

1 **Drought shifts sorghum root metabolite and microbiome profiles and enriches**
2 **the stress response factor pipecolic acid**

3 Running title: Bacterial and Metabolite Profiling of Sorghum Roots

4

5 Daniel F. Caddell^{1,2}, Katherine Louie^{3,4}, Benjamin Bowen^{3,4}, Julie A. Sievert⁵, Joy
6 Hollingsworth⁵, Jeffery Dahlberg⁵, Elizabeth Purdom⁶, Trent Northen^{3,4}, Devin Coleman-
7 Derr^{1,2#}

8

9 ¹Plant Gene Expression Center, USDA-ARS, Albany, CA 94710, USA

10 ²Plant and Microbial Biology Department, UC Berkeley, Berkeley, CA 94720, USA

11 ³Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

12 ⁴Joint Genome Institute, Berkeley, CA 94720, USA

13 ⁵Kearney Agricultural Research & Extension Center, Parlier, CA 93648, USA

14 ⁶Department of Statistics, UC Berkeley, Berkeley, CA 94720, USA

15 [#]Corresponding author: D.Coleman-Derr; E-mail: colemanderr@berkeley.edu

16

17 Word count: Abstract- 250 / Main Text- 3,918

18

19 **Keywords:** drought, roots, 16S rRNA, amplicon sequencing, microbiome,
20 metabolomics, pipecolic acid, sorghum

21

22 **Funding:** US Department of Agriculture (CRIS 2030-21430-008-00D), Department of
23 Energy Joint Genome Institute Community Science Program Grant Number: 502952.

24 **ABSTRACT**

25 Interactions between plants and their root-associated microbiome are important for
26 determining host fitness during periods of stress. During drought, monoderm bacteria
27 are more abundant in sorghum roots than in those of watered controls. Additionally, a
28 reversion from monoderm to diderm dominance occurs in drought-stressed roots one
29 week after rewetting. However, the mechanisms driving this rapid microbiome
30 composition shift is currently unknown. To understand if changes in host metabolism
31 are correlated with this shift, we employed 16S amplicon sequencing and metabolomics
32 of root, rhizosphere, and soil at the peak of a preflowering drought and 24 hours after
33 rewetting. The microbiomes of droughted roots, rhizospheres, and soils differed from
34 watered controls, and shifts in bacterial composition were observed in root and
35 rhizosphere 24 hours after rewetting, highlighting the rapid response of microbes to
36 the cessation of drought. Next, we performed metabolomic profiling to identify putative
37 drivers of this process. During drought, we observed a high abundance of abiotic stress
38 response factors, including antioxidants, osmolytes, amino acids, and plant hormones.
39 After rewetting, large shifts in metabolite abundances were observed in rhizosphere,
40 whereas shifts in root and soil were subtle. In addition, pipecolic acid, a well-
41 characterized systemic acquired resistance signalling compound, was enriched in roots
42 and rhizosphere during drought. We found that exogenous application of pipecolic acid
43 suppresses root growth via a systemic acquired resistance-independent mechanism.
44 Collectively, these data provide a comprehensive characterization of metabolite shifts
45 across three compartments during drought, and elucidate a potential role of pipecolic
46 acid in the sorghum drought response.

47

48 **IMPORTANCE**

49 Plant-associated microbial communities shift in composition and contribute to host
50 fitness during drought. In particular, Actinobacteria are enriched in plant roots and
51 rhizosphere during drought. However, the mechanisms plants use to drive this shift are
52 poorly understood. Here we apply a combination of bacterial and metabolite profiling in
53 root, rhizosphere, and soil during drought and drought-recovery to investigate potential
54 contributions of host metabolism towards shifts in bacterial composition. Our results
55 demonstrate that drought alters metabolic profiles and that the response to rewetting
56 differs between compartments; we identify drought-responsive metabolites that are
57 highly correlated with Actinobacteria abundance. Furthermore, our study reports for the
58 first time that pipecolic acid is a drought-enriched metabolite in sorghum roots. We
59 demonstrate that exogenous application of pipecolic acid is able to provoke one of the
60 classic drought responses in roots, root growth suppression, and that this activity
61 functions independently from the systemic acquired resistance pathway.

62

63 **INTRODUCTION**

64 Drought is one of the most significant abiotic stresses impacting agricultural production
65 and threatens to become an even bigger concern due to climate change. Root-
66 associated microbial communities, commonly referred to as microbiomes, influence
67 plant responses to a wide-variety of environmental stresses including drought, and are
68 capable of promoting improved fitness (1). In order to engineer microbiomes capable of
69 enhancing plant growth and ameliorating stress, more research is needed to understand

70 what signals plants use to simultaneously recruit beneficial microbes, while repelling
71 potential pathogens, from a broad pool of soil microbes. Taking advantage of advances
72 in high-throughput sequencing technologies, researchers are beginning to understand
73 the dynamic nature of the microbiome and its association with plant roots. For instance,
74 it is now known that microbiomes vary between environments (2–4), between species
75 (5–7), and even varieties of the same species (4, 8–10). Additionally, microbiomes are
76 dynamic and shift with developmental age, particularly as the plant transitions between
77 vegetative and reproductive growth (11–13). The root microbiome also responds to
78 abiotic stresses. For example, enrichment of monoderm bacteria, such as
79 Actinobacteria, during drought has been observed across diverse plant clades (6, 7, 13,
80 14). Notably, recent studies have demonstrated that plants mediate the shifts in
81 bacterial communities during drought (15), and Actinobacterial enrichment during
82 drought is dependent on signals produced by living roots (16). While monoderm
83 bacteria are dominant during drought, their enrichment is transitory, with diderm
84 bacteria reestablishing after rewetting (13). Despite their significance, the dynamics
85 regulating monoderm enrichment during drought and the subsequent shift to diderm
86 dominance after rewetting is not yet understood.

87

88 Plant-derived metabolites are predicted to drive some of the changes in the root
89 microbiome, as exudation patterns between photoperiods (17) and across development
90 (11, 18, 19) both track with changes in the microbiome. Additionally, a recent study of
91 the maize leaf microbiome across 300 maize genotypes observed associations between
92 specific microbial taxa and host metabolic functions (20). Different combinations of root

93 exudates are sufficient to alter microbiome composition (21), likely by impacting
94 attraction and behavior of soil microbes (22, 23). Some root exudates can act as carbon
95 sources for microbes, while others simultaneously promote certain microbial taxa and
96 suppress others (24). Exudation of putative defense-related metabolites, including
97 organic acids, may also act to repel microbes (23, 25–29). Drought promotes changes
98 in exudate composition, stimulating the exudation of primary and secondary
99 metabolites, including osmoprotectants such as sugars and amino acids. These root
100 and rhizosphere metabolites are predicted to play a role in regulating microbiome
101 associations during drought (30, 31).

102

103 Abiotic stresses also contribute to the modulation of plant immunity through
104 modifications to the balance of many hormone pathways, including abscisic acid (ABA),
105 salicylic acid (SA), jasmonic acid (JA), and ethylene (32). For example, ABA, which is
106 strongly induced by drought, antagonizes systemic acquired resistance (SAR) both
107 upstream and downstream of SA (33). In sorghum (*Sorghum bicolor* (L.) Moench),
108 reduced expression of both SA and JA-responsive genes occurs during a prolonged
109 drought (34). This phenomenon has also been observed in response to other abiotic
110 stresses as well; sorghum has reduced SA biosynthesis during nitrogen-limiting
111 conditions (35), and *Arabidopsis* represses immune signalling genes in response to
112 phosphate stress (36). This modulation has major implications for plant-associated
113 microbiomes, as microbes that colonize plant roots must either evade or suppress host
114 immune responses in order to thrive; mutants deficient in immune activation (37) and
115 exogenous application of plant defense hormones JA (38, 39) and SA (40) are both

116 sufficient to alter root microbiomes. Collectively, these studies support the hypothesis
117 that the plant immune system is in part responsible for regulating the establishment of
118 the root microbiome and is impacted by abiotic stress.

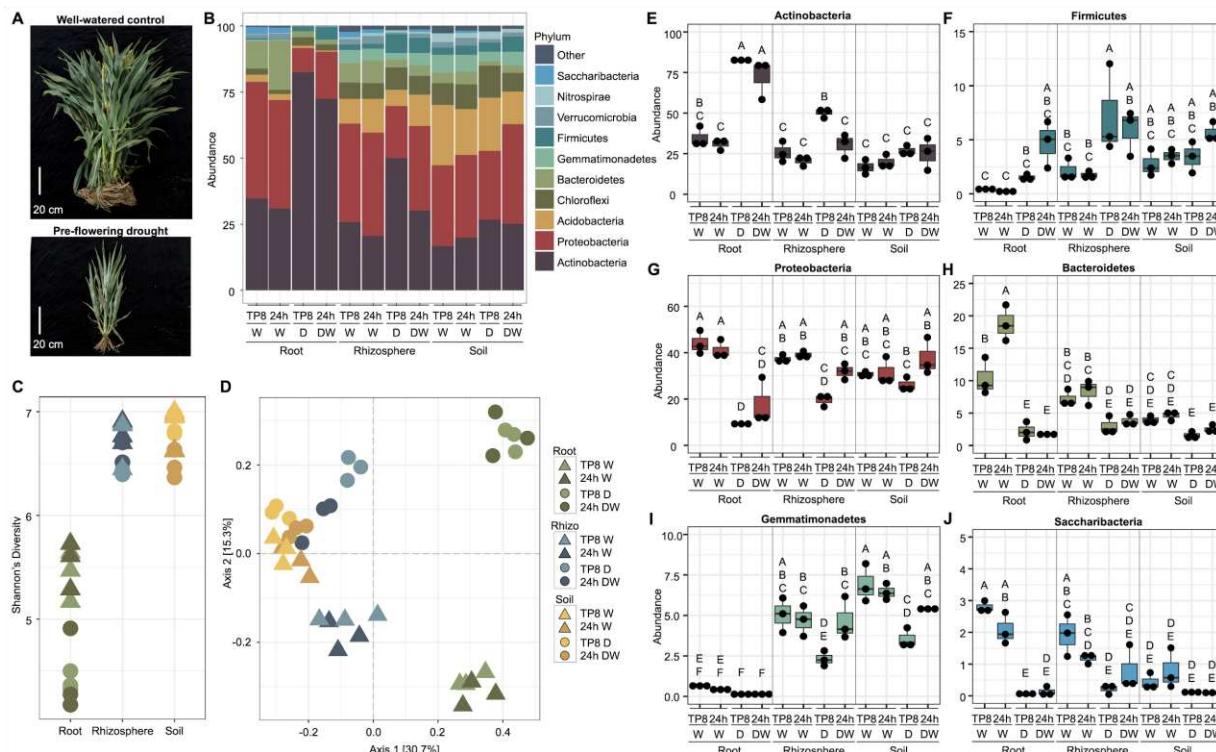
119

120 In this study, we utilize preflowering drought in field grown sorghum to determine if host
121 metabolism drives the enrichment of monoderm bacteria during drought, and whether
122 drought-driven changes in metabolites may play a role in the rapid transition from
123 monoderm to diderm dominance during re-acclimation to watering. Towards this goal,
124 we employed 16S amplicon sequencing and metabolomic profiling of root, rhizosphere,
125 and soil at the peak of drought and 24 hours after rewetting. We observe an
126 enrichment of monoderm bacteria during drought, consistent with previous reports (6, 7,
127 13). Furthermore, we determine that the microbiome responds rapidly to rewetting,
128 particularly in the rhizosphere. We also discover that drought alters the metabolite
129 profiles of sorghum root, rhizosphere, and soil. In particular, known drought-associated
130 metabolites such as betaine, 4-aminobutanoic acid (GABA), and amino acids including
131 proline are enriched during drought. Notably, the abundance of a large number of
132 rhizosphere metabolites are rapidly depleted by rewetting following drought, whereas
133 few metabolites shift abundance in the root. In addition to known drought-associated
134 metabolites, we report the detection of pipecolic acid (Pip), a lysine catabolite that is an
135 essential component of SAR (41, 42), as a drought-enriched metabolite in sorghum.
136 Here, we demonstrate that exogenous application of Pip suppresses plant root growth,
137 and that this activity functions independently from the established SAR pathway.

138

139 **RESULTS**

140 **The sorghum root-associated microbiome is influenced by drought and responds**
141 **rapidly to rewetting**


142 To examine the effect of a prolonged drought on the root microbiome of sorghum, a field
143 experiment was performed at the University of California's Agriculture and Natural (UC-
144 ANR) Resources Kearney Agricultural Research and Extension (KARE) Center, in
145 which sorghum plants were subjected to a prolonged preflowering drought, where no
146 water was applied between planting and the onset of flowering (TP8), or regularly
147 irrigated throughout the experiment (figure 1a). We performed 16S rRNA community
148 profiling of root, rhizosphere, and soil using Illumina MiSeq, targeting the V3-V4 variable
149 regions (figure 1b-j). In agreement with a previous study of the sorghum drought
150 microbiome, which was performed at the same location (13), alpha diversity significantly
151 differed between sample types (Shannon, $F=82.19$, $P=1.36\times10^{-13}$), with lower diversity
152 in the root, as compared with rhizosphere and soil, and reduced diversity in droughted
153 roots compared with watered roots (ANOVA, Tukey-HSD, $P<0.001$) (figure 1c). Beta
154 diversity was assessed through principal coordinates analysis (PCoA) using Bray–Curtis
155 dissimilarities. The primary axis distinguished samples foremost by compartment (root,
156 rhizosphere, or soil), and the second axis by watering regime (droughted or well-
157 watered) (figure 1d), suggesting that both compartment and drought were major driving
158 factors in shaping the microbiome. Pairwise permutational multivariate analysis of
159 variance (PERMANOVA) was performed for each compartment, treatment, and the
160 interaction between compartment and treatment, and all were significantly different
161 ($q<0.05$) (figure 1d).

162

163 Similar to previous studies of root microbiomes, we observed a significant enrichment of
164 monoderm bacteria during drought, including taxa belonging to the phylum
165 Actinobacteria in root and rhizosphere, and Firmicutes in the rhizosphere (ANOVA,
166 Tukey-HSD, $P < 0.05$) (figure 1b,e-f). Likewise, diderm lineages were depleted during
167 drought, including Proteobacteria in roots and rhizosphere, Bacteroidetes in roots, and
168 Gemmatimonadetes in the rhizosphere (ANOVA, Tukey-HSD, $P < 0.05$) (figure 1b,g-i).
169 These results suggest that the sorghum root-associated microbiome was responsive to
170 drought, in corroboration with past studies.

171

172

173

174 **Figure 1. Sorghum root-associated microbiome responds to drought and**
175 **rewatering. A** Representative image of sorghum plants following eight weeks of a
176 preflowering drought (TP8). **B** Phylum level relative abundances of sorghum root,
177 rhizosphere, and soil microbiomes at TP8 and 24 hours after rewatering (24h DW) in
178 well-watered (W) or drought (D) plots. **C** Alpha diversity (Shannon) of sorghum root,
179 rhizosphere, and soil. **D** Beta diversity (PCoA) of sorghum root, rhizosphere, and soil
180 microbiomes at TP8 and 24 hours after rewatering in well-watered control or drought
181 plots. **E-J** Relative abundances of individual lineages that displayed a significant
182 difference in abundance between watering treatments (ANOVA, Tukey-HSD, P<0.05).

183

184 Following drought, the sorghum root microbiome responds dramatically to rewatering,
185 with a transition from monoderm back to diderm dominance after a one week recovery
186 period (13). To better understand the early dynamics of this response to rewatering, we
187 watered the droughted sorghum plots after sampling at TP8, and another sampling was
188 performed 24 hours later. Notably, no significant shifts in relative abundance of root
189 phyla were observed (figure 1b). However, a depletion in Actinobacteria and an
190 increase in Gemmatimonadetes occurred in the rhizosphere (ANOVA, Tukey-HSD,
191 P<0.05) (figure 1b,e,i), consistent with monoderm to diderm transitions previously
192 observed after one week of drought recovery (13). Based on levels of beta diversity, the
193 rewatered rhizosphere microbiome appeared more similar to soil, rather than
194 rhizosphere from control samples (figure 1d). These results suggest that the
195 rhizosphere environment provokes a more rapid return to diderm dominance than the
196 root upon rewatering.

197

198 **Drought alters the metabolite profiles of sorghum root, rhizosphere, and soil**

199 Recently, substrate utilization was determined to drive microbe community assembly in

200 the rhizosphere across developmental age in another member of the grass lineage,

201 *Avena barbata* (19). To determine if differences in metabolic signals contribute to

202 bacterial community assemblage during drought in field grown sorghum, we performed

203 an untargeted liquid chromatography-mass spectrometry based metabolomic profiling of

204 root, rhizosphere, and soil, using the same samples as bacterial profiling described

205 above. Using a metabolite atlas as reference (43), 112 and 122 polar metabolites were

206 predicted in positive and negative ion modes, respectively, which were then combined

207 to give a total of 168 unique metabolites (supplemental figure 1, supplemental tables 1

208 and 2). Within these metabolites, we observed different patterns of enrichment across

209 both compartments and treatments, with individual metabolites that were either drought-

210 enriched or drought-depleted (figure 2a). Principal component analysis (PCA) was

211 performed to understand the relationships between samples. PC1 accounted for 59.5%

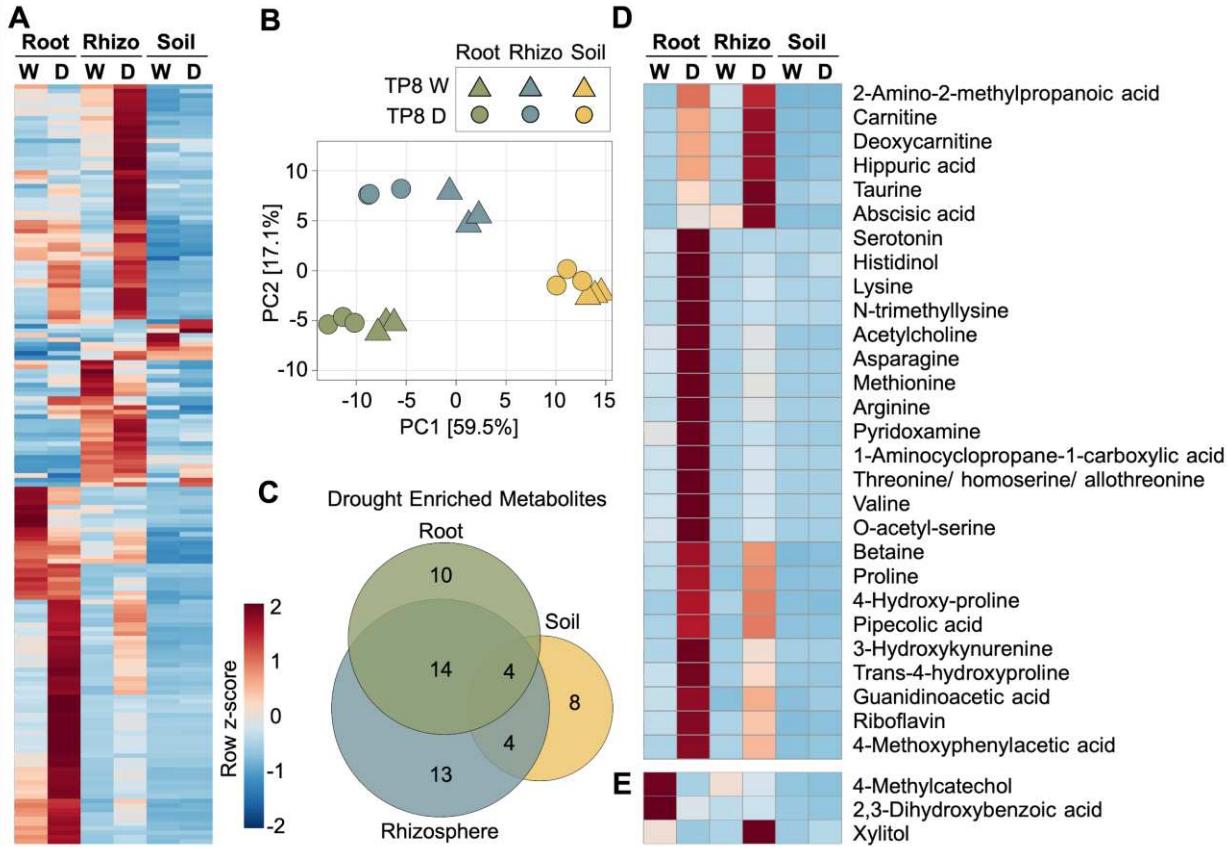
212 of the total variation and PC2 accounted for 17.1% of the variation, distinguishing

213 samples by both compartment and watering regime (figure 2b). Next, we aimed to

214 determine metabolites that were significantly enriched ($\text{Log}_2 \text{ fold change} > 2$, $t\text{-test}$

215 $p < 0.05$) in each compartment during drought. Twenty-eight, 35, and 16 metabolites

216 were significantly enriched during drought in roots, rhizosphere, and soil, respectively


217 (supplemental table 3), with enrichment that was either compartment specific or

218 observed in multiple compartments (figure 2c).

219

220 Differences in metabolites observed between compartment and watering treatment
221 suggest that these factors may be responsible for driving associations between plants
222 and their root-associated microbiome. We hypothesized that metabolites with large
223 changes in relative abundance, or fold change, between drought and watered
224 treatments may be important for the observed shifts in the microbiome. In droughted
225 roots, we observed increases in the relative abundance of many putative abiotic stress
226 response factors, including amino acids, osmoprotectants, antioxidants, hormones, and
227 organic acids (figure 2d, table 1). Surprisingly, the important drought markers ABA, 1-
228 aminocyclopropane-1-carboxylic acid (1-ACC, the precursor to ethylene), proline and
229 betaine separated into three distinct clusters of enrichment (figure 2d). In contrast, only
230 3 metabolites were significantly more abundant in watered roots, including xylitol and
231 the phenolics 2,3-dihydroxybenzoic acid and 4-methylcatechol, which are direct
232 catabolism products of salicylic acid and methylsalicylate, respectively (44, 45) (figure
233 2e, table 1). Collectively, the observed metabolite enrichment patterns are consistent
234 with sorghum roots responding metabolically to drought.

235

236

237

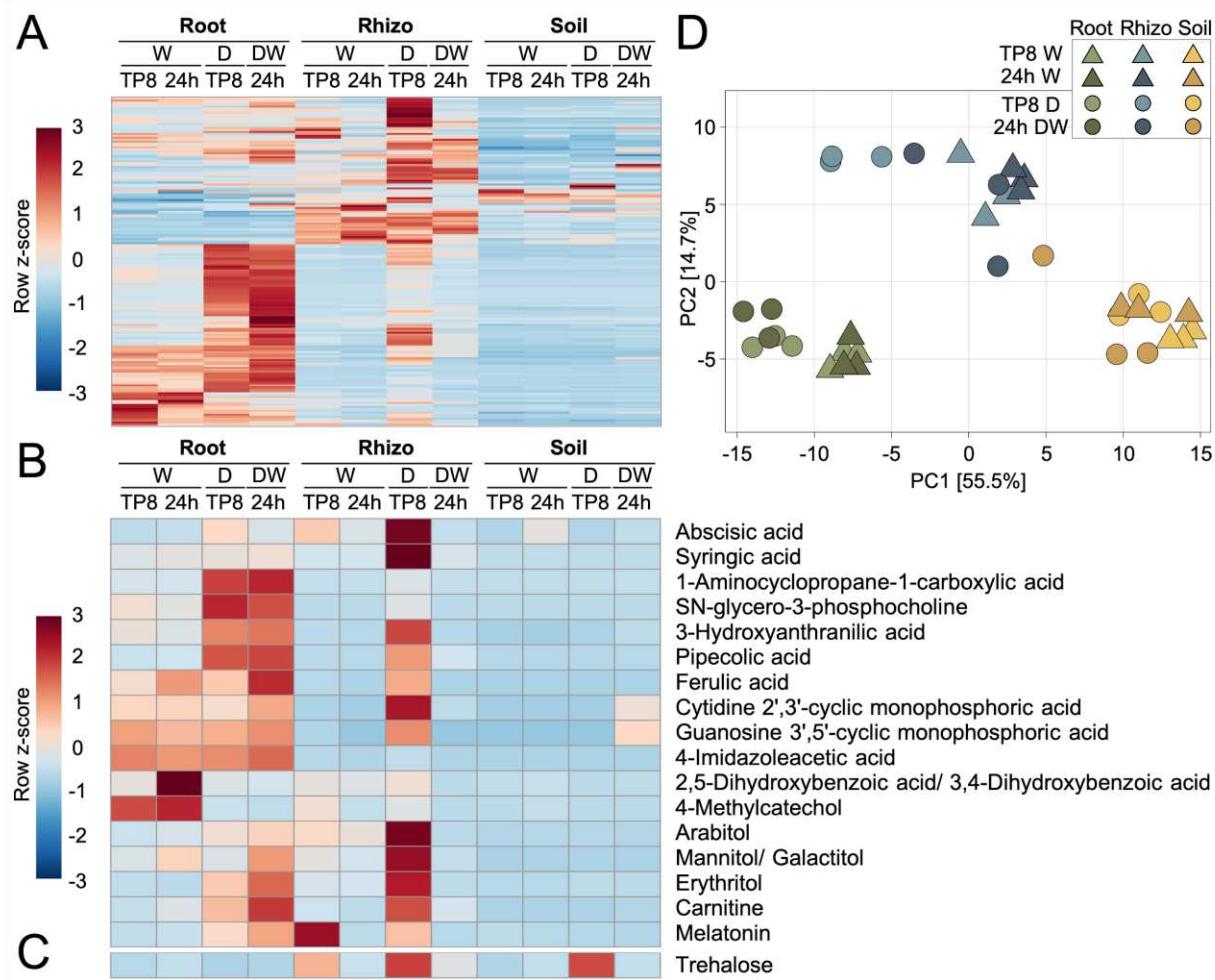
238 **Figure 2. Metabolic profiles during drought differ by compartment.** **A** Heatmap of
 239 relative peak heights of all observed metabolites ($n=168$) across root, rhizosphere
 240 (rhizo), and soil compartments and watered (W) and drought (D) treatments. **B** Principal
 241 component analysis (PCA) plot of root, rhizosphere, and soil metabolites. **C**
 242 Proportional Venn diagram of drought enriched metabolites in root, rhizosphere, or soil
 243 ($D/W \log_2$ fold change >2 , t -test $p<0.05$). **D-E** Heatmap of the subset of metabolites
 244 that were enriched or depleted in roots during drought, with the predicted identity of
 245 metabolites listed beside each row.

246

247 **Response to rewetting within 24 hours following a prolonged drought varies by**
248 **compartment**

249 Having established that metabolite composition differs between watered and drought
250 sorghum roots, we next sought to understand whether rapid shifts in metabolite profiles
251 would be observed 24 hours after rewetting the droughted sorghum plots. We
252 hypothesized that rewetting would shift metabolite compositions, particularly in the
253 rhizosphere, that could contribute to the transitions observed in microbial community
254 composition. Consistent with this hypothesis, we observed distinct response patterns in
255 metabolites across all compartments 24 hours after rewetting the droughted plots.
256 Notably, roots were only weakly responsive to rewetting, with no metabolites strongly
257 enriched in rewatered roots (Log_2 fold change >2 , t-test $p<0.05$) (figure 3a). However,
258 several metabolites were modestly enriched (Log_2 fold change >1 , t-test $p<0.05$),
259 including cytosine, sphinganine, N-acetylglutamic acid, which promotes growth of root
260 hairs and swelling of root tips (46), and ferulic acid, which is capable of inhibiting root
261 growth and promotes root branching (47) (supplemental table 4). Collectively, these
262 shifts suggest roots have started to respond to changes in water availability, although
263 their overall metabolite profiles are largely unchanged at the time of sampling.

264


265 In contrast to roots, large shifts in metabolite abundances occurred in the rhizosphere
266 after rewetting, with rewetting tending to cause a depletion of rhizosphere
267 metabolites (figure 3a). Significantly depleted metabolites ($n=17$, Log_2 fold change < -2 ,
268 t-test $p<0.05$) included ten different organic acids, four sugar alcohols, sn-glycero-3-
269 phosphocholine, carnitine, and melatonin (figure 3b, table 2). In soil, only a single

270 metabolite, trehalose, was significantly depleted following rewetting (figure 3c, table 2).

271 Notably, the metabolite composition of rewatered rhizosphere became more similar to

272 watered rhizosphere, and was distinguishable from soil (figure 3d).

273

274

275

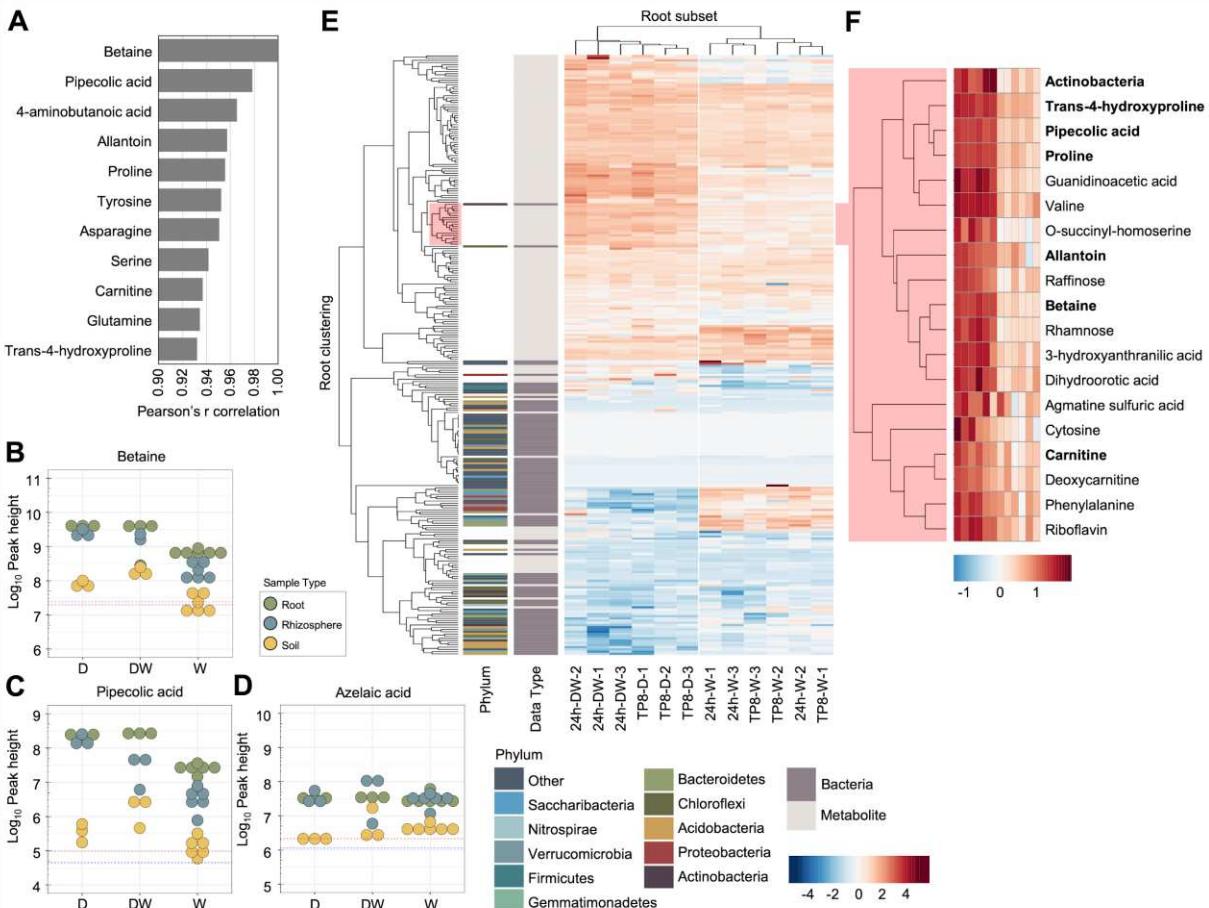
276 **Figure 3. Rewetting depletes rhizosphere metabolites following a prolonged**

277 **drought. A** Heatmap of relative peak heights of all observed metabolites (n=168)

278 across three compartments (root, rhizosphere (rhizo), and soil), three treatments

279 (watered (W), drought (D), drought rewetted (DW), and two time points (time point 8

280 (TP8) and 24 hours later (24h)). **B-C** Heatmap of the subset of metabolites that were
281 depleted after rewetting (DW/D Log₂ fold change < -2, t-test p<0.05), with the
282 predicted identity of metabolites listed beside each row. Note, all significant depletions
283 were observed in the rhizosphere, except trehalose, which occurred in soil. **D** Principal
284 component analysis (PCA) plot of root, rhizosphere, and soil metabolites.


285

286 **Pipecolic acid suppresses plant root growth**

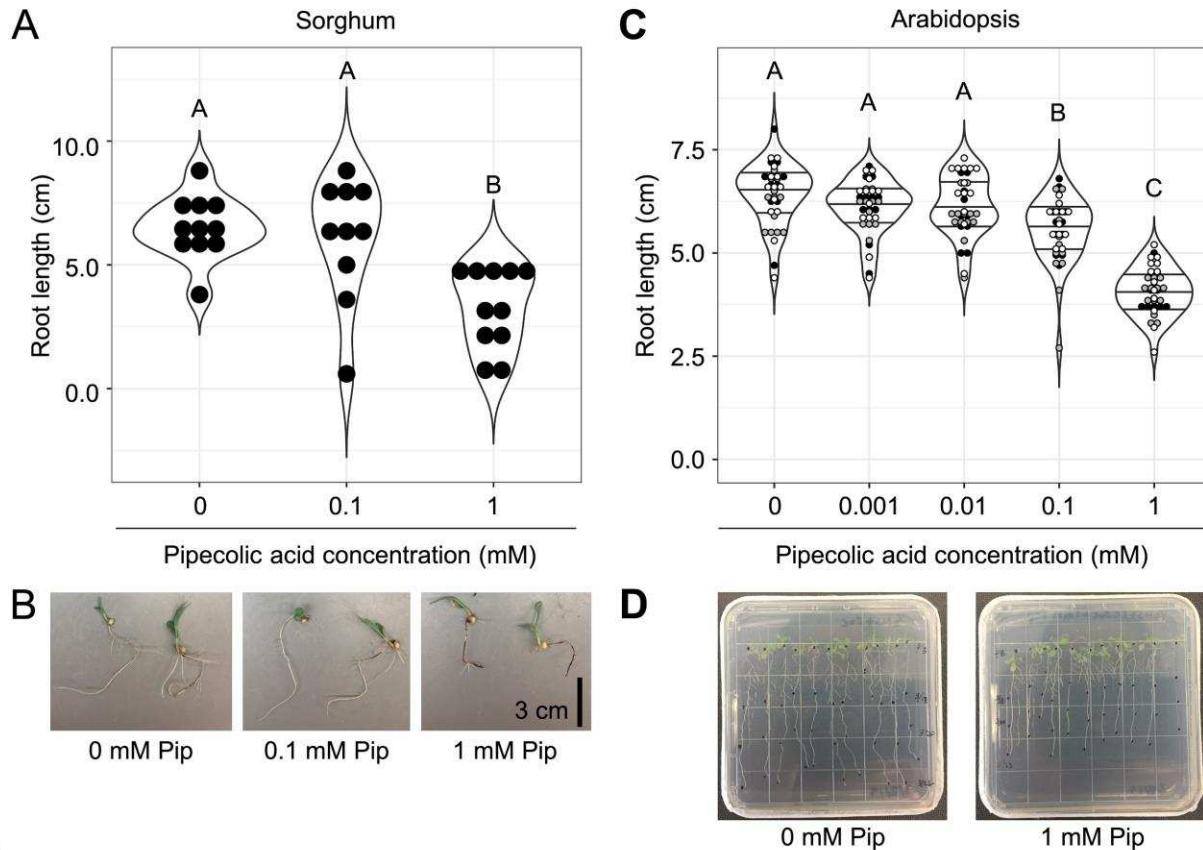
287 Betaine represents one of the most robust and widely utilized biomarkers of plant
288 responses to drought (31, 48). We hypothesized that other metabolites with roles in
289 plant drought response would share a similar abundance pattern during drought. To
290 identify other putative drought metabolites, we ranked metabolites based on their
291 correlation coefficients (Pearson's r) with betaine, across all compartments, treatments,
292 and timepoints (figure 4a-c). The most strongly correlated metabolite, pipecolic acid
293 (Pip), is a lysine catabolite that has recently been identified as a critical component of
294 the systemic acquired resistance (SAR) pathway (41, 42). However, to our knowledge
295 no link between Pip and drought stress response has been demonstrated in plants,
296 although its synthesis is osmotically induced in rapeseed leaf discs (49) and in the
297 halophyte *Triglochin maritima* (50). Beyond Pip, the other nine of the top 10 correlated
298 metabolites have all been previously identified as drought-related metabolites. These
299 include 4-aminobutanoic acid (GABA) (51), allantoin (52, 53), carnitine (54, 55), and the
300 amino acids proline, tyrosine, asparagine, serine, glutamine, and trans-4-hydroxyproline
301 (56–60) (figure 4a).

302

303 To identify potential interactions between these drought-related metabolites and the
304 root-associated bacterial community, we clustered bacterial ASVs (grouped at the class
305 level) and metabolites based on abundances across all compartments, treatments, and
306 timepoints. Strikingly, while a majority of metabolites and microbes separated into
307 distinct clusters, three microbial taxa, including the Actinobacteria, nested within the
308 metabolite-dominant cluster, just adjacent to the metabolite cluster containing the top
309 ten betaine-correlated metabolites (supplemental figure 2). When clustering was
310 performed based on the abundances in the root, where host control of the microbiome
311 is strongest, we observed that the Actinobacteria formed an even closer linkage with
312 betaine-correlated metabolites, and was tightly clustered with five metabolites including
313 trans-4-hydroxyproline, proline, Pip, valine, and guanidinoacetic acid (figure 4e-f,
314 supplemental figure 3). As previous reports have demonstrated that drought-induced
315 microbial lineages including Actinobacteria in roots are capable of inducing SAR (61)
316 and systemic root-to-root signaling (62), we hypothesized that the increased abundance
317 of Actinobacteria in sorghum roots may contribute to the accumulation of Pip during
318 drought, and potentially the activation of systemic signaling. However, azelaic acid,
319 which functions downstream of Pip in the SAR pathway (63), was not enriched by
320 drought in our data, suggesting that SAR was not being activated (figure 4d).
321 Collectively, these results suggest that Pip may play an as-yet undiscovered role in
322 sorghum drought response.
323

324

325


326 **Figure 4. Pipecolic acid abundance pattern mirrors drought markers. A** The top 10
 327 metabolites correlated with the drought marker betaine across all sample types,
 328 treatments, and time points. **B-D** Log₁₀ peak heights of individual metabolites. Each
 329 point represents an individual sample of root (green), rhizosphere (blue), or soil (yellow).
 330 Dashed lines represent the limit of detection for individual metabolites, based on the
 331 average log₁₀ peak heights of the sample blanks for root (red) or rhizosphere and soil
 332 (blue). **E** Heatmap of relative abundance of all metabolites and bacteria ASVs (grouped
 333 at the class level), clustered within the root, across treatments (watered (W), drought
 334 (D), drought rewatered (DW), and time points (time point 8 (TP8) and 24 hours later

335 (24h)). **F** Zoom-in of Actinobacteria and closely clustering root metabolites, as
336 highlighted in pink in figure 4e. Actinobacteria and the metabolites that are closely
337 correlated with betaine (as in figure 4a) are in bold.

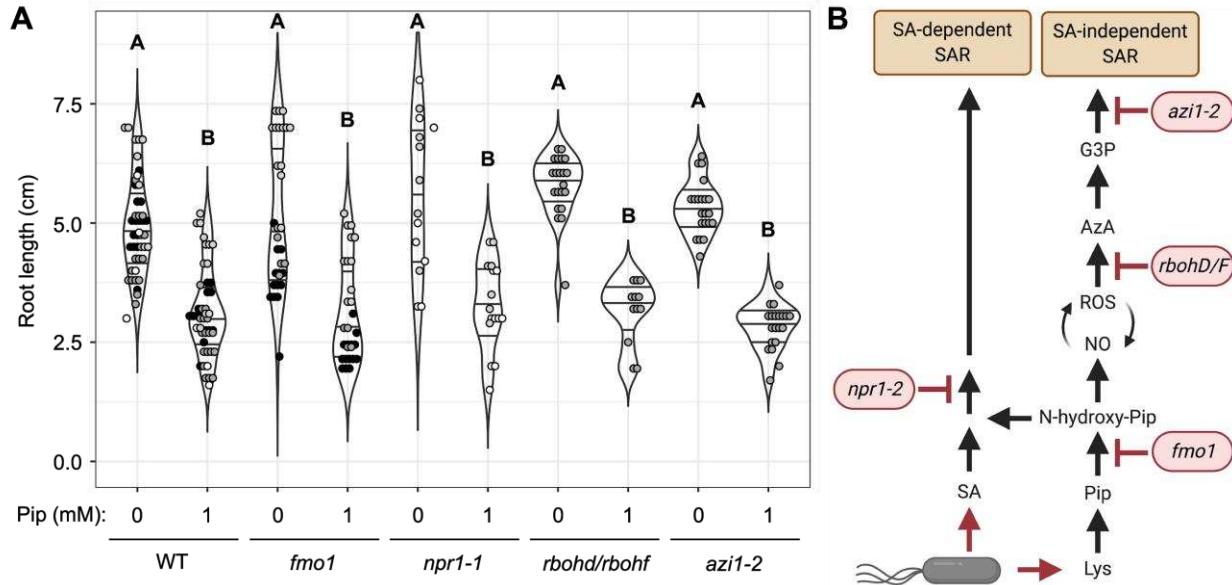
338

339 One classic and easily observable phenotypic shift that occurs in roots during drought is
340 a suppression of root growth (64, 65). We hypothesized that if Pip plays an integral role
341 in the drought response pathway, application of Pip should lead to reduced root growth.
342 To evaluate this possibility, we germinated sorghum in petri dishes containing water
343 plus 0, 0.1, or 1 mM Pip. Seven days after germination, 1 mM Pip treated sorghum
344 displayed significantly reduced root growth (figure 5a-b). Exogenous Pip application is
345 also capable of reducing root growth in *Arabidopsis* (66). We confirmed this result by
346 growing *Arabidopsis* Col-0 on petri dishes containing either 0, 0.001, 0.01, 0.1, 1 mM
347 Pip. Average root growth was reduced in all Pip treatments in a dosage dependent
348 manner, with significant decreases in root growth observed with 0.1 and 1 mM Pip
349 concentrations (figure 5c-d).

350

351

352


353 **Figure 5. Pipecolic acid reduces root growth. A** Root lengths of sterilized sorghum
354 seedlings after 7 days of growth in water containing 0, 0.1, or 1 mM pipecolic acid (Pip).
355 Different letters indicate a significant difference in root length (ANOVA, Tukey-HSD,
356 $p<0.05$). This experiment was performed twice with similar results. **B** Two
357 representative seedlings from each treatment were photographed at the time of
358 measurement. **C** Root lengths of sterilized Arabidopsis seedlings after 10 days of
359 growth in $\frac{1}{2}$ MS+ 1% sucrose agar media containing 0, 0.001, 0.01, 0.1, or 1 mM Pip.
360 Different letters indicate a significant difference in root length (ANOVA, Tukey-HSD,
361 $p<0.05$). Different colors represent plants from independent experiments ($n=3$). **D** One

362 *representative plate from 0 and 1 mM pipecolic acid treatments were photographed at*
363 *the time of measurement.*

364

365 Having confirmed that exogenous Pip is sufficient to reduce root growth, we next aimed
366 to understand the molecular mechanism responsible for this behavior. As Pip plays a
367 key role in systemic signalling during SAR (67), we hypothesized that Pip-mediated root
368 growth reduction may depend on components of this signalling pathway. To test this
369 hypothesis, we utilized publicly available genetic resources in *Arabidopsis*, including
370 *fmo-1*, *npr1-1*, *rbohd/rbohf*, *azi1-2* mutants, which represent critical aspects of the SAR
371 signalling pathway (figure 6). We measured the root growth of each of these validated
372 *Arabidopsis* SAR mutants on media containing 1 mM Pip. Notably, mutants in FLAVIN-
373 CONTAINING MONOOXYGENASE 1 (FMO-1), responsible for conversion of Pip to N-
374 hydroxy-Pip (68)(figure 6), displayed reduced root growth similar to the wild-type plant
375 Col-0 in response to Pip (figure 6), indicating that this conversion is not required to elicit
376 reduced root growth. Likewise, mutants in NON EXPRESSER OF PATHOGENESIS
377 RELATED GENES 1 (NPR1) (69), a SA receptor required for SA-dependent SAR, and
378 mutants in NADPH/RESPIRATORY BURST OXIDASE PROTEINS D and F (RBOH
379 D/F) and the lipid transfer protein AZELAIC ACID INDUCED 1 (AZI1) (70, 71), required
380 for SA-independent SAR, also responded similar to Col-0 (figure 6).Collectively, these
381 data indicate that root growth response to Pip is likely not mediated by the SAR
382 pathway.

383

384

385

386 **Figure 6. Pipecolic acid root growth reduction is SAR-independent.** **A** Root length
387 of *Arabidopsis* Col-0 (WT) and *Arabidopsis* mutants grown on 1/2MS + 1% sucrose
388 plates containing 0 or 1 mM Pip. Significance between treatments was evaluated by
389 ANOVA with Tukey's HSD posthoc test ($p < 0.05$). Different colors represent plants from
390 independent experiments. **B** Simplified SAR pathway. Highlighted in red are the
391 *Arabidopsis* mutants used to evaluate a potential interaction between SAR and Pip-
392 mediated root growth suppression.

393

394 DISCUSSION

395 Metabolite and microbial community compositions shift during drought and 396 rewatering

397 The assemblage of the microbiomes differ between root, rhizosphere, and soil during
398 drought, though the underlying cause of these differences is not well understood. Plant
399 metabolites and exudates have been hypothesized to drive these changes (30), and

400 plants are known to increase total organic carbon and root exudation (per gram of root
401 biomass) in response to drought (72, 73). The enrichment of specific metabolites that
402 can act as osmoprotectants, such as betaine, sugars, and amino acids, is frequently
403 reported when plants are subjected to drought, and these are commonly used as
404 drought-specific markers. Yet, comprehensive studies of the global metabolite profiles
405 across root, rhizosphere, and soil have been hindered by the complexity of soil
406 metabolite profiles. However, recent advances in metabolomics have allowed for
407 characterization of metabolite profiles within and across complex substrates (74). As a
408 result, we collected both microbiome and metabolite profiles across three different
409 compartments (sorghum root, rhizosphere, and soil) and three treatments (watered,
410 drought, and drought recovery). We observed a general trend that many metabolites
411 were more abundant during drought. This observation is in line with previous evidence
412 that exudation by plants increases during drought (72). Interestingly, we observed both
413 shifts in metabolite abundances during drought that were compartment specific and
414 shifts that occurred across multiple compartments. Likewise, we observed enrichment of
415 specific drought responsive metabolites that correlated with increases in both
416 monoderm dominance during drought and compartment specific shifts upon rewetting.
417 Our findings that changes in host metabolism during drought are correlated with shifts in
418 certain bacterial taxa expand upon a recent finding that substrate utilization also drives
419 microbial community assembly in the rhizosphere across developmental age (19).
420
421 A previous study of sorghum root and rhizosphere showed that bacterial community
422 abundance reverts from monoderm dominance during drought to diderm dominance

423 within a week following rewetting (13). To understand the early dynamics of this
424 reversion, we evaluated sorghum root, rhizosphere, and soil at the peak of a
425 preflowering drought and again 24 hours after rewetting. We observed distinct
426 response patterns in metabolites of root, rhizosphere, and soil 24 hours after
427 rewetting, which could impact the establishment of microbiomes following rewetting.
428 Notably, the rhizosphere was the most responsive in both metabolites and microbiome
429 profiles within 24 hours after rewetting. We propose that the more rapid shifts
430 observed in rhizosphere are largely driven by flow of water, which may simultaneously
431 dilute rhizosphere metabolites into the surrounding soil, and promote the mobility of soil
432 microbes to enter the rhizosphere. Supporting this hypothesis, the beta diversity of
433 rewetted rhizosphere microbiome early after rewetting more closely resembled the
434 soil microbiome, rather than watered rhizosphere samples, suggesting that the soil
435 microbiome is a source of inoculum for bacterial establishment in the rhizosphere
436 following rewetting. In contrast, rhizosphere metabolites were characterized by
437 depletion after rewetting, with similarity to watered rhizosphere, which may facilitate
438 the eventual reversion to a watered rhizosphere microbiome, as demonstrated
439 previously (13). Comparable studies on the long-term effects of drought and subsequent
440 rewetting on metabolite profiles in grasses are lacking, however previous studies of
441 trees have reported mixed long-term effects. One study found that increases in
442 exudation can be reversed following recovery from drought, to be indistinguishable from
443 controls (73), while another found that extreme drought led to irreversible changes in
444 exudation (59). Therefore, future studies will benefit from careful selection of multiple

445 time points following drought to understand the long-term effects of drought in roots and
446 rhizosphere following rewatering.

447

448 **Pipecolic acid-mediated root growth suppression is not mediated by the systemic**
449 **acquired resistance pathway**

450 In this study, we observed an enrichment of many putative abiotic stress response
451 factors during drought. Of particular note, Pip was significantly enriched during drought,
452 and its abundance correlated strongly with other highly enriched drought markers
453 including Actinobacteria and the metabolites betaine, proline, and GABA. While Pip
454 induction in response to osmotic stress has been noted in a few previous studies (49,
455 50), by far Pip's most notable role is in systemic signalling of stress in response to
456 pathogens. It has recently been shown that the conversion of Pip to N-hydroxy-Pip is
457 required for SAR to be activated, and this activity functions both alongside and
458 independent of SA (67, 75). Notably, previous research has demonstrated that "biotic
459 stress" factors, including SA, can benefit plants responding to abiotic stress. For
460 example, plant drought tolerance can be promoted by increasing endogenous SA in
461 *Arabidopsis* (76), and exogenous SA also promoted drought tolerance via an NPR1-
462 dependent mechanism in *Brassica napus* (77). However, recent studies suggest that SA
463 signaling is inactivated by drought, in part because ABA promotes NPR1 degradation
464 (33, 78). Additionally, a strong suppression of defense-related gene expression occurs
465 in field grown sorghum during preflowering drought (34). Likewise, we did not see an
466 enrichment of azelaic acid, which functions downstream of Pip during SAR, during
467 drought in our data. These findings suggest that the Pip induction observed during

468 drought is likely acting for some other purpose, perhaps as an independent signalling
469 mechanism related to abiotic stress.

470
471 Here, we demonstrate that Pip application is able to provoke one of the classic drought
472 responses in roots, namely root growth suppression (64, 65), which suggests it could be
473 involved in the drought response pathway. As exogenous Pip was capable of
474 suppressing root growth in both sorghum and *Arabidopsis*, this suggests that a common
475 mechanism is conserved across plants. We hypothesized that Pip-mediated root growth
476 suppression might share components with the SAR pathway, which functions across
477 diverse plant clades (79). However, using previously validated *Arabidopsis* SAR
478 pathway mutants, we demonstrate that this Pip activity in the root functions
479 independently from the established SAR pathway, which has primarily been evaluated
480 in leaves. These data suggest that although Pip has been primarily characterized as a
481 component of SAR in plants, it may also act as a more general stress response factor to
482 environmental shifts including drought using an alternative mechanism. Furthermore,
483 azelaic acid, another component of SAR that functions downstream of Pip, is not
484 enriched in sorghum roots under drought, which suggests that this pathway, if it exists,
485 acts differently than the one currently known example.

486
487 Interestingly, Pip, which was significantly enriched in both roots and rhizosphere, has
488 also been shown to have a direct role on microbes, where it is predicted to function in
489 osmoprotection. For example, Pip has been widely demonstrated to improve the growth
490 of a diverse bacteria challenged by NaCl-induced osmotic stress, including the

491 Actinobacteria lineage *Brevibacterium ammongenes* (80), and Proteobacteria lineages
492 *Escherichia coli* (81), *Sinorhizobium meliloti* (82), and *Silicibacter pomeroyi* (83).
493 Supporting its role as an osmoprotectant, exogenous application of another
494 osmoprotectant, betaine, suppressed the salt-induced accumulation of Pip (80). These
495 studies support a possible role of rhizosphere Pip acting as an osmolyte to protect
496 bacteria during drought. However, as Pip appears to be functional across a broad range
497 of bacterial lineages, we do not believe Pip is likely to be responsible for the shifts in
498 monoderm and diderm dominance observed during drought and subsequent rewetting.
499 Collectively, our results highlight the need for future studies that delve further into the
500 potential contribution(s) of Pip to plant drought responses.

501

502 **METHODS**

503 **Field experimental design and sample collection**

504 Sorghum cultivar RTx430 plants were grown in the summer of 2017, in a field located at
505 the UC-ANR KARE Center located in Parlier, California (36.6008 N 119.5109 W), as
506 described previously (13, 84). Sorghum seeds were sown into pre-watered fields.
507 Starting in the third week, control treatment plants were watered 1h three times per
508 week by drip irrigation (1.89 L h⁻¹ flow rate), and no water was provided to drought
509 treatment plants. After eight weeks, which coincided with the onset of flowering, roots
510 and rhizosphere samples were harvested prior to watering (TP8). Water was then
511 restored to the drought plots (rewatered), and root and rhizosphere samples were
512 harvested after 24 h (TP8+24h). All field samples were collected between 11am and
513 12pm using a modified version of the protocol described in detail in (85). Soil samples

514 were collected using a 15 cm soil core sampler, at a distance of approximately 20 cm
515 from the base of the plant. To collect rhizosphere compatible with both microbiome and
516 metabolomic analyses, excavated plants were briefly shaken to dislodge excess soil,
517 and an ethanol-sterilized nylon bristled toothbrush was used to remove closely adhering
518 soil from the root, which we collected as the rhizosphere fraction, prior to vortexing the
519 roots two times for 1 min in epiphyte removal buffer (ice cold 0.75% KH₂PO₄, 0.95%
520 K₂HPO₄, 1% Triton X-100 in ddH₂O; filter sterilized at 0.2 µM). Any remaining soil
521 adhering to the root was separated with epiphyte removal buffer and discarded. The
522 roots were again rinsed with clean epiphyte removal buffer and patted dry. All samples
523 were immediately flash frozen in LN₂ in the field and stored at -80 °C until sample
524 processing.

525

526 **DNA extraction, amplification, and amplicon sequencing**

527 DNA extraction was performed using the protocol for collection of root endosphere,
528 rhizosphere, and soil samples using Qiagen DNeasy Powersoil DNA extraction Kit with
529 0.15 g (root) and 0.25 g (rhizosphere and soil) as starting material in the provided
530 Powersoil collection vials, as described in detail in (85). The V3-V4 region of the 16S
531 rRNA gene was PCR amplified from 25 ng of genomic DNA using dual-indexed 16S
532 rRNA Illumina iTags 341F (5'-CCTACGGGNBGCASCAG-3') and 785R (5'-
533 GACTACNVGGGTATCTAATCC-3'). Barcoded 16S rRNA amplicons were quantified
534 using Qubit dsDNA HS assay kit on a Qubit 3.0 fluorometer (Invitrogen, Carlsbad, CA,
535 USA), pooled in equimolar concentrations, purified using Agencourt AMPure XP
536 magnetic beads (Beckman Coulter, Indianapolis, IN, USA), quantified using Qubit

537 dsDNA HS assay kit on a Qubit 3.0 fluorometer (Invitrogen, Carlsbad, CA, USA), and
538 diluted to 10 nM in 30 μ L total volume before submitting to the QB3 Vincent J. Coates
539 Genomics Sequencing Laboratory facility at the University of California, Berkeley for
540 sequencing using Illumina Miseq 300 bp pair-end with v3 chemistry.

541

542 **Amplicon sequence processing and analysis**

543 16S amplicon sequencing reads were demultiplexed in QIIME2 (86) and then passed to
544 DADA2 (87) to generate Amplicon Sequence Variants (ASVs), with taxonomies
545 assigned using the August 2013 version of GreenGenes 16S rRNA gene database as
546 described previously (16). All subsequent 16S statistical analyses were performed in R-
547 v3.6.1 (88). To account for differences in sequencing read depth across samples,
548 samples were normalized by dividing the reads per ASV in a sample by the sum of
549 usable reads in that sample, resulting in a table of relative abundance frequencies,
550 which were used for analyses, with the exception of alpha-diversity calculations, for
551 which all samples were normalized to an even read depth of 29,918 ASVs per sample.
552 Alpha diversity was determined with the estimate_richness function in the R package
553 phyloseq-v1.30.0 (89), and significance was tested by ANOVA using the aov function in
554 the R stats package. Beta diversity (PCoA) was performed using the ordinate function in
555 the R package phyloseq-v1.30.0 (89). Sample type separation was determined by
556 pairwise PERMANOVA with 1,000 permutations using the adonis and
557 calc_pairwise_permenovas functions in the R packages vegan-v2.5.6 (90) and
558 mctoolsr-v0.1.1.2. Tukey-HSD tests used the HSD.test function in the R package

559 Agricolae-v1.3.1. The combined metabolite and bacterial ASV heatmaps were
560 generated using the R package pheatmap-v1.0.12.

561

562 **Metabolite extraction and LC-MS**

563 Root water content was estimated by lyophilizing root tissue and calculating the
564 difference between wet and dry weights. Root samples for submission were then
565 normalized such that the lightest sample was 0.2 g (wet weight) and each other sample
566 was at least 0.2 g. Rhizosphere and soil water contents were estimated to obtain similar
567 amounts of material. The overall difference in percent water content between samples
568 was minimal (2.5-6.5%). For extraction of polar metabolites from root tissue (0.2-0.3 g
569 wet weight), samples were first lyophilized dry, then 500 μ L of methanol was added,
570 followed by a brief vortex and sonication in a water bath for 10 min. Samples were
571 centrifuged 5 min at 5,000 rpm, then supernatant transferred to 2 mL tubes, dried in a
572 SpeedVac (SPD111V, Thermo Scientific, Waltham, MA), and extracts stored at -80 °C.
573 For soil and rhizosphere samples (1.25 g wet weight), polar metabolites were extracted
574 similarly but samples were not lyophilized prior to extraction, 2 mL LC-MS grade water
575 was added followed by vortex and water bath sonication for 30 min, centrifugation for 7
576 min at 7,000 rpm, then supernatant transferred to a 5 mL tube, frozen and lyophilized
577 dry, and extracts stored at -80 °C.

578

579 In preparation for LC-MS, soil and rhizosphere extracts were resuspended with 300 μ L
580 methanol containing internal standards (~15 μ M average of 5-50 μ M of 13C,15N Cell
581 Free Amino Acid Mixture; 4-(3,3-dimethyl-ureido)benzoic acid; 3,6-dihydroxy-4-

582 methylbenzoic acid; d5-benzoic acid; 9-anthracene carboxylic acid; 13C-trehalose; 13C-
583 mannitol), vortexed and sonicated 10 min, centrifuged 5 min at 5,000 rpm, supernatant
584 centrifuge-filtered 2.5 min at 2 500 rpm (0.22 μ m hydrophilic PVDF), then 150 μ L
585 transferred to LC-MS glass autosampler vials. Root extracts were resuspended
586 similarly, but with resuspension volume varied to normalize by root dry weight.

587

588 Chromatography was performed using an Agilent 1,290 LC stack, with MS and MS/MS
589 data collected using a Thermo QExactive Orbitrap MS (Thermo Scientific, Waltham,
590 MA). Full MS spectra were collected from *m/z* 70-1,050 at 70,000 resolution in both
591 positive and negative ion modes, with MS/MS fragmentation data acquired using
592 stepped 10, 20, and 40 eV collision energies at 17,500 resolution. Chromatography was
593 performed using a HILIC column (Agilent InfinityLab Poroshell 120 HILIC-Z, 2.1 x 150
594 mm, 2.7 μ m, #673775-924) at a flow rate of 0.45 mL/min with a 2 μ L injection volume.
595 To detect metabolites, samples were run on the HILIC column at 40 °C equilibrated with
596 100% buffer B (95:5 ACN:H2O with 5 mM ammonium acetate) for 1 min, diluting buffer
597 B down to 89% with buffer A (100% H2O with 5 mM ammonium acetate and 5 μ M
598 methylenediphosphonic acid) over 10 min, down to 70% B over 4.75 min, then down to
599 20% B over 0.5 min, followed by isocratic elution in 80% buffer A for 2.25 min. Samples
600 consisted of 3 biological replicates each and 3 extraction controls, with sample injection
601 order randomized and an injection blank (2 μ L MeOH) run between each sample.

602

603 **Metabolite identification and analysis**

604 Metabolite identification was based on exact mass and comparing retention time (RT)
605 and MS/MS fragmentation spectra to that of standards run using the same
606 chromatography and MS/MS method. Custom Python code (91) was used to analyze
607 LC-MS data. For each feature detected (unique *m/z* coupled with RT), a score (0 to 3)
608 was assigned representing the level of confidence in the metabolite identification.
609 Positive identification of a metabolite had detected $m/z \leq 5$ ppm or 0.001 Da from
610 theoretical as well as RT ≤ 0.5 min compared to a pure standard run using the same
611 LC-MS method. The highest level of positive identification (score of 3) for a metabolite
612 also had matching MS/MS fragmentation spectra compared to either an outside
613 database (METLIN) (92) or internal database generated from standards run and
614 collected on a QExactive Orbitrap MS. Identifications were invalidated if MS/MS from
615 the sample mismatched that of the standard. MS/MS mirror plots for metabolites are
616 presented in supplemental figure 1.

617
618 A total of 112 and 122 polar metabolites were predicted in positive and negative ion
619 modes respectively (supplemental table 1). If a metabolite was observed in both ion
620 modes, the mode with higher peak height was selected for the merged metabolite
621 profile (n=168) used for all analyses. Values below the limit of detection were imputed
622 with the lowest observed values in the dataset rounded down (2,400 or 1,900 for
623 positive or negative ion modes respectively) (supplemental table 2). Principal
624 components analysis of metabolite profiles was performed using the prcomp function in
625 the R stats package. Venn diagram construction utilized Venny-v2.1.0 (93). All other
626 metabolite analyses were performed using MetaboAnalyst-v4.0 (94, 95). Heatmaps

627 were generated using Euclidean distance and Ward clustering algorithms. We
628 evaluated enriched or depleted metabolites with the cutoffs of \log_2 fold change greater
629 than 2 or less than -2, and a p-value of less than 0.05.

630

631 **Plant root growth assays**

632 Sterilized seeds of the sorghum cultivar RTx430 were germinated on petri dishes with
633 autoclaved Milli-Q water or autoclaved Milli-Q water containing the defined
634 concentration of Pip overnight in the dark at 28 °C, before being transferred to a growth
635 chamber (28/22 °C, 16 h day, ppf \sim 250 $\mu\text{mol m}^{-2}\text{s}^{-1}$). The *Arabidopsis* ecotype Columbia
636 (Col-0) was used in this study. Mutant lines *fmo-1* (SALK_026163) (96), *npr1-1*
637 (CS3726) (97), *rbohd/rbohf* (CS68522) (98), and *azi1-2* (SALK_085727) (70) were
638 obtained from the Arabidopsis Biological Resource Center (99). Sterilized seeds were
639 grown on MS plates containing 1/2 \times Murashige and Skoog salt mix, 1% sucrose (pH
640 5.8), 0.8% agar, and the defined concentration of Pip. Plants were first stratified for 3
641 days at 4°C before being transferred to a growth chamber (21 °C, 16 h day, ppf \sim 120
642 $\mu\text{mol m}^{-2}\text{s}^{-1}$). Root lengths were measured using ImageJ-v1.52a software (100). ANOVA
643 was performed using the aov function in the R stats package and Tukey-HSD tests
644 used the HSD.test function in the R package Agricolae-v1.3.1. SAR pathway image in
645 figure 6b was created with BioRender.com.

646

647 **Data availability**

648 All datasets and scripts for analysis are available through github
649 (<https://github.com/colemanderr-lab/Caddell-2020>) and all short read data can be

650 accessed through NCBI BioProject PRJNA655744. Raw metabolomics data will be
651 made available through the Joint Genome Institute Genome Portal.

652

653 **Acknowledgements**

654 We thank Dr. Edi Wipf for their helpful discussions and critical reading of the
655 manuscript.

656

657 **Author contributions**

658 D.C. conceived and designed the experiments, performed the experiments, analyzed
659 the data, and prepared figures and/or tables; K.L., B.B., and T.N. performed the LC-MS,
660 metabolite identification, and analyzed the data; E.P. analyzed the data and prepared
661 figures and/or tables; J.S., J.H., and J.D. performed the field experiment; D.C-D.
662 conceived and designed the experiments and analyzed the data; All authors authored or
663 reviewed drafts of the paper and approved the final draft.

664

665 **References cited**

666 1. Zolla G, Badri DV, Bakker MG, Manter DK, Vivanco JM. 2013. Soil microbiomes
667 vary in their ability to confer drought tolerance to *Arabidopsis*. *Appl Soil Ecol* 68:1–
668 9.

669 2. Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N,
670 Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO,
671 Amann R, Eickhorst T, Schulze-Lefert P. 2012. Revealing structure and assembly
672 cues for *Arabidopsis* root-inhabiting bacterial microbiota. *Nature* 488:91–95.

673 3. Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S,
674 Tremblay J, Engelbrektson A, Kunin V, Del Rio TG, Edgar RC, Eickhorst T, Ley RE,
675 Hugenholz P, Tringe SG, Dangl JL. 2012. Defining the core *Arabidopsis thaliana*
676 root microbiome. *Nature* 488:86–90.

677 4. Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Buckler ES, Ley RE. 2013.
678 Diversity and heritability of the maize rhizosphere microbiome under field
679 conditions. *Proc Natl Acad Sci U S A* 110:6548–6553.

680 5. Ofek-Lalzar M, Sela N, Goldman-Voronov M, Green SJ, Hadar Y, Minz D. 2014.
681 Niche and host-associated functional signatures of the root surface microbiome. *Nat
682 Commun* 5:4950.

683 6. Naylor D, DeGraaf S, Purdom E, Coleman-Derr D. 2017. Drought and host
684 selection influence bacterial community dynamics in the grass root microbiome.
685 *ISME J.*

686 7. Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MTJ.
687 2018. Assembly and ecological function of the root microbiome across angiosperm
688 plant species. *Proc Natl Acad Sci U S A* 115:E1157–E1165.

689 8. Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S,
690 Eisen JA, Sundaresan V. 2015. Structure, variation, and assembly of the root-
691 associated microbiomes of rice. *Proc Natl Acad Sci U S A* 112:E911–20.

692 9. Haney CH, Samuel BS, Bush J, Ausubel FM. 2015. Associations with rhizosphere
693 bacteria can confer an adaptive advantage to plants. *Nat Plants* 1.

694 10. Walitang DI, Kim C-G, Kim K, Kang Y, Kim YK, Sa T. 2018. The influence of host
695 genotype and salt stress on the seed endophytic community of salt-sensitive and
696 salt-tolerant rice cultivars. *BMC Plant Biol* 18:51.

697 11. Chaparro JM, Badri DV, Vivanco JM. 2014. Rhizosphere microbiome assemblage is
698 affected by plant development. *ISME J* 8:790–803.

699 12. Edwards JA, Santos-Medellín CM, Liechty ZS, Nguyen B, Lurie E, Eason S, Phillips
700 G, Sundaresan V. 2018. Compositional shifts in root-associated bacterial and
701 archaeal microbiota track the plant life cycle in field-grown rice. *PLoS Biol*
702 16:e2003862.

703 13. Xu L, Naylor D, Dong Z, Simmons T, Pierroz G, Hixson KK, Kim Y-M, Zink EM,
704 Engbrecht KM, Wang Y, Gao C, DeGraaf S, Madera MA, Sievert JA, Hollingsworth
705 J, Birdseye D, Scheller HV, Hutmacher R, Dahlberg J, Jansson C, Taylor JW,
706 Lemaux PG, Coleman-Derr D. 2018. Drought delays development of the sorghum
707 root microbiome and enriches for monoderm bacteria. *Proc Natl Acad Sci U S A*
708 201717308.

709 14. Santos-Medellín C, Edwards J, Liechty Z, Nguyen B, Sundaresan V. 2017. Drought
710 Stress Results in a Compartment-Specific Restructuring of the Rice Root-
711 Associated Microbiomes. *MBio* 8.

712 15. Koyama A, Steinweg JM, Haddix ML, Dukes JS, Wallenstein MD. 2018. Soil
713 bacterial community responses to altered precipitation and temperature regimes in
714 an old field grassland are mediated by plants. *FEMS Microbiol Ecol* 94.

715 16. Simmons T, Styer AB, Pierroz G, Gonçalves AP, Pasricha R, Hazra AB, Bubner P,
716 Coleman-Derr D. 2020. Drought Drives Spatial Variation in the Millet Root
717 Microbiome. *Front Plant Sci* 11:599.

718 17. Baraniya D, Nannipieri P, Kublik S, Vestergaard G, Schloter M, Schöler A. 2018.
719 The Impact of the Diurnal Cycle on the Microbial Transcriptome in the Rhizosphere
720 of Barley. *Microb Ecol* 75:830–833.

721 18. Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM. 2013.
722 Root exudation of phytochemicals in *Arabidopsis* follows specific patterns that are
723 developmentally programmed and correlate with soil microbial functions. *PLoS One*
724 8:e55731.

725 19. Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, Shi S, Cho H, Karaoz U,
726 Loqué D, Bowen BP, Firestone MK, Northen TR, Brodie EL. 2018. Dynamic root
727 exudate chemistry and microbial substrate preferences drive patterns in
728 rhizosphere microbial community assembly. *Nat Microbiol* 3:470–480.

729 20. Wallace JG, Kremling KA, Kovar LL, Buckler ES. 2018. Quantitative Genetics of the
730 Maize Leaf Microbiome. *Phytobiomes Journal* 2:208–224.

731 21. Badri DV, Chaparro JM, Zhang R, Shen Q, Vivanco JM. 2013. Application of natural
732 blends of phytochemicals derived from the root exudates of *Arabidopsis* to the soil
733 reveal that phenolic-related compounds predominantly modulate the soil
734 microbiome. *J Biol Chem* 288:4502–4512.

735 22. Zhang N, Wang D, Liu Y, Li S, Shen Q, Zhang R. 2014. Effects of different plant

736 root exudates and their organic acid components on chemotaxis, biofilm formation
737 and colonization by beneficial rhizosphere-associated bacterial strains. *Plant Soil*
738 374:689–700.

739 23. Huang AC, Jiang T, Liu Y-X, Bai Y-C, Reed J, Qu B, Goossens A, Nützmann H-W,
740 Bai Y, Osbourn A. 2019. A specialized metabolic network selectively modulates
741 *Arabidopsis* root microbiota. *Science* 364.

742 24. Cai T, Cai W, Zhang J, Zheng H, Tsou AM, Xiao L, Zhong Z, Zhu J. 2009. Host
743 legume-exuded antimetabolites optimize the symbiotic rhizosphere. *Mol Microbiol*
744 73:507–517.

745 25. Bressan M, Roncato M-A, Bellvert F, Comte G, Haichar FZ, Achouak W, Berge O.
746 2009. Exogenous glucosinolate produced by *Arabidopsis thaliana* has an impact on
747 microbes in the rhizosphere and plant roots. *ISME J* 3:1243–1257.

748 26. Iven T, König S, Singh S, Braus-Stromeyer SA, Bischoff M, Tietze LF, Braus GH,
749 Lipka V, Feussner I, Dröge-Laser W. 2012. Transcriptional activation and
750 production of tryptophan-derived secondary metabolites in *arabidopsis* roots
751 contributes to the defense against the fungal vascular pathogen *Verticillium*
752 *longisporum*. *Mol Plant* 5:1389–1402.

753 27. Wang Y, Bouwmeester K, van de Mortel JE, Shan W, Govers F. 2013. A novel
754 *Arabidopsis*-oomycete pathosystem: differential interactions with *Phytophthora*
755 *capsici* reveal a role for camalexin, indole glucosinolates and salicylic acid in
756 defence. *Plant Cell Environ* 36:1192–1203.

757 28. Wang Z, Zhang J, Wu F, Zhou X. 2018. Changes in rhizosphere microbial
758 communities in potted cucumber seedlings treated with syringic acid. PLoS One
759 13:e0200007.

760 29. Hu L, Robert CAM, Cadot S, Zhang X, Ye M, Li B, Manzo D, Chervet N, Steinger T,
761 van der Heijden MGA, Schlaeppi K, Erb M. 2018. Root exudate metabolites drive
762 plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota.
763 Nat Commun 9:2738.

764 30. Xu L, Coleman-Derr D. 2019. Causes and consequences of a conserved bacterial
765 root microbiome response to drought stress. Curr Opin Microbiol 49:1–6.

766 31. Caddell DF, Deng S, Coleman-Derr D. 2019. Role of the Plant Root Microbiome in
767 Abiotic Stress Tolerance, p. 273–311. *In* Verma, SK, White, Jr, Francis, J (eds.),
768 Seed Endophytes: Biology and Biotechnology. Springer International Publishing,
769 Cham.

770 32. Bostock RM, Pye MF, Roubtsova TV. 2014. Predisposition in plant disease:
771 exploiting the nexus in abiotic and biotic stress perception and response. Annu Rev
772 Phytopathol 52:517–549.

773 33. Yasuda M, Ishikawa A, Jikumaru Y, Seki M, Umezawa T, Asami T, Maruyama-
774 Nakashita A, Kudo T, Shinozaki K, Yoshida S, Nakashita H. 2008. Antagonistic
775 interaction between systemic acquired resistance and the abscisic acid-mediated
776 abiotic stress response in *Arabidopsis*. Plant Cell 20:1678–1692.

777 34. Varoquaux N, Cole B, Gao C, Pierroz G, Baker CR, Patel D, Madera M, Jeffers T,

778 Hollingsworth J, Sievert J, Yoshinaga Y, Owiti JA, Singan VR, DeGraaf S, Xu L,

779 Blow MJ, Harrison MJ, Visel A, Jansson C, Niyogi KK, Hutmacher R, Coleman-Derr

780 D, O'Malley RC, Taylor JW, Dahlberg J, Vogel JP, Lemaux PG, Purdom E. 2019.

781 Transcriptomic analysis of field-droughted sorghum from seedling to maturity

782 reveals biotic and metabolic responses. *Proc Natl Acad Sci U S A*.

783 35. Sheflin AM, Chiniquy D, Yuan C, Goren E, Kumar I, Braud M, Brutnell T, Eveland

784 AL, Tringe S, Liu P, Kresovich S, Marsh EL, Schachtman DP, Prenni JE. 2019.

785 Metabolomics of sorghum roots during nitrogen stress reveals compromised

786 metabolic capacity for salicylic acid biosynthesis. *Plant Direct* 3:e00122.

787 36. Castrillo G, Teixeira PJPL, Paredes SH, Law TF, de Lorenzo L, Feltcher ME, Finkel

788 OM, Breakfield NW, Mieczkowski P, Jones CD, Paz-Ares J, Dangl JL. 2017. Root

789 microbiota drive direct integration of phosphate stress and immunity. *Nature*

790 543:513–518.

791 37. Hein JW, Wolfe GV, Blee KA. 2008. Comparison of rhizosphere bacterial

792 communities in *Arabidopsis thaliana* mutants for systemic acquired resistance.

793 *Microb Ecol* 55:333–343.

794 38. Carvalhais LC, Dennis PG, Badri DV, Kidd BN, Vivanco JM, Schenk PM. 2015.

795 Linking Jasmonic Acid Signaling, Root Exudates, and Rhizosphere Microbiomes.

796 *Mol Plant Microbe Interact* 28:1049–1058.

797 39. Liu H, Carvalhais LC, Schenk PM, Dennis PG. 2017. Effects of jasmonic acid

798 signalling on the wheat microbiome differ between body sites. *Sci Rep* 7:41766.

799 40. Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M,
800 Malfatti S, Glavina del Rio T, Jones CD, Tringe SG, Dangl JL. 2015. PLANT
801 MICROBIOME. Salicylic acid modulates colonization of the root microbiome by
802 specific bacterial taxa. *Science* 349:860–864.

803 41. Návarová H, Bernsdorff F, Döring A-C, Zeier J. 2012. Pipecolic acid, an
804 endogenous mediator of defense amplification and priming, is a critical regulator of
805 inducible plant immunity. *Plant Cell* 24:5123–5141.

806 42. Bernsdorff F, Döring A-C, Gruner K, Schuck S, Bräutigam A, Zeier J. 2016.
807 Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense
808 Priming via Salicylic Acid-Dependent and -Independent Pathways. *Plant Cell*
809 28:102–129.

810 43. Bowen BP, Northen TR. 2010. Dealing with the unknown: metabolomics and
811 metabolite atlases. *J Am Soc Mass Spectrom* 21:1471–1476.

812 44. Câmara B, Bielecki P, Kaminski F, dos Santos VM, Plumeier I, Nikodem P, Pieper
813 DH. 2007. A gene cluster involved in degradation of substituted salicylates via ortho
814 cleavage in *Pseudomonas* sp. strain MT1 encodes enzymes specifically adapted for
815 transformation of 4-methylcatechol and 3-methylmuconate. *J Bacteriol* 189:1664–
816 1674.

817 45. Zhang K, Halitschke R, Yin C, Liu C-J, Gan S-S. 2013. Salicylic acid 3-hydroxylase
818 regulates *Arabidopsis* leaf longevity by mediating salicylic acid catabolism. *Proc
819 Natl Acad Sci U S A* 110:14807–14812.

820 46. Philip-Hollingsworth\$ S, Hollingsworth RI, Dazzo ST FB. 1991. N-Acetylglutamic
821 Acid: An Extracellular nod Signal of *Rhizobium trifolii* ANUS43 That Induces Root
822 Hair Branching and Nodule-like Primordia in White Clover Roots. *Plant Perspect*
823 16854:16858.

824 47. Caspersen S, Sundin P, Munro M, Aðalsteinsson S, Hooker JE, Jensén P. 1999.
825 Interactive effects of lettuce (*Lactuca sativa* L.), irradiance, and ferulic acid in
826 axenic, hydroponic culture. *Plant Soil* 210:115–126.

827 48. Sakamoto A, Murata N. 2000. Genetic engineering of glycinebetaine synthesis in
828 plants: current status and implications for enhancement of stress tolerance. *J Exp*
829 *Bot* 51:81–88.

830 49. Moulin M, Deleu C, Larher F, Bouchereau A. 2006. The lysine-ketoglutarate
831 reductase-saccharopine dehydrogenase is involved in the osmo-induced synthesis
832 of pipecolic acid in rapeseed leaf tissues. *Plant Physiol Biochem* 44:474–482.

833 50. Goas G, Goas M, Larher F. 1976. Formation de l'acide pipécolique chez *Triglochin*
834 *maritima*. *Can J Bot* 54:1221–1227.

835 51. Bown AW, Shelp BJ. 2016. Plant GABA: Not Just a Metabolite. *Trends Plant Sci*
836 21:811–813.

837 52. Nourimand M, Todd CD. 2017. Allantoin contributes to the stress response in
838 cadmium-treated *Arabidopsis* roots. *Plant Physiol Biochem* 119:103–109.

839 53. Irani S, Todd CD. 2018. Exogenous allantoin increases *Arabidopsis* seedlings
840 tolerance to NaCl stress and regulates expression of oxidative stress response

841 genes. *J Plant Physiol* 221:43–50.

842 54. Khan N, Bano A, Babar MA. 2019. Metabolic and physiological changes induced by
843 plant growth regulators and plant growth promoting rhizobacteria and their impact
844 on drought tolerance in *Cicer arietinum* L. *PLoS One* 14:e0213040.

845 55. Oney-Birol S. 2019. Exogenous L-Carnitine Promotes Plant Growth and Cell
846 Division by Mitigating Genotoxic Damage of Salt Stress. *Sci Rep* 9:17229.

847 56. Ranieri A, Bernardi R, Lanese P, Soldatini GF. 1989. Changes in free amino acid
848 content and protein pattern of maize seedlings under water stress. *Environ Exp Bot*
849 29:351–357.

850 57. Rai VK. 2002. Role of amino acids in plant responses to stresses. *Biol Plant*.

851 58. Fang Y, Xiong L. 2015. General mechanisms of drought response and their
852 application in drought resistance improvement in plants. *Cell Mol Life Sci* 72:673–
853 689.

854 59. Gargallo-Garriga A, Preece C, Sardans J, Oravec M, Urban O, Peñuelas J. 2018.
855 Root exudate metabolomes change under drought and show limited capacity for
856 recovery. *Sci Rep* 8:12696.

857 60. Fàbregas N, Fernie AR. 2019. The metabolic response to drought. *J Exp Bot*
858 70:1077–1085.

859 61. Conn VM, Walker AR, Franco CMM. 2008. Endophytic actinobacteria induce
860 defense pathways in *Arabidopsis thaliana*. *Mol Plant Microbe Interact* 21:208–218.

861 62. Korenblum E, Dong Y, Szymanski J, Panda S, Jozwiak A, Massalha H, Meir S,
862 Rogachev I, Aharoni A. 2020. Rhizosphere microbiome mediates systemic root
863 metabolite exudation by root-to-root signaling. *Proc Natl Acad Sci U S A* 117:3874–
864 3883.

865 63. Wang C, Liu R, Lim G-H, de Lorenzo L, Yu K, Zhang K, Hunt AG, Kachroo A,
866 Kachroo P. 2018. Pipecolic acid confers systemic immunity by regulating free
867 radicals. *Sci Adv* 4:eaar4509.

868 64. Tsuji W, Inanaga S, Araki H, Morita S, An P, Sonobe K. 2005. Development and
869 Distribution of Root System in Two GrainSorghum Cultivars Originated from Sudan
870 under Drought Stress. *Plant Prod Sci* 8:553–562.

871 65. Sebastian J, Yee M-C, Goudinho Viana W, Rellán-Álvarez R, Feldman M, Priest
872 HD, Trontin C, Lee T, Jiang H, Baxter I, Mockler TC, Hochholdinger F, Brutnell TP,
873 Dinneny JR. 2016. Grasses suppress shoot-borne roots to conserve water during
874 drought. *Proc Natl Acad Sci U S A* 113:8861–8866.

875 66. Wang Y, Schuck S, Wu J, Yang P, Döring A-C, Zeier J, Tsuda K. 2018. A MPK3/6-
876 WRKY33-ALD1-Pipecolic Acid Regulatory Loop Contributes to Systemic Acquired
877 Resistance. *Plant Cell* 30:2480–2494.

878 67. Hartmann M, Zeier J. 2019. N-hydroxypipecolic acid and salicylic acid: a metabolic
879 duo for systemic acquired resistance. *Curr Opin Plant Biol* 50:44–57.

880 68. Hartmann M, Zeier T, Bernsdorff F, Reichel-Deland V, Kim D, Hohmann M,
881 Scholten N, Schuck S, Bräutigam A, Hözel T, Ganter C, Zeier J. 2018. Flavin

882 Monoxygenase-Generated N-Hydroxypipelicolic Acid Is a Critical Element of Plant
883 Systemic Immunity. *Cell* 173:456–469.e16.

884 69. Cao H, Bowling SA, Gordon AS, Dong X. 1994. Characterization of an Arabidopsis
885 Mutant That Is Nonresponsive to Inducers of Systemic Acquired Resistance. *Plant*
886 *Cell* 6:1583–1592.

887 70. Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT. 2009. Priming in
888 systemic plant immunity. *Science* 324:89–91.

889 71. Wang C, El-Shetehy M, Shine MB, Yu K, Navarre D, Wendehenne D, Kachroo A,
890 Kachroo P. 2014. Free radicals mediate systemic acquired resistance. *Cell Rep*
891 7:348–355.

892 72. Henry A, Doucette W, Norton J, Bugbee B. 2007. Changes in crested wheatgrass
893 root exudation caused by flood, drought, and nutrient stress. *J Environ Qual*
894 36:904–912.

895 73. Preece C, Farré-Armengol G, Llusià J, Peñuelas J. 2018. Thirsty tree roots exude
896 more carbon. *Tree Physiol* 38:690–695.

897 74. You J, Zhang Y, Liu A, Li D, Wang X, Dossa K, Zhou R, Yu J, Zhang Y, Wang L,
898 Zhang X. 2019. Transcriptomic and metabolomic profiling of drought-tolerant and
899 susceptible sesame genotypes in response to drought stress. *BMC Plant Biol*
900 19:267.

901 75. Holmes EC, Chen Y-C, Sattely E, Mudgett MB. 2019. Conservation of N-hydroxy-
902 pipelicolic acid-mediated systemic acquired resistance in crop plants. *bioRxiv*.

903 76. He Q, Zhao S, Ma Q, Zhang Y, Huang L, Li G, Hao L. 2014. Endogenous Salicylic
904 Acid Levels and Signaling Positively Regulate Arabidopsis Response to
905 Polyethylene Glycol-Simulated Drought Stress. *J Plant Growth Regul* 33:871–880.

906 77. La VH, Lee B-R, Islam MT, Park S-H, Jung H-I, Bae D-W, Kim T-H. 2019.
907 Characterization of salicylic acid-mediated modulation of the drought stress
908 responses: Reactive oxygen species, proline, and redox state in *Brassica napus*.
909 *Environ Exp Bot* 157:1–10.

910 78. Ding Y, Dommel M, Mou Z. 2016. Abscisic acid promotes proteasome-mediated
911 degradation of the transcription coactivator NPR 1 in *Arabidopsis thaliana*. *Plant J*
912 86:20–34.

913 79. Schnake A, Hartmann M, Schreiber S, Malik J, Brahmann L, Yildiz I, von Dahlen J,
914 Rose LE, Schaffrath U, Zeier J. 2020. Inducible biosynthesis and immune function
915 of the systemic acquired resistance inducer N-hydroxypipelicolic acid in
916 monocotyledonous and dicotyledonous plants. *J Exp Bot*.

917 80. Gouesbet G, Blanco C, Hamelin J, Bernard T. 1992. Osmotic adjustment in
918 *Brevibacterium ammoniagenes*: pipelicolic acid accumulation at elevated
919 osmolalities. *J Gen Microbiol* 138:959–965.

920 81. Gouesbet G, Jebbar M, Talibart R, Bernard T, Blanco C. 1994. Pipelicolic acid is an
921 osmoprotectant for *Escherichia coli* taken up by the general osmoprotectors ProU and
922 ProP. *Microbiology* 140 (Pt 9):2415–2422.

923 82. Gouffi K, Bernard T, Blanco C. 2000. Osmoprotection by pipelicolic acid in

924 *Sinorhizobium meliloti*: specific effects of D and L isomers. *Appl Environ Microbiol*
925 66:2358–2364.

926 83. Neshich IAP, Kiyota E, Arruda P. 2013. Genome-wide analysis of lysine catabolism
927 in bacteria reveals new connections with osmotic stress resistance. *ISME J* 7:2400–
928 2410.

929 84. Gao C, Montoya L, Xu L, Madera M, Hollingsworth J, Purdom E, Singan V, Vogel J,
930 Hutmacher RB, Dahlberg JA, Coleman-Derr D, Lemaux PG, Taylor JW. 2020.
931 Fungal community assembly in drought-stressed sorghum shows stochasticity,
932 selection, and universal ecological dynamics. *Nat Commun* 11:34.

933 85. Simmons T, Caddell DF, Deng S, Coleman-Derr D. 2018. Exploring the Root
934 Microbiome: Extracting Bacterial Community Data from the Soil, Rhizosphere, and
935 Root Endosphere. *J Vis Exp*.

936 86. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander
937 H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A,
938 Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK,
939 Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C,
940 Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson
941 DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C,
942 Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR,
943 Keim P, Kelley ST, Knights D, Koester I, Kosciolak T, Kreps J, Langille MGI, Lee J,
944 Ley R, Liu Y-X, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald
945 D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-

946 Molina JA, Nothias LF, Orchania SB, Pearson T, Peoples SL, Petras D, Preuss
947 ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS 2nd, Rosenthal P, Segata
948 N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR,
949 Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ,
950 Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang
951 M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y,
952 Zhu Q, Knight R, Caporaso JG. 2019. Reproducible, interactive, scalable and
953 extensible microbiome data science using QIIME 2. *Nat Biotechnol* 37:852–857.

954 87. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016.
955 DADA2: High-resolution sample inference from Illumina amplicon data. *Nat
956 Methods* 13:581–583.

957 88. Development Core Team RR. 2011. R: A language and environment for statistical
958 computing.

959 89. McMurdie PJ, Holmes S. 2013. phyloseq: an R package for reproducible interactive
960 analysis and graphics of microbiome census data. *PLoS One* 8:e61217.

961 90. Dixon P. 2003. VEGAN, a package of R functions for community ecology. *J Veg Sci*
962 14:927–930.

963 91. Yao Y, Sun T, Wang T, Ruebel O, Northen T, Bowen BP. 2015. Analysis of
964 Metabolomics Datasets with High-Performance Computing and Metabolite Atlases.
965 *Metabolites* 5:431–442.

966 92. Smith CA, O'Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE,

967 Abagyan R, Siuzdak G. 2005. METLIN: a metabolite mass spectral database. Ther
968 Drug Monit 27:747–751.

969 93. Oliveros JC. 2016. Venny. An interactive tool for comparing lists with Venn's
970 diagrams. 2007--2015.

971 94. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, Wishart DS, Xia J. 2018.
972 MetaboAnalyst 4.0: towards more transparent and integrative metabolomics
973 analysis. Nucleic Acids Res 46:W486–W494.

974 95. Chong J, Wishart DS, Xia J. 2019. Using MetaboAnalyst 4.0 for Comprehensive
975 and Integrative Metabolomics Data Analysis. Curr Protoc Bioinformatics 68:e86.

976 96. Mishina TE, Zeier J. 2006. The Arabidopsis flavin-dependent monooxygenase
977 FMO1 is an essential component of biologically induced systemic acquired
978 resistance. Plant Physiol 141:1666–1675.

979 97. Cao H, Glazebrook J, Clarke JD, Volko S, Dong X. 1997. The Arabidopsis NPR1
980 gene that controls systemic acquired resistance encodes a novel protein containing
981 ankyrin repeats. Cell 88:57–63.

982 98. Torres MA, Dangl JL, Jones JDG. 2002. Arabidopsis gp91phox homologues
983 AtrbohD and AtrbohF are required for accumulation of reactive oxygen
984 intermediates in the plant defense response. Proc Natl Acad Sci U S A 99:517–522.

985 99. Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R,
986 Dreher K, Alexander DL, Garcia-Hernandez M, Karthikeyan AS, Lee CH, Nelson
987 WD, Ploetz L, Singh S, Wensel A, Huala E. 2012. The Arabidopsis Information

988 Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res
989 40:D1202–10.

990 100. Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years
991 of image analysis. Nat Methods 9:671–675.

992 **Tables**

993 **Table 1. Detailed information on significantly changed metabolites between drought and**
 994 **watered roots**

Proposed metabolite	Molecular formula	Measured <i>m/z</i>	Measured ppm error	RT peak (minutes)	RT error	MSMS quality score*	Ion mode	Log2 (FC)	p-value (root)	q-value (root)	Significant compartment(s)**
methionine	C5H11NO2S	148.044	1.748	10.6	0.1	1	negative	3.21	0.001	0.016	RZS
proline	C5H9NO2	116.071	2.444	11.1	0.1	1	positive	2.82	0.001	0.016	RZS
betaine	C5H12NO2+	118.087	2.456	7.8	0.2	1	positive	2.48	0.000	0.016	RZS
carnitine	C7H16NO3+	162.113	0.503	13.2	0.2	1	positive	2.43	0.012	0.038	RZS
N-trimethyllysine	C9H21N2O2+	189.160	0.178	16.8	0.1	1	positive	5.49	0.002	0.020	RZ
3-hydroxykynurenone	C10H12N2O4	225.087	0.497	11.2	0.1	0	positive	4.54	0.012	0.038	RZ
lysine	C6H14N2O2	147.113	0.569	17.0	0.1	1	positive	4.24	0.001	0.016	RZ
taurine	C2H7NO3S	126.022	1.176	12.3	0.0	0	positive	3.94	0.012	0.038	RZ
arginine	C6H14N4O2	175.119	0.691	17.0	0.1	1	positive	3.81	0.002	0.018	RZ
pipecolic acid	C6H11NO2	130.086	0.888	11.0	0.0	1	positive	3.39	0.001	0.016	RZ
allothreonine// homoserine// threonine	C4H9NO3	120.066	1.912	13.7	0.1	0	positive	3.25	0.003	0.021	RZ
valine	C5H11NO2	116.072	1.809	11.2	0.0	1	negative	3.15	0.003	0.020	RZ
1-aminocyclopropane-1-carboxylic acid	C4H7NO2	102.055	3.955	13.7	0.6	1	positive	3.14	0.003	0.020	RZ
2-amino-2-methylpropanoic acid	C4H9NO2	104.071	4.409	12.5	0.0	1	positive	2.98	0.004	0.025	RZ
asparagine	C4H8N2O3	133.061	0.814	14.5	0.1	1	positive	2.91	0.006	0.027	RZ
cis-4-hydroxy-proline//trans-4-hydroxyproline	C5H9NO3	130.051	0.823	13.4	0.3	0	negative	2.90	0.004	0.022	RZ
guanidinoacetic acid	C3H7N3O2	118.061	2.161	14.0	0.1	0	positive	2.43	0.003	0.020	RZ
deoxycarnitine	C7H16NO2+	146.118	0.662	13.3	0.2	1	positive	2.39	0.024	0.061	RZ
serotonin	C10H12N2O	177.102	0.870	8.7	0.1	0	positive	3.47	0.042	0.087	RO
histidinol	C6H11N3O	142.098	0.107	12.9	0.2	0	positive	2.95	0.014	0.044	RO
trans-4-hydroxyproline	C5H9NO3	132.066	0.768	13.4	0.1	0	positive	2.83	0.004	0.022	RO
o-acetyl-serine	C5H9NO4	148.060	0.072	11.4	0.1	-1	positive	2.83	0.016	0.045	RO
4-methoxyphenylacetic acid	C9H10O3	184.097	0.912	1.1	0.0	0	positive	2.79	0.005	0.026	RO
riboflavin	C17H20N4O6	377.146	1.147	4.6	0.0	0	positive	2.67	0.004	0.025	RO
hippuric acid	C9H9NO3	180.066	0.924	4.6	0.3	0	positive	2.41	0.009	0.034	RO
acetylcholine	C7H16NO2+	146.118	0.496	2.1	0.1	1	positive	2.38	0.010	0.036	RO
pyridoxamine	C8H12N2O2	169.097	0.267	10.2	0.0	0	positive	2.12	0.001	0.016	RO
abscisic acid	C15H20O4	247.133	1.332	1.1	0.0	0	positive	2.05	0.006	0.026	RO
2,3-dihydroxybenzoic acid// 2,5-dihydroxybenzoic acid// 3,4-dihydroxybenzoic acid	C7H6O4	153.020	1.467	4.0	0.1	0	negative	-2.11	0.000	0.012	RO
xylitol	C5H12O5	175.058	4.087	5.1	0.0	0	positive	-3.16	0.001	0.016	RO
4-methylcatechol	C7H8O2	123.045	1.158	4.3	0.4	0	negative	-3.73	0.001	0.016	RO

*MSMS quality scores: 1 (MSMS matches ref. std.); 0.5 (possible match); 0 (no MSMS collected or no appropriate ref available); -1 (MSMS poor match to ref. std.)

**Compartment(s) with significant Log2 (fold change): Root, rhizosphere, and soil (RZS); root and rhizosphere (RZ); root only (RO)

995

996

997 Table 2. Detailed information on significantly changed metabolites 24 hours after
 998 rewatering

Proposed metabolite	Molecular formula	Measured			MSMS		Ion mode	Log2 (FC)	p-value (root)	q-value (root)	Significant compartment
		Measured <i>m/z</i>	ppm error	RT peak (minutes)	RT error	quality score*					
4-imidazoleacetic acid	C5H6N2O2	127.050	0.936	13.9	0.2	1	positive	-2.44	0.049	0.296	rhizosphere
1-aminocyclopropane-1-carboxylic acid	C4H7NO2	102.055	3.955	13.7	0.6	1	positive	-2.44	0.047	0.296	rhizosphere
pipecolic acid	C6H11NO2	130.086	0.888	11.0	0.0	1	positive	-2.45	0.048	0.296	rhizosphere
carnitine	C7H16NO3+	162.113	0.503	13.2	0.2	1	positive	-2.49	0.017	0.231	rhizosphere
melatonin	C13H16N2O2	233.128	1.296	1.2	0.0	0	positive	-2.89	0.011	0.213	rhizosphere
3-hydroxyanthranilic acid	C7H7NO3	152.036	1.229	1.8	0.1	0	negative	-3.11	0.003	0.135	rhizosphere
syringic acid	C9H10O5	197.046	0.404	1.6	0.1	1	negative	-3.42	0.040	0.296	rhizosphere
cytidine 2',3'-cyclic monophosphoric acid	C9H12N3O7P	306.049	1.863	14.0	0.2	0	positive	-3.44	0.047	0.296	rhizosphere
abscisic acid	C15H20O4	247.133	1.332	1.1	0.0	0	positive	-3.56	0.002	0.135	rhizosphere
galactitol/mannitol	C6H14O6	181.072	1.680	9.7	0.1	1	negative	-3.58	0.026	0.263	rhizosphere
4-methylcatechol	C7H8O2	123.045	1.158	4.3	0.4	0	negative	-4.45	0.005	0.169	rhizosphere
2,3-dihydroxybenzoic acid//2,5-dihydroxybenzoic acid//3,4-dihydroxybenzoic acid	C7H6O4	153.020	1.467	4.0	0.1	0	negative	-4.45	0.040	0.296	rhizosphere
erythritol	C4H10O4	121.051	0.626	3.2	0.0	1	negative	-5.04	0.024	0.252	rhizosphere
arabitol	C5H12O5	151.061	1.358	5.6	0.2	1	negative	-5.29	0.003	0.135	rhizosphere
sn-glycero-3-phosphocholine	C8H21NO6P+	258.110	0.111	14.8	0.2	1	positive	-5.66	0.017	0.231	rhizosphere
guanosine 3',5'-cyclic monophosphoric acid	C10H12N5O7P	346.055	0.947	13.9	0.2	0	positive	-5.73	0.000	0.019	rhizosphere
ferulic acid	C10H10O4	193.051	0.614	1.3	0.1	1	negative	-5.75	0.008	0.181	rhizosphere
lactose//trehalose	C12H22O11	401.131	1.143	14.4	0.1	1	negative	-3.07	0.002	0.340	soil

*MSMS quality scores: 1 (MSMS matches ref. std.); 0.5 (possible match); 0 (no MSMS collected or no appropriate ref available); -1 (MSMS poor match to ref. std.)

999

1000

1001 **Figure captions**

1002

1003 **Figure 1. Sorghum root-associated microbiome responds to drought and**
1004 **rewatering.** **A** Representative image of sorghum plants following eight weeks of a
1005 preflowering drought (TP8). **B** Phylum level relative abundances of sorghum root,
1006 rhizosphere, and soil microbiomes at TP8 and 24 hours after rewatering (24h DW) in
1007 well-watered (W) or drought (D) plots. **C** Alpha diversity (Shannon) of sorghum root,
1008 rhizosphere, and soil. **D** Beta diversity (PCoA) of sorghum root, rhizosphere, and soil
1009 microbiomes at TP8 and 24 hours after rewatering in well-watered control or drought
1010 plots. **E-J** Relative abundances of individual lineages that displayed a significant
1011 difference in abundance between watering treatments (ANOVA, Tukey-HSD, P<0.05).

1012

1013 **Figure 2. Metabolic profiles during drought differ by compartment.** **A** Heatmap of
1014 relative peak heights of all observed metabolites (n=168) across root, rhizosphere
1015 (rhizo), and soil compartments and watered (W) and drought (D) treatments. **B** Principal
1016 component analysis (PCA) plot of root, rhizosphere, and soil metabolites. **C**
1017 Proportional Venn diagram of drought enriched metabolites in root, rhizosphere, or soil
1018 (D/W Log₂ fold change >2, t-test p<0.05). **D-E** Heatmap of the subset of metabolites
1019 that were enriched or depleted in roots during drought, with the predicted identity of
1020 metabolites listed beside each row.

1021

1022 **Figure 3. Rewatering depletes rhizosphere metabolites following a prolonged**
1023 **drought.** **A** Heatmap of relative peak heights of all observed metabolites (n=168)

1024 across three compartments (root, rhizosphere (rhizo), and soil), three treatments
1025 (watered (W), drought (D), drought rewatered (DW), and two time points (time point 8
1026 (TP8) and 24 hours later (24h)). **B-C** Heatmap of the subset of metabolites that were
1027 depleted after rewetting (DW/D Log₂ fold change < -2, t-test p<0.05), with the
1028 predicted identity of metabolites listed beside each row. Note, all significant depletions
1029 were observed in the rhizosphere, except trehalose, which occurred in soil. **D** Principal
1030 component analysis (PCA) plot of root, rhizosphere, and soil metabolites.

1031

1032 **Figure 4. Pipelicolic acid abundance pattern mirrors drought markers.** **A** The top 10
1033 metabolites correlated with the drought marker betaine across all sample types,
1034 treatments, and time points. **B-D** Log₁₀ peak heights of individual metabolites. Each
1035 point represents an individual sample of root (green), rhizosphere (blue), or soil (yellow).
1036 Dashed lines represent the limit of detection for individual metabolites, based on the
1037 average log₁₀ peak heights of the sample blanks for root (red) or rhizosphere and soil
1038 (blue). **E** Heatmap of relative abundance of all metabolites and bacteria ASVs (grouped
1039 at the class level), clustered within the root, across treatments (watered (W), drought
1040 (D), drought rewatered (DW), and time points (time point 8 (TP8) and 24 hours later
1041 (24h)). **F** Zoom-in of Actinobacteria and closely clustering root metabolites, as
1042 highlighted in pink in figure 4e. Actinobacteria and the metabolites that are closely
1043 correlated with betaine (as in figure 4a) are in bold.

1044

1045 **Figure 5. Pipelicolic acid reduces root growth.** **A** Root lengths of sterilized sorghum
1046 seedlings after 7 days of growth in water containing 0, 0.1, or 1 mM pipelicolic acid (Pip).

1047 Different letters indicate a significant difference in root length (ANOVA, Tukey-HSD,
1048 p<0.05). This experiment was performed twice with similar results. **B** Two
1049 representative seedlings from each treatment were photographed at the time of
1050 measurement. **C** Root lengths of sterilized Arabidopsis seedlings after 10 days of
1051 growth in $\frac{1}{2}$ MS+ 1% sucrose agar media containing 0, 0.001, 0.01, 0.1, or 1 mM Pip.
1052 Different letters indicate a significant difference in root length (ANOVA, Tukey-HSD,
1053 p<0.05). Different colors represent plants from independent experiments (n=3). **D** One
1054 representative plate from 0 and 1 mM pipecolic acid treatments were photographed at
1055 the time of measurement.

1056

1057 **Figure 6. Pipecolic acid root growth reduction is SAR-independent. A** Root length
1058 of Arabidopsis Col-0 (WT) and Arabidopsis mutants grown on 1/2MS + 1% sucrose
1059 plates containing 0 or 1 mM Pip. Significance between treatments was evaluated by
1060 ANOVA with Tukey's HSD posthoc test (p<0.05). Different colors represent plants from
1061 independent experiments. **B** Simplified SAR pathway. Highlighted in red are the
1062 Arabidopsis mutants used to evaluate a potential interaction between SAR and Pip-
1063 mediated root growth suppression.