-1, P is the pressure in the chamber in kPa, V is the corrected 

chamber volume in milliliters, R is the ideal gas law constant in L kPa K-1 mol-1, T is air 

temperature in K, and dC/dt is the change in CO2 concentration on a molar basis with time (µmol 

mol-1 s-1). Chamber volume (V) was determined by subtracting the total root volume estimated 

using RhizoVision Explorer from the chamber volume. For root respiration analysis, the dead band 
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(length of initial time to ignore) was set at 20 s. The slope of a linear regression fit to water-

corrected CO2 concentration provided by the LI-850 analyzer over the corresponding observation 

time (20-90 s) using the lm function in R (R Core Team, 2018) is dC/dt. The protocol for the root 

respiration measurements and the R script for calculating total flux from a directory of text files 

are available at https://doi.org/10.5281/zenodo.4247873 (Guo et al., 2020a). 

After the root respiration measurements, roots from each plant were spread in a 5 mm layer 

of water in transparent acrylic trays and imaged with a flatbed scanner equipped with a 

transparency unit (Epson Expression 12000XL, Epson America) at a resolution of 600 dpi. Images 

were analyzed using RhizoVision Explorer version 2.0.2 (Seethepalli & York, 2020) with 

algorithms described by Seethepalli et al. (2020) with the options for image thresholding level, 

filter noisy components, threshold for root pruning being set at 205 pixel intensity, 0.2 mm2, and 

1 pixel, respectively. A root diameter threshold of 0.30 mm was used to distinguish axial roots 

from lateral roots (Figure 1e).  

Root traits extracted by the RhizoVision Explorer used in this study were number of root 

tips (Tip), number of branching points (BP), branching frequency (BF), total root length (TRL), 

axial root length (ARL), lateral root length (LRL), average diameter (AvgD), total root volume 

(TRV), axial root volume (ARV), lateral root volume (LRV), total root surface area (TSA), axial 

root surface area (ASA), and lateral root surface area (LSA). Branching frequency is determined 

by the software by dividing the number of branching points by total root length. Roots following 

scanning and shoots were dried at 60 °C for 3 days prior to dry weight determination. The oven-

dried root mass and root length quantified using RhizoVision Explorer were used to calculate the 

specific root respiration (SRR) per unit of root dry mass (SRR_M; nmol g−1 s−1) and the specific 

root respiration per unit of root length (SRR_L; nmol m−1 s−1), respectively.  

Root mass fraction (RMF) was calculated as root dry weight proportion of total plant dry 

weight. Specific root length (SRL) was calculated by dividing root length by the corresponding 

root dry weight. Lateral-to-axial root length ratio was calculated by dividing lateral root length by 

corresponding axial root length based on the diameter threshold provided during image analysis, 

and lateral-to-axial root volume ratio was calculated by dividing lateral root volume by 

corresponding axial root volume. Branching density (BD) was calculated by dividing root tips by 

axial root length. Root tissue density (RTD) was calculated by dividing root dry weight by root 

volume, which brought the total number of traits reported to 25 in this study. 
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Broad-sense heritability (H2) of each trait was calculated based on Falconer and Mackay 

(1996) as: �2 = ��2��2 +  �þ2�  

The variables ��2, �þ2, and �represent the variance of the genotype effect, variance of the 

local environment effect, and the number of replicates (blocks), respectively. The variances were 

obtained by fitting to a mixed model including genotype as a random effect and block as a fixed 

effect using the lme4 package (Bates et al., 2014). 

Principal component (PC) analysis and visualization of outputs were performed on the trait 

means of the 25 traits using the base function <prcomp= and the R package <factoextra= 

(Kassambara & Mundt, 2017). The first ten principal component scores were extracted for 

clustering and PC-based GWAS analysis (PC-GWAS).  

Network analysis 

Due to highly correlated variables and singularities, root volume, surface area related traits, 

and lateral-to-axial root length ratio were dropped for network analysis. To assess the 

relationships among all the remaining 17 traits, we estimated pairwise Pearson9s correlation 

coefficients (r) of the traits and constructed a Gaussian graphical model for network analysis. 

Network analysis with a Gaussian graphical model is more likely to capture causality and 

precursor/product relationships in trait networks relative to standard correlation analyses 

(Krumsiek et al., 2011; Carlson et al., 2019). The network analysis and the visualization of trait 

relationships were carried out with the R package 8qgraph9 (Epskamp et al., 2012). Outdegree is 

the number of connections that a trait node has to other trait nodes. Betweenness centrality 

quantifies the number of times a trait node acts as a bridge along the shortest path between two 

other trait nodes. 

Multiple linear regression analysis  

Multiple linear regression analysis was employed to determine how total respiration can be 

partitioned into the contributions from root tissue types. The total axial root volume, lateral root 

axis volume (minus the tip volume), and lateral root tip volume were considered as the 

dependent variables while the total root respiration was the independent variable. The number of 

lateral root tips was estimated by subtracting 4 from the number of root tips supplied by 

RhizoVision Explorer, assuming that the typical wheat seedling had 4 seminal roots. This 
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number of lateral roots was multiplied by 0.01 mm3 in order to assign a small volume to the 

lateral root tips, which were assumed to be more active based on previous research. Lateral root 

axis volume was determined by subtracting lateral root tip volume from the total lateral root 

volume. Based on visual evaluation of feature images in RhizoVision Explorer, total lateral root 

volume and total axial root volume were assumed as the volumes of the diameter ranges f 0.3 

mm or > 0.3 mm, respectively.  The <stepAIC= function as implemented in R package <MASS= 

(Ripley et al., 2013) was used for the stepwise regression and revealed this full model as being 

the most parsimonious, so residuals of this model were used as an additional trait (SRR_R) for 

subsequent analysis. SRR_R is the respiration that is not accounted for after considering root 

system architecture and root tissue dependency.  

SNP Genotyping  

High-density single-nucleotide polymorphism (SNP) markers from the wheat 90K SNP 

genotyping array were obtained from Genotype Experiment <TCAP90K_HWWAMP= of The 

Triticeae Toolbox database (https://triticeaetoolbox.org/wheat/). Data constituting 21,555 SNPs 

were filtered to exclude markers with missing data greater than 50% and minor allele frequency 

less than 5%, resulting in 16,058 makers that were used in the association analysis. The map 

positions for the SNP markers used in this study were based on the consensus map developed 

using a combination of eight mapping populations (Wang et al., 2014).  

Genome-Wide Association Analysis 

Three genome-wide association analysis approaches were employed to identify genomic 

regions associated with various root traits. The linear mixed model (LMM) in GEMMA (Zhou & 

Stephens, 2012; Zhou & Stephens, 2014) was used to test for association between SNPs and 

traits. The population relatedness matrix was estimated using the centered relatedness algorithm 

within GEMMA, and was chosen as a covariate in the model. A Wald test was performed to 

determine p-values. 

Single-trait (Univariate) association testing was run for each of the 25 traits using mean 

phenotypic values and PC-GWAS was conducted using each of the first 10 PCs. Multi-trait 

(Multivariate) GWAS was carried out to increase the power of the association tests and to detect 

polymorphisms with potentially pleiotropic effects of trait-associated loci using the multivariate 

linear mixed effect modeling capabilities of GEMMA. The 25 traits were grouped into six multi-

trait combinations based on their genetic correlations, or their structural and functional 
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relationships (McCormack et al., 2017; Ben-Noah & Friedman, 2018). Root dry weight and 

shoot dry weight were combined to form a biomass-related multi-trait set (biomass). Total root 

respiration, root dry weight, root mass fraction, number of root tips, axial root length, and 

branching density were combined to form a root-respiration-related multi-trait set (root 

respiration) because these traits had functional relationships based on network analysis and 

provide a broader picture of root respiration. Axial root length, lateral root length, axial root 

volume, lateral root volume, axial root surface area, and lateral root surface area were combined 

to form a root-morphology-related multi-trait set (morphology). Branching point, branching 

frequency, and branching density were combined to form a root-topology-related multi-trait set 

(topology). Specific root length, root tissue density, and average root diameter were combined to 

form a root-construction-related multi-trait set (construction). Root mass fraction, lateral-to-axial 

root length ratio, and lateral-to-axial root volume ratio were combined to form an allocation-

related multi-trait set (allocation). Multi-trait association was conducted with GEMMA using the 

multivariate version of the same model used for single-trait associations. 

Outputs from GEMMA were used to generate Manhattan and Quantile–quantile (QQ) plots 

using the R package <qqman= (Turner, 2014).  As mentioned in many wheat studies (Maulana et 

al., 2018; Beyer et al., 2019), determining a significance cutoff threshold is one of the biggest 

challenges for GWAS. Significant QTL were initially tested based on a false discovery rate of 

0.05 following a stepwise procedure, which is very stringent (Müller et al., 2011). So, an 

unadjusted significance level of -log10 P g 3.5 was used for detecting SNPs that are significantly 

associated with the traits. 

Identification of candidate genes 

The sequences of significant markers associated with phenotypic traits were downloaded 

from the The Triticeae Toolbox database (Wang et al., 2014), and were BLAST searched against 

Phytozome9s version 2.2 of the wheat genome and identified candidate genes located ±250 kb 

proximal to each identified marker. Candidate genes of interest were selected based on the 

criteria of close proximity to the SNP, and possible involvement in the regulation of root 

development.  

Data and statistical code availability  
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All trait data, GEMMA output, and R analysis scripts necessary for doing the statistical 

analysis and plotting are available at https://doi.org/10.5281/zenodo.4247894 (Guo et al., 

2020b). 

Results 

Variations of root respiratory and architectural traits 

Shoot dry weight (SDW), RDW, TDW, TRR, SRL, L-to-A_L, ASA, L-to-A_V, PC2, PC3, 

PC4, and PC7 exhibited normal distribution. Near normal distributions were observed for other 

root traits (Fig. S1). The root traits with more than 5-fold variation between maximum and 

minimum values in the wheat population were SRR_L, TRL, LRL, LRV, LSA, and BP. 3.2-fold 

and 2.2-fold variations were also observed in SRR_M and SRL in the wheat population, 

respectively. Broad-sense heritabilities ranged from 0.25 to 0.57 for the 25 traits (Table 1). The 

respiration residual, SRR_R, of a multiple regression fit (Figure 2a) that accounts for respiration 

not explained by root system architecture, had a heritability of 0.44. The maximum heritability 

was observed for SDW (0.57). The root traits with heritabilities greater than 0.50 were SRL, BP, 

and AvgD. Many strong correlations were observed among traits. Total root respiration had 

correlation values greater than 0.50 with RDW and TDW. Interestingly, specific root respiratory 

traits (SRR_L and SRR_M) had significant negative correlations with shoot, root, and total dry 

weight (Figure 2b, Figure 3).  

 

Figure 2  (a) The relationship between predicted total root respiration and total root respiration, 

and deviations from the relationship results in new trait SRR_R, (b) Regression between specific 

root respiration by length and shoot dry weight. 
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Table 1. Summary statistics and units for shoot dry weight, total dry weight, and the 24 root 

traits characterized in this study. 

Trait Abbreviation Unit Mean  Min Max H2 

Shoot dry weight SDW g 0.039 0.018 0.059 0.57 

Total dry weight TDW g 0.053 0.024 0.080 0.51 

Root dry weight RDW g 0.014 0.006 0.022 0.39 

Total root respiration TRR nmol CO2 s-1 0.54 0.23 0.91 0.42 

SRR per root length SRR_L 
nmol CO2 s-1 m-

1 
0.14 0.04 0.34 0.48 

SRR per root mass SRR_M nmol CO2 s-1 g-1 39.86 23.32 74.79 0.32 

SRR residual SRR_R nmol CO2 s-1 -0.0039 -0.3623 0.27 0.44 

Specific root length SRL m g-1 299.7 182.21 398.36 0.55 

Root mass fraction RMF % 26.48 19.05 36.17 0.43 

Total root length TRL mm 4125.91 1315.65 7861.83 0.47 

Axial root length ARL mm 1456.2 655.59 2537.42 0.48 

Lateral root length LRL mm 2669.71 660.06 5494.75 0.48 

Lateral-to-axial root length ratio L-to-A_L mm mm-1 1.82 0.83 2.66 0.48 

Total root volume TRV mm3 329.49 135.78 610.24 0.45 

Axial root volume ARV mm3 243.9 113.64 459.5 0.46 

Lateral root volume LRV mm3 85.59 22.15 164.09 0.40 

Lateral-to-axial root volume 

ratio 
L-to-A_V mm3 mm-3 0.36 0.17 0.53 0.45 

Total root surface area TSA mm2 3680.62 1348.64 6477.28 0.45 

Axial root surface area ASA mm3 2034.03 934.42 3639.73 0.47 

Lateral root surface area LSA mm3 1646.59 414.22 3266.23 0.44 

Average root diameter AvgD mm 0.29 0.25 0.37 0.53 

Number of root tips Tip n 399.61 161.67 710 0.40 

Number of branch points BP n 931.66 283 1992.5 0.54 

Branching frequency BF n mm-1 0.22 0.18 0.31 0.45 

Branching density BD n cm-1 2.81 1.75 5.83 0.25 

Root tissue density RTD g cm-3 0.04 0.03 0.06 0.30 

H2, broad-sense heritability. 
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Figure 3 Pairwise Pearson correlation of selected traits of TCAP winter wheat seedlings. The 

number represents the correlation values. Value marked with symbol × means correlation is not 

significant at p = 0.05. Bright red to bright blue indicates highly positive to highly negative 

correlations, respectively. Trait abbreviations are as in Table 1. 

 

Principal component analysis of the traits was conducted to further identify the major 

linear trait combinations that maximize the multivariate variation, and the first ten PCs 

collectively explained 98.8% of the total variance. PC1, PC2, PC3, and PC4 explained 49.9%, 

17.5%, 9.3%, and 7.7% of the total variance, respectively (Figure 4a). Plant size-related traits 
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including TSA, TRL, TRV, TDW, RDW, and SDW had important contributions (>5%) to PC1. 

In contrast, PC2 was largely driven by two construction cost related traits AvgD and SRL, which 

had contributions of 18% and 15%, respectively (Figure 4b). Traits with greater than 7% 

contributions to PC3 were the construction cost trait RTD (22%), three root respiration traits 

(TRR, SRR_L, and SRR_M), and branching trait BF (14%). PC4 was predominantly driven by 

SRR_M and SRR_L that represent metabolic costs, which had contributions of 24% and 14% to 

the component, respectively (Figure 4c). 

 

Figure 4 (a) Scree graph showing the percentage of variance explained by each of the first 10 

principal components, PCA variable contribution plots showing the (b) first and second PCs and 

(c) third and fourth PCs, where vectors indicate relative weightings of the variables. Trait 

abbreviations are as in Table 1. 

 

Multiple linear regression partitions respiration among root tissue types 

Multiple linear regression analysis was employed to determine the respective contributions 

of lateral root tip, lateral root axis, and toal axial root volumes to total root respiration, and to 

provide the SRR_R trait. The resulting model (p < 2.2e-16) explains 14.5% of the variation in 

total root respiration. Axial root volume, lateral root volume, and lateral root tip volume were all 

significant explanatory variables (p = 0.001, 1.37e-05, and 0.033, respectively). The average 

specific root respiration rate on a volume basis of lateral root tips was 30.5 and 8.1 times the 

rates of axial roots and lateral roots, respectively, as determined from comparing slopes in the 

model. The residuals represent respiration not accounted for by average tissue dependencies 

within the diversity panel, which we hypothesized to have a genetic component.  

Trait correlation network  

In addition to the correlation analyses, a network analysis based on a Gaussian graphical 

model was performed to account for the conditional dependencies between the investigated 
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traits. The traits exhibiting outdegree greater than 2.0 were AvgD, RTD, ARL, SRR_M, and SRL 

in descending order (Table S1). Average root diameter showed the highest betweenness, 

connecting a root branching subnetwork via ARL, and a biomass subnetwork via RMF. SRL also 

exhibited a high betweenness, by connecting other groups of traits belonging to root respiration, 

biomass, root morphology, and topology. Consistent with Pearson correlation analysis, SRR_M 

was weakly connected with root dry weight, total dry weight, and RMF. SRL was negatively and 

positively correlated with SRR_L and SRR_M, respectively (Figure 5). In contrast to the Pearson 

correlation analysis (Figure 3), no direct network connection was observed between shoot dry 

weight and root respiratory and architectural traits (Figure 5). 

 

Figure 5 Trait correlation network constructed from Gaussian graphical model. Red and green 

edges show negative and positive correlations, respectively. Cutoff was set at 0.15. Trait 

abbreviations are as in Table 1. 

 

Genome-wide association analysis 

     Multi-trait GWAS on the six sets of traits identified 140 SNPs while the single-trait 

GWAS of 25 traits identified 234 significantly associated SNPs (-log10 P = 3.5). GWAS based on 

the first 10 PCs identified 79 SNPs that passed the -log10P of 3.5, and the majority of these 

detected SNPs were associated with PC1, PC2 or PC9 (Figure 6a, Table S2). Sixty-nine percent 

of the significantly associated  SNPs in multi-trait approach and 56% of the SNPs in PC-GWAS 
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were represented in the single-trait GWAS (Figure 6). Overall, multi-trait GWAS and PC-

GWAS identified 77 additional, unique SNPs that were not uncovered by the 25 univariate 

analyses (Figure 6a, Figure S2). 

 

Figure 6 Venn diagram of (a) associated SNPs cutoff set at –log10P=3.5, (b) genes identified 

using cutoff set at –log10P= 3.5 comparing significantly univariate of mean 25 traits, univariate 

analyses of 10 principal components (PCs), and multivariate of 6 trait combinations. 

 

Four significant markers associated with SRR_M were identified on chromosomes 1B, 4B 

and 4D (Figure 7a). There were no genes underlying the top two largest –log10P signals on 

chromosomes 1B and 4B, while the third largest –log10P signal (IWA430) on chromosome 4D 

was encoding for four underlying proteolysis genes involved in cellular protein catabolic process 

(Table S3). Seven significant markers associated with SRR_L were identified on chromosomes 

4B and 5A. The marker (Excalibur_c100336_106) with the largest -log10P signal on 

chromosome 4B, which co-associated with SRR_M, had no known underlying gene. Six genes 

underlying the next two largest -log10P signals on chromosome 5A were annotated with 

functions as ATP binding, protein binding, and protein kinase activity (Table S3). Three 

additional significant markers associated with SRR_R were detected on chromosomes 1A and 

1B (Table 2). Three genes underlying the largest -log10P signal (Kukri_c10453_875) on 

chromosome 1A were associated with processes of DNA  transcription regulation (Table S3). 

There were no genes underlying the other two markers. Multi-trait GWAS for root respiration 

identified 20 additional markers on chromosomes 1A, 1B, 2B, 3D, 4A, 4B, 5B, 6A, and 7A 

(Figure 7a). There were no known genes underlying the largest –log10P signal 

Excalibur_c5139_198 on chromosome 1A, and four genes underlying the following two largest -
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log10P signals on chromosomes 1A and 1B were annotated with functions as protein kinase 

activity and ADP binding (Table S3). 

Ten significant markers associated with single-trait SRL were identified on chromosomes 

2A (9 markers) and 7A, and seventeen genes underlying the top three largest –log10P signals on 

chromosome 2A and 7A have functions related to protein binding, calcium ion binding, 

polysaccharide binding, and ATP binding (Figure 7b, Table S3). Five significant markers 

associated with single-trait AvgD were identified on chromosomes 6B, 7A, and 7B. Only one of 

the top three largest –log10P signals on chromosome 7Ahad three underlying genes, which were 

annotated with function as protein binding. Seven significant markers associated with single-trait 

RTD were identified on chromosomes 1B, 1D, and 7A, and eight genes underlying the top three 

largest –log10P signals on chromosomes 1B, 1D, and 7A were annotated as zinc finger CW-type 

coiled-coil domain protein and integral membrane Yip1 family protein. Multi-trait GWAS for 

root construction identified eight markers on chromosomes 1A, 1B, 2B, 3B, and 7A, with one 

marker (GENE-0249_161) on 1B co-associated with single-trait RTD, and another marker 

(RAC875_c63889_486) on 7A co-associated with single-trait SRL (Table 2). Eight genes 

underlying the top three largest –log10P signals on chromosomes 1B, 2B, and 3B were annotated 

as regulators of VPS4 activity protein-related and potassium ion transmembrane transport (Table 

S3). 

Thirty-four significant markers associated with single-trait BF were identified on 

chromosomes 1A, 2A, 2D, 6A, and 6D, and seven genes underlying the top two largest –log10P 

signals on chromosome 1A involved in biological processes such as oxidation-reduction, steroid 

biosynthetic process, and DNA-binding process. We detected 134 markers for single-trait BP on 

chromosomes 1A, 1D, 2A, 2D, 5A, 5B, and the top three largest –log10P signals and underlying 

nine genes were all observed on chromosome 1D, which also co-associated with multi-trait root 

topology. Three significant marker associations were detected for single-trait branching density 

on chromosomes 2D, 4B, and 5A (Figure 7c), and five genes underlying the three markers had 

annotations indicating involvement in oxidation-reduction biological processes. Multi-trait 

GWAS for root topology identified 84 significant markers, with 80 markers co-associated with 

single-trait BF or BP (Figure 7c). Significant marker associations and underlying genes were also 

detected for multi-trait biomass, multi-trait allocation, multi-trait morphology, for all PC-traits 

except PC8, and for the other single traits (Figure 6, Figure S2, Table S3). 
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Table 2. Subset of significant SNP markers identified from multi-trait GWAS and univariate 

GWAS of single-trait by selecting top three SNPs of each trait. 

Trait Model Markers Chr MAF p value 

SRR_M Univariate Excalibur_c100336_106 4B 0.110 1.91E-05 

SRR_M Univariate IAAV5776 1B 0.056 9.95E-05 

SRR_M Univariate IWA430 4D 0.438 2.11E-04 

SRR_L Univariate Excalibur_c100336_106 4B 0.110 1.70E-05 

SRR_L Univariate CAP12_c956_61 5A 0.112 2.04E-04 

SRR_L Univariate BS00066434_51 5A 0.146 2.19E-04 

SRR_R Univariate Kukri_c10453_875 1A 0.281 7.51E-05 

SRR_R Univariate IWA6965 1B 0.064 9.86E-05 

SRR_R Univariate RAC875_c42206_305 1B 0.064 9.86E-05 

Respiration Multivariate Excalibur_c5139_198 1A 0.213 5.69E-06 

Respiration Multivariate tplb0048b10_1365 1B 0.064 4.35E-05 

Respiration Multivariate Ex_c4876_1221 1A 0.248 9.36E-05 

SRL Univariate RAC875_c63889_486 7A 0.202 7.58E-05 

SRL Univariate GENE-1220_457 2A 0.064 1.29E-04 

SRL Univariate RFL_Contig5917_2369 2A 0.071 1.73E-04 

AvgD Univariate IWA7907 7B 0.190 1.95E-04 

AvgD Univariate IWA4438 7A 0.083 1.97E-04 

AvgD Univariate Tdurum_contig61864_1352 7A 0.082 2.03E-04 

RTD Univariate GENE-0249_161 1B 0.272 6.84E-05 

RTD Univariate IWA614 7A 0.277 1.97E-04 

RTD Univariate Kukri_c20062_389 1D 0.165 2.06E-04 

Construction Multivariate BS00082644_51 3B 0.247 4.91E-05 

Construction Multivariate GENE-0249_161 1B 0.272 1.65E-04 

Construction Multivariate IWA6076 2B 0.273 1.72E-04 

BF Univariate CAP7_c1083_283 1A 0.140 1.74E-05 

BF Univariate Kukri_c29121_226 1A 0.140 1.98E-05 

BF Univariate Kukri_c53935_265 1A 0.136 3.47E-05 

BP Univariate IWA1464 1D 0.147 6.00E-07 

BP Univariate BS00032149_51 1D 0.133 7.39E-07 

BP Univariate IWA2164 1D 0.150 1.31E-06 

BD Univariate Tdurum_contig49608_1185 4B 0.143 1.59E-04 

BD Univariate BS00063973_51 5A 0.404 2.63E-04 

BD Univariate Excalibur_c33173_557 2D 0.205 2.91E-04 

Topology Multivariate BS00032149_51 1D 0.133 6.15E-06 

Topology Multivariate IWA1464 1D 0.147 6.95E-06 

Topology Multivariate IWA2164 1D 0.150 1.74E-05 

Chr, Chromosome; MAF, minor allele frequency. 
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Figure 7 Manhattan plot of GWAS conducted on traits (a) SRR by mass, SRR by length, 

residuals of total respiration vs volume of different segments, and multi-trait combination for 

root respiration, (b) SRL, AvgD, RTD, and multi-trait combination for root construction, (c) BP, 

BF, BD, and multi-trait combination for root topology of TCAP wheat population. Each dot 

represents a SNP. The horizontal black line indicates the threshold of significance at - log10P = 

3.5. Trait abbreviations are as in Table 1. 
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Discussion 

Reducing the metabolic and construction carbon costs of roots has become a realistic 

engineering strategy for crop breeding to increase yield and promote plant growth (Lynch, 2013; 

Lynch, 2018; Amthor et al., 2019). However, the genetic and functional basis of root respiration 

traits still lags behind architectural root traits. Scaling up the throughput of root respiration 

phenotyping will strengthen functional phenomics greatly by increasing statistical power and 

enabling genetic mapping (York, 2019). The platform we developed facilitates high-throughput 

phenotyping of root respiration, with integration of cost-effective equipment and an R script for 

data processing, and allowed throughput of about 25 samples person-1 hour-1. The use of a bead 

bath for controlling temperature avoids the risk found when using a water bath of water entering 

the respiration chamber and contaminating the gas analyzer. We observed 8.5-fold variation for 

SRR_L and 3.2-fold variation for SRR_M in the wheat panel. In previous work, root respiration 

was measured mostly using single root segments (Poorter et al., 1991; Strock et al., 2018), and 

there was little information about how different root types impact respiration of whole root 

systems. Considering the difficulty of separating different root tissue segments from whole root 

systems for maintaining high-throughput, multiple linear regression was used to predict the 

contributions of root tissue types to total root respiration of wheat seedlings on average within the 

panel. We found that the lateral root tips had much greater respiration than axial root tissue or 

lateral root axis tissue(f 0.3 mm), which supports findings in woody plants that root tip meristems 

consume about 15 times more O2 than the rest of the root system (Mancuso & Boselli, 2002; 

Aguilar et al., 2003; Burton et al., 2012). 

Correlation network analyses have been widely used in biology and social sciences to 

capture causality and precursor/product relationship patterns in functional traits. Despite the 

elegance of this approach, only a few studies applied network theory to plant root traits (Poorter 

et al., 2014; Messier et al., 2017; Carlson et al., 2019; Kleyer et al., 2019). In addition to root dry 

weight, SRL, and average diameter, SRR_M, which is rarely used in functional trait analysis, 

was identified as one of the hub traits and had substantial effects on the plant phenotype as a 

whole. Consistent with previous work, SRL correlated with root dry weight, root diameter, 

branching, and root tissue density (Reich, 2014; Kramer-Walter et al., 2016). In addition, we 

found that SRL also can be an indicator of root respiration on either a mass or length basis. Shoot 

biomass only had a strong positive correlation with total biomass and a negative correlation with 
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root mass fraction in the network, which may indicate that the formation of wheat seedling shoot 

biomass was mostly independent, and also indicates that reducing or otherwise optimizing the 

allocation of resources to the root could be a strategy to improve shoot growth (Guo & York, 

2019). Counterintuitively, driving shoot growth with such a strategy may actually maintain root 

mass and total metabolic burden, or even increase these total costs, but with less proportion 

relative to the shoot. This framework of carbon use efficiency represents an untapped positive 

feedback loop for plant growth.  Interestingly, network, principal component, and regression 

analyses all showed that SRR_M was negatively correlated with total dry weight, suggesting that 

reducing respiratory carbon could potentially increase whole-plant growth (Lynch, 2015; Amthor 

et al., 2019).  

Multi-trait GWAS has recently gained more attention because it often boosts the power to 

detect SNPs and assesses the full spectrum of traits that are affected by trait-associated variants 

(Porter & O9Reilly, 2017), which can be particularly useful for challenging physiological traits 

(Chhetri et al., 2019). Combining traits related to respiration, multi-trait association analysis 

identified 20 unique significant associations while single-trait GWAS detected 13 unique 

significant associations for all SRR traits. The findings potentially reveal the pleiotropic effects 

of genes near significantly associated SNPs on root respiration. The marker tplb0048b10_1365, 

the second-largest -log10P signal associated with multi-trait root respiration, was reported to be 

associated with nitrogen deficiency tolerance in wheat seedlings (Ren et al., 2018). Multiple 

annotated genes underlying significant SRR_L and SRR_M associated SNPs are annotated with 

functions in protein catabolism, protein binding, ADP, and ATP binding, which are related to 

cellular respiration (Araújo et al., 2011), root meristem activity (Xu et al., 2017) or root 

senescence (Liu et al., 2019).  

GWAS for root architectural traits have gained increasing attention in wheat, and  several 

QTL/genes in wheat have been found to associate with root architectural and morphological 

traits such as root length, root number, and root diameter across the genome (Maccaferri et al., 

2016; Ayalew et al., 2018; Beyer et al., 2019). Specific root length (SRL), AvgD, and RTD are 

important components of the root economic spectrum because they potentially provide 

information about root morphology and construction costs (Kramer-Walter et al., 2016; 

McCormack et al., 2017). Multiple genes underlying associated significant SNPs were identified 

as zinc finger protein, cytochrome p450 family member, and haloacid dehalogenase-like 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2020. ; https://doi.org/10.1101/2020.11.12.380238doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.12.380238
http://creativecommons.org/licenses/by/4.0/


23 

 

hydrolase family protein, which all play important roles in controlling wheat root growth and 

development (Kulkarni et al., 2017; Li & Wei, 2020). Multiple genes underlying two markers 

(Kukri_c24648_262 and Kukri_c5113_1082), which were co-associated with TRL, LRL, TRV, 

LRV, TSA, LSA, BP, PC1, and multi-trait allocation and topology (Table S3), were annotated as 

a nucleoporin autopeptidase domain containing protein. Those genes may play distinct roles in 

nuclear transport and root elongation (Parry, 2014).  

Root branching is a necessary developmental process for increasing the number of growing 

tips and defining the distribution of their meristem sizes (Pagès, 2014), with a large metabolic 

cost. Root branching was critical for plant survival and performance under abiotic conditions 

(Schneider et al., 2020). Two genes (Traes_1AL_9CC946A58 and Traes_1DL_7EF27C52F) 

underlying the largest -log10P signal of BF were annotated as being involved in steroid 

biosynthesis, which may play a role in interacting with auxin signaling to promote lateral root 

growth (Vriet et al., 2012; Wang et al., 2018). Four genes underlying the marker 

BS00013534_51, which was co-associated with BF, BP, and multi-trait topology, were annotated 

as encoding protein kinase activity in wheat and threonine-protein kinase receptor precursor in 

rice. Interestingly, different genes with similar functions were found playing fundamental roles 

in lateral root formation and development (Atkinson et al., 2014; Yu et al., 2016; Pan et al., 

2020). Three candidate genes underlying single-trait branching frequency and multi-trait 

topology co-associated SNP (tplb0025i05_1836) were annotated as being involved in the activity 

of Rho guanine nucleotide exchange factors. Rho family members are well known as regulators 

of extracellular stimulus-dependent signaling pathways that affect gene expression, cell 

proliferation, actin cytoskeleton, cell cycle progression, and cell polarity (Berken & 

Wittinghofer, 2008).  

A recent review outlined the emerging possibilities for targeted reducing unnecessary 

carbon loss for increasing yields (Amthor et al., 2019), which was further supported by new 

simulation results indicating that substantial gains could be made by targeting plant respiration 

(Holland et al., 2019). Therefore, an optimal root system will conform to economic cost-benefit 

analysis where the cost increment of allocation to the root system equals the benefit increment, 

measured as nutrient and water capture, or marginal photosynthesis (Bloom et al., 1985). Recent 

work from the RIPE project has also shown it9s possible to increase photosynthesis by reducing 

photorespiration (South et al., 2019) and increasing photosynthetic induction (Acevedo-Siaca et 
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al., 2020). We propose that combining strategies that increase photosynthesis and decrease 

8luxury9 root respiration could have synergistic and compounding influences on plant growth. 

The root economics space discussed above provides a useful framework for this strategy. 

Conclusions 

We developed a high-throughput platform for measuring multiple traits within the root 

economics space, including root respiration and specific root length which are aspects of root 

metabolic and construction costs, respectively. Substantial, heritable variation exists within 

wheat, providing further evidence for intraspecific economics spectra. Employing the functional 

phenomics approach allowed leveraging genetic and phenotypic diversity to infer the increased 

contribution of lateral root tips to respiration, the negative relation of SRR to seedling mass, and 

network analysis that identified hub traits. Genome-wide association studies for the univariate 

traits uncovered several underlying genetic regions, while multivariate and PCA-based GWAS 

provided increased power to detect genetics of the root economics space itself for the first time to 

our knowledge. The SNPs associated with the traits may be useful for marker-assisted breeding. 

Candidate genes underlying significant SNPs associated with root respiratory, construction, and 

topology traits will require further research for reducing respiratory carbon loss and construction 

costs. We provide evidence that combining functional phenomics methods and trait economic 

theory has substantial potential to advance plant biology and crop breeding. 

 

Acknowledgements 

This research was supported by the Noble Research Institute, LLC and the Samuel Roberts 

Noble Foundation. The authors wish to acknowledge David McSweeney and Karen Hartman of 

Greenhouse Core Facility for assistance provided during the experiment, Nick Krom of 

Scientific Computing Department for assistance with BLAST searches for candidate genes, and 

contributions from Yaxin Ge, Michael Cloyde, Na Ding, Xinji Zhang, Guangming Li, and 

Wangqi Huang for data acquisition and sampling. 

 

Author contributions 

HG and LMY designed the experiments. X-FM provided the germplasm and expertise for 

genetic analysis. HG, AS, KD, and LMY conducted experiments. HG, MG, AS, KD, and LMY 

developed the respiration measurement protocol and R script for root respiration analysis. HG, 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2020. ; https://doi.org/10.1101/2020.11.12.380238doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.12.380238
http://creativecommons.org/licenses/by/4.0/


25 

 

AS, KD, HA, and LMY analyzed the experimental data. HG and LMY wrote the first draft of the 

manuscript, all authors made revisions, and all approved the final version. 

 

ORCID 

Haichao Guo https://orcid.org/0000-0003-2778-1188 

Habtamu Ayalew https://orcid.org/0000-0002-4778-9008 

Anand Seethepalli https://orcid.org/0000-0003-0937-9128 

Kundan Dhakal https://orcid.org/0000-0001-5827-378X 

Marcus Griffiths https://orcid.org/0000-0003-2349-8967 

Xue-Feng Ma https://orcid.org/0000-0002-0942-9116 

Larry M. York https://orcid.org/0000-0002-1995-9479 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2020. ; https://doi.org/10.1101/2020.11.12.380238doi: bioRxiv preprint 

https://orcid.org/0000-0003-2778-1188
https://orcid.org/0000-0002-4778-9008
https://orcid.org/0000-0003-0937-9128
https://orcid.org/0000-0001-5827-378X
https://orcid.org/0000-0003-2349-8967
https://orcid.org/0000-0002-0942-9116
https://orcid.org/0000-0002-1995-9479
https://doi.org/10.1101/2020.11.12.380238
http://creativecommons.org/licenses/by/4.0/


26 

 

References 

Acevedo-Siaca LG, Coe R, Wang Y, Kromdijk J, Quick WP, Long SP. 2020. Variation in 

photosynthetic induction between rice accessions and its potential for improving 

productivity. New Phytologist 227: 1097-1108. 

Aguilar E, Turner D, Gibbs D, Armstrong W, Sivasithamparam K. 2003. Oxygen distribution 

and movement, respiration and nutrient loading in banana roots (Musa spp. L.) subjected 

to aerated and oxygen-depleted environments. Plant and Soil 253(1): 91-102. 

Amthor J. 2000. The McCree–de Wit–Penning de Vries–Thornley Respiration Paradigms: 30 

Years Later. Annals of Botany 86(1): 1-20. 

Amthor JS, Bar-Even A, Hanson AD, Millar AH, Stitt M, Sweetlove LJ, Tyerman SD. 2019. 
Engineering Strategies to Boost Crop Productivity by Cutting Respiratory Carbon Loss. 

The Plant Cell 31(2): 297-314. 

Araújo WL, Tohge T, Ishizaki K, Leaver CJ, Fernie AR. 2011. Protein degradation–an 

alternative respiratory substrate for stressed plants. Trends in Plant Science 16(9): 489-

498. 

Atkinson JA, Rasmussen A, Traini R, Voß U, Sturrock C, Mooney SJ, Wells DM, Bennett 
MJ. 2014. Branching out in roots: uncovering form, function, and regulation. Plant 

Physiology 166(2): 538-550. 

Atkinson JA, Wingen LU, Griffiths M, Pound MP, Gaju O, Foulkes MJ, Le Gouis J, Griffiths 
S, Bennett MJ, King J. 2015. Phenotyping pipeline reveals major seedling root growth 

QTL in hexaploid wheat. Journal of Experimental Botany 66(8): 2283-2292. 

Ayalew H, Liu H, Borner A, Kobiljski B, Liu C, Yan G. 2018. Genome-Wide Association 

Mapping of Major Root Length QTLs Under PEG Induced Water Stress in Wheat. 

Frontiers in Plant Science 9: 1759. 

Bai C, Liang Y, Hawkesford MJ. 2013. Identification of QTLs associated with seedling root 

traits and their correlation with plant height in wheat. Journal of Experimental Botany 

64(6): 1745-1753. 

Bates D, Maechler M, Bolker B, Walker S, Christensen RHB, Singmann H, Dai B 2014. lme4: 

Linear mixed-effects models using Eigen and S4 (Version 1.1-7). 

Ben-Noah I, Friedman SP. 2018. Review and Evaluation of Root Respiration and of Natural and 

Agricultural Processes of Soil Aeration. Vadose Zone Journal 17(1). 

Bergmann J, Weigelt A, van der Plas F, Laughlin DC, Kuyper TW, Guerrero-Ramirez N, 
Valverde-Barrantes OJ, Bruelheide H, Freschet GT, Iversen CM, et al. 2020. The 

fungal collaboration gradient dominates the root economics space in plants. Science 

Advances 6(27): eaba3756. 

Berken A, Wittinghofer A. 2008. Structure and function of Rho-type molecular switches in 

plants. Plant Physiology and Biochemistry 46(3): 380-393. 

Beyer S, Daba S, Tyagi P, Bockelman H, Brown-Guedira G, Iwgsc, Mohammadi M. 2019. 
Loci and candidate genes controlling root traits in wheat seedlings-a wheat root GWAS. 

Funct Integr Genomics 19(1): 91-107. 

Bloom AJ, Chapin III FS, Mooney HA. 1985. Resource limitation in plants-an economic 

analogy. Annual review of Ecology and Systematics 16(1): 363-392. 

Burton AJ, Jarvey JC, Jarvi MP, Zak DR, Pregitzer KS. 2012. Chronic N deposition alters 

root respiration‐ tissue N relationship in northern hardwood forests. Global Change 

Biology 18(1): 258-266. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2020. ; https://doi.org/10.1101/2020.11.12.380238doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.12.380238
http://creativecommons.org/licenses/by/4.0/


27 

 

Carlson MO, Montilla-Bascon G, Hoekenga OA, Tinker NA, Poland J, Baseggio M, Sorrells 
ME, Jannink JL, Gore MA, Yeats TH. 2019. Multivariate Genome-Wide Association 

Analyses Reveal the Genetic Basis of Seed Fatty Acid Composition in Oat (Avena sativa 

L.). G3 (Bethesda) 9(9): 2963-2975. 

Chhetri HB, Macaya-Sanz D, Kainer D, Biswal AK, Evans LM, Chen JG, Collins C, Hunt 
K, Mohanty SS, Rosenstiel T, et al. 2019. Multitrait genome-wide association analysis of 

Populus trichocarpa identifies key polymorphisms controlling morphological and 

physiological traits. New Phytologist 223(1): 293-309. 

Cormier F, Foulkes J, Hirel B, Gouache D, Moënne-Loccoz Y, Le Gouis J, Ordon F. 2016. 
Breeding for increased nitrogen-use efficiency: a review for wheat (T. aestivumL.). Plant 

Breeding 135(3): 255-278. 

Dorion S, Clendenning A, Rivoal J. 2017. Engineering the expression level of cytosolic 

nucleoside diphosphate kinase in transgenic Solanum tuberosum roots alters growth, 

respiration and carbon metabolism. Plant J 89(5): 914-926. 

Ellis JG, Lagudah ES, Spielmeyer W, Dodds PN. 2014. The past, present and future of breeding 

rust resistant wheat. Frontiers in Plant Science 5: 641. 

Epskamp S, Cramer AO, Waldorp LJ, Schmittmann VD, Borsboom D. 2012. qgraph: 

Network visualizations of relationships in psychometric data. Journal of Statistical 

Software 48(4): 1-18. 

Falconer D, Mackay T. 1996. Introduction to quantitative genetics. 1996. Harlow, Essex, UK: 

Longmans Green 3. 

Florez-Sarasa I, Fernie AR, Gupta KJ. 2020. Does the alternative respiratory pathway offer 

protection against the adverse effects resulting from climate change? Journal of 

Experimental Botany 71(2): 465-469. 

Guo H, Ayalew H, Seethepalli A, Dhakal K, Griffiths M, Ma X-F, York LM 2020b. Data and 

statistical analysis scripts for manuscript on high-throughput phenotyping of root 

economics in wheat. Zenodo. DOI: 10.5281/zenodo.4247894. 

Guo H, Griffiths M, Seethepalli A, Dhakal K, York LM 2020a. Protocol and data analysis 

scripts for high-throughput phenotyping of specific root respiration. Zenodo. DOI: 

10.5281/zenodo.4247873. 

Guo H, York LM. 2019. Maize with fewer nodal roots allocates mass to more lateral and deep 

roots that improve nitrogen uptake and shoot growth. J Exp Bot 70(19): 5299-5309. 

Hamada A, Nitta M, Nasuda S, Kato K, Fujita M, Matsunaka H, Okumoto Y. 2012. Novel 

QTLs for growth angle of seminal roots in wheat (Triticum aestivum L.). Plant and Soil 

354(1-2): 395-405. 

Hawkesford MJ, Griffiths S. 2019. Exploiting genetic variation in nitrogen use efficiency for 

cereal crop improvement. Curr Opin Plant Biol 49: 35-42. 

Holland BL, Monk NA, Clayton RH, Osborne CP. 2019. A theoretical analysis of how plant 

growth is limited by carbon allocation strategies and respiration. in silico Plants 1(1): 

diz004. 

Johnson I. 1983. Nitrate uptake and respiration in roots and shoots: a model. Physiologia 

Plantarum 58(2): 145-147. 

Kassambara A, Mundt F. 2017. Package 8factoextra9. Extract and visualize the results of 

multivariate data analyses 76. 

Kleyer M, Trinogga J, Cebrián‐Piqueras MA, Trenkamp A, Fløjgaard C, Ejrnæs R, 

Bouma TJ, Minden V, Maier M, Mantilla‐Contreras J. 2019. Trait correlation 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2020. ; https://doi.org/10.1101/2020.11.12.380238doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.12.380238
http://creativecommons.org/licenses/by/4.0/


28 

 

network analysis identifies biomass allocation traits and stem specific length as hub traits 

in herbaceous perennial plants. Journal of Ecology 107(2): 829-842. 

Kramer-Walter KR, Bellingham PJ, Millar TR, Smissen RD, Richardson SJ, Laughlin DC. 
2016. Root traits are multidimensional: specific root length is independent from root tissue 

density and the plant economic spectrum. Journal of Ecology 104(5): 1299-1310. 

Krumsiek J, Suhre K, Illig T, Adamski J, Theis FJ. 2011. Gaussian graphical modeling 

reconstructs pathway reactions from high-throughput metabolomics data. BMC systems 

biology 5(1): 21. 

Kulkarni M, Soolanayakanahally R, Ogawa S, Uga Y, Selvaraj MG, Kagale S. 2017. Drought 

response in wheat: key genes and regulatory mechanisms controlling root system 

architecture and transpiration efficiency. Frontiers in Chemistry 5: 106. 

Lambers H, Atkin OK, Millenaar FF. 1996. Respiratory patterns in roots in relation to their 

functioning. Plant roots. The hidden half 3: 521-552. 

Li Y, Wei K. 2020. Comparative functional genomics analysis of cytochrome P450 gene 

superfamily in wheat and maize. BMC plant biology 20(1): 1-22. 

Liu Z, Marella CB, Hartmann A, Hajirezaei MR, von Wirén N. 2019. An age-dependent 

sequence of physiological processes defines developmental root senescence. Plant 

Physiology 181(3): 993-1007. 

Løes A-K, Gahoonia TS. 2004. Genetic variation in specific root length in Scandinavian wheat 

and barley accessions. Euphytica 137(2): 243-249. 

Lynch JP. 2013. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize 

root systems. Annals of Botany 112(2): 347-357. 

Lynch JP. 2015. Root phenes that reduce the metabolic costs of soil exploration: opportunities for 

21st century agriculture. Plant, Cell & Environment 38(9): 1775-1784. 

Lynch JP. 2018. Rightsizing root phenotypes for drought resistance. Journal of Experimental 

Botany 69(13): 3279-3292. 

Maccaferri M, El-Feki W, Nazemi G, Salvi S, Canè MA, Colalongo MC, Stefanelli S, 
Tuberosa R. 2016. Prioritizing quantitative trait loci for root system architecture in 

tetraploid wheat. Journal of Experimental Botany 67(4): 1161-1178. 

Mancuso S, Boselli M. 2002. Characterisation of the oxygen fluxes in the division, elongation 

and mature zones of Vitis roots: influence of oxygen availability. Planta 214(5): 767-774. 

Maulana F, Ayalew H, Anderson JD, Kumssa TT, Huang W, Ma XF. 2018. Genome-Wide 

Association Mapping of Seedling Heat Tolerance in Winter Wheat. Frontiers in Plant 

Science 9: 1272. 

Maulana F, Kim K-S, Anderson JD, Sorrells ME, Butler TJ, Liu S, Baenziger PS, Byrne PF, 
Ma X-F. 2019. Genomic Selection of Forage Quality Traits in Winter Wheat. Crop Science 

59(6): 2473-2483. 

McCormack ML, Guo D, Iversen CM, Chen W, Eissenstat DM, Fernandez CW, Li L, Ma C, 

Ma Z, Poorter H. 2017. Building a better foundation: Improving root‐trait measurements 

to understand and model plant and ecosystem processes. New Phytologist 215(1): 27-37. 

McCree K 1970. An equation for the rate of respiration of white clover grown under controlled 

conditions. Prediction and measurement of photosynthetic productivity. Proceedings of the 

IBP/PP Technical Meeting, Trebon,[Czechoslovakia], 14-21 September, 1969: 

Wageningen: PUDOC. 

Meister R, Rajani M, Ruzicka D, Schachtman DP. 2014. Challenges of modifying root traits in 

crops for agriculture. Trends in Plant Science 19(12): 779-788. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2020. ; https://doi.org/10.1101/2020.11.12.380238doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.12.380238
http://creativecommons.org/licenses/by/4.0/


29 

 

Messier J, Lechowicz MJ, McGill BJ, Violle C, Enquist BJ. 2017. Interspecific integration of 

trait dimensions at local scales: the plant phenotype as an integrated network. Journal of 

Ecology 105(6): 1775-1790. 

Mooney H. 1972. The carbon balance of plants. Annual review of ecology and systematics 3(1): 

315-346. 

Müller B, Stich B, Piepho H. 2011. A general method for controlling the genome-wide type I 

error rate in linkage and association mapping experiments in plants. Heredity 106(5): 825-

831. 

Ochoa IE, Blair MW, Lynch JP. 2006. QTL analysis of adventitious root formation in common 

bean under contrasting phosphorus availability. Crop Science 46(4): 1609-1621. 

Pagès L. 2014. Branching patterns of root systems: quantitative analysis of the diversity among 

dicotyledonous species. Annals of Botany 114(3): 591-598. 

Pan J, Li Z, Wang Q, Yang L, Yao F, Liu W. 2020. An S-domain receptor-like kinase, OsESG1, 

regulates early crown root development and drought resistance in rice. Plant Science 290: 

110318. 

Parry G. 2014. Components of the Arabidopsis nuclear pore complex play multiple diverse roles 

in control of plant growth. Journal of Experimental Botany 65(20): 6057-6067. 

Poorter H, Lambers H, Evans JR. 2014. Trait correlation networks: a whole‐plant perspective 

on the recently criticized leaf economic spectrum. New Phytologist 201(2): 378-382. 

Poorter H, Van der Werf A, Atkin OK, Lambers H. 1991. Respiratory energy requirements of 

roots vary with the potential growth rate of a plant species. Physiologia Plantarum 83(3): 

469-475. 

Porter HF, O’Reilly PF. 2017. Multivariate simulation framework reveals performance of multi-

trait GWAS methods. Scientific Reports 7: 38837. 

R Core Team 2018. R: a language and environment for statistical computing. Vienna, Austria: R 

Foundation for Statistical Computing. 

Rachmilevitch S, Cohen I, Huang B. 2015. Carbon allocation patterns into proteins and lipids 

associated with superior tolerance of perennial grass to high soil temperature. Crop Science 

55(5): 2262-2269. 

Rajaram S 2001. Prospects and promise of wheat breeding in the 21 st century. Wheat in a global 

environment: Springer, 37-52. 

Reich PB. 2014. The world‐wide 8fast–slow9plant economics spectrum: a traits manifesto. 

Journal of Ecology 102(2): 275-301. 

Ren D, Fang X, Jiang P, Zhang G, Hu J, Wang X, Meng Q, Cui W, Lan S, Ma X. 2018. 
Genetic architecture of nitrogen-deficiency tolerance in wheat seedlings based on a nested 

association mapping (NAM) population. Frontiers in Plant Science 9: 845. 

Ripley B, Venables B, Bates DM, Hornik K, Gebhardt A, Firth D, Ripley MB. 2013. Package 

8mass9. Cran R 538. 

Roell MS, Zurbriggen MD. 2020. The impact of synthetic biology for future agriculture and 

nutrition. Curr Opin Biotechnol 61: 102-109. 

Romero-Munar A, Del-Saz NF, Ribas-Carbó M, Flexas J, Baraza E, Florez-Sarasa I, Fernie 
AR, Gulías J. 2017. Arbuscular mycorrhizal symbiosis with Arundo donax decreases root 

respiration and increases both photosynthesis and plant biomass accumulation. Plant, Cell 

& Environment 40(7): 1115-1126. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2020. ; https://doi.org/10.1101/2020.11.12.380238doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.12.380238
http://creativecommons.org/licenses/by/4.0/


30 

 

Roumet C, Birouste M, Picon-Cochard C, Ghestem M, Osman N, Vrignon-Brenas S, Cao K-
f, Stokes A. 2016. Root structure-function relationships in 74 species: evidence of a root 

economics spectrum related to carbon economy. New Phytologist 210(3): 815-826. 

Sawada S-I. 1970. An ecophysiological analysis of the difference between the growth rates of 

young wheat seedlings grown in various seasons. Journal of the Faculty of Science, 

University of Tokyo, 3 (Botany). 10(11/13): 233-263. 

Scafaro AP, Negrini ACA, O'Leary B, Rashid FAA, Hayes L, Fan Y, Zhang Y, Chochois V, 
Badger MR, Millar AH, et al. 2017. The combination of gas-phase fluorophore 

technology and automation to enable high-throughput analysis of plant respiration. Plant 

Methods 13: 16. 

Schneider HM, Klein SP, Hanlon MT, Nord EA, Kaeppler S, Brown KM, Warry A, Bhosale 
R, Lynch JP. 2020. Genetic Control of Root Architectural Plasticity in Maize. Journal of 

Experimental Botany 71(10): 3185–3197. 

Schneider HM, Wojciechowski T, Postma JA, Brown KM, Lücke A, Zeisler V, Schreiber L, 
Lynch JP. 2017. Root cortical senescence decreases root respiration, nutrient content and 

radial water and nutrient transport in barley. Plant, Cell & Environment 40(8): 1392-1408. 

Seethepalli A, Guo H, Liu X, Griffiths M, Almtarfi H, Li Z, Liu S, Zare A, Fritschi FB, 
Blancaflor EB. 2020. Rhizovision crown: An integrated hardware and software platform 

for root crown phenotyping. Plant Phenomics 2020: 3074916. 

Seethepalli A, York LM 2020. RhizoVision Explorer - Software for image analysis of whole root 

systems and disconnected scanned roots. Zenodo. DOI: 10.5281/zenodo.4095629  

Smith S, De Smet I 2012. Root system architecture: insights from Arabidopsis and cereal crops: 

The Royal Society. 

Soriano JM, Alvaro F. 2019. Discovering consensus genomic regions in wheat for root-related 

traits by QTL meta-analysis. Scientific Reports 9(1): 10537. 

South PF, Cavanagh AP, Liu HW, Ort DR. 2019. Synthetic glycolate metabolism pathways 

stimulate crop growth and productivity in the field. Science 363(6422). 

Strock CF, De La Riva LM, Lynch JP. 2018. Reduction in root secondary growth as a strategy 

for phosphorus acquisition. Plant Physiology 176(1): 691-703. 

Sukumaran S, Reynolds MP, Sansaloni C. 2018. Genome-Wide Association Analyses Identify 

QTL Hotspots for Yield and Component Traits in Durum Wheat Grown under Yield 

Potential, Drought, and Heat Stress Environments. Frontiers in Plant Science 9: 81. 

Sun L, Ataka M, Han M, Han Y, Gan D, Xu T, Guo Y, Zhu B. 2020. Root exudation as a major 

competitive fine-root functional trait of 18 coexisting species in a subtropical forest. New 

Phytologist. 

Thornley J. 1970. Respiration, growth and maintenance in plants. Nature 227(5255): 304-305. 

Turner SD. 2014. qqman: an R package for visualizing GWAS results using QQ and manhattan 

plots. Biorxiv: 005165. 

Vriet C, Russinova E, Reuzeau C. 2012. Boosting crop yields with plant steroids. The Plant Cell 

24(3): 842-857. 

Wang H, Hu Z, Huang K, Han Y, Zhao A, Han H, Song L, Fan C, Li R, Xin M. 2018. Three 

genomes differentially contribute to the seedling lateral root number in allohexaploid 

wheat: evidence from phenotype evolution and gene expression. The Plant Journal 95(6): 

976-987. 

Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, 
Cattivelli L, et al. 2014. Characterization of polyploid wheat genomic diversity using a 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2020. ; https://doi.org/10.1101/2020.11.12.380238doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.12.380238
http://creativecommons.org/licenses/by/4.0/


31 

 

high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J 12(6): 787-

796. 

Weber AP, Bar-Even A. 2019. Update: improving the efficiency of photosynthetic carbon 

reactions. Plant Physiology 179(3): 803-812. 

Xie Q, Fernando KM, Mayes S, Sparkes DL. 2017. Identifying seedling root architectural traits 

associated with yield and yield components in wheat. Annals of Botany 119(7): 1115-1129. 

Xu L, Zhao H, Ruan W, Deng M, Wang F, Peng J, Luo J, Chen Z, Yi K. 2017. ABNORMAL 

INFLORESCENCE MERISTEM1 functions in salicylic acid biosynthesis to maintain 

proper reactive oxygen species levels for root meristem activity in rice. The Plant Cell 

29(3): 560-574. 

York LM. 2019. Functional phenomics: an emerging field integrating high-throughput 

phenotyping, physiology, and bioinformatics. Journal of Experimental Botany 70(2): 379-

386. 

York LM, Nord E, Lynch J. 2013. Integration of root phenes for soil resource acquisition. 

Frontiers in Plant Science 4: 355. 

Yu P, Gutjahr C, Li C, Hochholdinger F. 2016. Genetic control of lateral root formation in 

cereals. Trends in Plant Science 21(11): 951-961. 

Zhou X, Stephens M. 2012. Genome-wide efficient mixed-model analysis for association studies. 

Nature genetics 44(7): 821-824. 

Zhou X, Stephens M. 2014. Efficient multivariate linear mixed model algorithms for genome-

wide association studies. Nature methods 11(4): 407. 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2020. ; https://doi.org/10.1101/2020.11.12.380238doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.12.380238
http://creativecommons.org/licenses/by/4.0/


32 

 

Figure legends  

 

Figure 1 Platform for phenotyping root respiration and other root traits of wheat seedlings. 

(a) Wheat seeds were surface sterilized and pre-germinated in plate, (b) Seedlings were grown in 

aerated hydroponics for 10 days, (c) Shoot and roots of seedling 10 days after transplanting, (d) 

Root respiration was measured in an airtight chamber using a LI-850 with temperature control 

using a bead bath, (e) Distinguished axial roots (blue) from lateral roots (red) of scanned image 

using RhizoVision Explorer. IRGA: Infrared gas analyzer, RC: Root chamber, BB: Bead bath, 

BF: Balston Filter. 

Figure 2  (a) The relationship between predicted total root respiration and total root 

respiration, and deviations from the relationship results in new trait SRR_R, (b) Regression 

between specific root respiration by length and shoot dry weight. 

Figure 3 Pairwise Pearson correlation of selected traits of TCAP winter wheat seedlings. 

The number represents the correlation values. Value marked with symbol × means correlation is 

not significant at p =0.05. Bright red to bright blue indicates highly positive to highly negative 

correlations. Trait abbreviations are as in Table 1. 

Figure 4 (a) Scree graph showing percentage of variance explained by each of the first ten 

principal components, PCA variable contribution plots showing the (b) first and second PCs and 

(c) third and fourth PCs, where relative weightings of the variables are indicated by vectors. Trait 

abbreviations are as in Table 1. 

Figure 5 Trait correlation network constructed from the Gaussian graphical model. Red 

and green edges show negative and positive correlations, respectively. The cutoff was set at 0.15.  
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Figure 6 Venn diagram of (a) associated SNPs cutoff set at –log10P=3.5, (b) genes 

identified using cutoff set at –log10P= 3.5 comparing significantly univariate of mean 25 traits, 

univariate analyses of 10 principal components (PCs), and multivariate of 6 trait combinations. 

Figure 7 Manhattan plot of GWAS conducted on traits (a) SRR by mass, SRR by length, 

residuals of total respiration vs. volume of different segments, and multi-trait combination for 

root respiration, (b) SRL, AvgD, RTD, and multi-trait combination for root construction, (c) BP, 

BF, BD, and multi-trait combination for root topology of TCAP wheat population. Each dot 

represents a SNP. The horizontal black line indicates the threshold of significance at - log10P = 

3.5. 
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Supporting Information 

 

Figure S1 Histograms for the frequency distribution of 26 traits and 10 PC scores 

Figure S2 Manhattan plots of GWAS conducted on all traits 

Figure S3 Quantile-quantile (Q-Q) plots for all traits 

Table S1 Centrality measures of 17 traits from Gaussian graphical model 

Table S2 List of SNPs using a cutoff value set at –log10P=3.5 

Table S3 List of nearest genes underlying SNPs using a cutoff value set at –log10P=3.5 
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