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ABSTRACT

Interactions between plants and their root-associated microbiome are important for
determining host fitness during periods of stress. During drought, monoderm bacteria
are more abundant in sorghum roots than in those of watered controls. Additionally, a
reversion from monoderm to diderm dominance occurs in drought-stressed roots one
week after rewatering. However, the mechanisms driving this rapid microbiome
composition shift is currently unknown. To understand if changes in host metabolism
are correlated with this shift, we employed 16S amplicon sequencing and metabolomics
of root, rhizosphere, and soil at the peak of a preflowering drought and 24 hours after
rewatering. The microbiomes of droughted roots, rhizospheres, and soils differed from
watered controls, and shifts in bacterial composition were observed in root and
rhizosphere 24 hours after rewatering, highlighting the rapid response of microbes to
the cessation of drought. Next, we performed metabolomic profiling to identify putative
drivers of this process. During drought, we observed a high abundance of abiotic stress
response factors, including antioxidants, osmolytes, amino acids, and plant hormones.
After rewatering, large shifts in metabolite abundances were observed in rhizosphere,
whereas shifts in root and soil were subtle. In addition, pipecolic acid, a well-
characterized systemic acquired resistance signalling compound, was enriched in roots
and rhizosphere during drought. We found that exogenous application of pipecolic acid
suppresses root growth via a systemic acquired resistance-independent mechanism.
Collectively, these data provide a comprehensive characterization of metabolite shifts
across three compartments during drought, and elucidate a potential role of pipecolic

acid in the sorghum drought response.


https://doi.org/10.1101/2020.11.08.373399
http://creativecommons.org/licenses/by-nc/4.0/

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.08.373399; this version posted November 9, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

IMPORTANCE

Plant-associated microbial communities shift in composition and contribute to host
fithess during drought. In particular, Actinobacteria are enriched in plant roots and
rhizosphere during drought. However, the mechanisms plants use to drive this shift are
poorly understood. Here we apply a combination of bacterial and metabolite profiling in
root, rhizosphere, and soil during drought and drought-recovery to investigate potential
contributions of host metabolism towards shifts in bacterial composition. Our results
demonstrate that drought alters metabolic profiles and that the response to rewatering
differs between compartments; we identify drought-responsive metabolites that are
highly correlated with Actinobacteria abundance. Furthermore, our study reports for the
first time that pipecolic acid is a drought-enriched metabolite in sorghum roots. We
demonstrate that exogenous application of pipecolic acid is able to provoke one of the
classic drought responses in roots, root growth suppression, and that this activity

functions independently from the systemic acquired resistance pathway.

INTRODUCTION

Drought is one of the most significant abiotic stresses impacting agricultural production
and threatens to become an even bigger concern due to climate change. Root-
associated microbial communities, commonly referred to as microbiomes, influence
plant responses to a wide-variety of environmental stresses including drought, and are
capable of promoting improved fitness (1). In order to engineer microbiomes capable of

enhancing plant growth and ameliorating stress, more research is needed to understand
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what signals plants use to simultaneously recruit beneficial microbes, while repelling
potential pathogens, from a broad pool of soil microbes. Taking advantage of advances
in high-throughput sequencing technologies, researchers are beginning to understand
the dynamic nature of the microbiome and its association with plant roots. For instance,
it is now known that microbiomes vary between environments (2—4), between species
(5-7), and even varieties of the same species (4, 8—10). Additionally, microbiomes are
dynamic and shift with developmental age, particularly as the plant transitions between
vegetative and reproductive growth (11-13). The root microbiome also responds to
abiotic stresses. For example, enrichment of monoderm bacteria, such as
Actinobacteria, during drought has been observed across diverse plant clades (6, 7, 13,
14). Notably, recent studies have demonstrated that plants mediate the shifts in
bacterial communities during drought (15), and Actinobacterial enrichment during
drought is dependent on signals produced by living roots (16). While monoderm
bacteria are dominant during drought, their enrichment is transitory, with diderm
bacteria reestablishing after rewatering (13). Despite their significance, the dynamics
regulating monoderm enrichment during drought and the subsequent shift to diderm

dominance after rewatering is not yet understood.

Plant-derived metabolites are predicted to drive some of the changes in the root
microbiome, as exudation patterns between photoperiods (17) and across development
(11, 18, 19) both track with changes in the microbiome. Additionally, a recent study of
the maize leaf microbiome across 300 maize genotypes observed associations between

specific microbial taxa and host metabolic functions (20). Different combinations of root
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93 exudates are sufficient to alter microbiome composition (21), likely by impacting
94  attraction and behavior of soil microbes (22, 23). Some root exudates can act as carbon
95 sources for microbes, while others simultaneously promote certain microbial taxa and
96 suppress others (24). Exudation of putative defense-related metabolites, including
97  organic acids, may also act to repel microbes (23, 25-29). Drought promotes changes
98 in exudate composition, stimulating the exudation of primary and secondary
99 metabolites, including osmoprotectants such as sugars and amino acids. These root
100 and rhizosphere metabolites are predicted to play a role in regulating microbiome
101 associations during drought (30, 31).
102
103  Abiotic stresses also contribute to the modulation of plant immunity through
104  modifications to the balance of many hormone pathways, including abscisic acid (ABA),
105  salicylic acid (SA), jasmonic acid (JA), and ethylene (32). For example, ABA, which is
106  strongly induced by drought, antagonizes systemic acquired resistance (SAR) both
107  upstream and downstream of SA (33). In sorghum (Sorghum bicolor (L.) Moench),
108  reduced expression of both SA and JA-responsive genes occurs during a prolonged
109 drought (34). This phenomenon has also been observed in response to other abiotic
110  stresses as well; sorghum has reduced SA biosynthesis during nitrogen-limiting
111 conditions (35), and Arabidopsis represses immune signalling genes in response to
112  phosphate stress (36). This modulation has major implications for plant-associated
113  microbiomes, as microbes that colonize plant roots must either evade or suppress host
114 immune responses in order to thrive; mutants deficient in immune activation (37) and

115  exogenous application of plant defense hormones JA (38, 39) and SA (40) are both
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116  sufficient to alter root microbiomes. Collectively, these studies support the hypothesis
117  that the plant immune system is in part responsible for regulating the establishment of
118  the root microbiome and is impacted by abiotic stress.

119

120  In this study, we utilize preflowering drought in field grown sorghum to determine if host
121 metabolism drives the enrichment of monoderm bacteria during drought, and whether
122  drought-driven changes in metabolites may play a role in the rapid transition from

123 monoderm to diderm dominance during re-acclimation to watering. Towards this goal,
124  we employed 16S amplicon sequencing and metabolomic profiling of root, rhizosphere,
125 and soil at the peak of drought and 24 hours after rewatering. We observe an

126  enrichment of monoderm bacteria during drought, consistent with previous reports (6, 7,
127  13). Furthermore, we determine that the microbiome responds rapidly to rewatering,
128  particularly in the rhizosphere. We also discover that drought alters the metabolite

129  profiles of sorghum root, rhizosphere, and soil. In particular, known drought-associated
130 metabolites such as betaine, 4-aminobutanoic acid (GABA), and amino acids including
131  proline are enriched during drought. Notably, the abundance of a large number of

132 rhizosphere metabolites are rapidly depleted by rewatering following drought, whereas
133 few metabolites shift abundance in the root. In addition to known drought-associated
134  metabolites, we report the detection of pipecolic acid (Pip), a lysine catabolite that is an
135 essential component of SAR (41, 42), as a drought-enriched metabolite in sorghum.
136  Here, we demonstrate that exogenous application of Pip suppresses plant root growth,
137  and that this activity functions independently from the established SAR pathway.

138
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139 RESULTS

140 The sorghum root-associated microbiome is influenced by drought and responds
141 rapidly to rewatering

142  To examine the effect of a prolonged drought on the root microbiome of sorghum, a field
143  experiment was performed at the University of California’s Agriculture and Natural (UC-
144  ANR) Resources Kearney Agricultural Research and Extension (KARE) Center, in

145  which sorghum plants were subjected to a prolonged preflowering drought, where no
146  water was applied between planting and the onset of flowering (TP8), or regularly

147  irrigated throughout the experiment (figure 1a). We performed 16S rRNA community
148  profiling of root, rhizosphere, and soil using lllumina MiSeq, targeting the V3-V4 variable
149  regions (figure 1b-j). In agreement with a previous study of the sorghum drought

150  microbiome, which was performed at the same location (13), alpha diversity significantly
151  differed between sample types (Shannon, F=82.19, P=1.36x10""3), with lower diversity
152  in the root, as compared with rhizosphere and soil, and reduced diversity in droughted
153  roots compared with watered roots (ANOVA, Tukey-HSD, P<0.001) (figure 1c). Beta
154  diversity was assessed through principal coordinates analysis (PCoA) using Bray—Curtis
155  dissimilarities. The primary axis distinguished samples foremost by compartment (root,
156  rhizosphere, or soil), and the second axis by watering regime (droughted or well-

157  watered) (figure 1d), suggesting that both compartment and drought were major driving
158  factors in shaping the microbiome. Pairwise permutational multivariate analysis of

159  variance (PERMANOVA) was performed for each compartment, treatment, and the

160 interaction between compartment and treatment, and all were significantly different

161 (g<0.05) (figure 1d).
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162

163  Similar to previous studies of root microbiomes, we observed a significant enrichment of
164  monoderm bacteria during drought, including taxa belonging to the phylum

165  Actinobacteria in root and rhizosphere, and Firmicutes in the rhizosphere (ANOVA,

166  Tukey-HSD, P<0.05) (figure 1b,e-f). Likewise, diderm lineages were depleted during
167  drought, including Proteobacteria in roots and rhizosphere, Bacteroidetes in roots, and
168  Gemmatimonadetes in the rhizosphere (ANOVA, Tukey-HSD, P<0.05) (figure 1b,g-i).
169  These results suggest that the sorghum root-associated microbiome was responsive to
170  drought, in corroboration with past studies.

171
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174  Figure 1. Sorghum root-associated microbiome responds to drought and

175  rewatering. A Representative image of sorghum plants following eight weeks of a

176  preflowering drought (TP8). B Phylum level relative abundances of sorghum root,

177  rhizosphere, and soil microbiomes at TP8 and 24 hours after rewatering (24h DW) in
178  well-watered (W) or drought (D) plots. C Alpha diversity (Shannon) of sorghum root,
179  rhizosphere, and soil. D Beta diversity (PCoA) of sorghum root, rhizosphere, and soil
180  microbiomes at TP8 and 24 hours after rewatering in well-watered control or drought
181  plots. E-J Relative abundances of individual lineages that displayed a significant

182  difference in abundance between watering treatments (ANOVA, Tukey-HSD, P<0.05).
183

184  Following drought, the sorghum root microbiome responds dramatically to rewatering,
185  with a transition from monoderm back to diderm dominance after a one week recovery
186  period (13). To better understand the early dynamics of this response to rewatering, we
187  watered the droughted sorghum plots after sampling at TP8, and another sampling was
188  performed 24 hours later. Notably, no significant shifts in relative abundance of root
189  phyla were observed (figure 1b). However, a depletion in Actinobacteria and an

190 increase in Gemmatimonadetes occurred in the rhizosphere (ANOVA, Tukey-HSD,

191 P<0.05) (figure 1b,e,i), consistent with monoderm to diderm transitions previously

192  observed after one week of drought recovery (13). Based on levels of beta diversity, the
193  rewatered rhizosphere microbiome appeared more similar to soil, rather than

194  rhizosphere from control samples (figure 1d). These results suggest that the

195  rhizosphere environment provokes a more rapid return to diderm dominance than the

196  root upon rewatering.
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197

198  Drought alters the metabolite profiles of sorghum root, rhizosphere, and soil

199  Recently, substrate utilization was determined to drive microbe community assembly in
200 the rhizosphere across developmental age in another member of the grass lineage,

201  Avena barbata (19). To determine if differences in metabolic signals contribute to

202  bacterial community assemblage during drought in field grown sorghum, we performed
203 an untargeted liquid chromatography-mass spectrometry based metabolomic profiling of
204  root, rhizosphere, and soil, using the same samples as bacterial profiling described

205 above. Using a metabolite atlas as reference (43), 112 and 122 polar metabolites were
206  predicted in positive and negative ion modes, respectively, which were then combined
207  to give a total of 168 unique metabolites (supplemental figure 1, supplemental tables 1
208 and 2). Within these metabolites, we observed different patterns of enrichment across
209  both compartments and treatments, with individual metabolites that were either drought-
210 enriched or drought-depleted (figure 2a). Principal component analysis (PCA) was

211 performed to understand the relationships between samples. PC1 accounted for 59.5%
212  of the total variation and PC2 accounted for 17.1% of the variation, distinguishing

213  samples by both compartment and watering regime (figure 2b). Next, we aimed to

214  determine metabolites that were significantly enriched (Log- fold change >2, t-test

215  p<0.05) in each compartment during drought. Twenty-eight, 35, and 16 metabolites
216 were significantly enriched during drought in roots, rhizosphere, and soil, respectively
217  (supplemental table 3), with enrichment that was either compartment specific or

218  observed in multiple compartments (figure 2c).

219
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220 Differences in metabolites observed between compartment and watering treatment

221 suggest that these factors may be responsible for driving associations between plants
222  and their root-associated microbiome. We hypothesized that metabolites with large
223 changes in relative abundance, or fold change, between drought and watered

224  treatments may be important for the observed shifts in the microbiome. In droughted
225  roots, we observed increases in the relative abundance of many putative abiotic stress
226  response factors, including amino acids, osmoprotectants, antioxidants, hormones, and
227  organic acids (figure 2d, table 1). Surprisingly, the important drought markers ABA, 1-
228 aminocyclopropane-1-carboxylic acid (1-ACC, the precursor to ethylene), proline and
229 Dbetaine separated into three distinct clusters of enrichment (figure 2d). In contrast, only
230 3 metabolites were significantly more abundant in watered roots, including xylitol and
231 the phenolics 2,3-dihydroxybenzoic acid and 4-methylcatechol, which are direct

232  catabolism products of salicylic acid and methylsalicylate, respectively (44, 45) (figure
233  2e, table 1). Collectively, the observed metabolite enrichment patterns are consistent
234  with sorghum roots responding metabolically to drought.

235
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237

238  Figure 2. Metabolic profiles during drought differ by compartment. A Heatmap of
239 relative peak heights of all observed metabolites (n=168) across root, rhizosphere

240  (rhizo), and soil compartments and watered (W) and drought (D) treatments. B Principal
241 component analysis (PCA) plot of root, rhizosphere, and soil metabolites. C

242  Proportional Venn diagram of drought enriched metabolites in root, rhizosphere, or soil
243  (D/W Logs- fold change >2, t-test p<0.05). D-E Heatmap of the subset of metabolites
244  that were enriched or depleted in roots during drought, with the predicted identity of

245  metabolites listed beside each row.

246

12


https://doi.org/10.1101/2020.11.08.373399
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.08.373399; this version posted November 9, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

247  Response to rewatering within 24 hours following a prolonged drought varies by
248 compartment

249  Having established that metabolite composition differs between watered and drought
250 sorghum roots, we next sought to understand whether rapid shifts in metabolite profiles
251  would be observed 24 hours after rewatering the droughted sorghum plots. We

252  hypothesized that rewatering would shift metabolite compositions, particularly in the
253  rhizosphere, that could contribute to the transitions observed in microbial community
254  composition. Consistent with this hypothesis, we observed distinct response patterns in
255 metabolites across all compartments 24 hours after rewatering the droughted plots.
256  Notably, roots were only weakly responsive to rewatering, with no metabolites strongly
257  enriched in rewatered roots (Logz fold change >2, t-test p<0.05) (figure 3a). However,
258 several metabolites were modestly enriched (Log. fold change >1, t-test p<0.05),

259 including cytosine, sphinganine, N-acetylglutamic acid, which promotes growth of root
260 hairs and swelling of root tips (46), and ferulic acid, which is capable of inhibiting root
261  growth and promotes root branching (47) (supplemental table 4). Collectively, these
262  shifts suggest roots have started to respond to changes in water availability, although
263  their overall metabolite profiles are largely unchanged at the time of sampling.

264

265 In contrast to roots, large shifts in metabolite abundances occurred in the rhizosphere
266  after rewatering, with rewatering tending to cause a depletion of rhizosphere

267  metabolites (figure 3a). Significantly depleted metabolites (n=17, Log> fold change < -2,
268  t-test p<0.05) included ten different organic acids, four sugar alcohols, sn-glycero-3-

269 phosphocholine, carnitine, and melatonin (figure 3b, table 2). In soil, only a single
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270  metabolite, trehalose, was significantly depleted following rewatering (figure 3c, table 2).
271 Notably, the metabolite composition of rewatered rhizosphere became more similar to

272  watered rhizosphere, and was distinguishable from soil (figure 3d).

273
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275

276  Figure 3. Rewatering depletes rhizosphere metabolites following a prolonged
277  drought. A Heatmap of relative peak heights of all observed metabolites (n=168)
278  across three compartments (root, rhizosphere (rhizo), and soil), three treatments

279  (watered (W), drought (D), drought rewatered (DW), and two time points (time point 8
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280 (TP8) and 24 hours later (24h)). B-C Heatmap of the subset of metabolites that were
281  depleted after rewatering (DW/D Log> fold change < -2, t-test p<0.05), with the

282  predicted identity of metabolites listed beside each row. Note, all significant depletions
283  were observed in the rhizosphere, except trehalose, which occurred in soil. D Principal
284  component analysis (PCA) plot of root, rhizosphere, and soil metabolites.

285

286 Pipecolic acid suppresses plant root growth

287  Betaine represents one of the most robust and widely utilized biomarkers of plant

288  responses to drought (31, 48). We hypothesized that other metabolites with roles in
289 plant drought response would share a similar abundance pattern during drought. To
290 identify other putative drought metabolites, we ranked metabolites based on their

291  correlation coefficients (Pearson’s r) with betaine, across all compartments, treatments,
292 and timepoints (figure 4a-c). The most strongly correlated metabolite, pipecolic acid
293 (Pip), is a lysine catabolite that has recently been identified as a critical component of
294  the systemic acquired resistance (SAR) pathway (41, 42). However, to our knowledge
295 no link between Pip and drought stress response has been demonstrated in plants,
296  although its synthesis is osmotically induced in rapeseed leaf discs (49) and in the

297  halophyte Triglochin maritima (50). Beyond Pip, the other nine of the top 10 correlated
298 metabolites have all been previously identified as drought-related metabolites. These
299 include 4-aminobutanoic acid (GABA) (51), allantoin (52, 53), carnitine (54, 55), and the
300 amino acids proline, tyrosine, asparagine, serine, glutamine, and trans-4-hydroxyproline
301  (56-60) (figure 4a).

302
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303 To identify potential interactions between these drought-related metabolites and the
304 root-associated bacterial community, we clustered bacterial ASVs (grouped at the class
305 level) and metabolites based on abundances across all compartments, treatments, and
306 timepoints. Strikingly, while a majority of metabolites and microbes separated into

307 distinct clusters, three microbial taxa, including the Actinobacteria, nested within the
308 metabolite-dominant cluster, just adjacent to the metabolite cluster containing the top
309 ten betaine-correlated metabolites (supplemental figure 2). When clustering was

310 performed based on the abundances in the root, where host control of the microbiome
311 is strongest, we observed that the Actinobacteria formed an even closer linkage with
312  Dbetaine-correlated metabolites, and was tightly clustered with five metabolites including
313 trans-4-hydroxyproline, proline, Pip, valine, and guanidinoacetic acid (figure 4e-f,

314  supplemental figure 3). As previous reports have demonstrated that drought-induced
315  microbial lineages including Actinobacteria in roots are capable of inducing SAR (61)
316  and systemic root-to-root signaling (62), we hypothesized that the increased abundance
317  of Actinobacteria in sorghum roots may contribute to the accumulation of Pip during
318  drought, and potentially the activation of systemic signaling. However, azelaic acid,

319  which functions downstream of Pip in the SAR pathway (63), was not enriched by

320 drought in our data, suggesting that SAR was not being activated (figure 4d).

321  Collectively, these results suggest that Pip may play an as-yet undiscovered role in

322  sorghum drought response.

323
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Figure 4. Pipecolic acid abundance pattern mirrors drought markers. A The top 10

metabolites correlated with the drought marker betaine across all sample types,

treatments, and time points. B-D Logiy peak heights of individual metabolites. Each

point represents an individual sample of root (green), rhizosphere (blue), or soil (yellow).

Dashed lines represent the limit of detection for individual metabolites, based on the

average log1o peak heights of the sample blanks for root (red) or rhizosphere and soil

(blue). E Heatmap of relative abundance of all metabolites and bacteria ASVs (grouped

at the class level), clustered within the root, across treatments (watered (W), drought

(D), drought rewatered (DW), and time points (time point 8 (TP8) and 24 hours later
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335 (24h)). F Zoom-in of Actinobacteria and closely clustering root metabolites, as

336  highlighted in pink in figure 4e. Actinobacteria and the metabolites that are closely

337  correlated with betaine (as in figure 4a) are in bold.

338

339 One classic and easily observable phenotypic shift that occurs in roots during drought is
340 a suppression of root growth (64, 65). We hypothesized that if Pip plays an integral role
341  in the drought response pathway, application of Pip should lead to reduced root growth.
342  To evaluate this possibility, we germinated sorghum in petri dishes containing water
343 plus 0, 0.1, or 1 mM Pip. Seven days after germination, 1 mM Pip treated sorghum

344  displayed significantly reduced root growth (figure 5a-b). Exogenous Pip application is
345 also capable of reducing root growth in Arabidopsis (66). We confirmed this result by
346  growing Arabidopsis Col-0 on petri dishes containing either 0, 0.001, 0.01, 0.1, 1 mM
347  Pip. Average root growth was reduced in all Pip treatments in a dosage dependent

348 manner, with significant decreases in root growth observed with 0.1 and 1 mM Pip

349  concentrations (figure 5c-d).

350
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Figure 5. Pipecolic acid reduces root growth. A Root lengths of sterilized sorghum
seedlings after 7 days of growth in water containing 0, 0.1, or 1 mM pipecolic acid (Pip).
Different letters indicate a significant difference in root length (ANOVA, Tukey-HSD,
p<0.05). This experiment was performed twice with similar results. B Two
representative seedlings from each treatment were photographed at the time of
measurement. C Root lengths of sterilized Arabidopsis seedlings after 10 days of
growth in Y2 MS+ 1% sucrose agar media containing 0, 0.001, 0.01, 0.1, or 1 mM Pip.
Different letters indicate a significant difference in root length (ANOVA, Tukey-HSD,

p<0.05). Different colors represent plants from independent experiments (n=3). D One
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362 representative plate from 0 and 1 mM pipecolic acid treatments were photographed at
363  the time of measurement.

364

365 Having confirmed that exogenous Pip is sufficient to reduce root growth, we next aimed
366 to understand the molecular mechanism responsible for this behavior. As Pip plays a
367  key role in systemic signalling during SAR (67), we hypothesized that Pip-mediated root
368 growth reduction may depend on components of this signalling pathway. To test this
369 hypothesis, we utilized publicly available genetic resources in Arabidopsis, including
370 fmo-1, npri1-1, rbohd/rbohf, azi1-2 mutants, which represent critical aspects of the SAR
371 signalling pathway (figure 6). We measured the root growth of each of these validated
372  Arabidopsis SAR mutants on media containing 1 mM Pip. Notably, mutants in FLAVIN-
373 CONTAINING MONOOXYGENASE 1 (FMO-1), responsible for conversion of Pip to N-
374  hydroxy-Pip (68)(figure 6), displayed reduced root growth similar to the wild-type plant
375 Col-0in response to Pip (figure 6), indicating that this conversion is not required to elicit
376  reduced root growth. Likewise, mutants in NON EXPRESSER OF PATHOGENESIS
377 RELATED GENES 1 (NPR1) (69), a SA receptor required for SA-dependent SAR, and
378 mutants in NADPH/RESPIRATORY BURST OXIDASE PROTEINS D and F (RBOH
379 D/F) and the lipid transfer protein AZELAIC ACID INDUCED 1 (AZI1) (70, 71), required
380 for SA-independent SAR, also responded similar to Col-0 (figure 6).Collectively, these
381 data indicate that root growth response to Pip is likely not mediated by the SAR

382 pathway.

383
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386  Figure 6. Pipecolic acid root growth reduction is SAR-independent. A Root length
387  of Arabidopsis Col-0 (WT) and Arabidopsis mutants grown on 1/2MS + 1% sucrose
388 plates containing 0 or 1 mM Pip. Significance between treatments was evaluated by
389  ANOVA with Tukey’s HSD posthoc test (p<0.05). Different colors represent plants from
390 independent experiments. B Simplified SAR pathway. Highlighted in red are the

391  Arabidopsis mutants used to evaluate a potential interaction between SAR and Pip-
392  mediated root growth suppression.

393

394 DISCUSSION

395 Metabolite and microbial community compositions shift during drought and

396 rewatering

397 The assemblage of the microbiomes differ between root, rhizosphere, and soil during
398 drought, though the underlying cause of these differences is not well understood. Plant

399 metabolites and exudates have been hypothesized to drive these changes (30), and

21


https://paperpile.com/c/FGTplf/Fx0t
https://doi.org/10.1101/2020.11.08.373399
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.08.373399; this version posted November 9, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

400 plants are known to increase total organic carbon and root exudation (per gram of root
401  biomass) in response to drought (72, 73). The enrichment of specific metabolites that
402 can act as osmoprotectants, such as betaine, sugars, and amino acids, is frequently
403 reported when plants are subjected to drought, and these are commonly used as

404  drought-specific markers. Yet, comprehensive studies of the global metabolite profiles
405 across root, rhizosphere, and soil have been hindered by the complexity of soil

406  metabolite profiles. However, recent advances in metabolomics have allowed for

407 characterization of metabolite profiles within and across complex substrates (74). As a
408 result, we collected both microbiome and metabolite profiles across three different

409 compartments (sorghum root, rhizosphere, and soil) and three treatments (watered,
410 drought, and drought recovery). We observed a general trend that many metabolites
411 were more abundant during drought. This observation is in line with previous evidence
412  that exudation by plants increases during drought (72). Interestingly, we observed both
413  shifts in metabolite abundances during drought that were compartment specific and

414  shifts that occurred across multiple compartments. Likewise, we observed enrichment of
415  specific drought responsive metabolites that correlated with increases in both

416 monoderm dominance during drought and compartment specific shifts upon rewatering.
417  Our findings that changes in host metabolism during drought are correlated with shifts in
418 certain bacterial taxa expand upon a recent finding that substrate utilization also drives
419  microbial community assembly in the rhizosphere across developmental age (19).

420

421 A previous study of sorghum root and rhizosphere showed that bacterial community

422  abundance reverts from monoderm dominance during drought to diderm dominance
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423  within a week following rewatering (13). To understand the early dynamics of this

424  reversion, we evaluated sorghum root, rhizosphere, and soil at the peak of a

425  preflowering drought and again 24 hours after rewatering. We observed distinct

426  response patterns in metabolites of root, rhizosphere, and soil 24 hours after

427  rewatering, which could impact the establishment of microbiomes following rewatering.
428 Notably, the rhizosphere was the most responsive in both metabolites and microbiome
429  profiles within 24 hours after rewatering. We propose that the more rapid shifts

430 observed in rhizosphere are largely driven by flow of water, which may simultaneously
431  dilute rhizosphere metabolites into the surrounding soil, and promote the mobility of soil
432  microbes to enter the rhizosphere. Supporting this hypothesis, the beta diversity of

433 rewatered rhizosphere microbiome early after rewatering more closely resembled the
434  soil microbiome, rather than watered rhizosphere samples, suggesting that the soill

435 microbiome is a source of inoculum for bacterial establishment in the rhizosphere

436  following rewatering. In contrast, rhizosphere metabolites were characterized by

437  depletion after rewatering, with similarity to watered rhizosphere, which may facilitate
438 the eventual reversion to a watered rhizosphere microbiome, as demonstrated

439 previously (13). Comparable studies on the long-term effects of drought and subsequent
440 rewatering on metabolite profiles in grasses are lacking, however previous studies of
441  trees have reported mixed long-term effects. One study found that increases in

442  exudation can be reversed following recovery from drought, to be indistinguishable from
443  controls (73), while another found that extreme drought led to irreversible changes in

444  exudation (59). Therefore, future studies will benefit from careful selection of multiple
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445  time points following drought to understand the long-term effects of drought in roots and
446  rhizosphere following rewatering.

447

448 Pipecolic acid-mediated root growth suppression is not mediated by the systemic
449 acquired resistance pathway

450 In this study, we observed an enrichment of many putative abiotic stress response

451  factors during drought. Of particular note, Pip was significantly enriched during drought,
452  and its abundance correlated strongly with other highly enriched drought markers

453 including Actinobacteria and the metabolites betaine, proline, and GABA. While Pip

454  induction in response to osmotic stress has been noted in a few previous studies (49,
455  50), by far Pip’s most notable role is in systemic signalling of stress in response to

456  pathogens. It has recently been shown that the conversion of Pip to N-hydroxy-Pip is
457  required for SAR to be activated, and this activity functions both alongside and

458 independent of SA (67, 75). Notably, previous research has demonstrated that “biotic
459  stress” factors, including SA, can benefit plants responding to abiotic stress. For

460 example, plant drought tolerance can be promoted by increasing endogenous SA in

461  Arabidopsis (76), and exogenous SA also promoted drought tolerance via an NPR1-
462 dependent mechanism in Brassica napus (77). However, recent studies suggest that SA
463  signaling is inactivated by drought, in part because ABA promotes NPR1 degradation
464 (33, 78). Additionally, a strong suppression of defense-related gene expression occurs
465 in field grown sorghum during preflowering drought (34). Likewise, we did not see an
466  enrichment of azelaic acid, which functions downstream of Pip during SAR, during

467  drought in our data. These findings suggest that the Pip induction observed during
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468 drought is likely acting for some other purpose, perhaps as an independent signalling
469 mechanism related to abiotic stress.

470

471  Here, we demonstrate that Pip application is able to provoke one of the classic drought
472  responses in roots, namely root growth suppression (64, 65), which suggests it could be
473  involved in the drought response pathway. As exogenous Pip was capable of

474  suppressing root growth in both sorghum and Arabidopsis, this suggests that a common
475 mechanism is conserved across plants. We hypothesized that Pip-mediated root growth
476  suppression might share components with the SAR pathway, which functions across
477  diverse plant clades (79). However, using previously validated Arabidopsis SAR

478  pathway mutants, we demonstrate that this Pip activity in the root functions

479 independently from the established SAR pathway, which has primarily been evaluated
480 inleaves. These data suggest that although Pip has been primarily characterized as a
481  component of SAR in plants, it may also act as a more general stress response factor to
482  environmental shifts including drought using an alternative mechanism. Furthermore,
483  azelaic acid, another component of SAR that functions downstream of Pip, is not

484  enriched in sorghum roots under drought, which suggests that this pathway, if it exists,
485  acts differently than the one currently known example.

486

487 Interestingly, Pip, which was significantly enriched in both roots and rhizosphere, has
488 also been shown to have a direct role on microbes, where it is predicted to function in
489  osmoprotection. For example, Pip has been widely demonstrated to improve the growth

490 of a diverse bacteria challenged by NaCl-induced osmotic stress, including the
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491  Actinobacteria lineage Brevibacterium ammonkgenes (80), and Proteobacteria lineages
492  Escherichia coli (81), Sinorhizobium meliloti (82), and Silicibacter pomeroyi (83).

493  Supporting its role as an osmoprotectant, exogenous application of another

494  osmoprotectant, betaine, suppressed the salt-induced accumulation of Pip (80). These
495  studies support a possible role of rhizosphere Pip acting as an osmolyte to protect

496  bacteria during drought. However, as Pip appears to be functional across a broad range
497  of bacterial lineages, we do not believe Pip is likely to be responsible for the shifts in
498 monoderm and diderm dominance observed during drought and subsequent rewatering.
499  Collectively, our results highlight the need for future studies that delve further into the
500 potential contribution(s) of Pip to plant drought responses.

501

502 METHODS

503 Field experimental design and sample collection

504  Sorghum cultivar RTx430 plants were grown in the summer of 2017, in a field located at
505 the UC-ANR KARE Center located in Parlier, California (36.6008 N 119.5109 W), as
506 described previously (13, 84). Sorghum seeds were sown into pre-watered fields.

507  Starting in the third week, control treatment plants were watered 1h three times per

508 week by drip irrigation (1.89 L h— 1 flow rate), and no water was provided to drought
509 treatment plants. After eight weeks, which coincided with the onset of flowering, roots
510 and rhizosphere samples were harvested prior to watering (TP8). Water was then

511  restored to the drought plots (rewatered), and root and rhizosphere samples were

512  harvested after 24 h (TP8+24h). All field samples were collected between 11am and

513  12pm using a modified version of the protocol described in detail in (85). Soil samples
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514  were collected using a 15 cm soil core sampler, at a distance of approximately 20 cm
515 from the base of the plant. To collect rhizosphere compatible with both microbiome and
516 metabolomic analyses, excavated plants were briefly shaken to dislodge excess saill,
517 and an ethanol-sterilized nylon bristled toothbrush was used to remove closely adhering
518  soil from the root, which we collected as the rhizosphere fraction, prior to vortexing the
519  roots two times for 1 min in epiphyte removal buffer (ice cold 0.75% KH2PO4, 0.95%
520 KyHPOy4, 1% Triton X-100 in ddH»O; filter sterilized at 0.2 yM). Any remaining soil

521  adhering to the root was separated with epiphyte removal buffer and discarded. The
522  roots were again rinsed with clean epiphyte removal buffer and patted dry. All samples
523  were immediately flash frozen in LN in the field and stored at -80 °C until sample

524  processing.

525

526  DNA extraction, amplification, and amplicon sequencing

527  DNA extraction was performed using the protocol for collection of root endosphere,
528 rhizosphere, and soil samples using Qiagen DNeasy Powersoil DNA extraction Kit with
529  0.15 g (root) and 0.25 g (rhizosphere and soil) as starting material in the provided

530 Powersoil collection vials, as described in detail in (85). The V3-V4 region of the 16S
531  rRNA gene was PCR amplified from 25 ng of genomic DNA using dual-indexed 16S
532 rRNA lllumina iTags 341F (5-CCTACGGGNBGCASCAG-3’) and 785R (5'-

533 GACTACNVGGGTATCTAATCC-3’). Barcoded 16S rRNA amplicons were quantified
534  using Qubit dsDNA HS assay kit on a Qubit 3.0 fluorometer (Invitrogen, Carlsbad, CA,
535 USA), pooled in equimolar concentrations, purified using Agencourt AMPure XP

536 magnetic beads (Beckman Coulter, Indianapolis, IN, USA), quantified using Qubit
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537 dsDNA HS assay kit on a Qubit 3.0 fluorometer (Invitrogen, Carlsbad, CA, USA), and
538 diluted to 10 nM in 30 pL total volume before submitting to the QB3 Vincent J. Coates
539 Genomics Sequencing Laboratory facility at the University of California, Berkeley for
540 sequencing using lllumina Miseq 300 bp pair-end with v3 chemistry.

541

542  Amplicon sequence processing and analysis

543 16S amplicon sequencing reads were demultiplexed in QIIME2 (86) and then passed to
544  DADAZ2 (87) to generate Amplicon Sequence Variants (ASVs), with taxonomies

545 assigned using the August 2013 version of GreenGenes 16S rRNA gene database as
546  described previously (16). All subsequent 16S statistical analyses were performed in R-
547 v3.6.1 (88). To account for differences in sequencing read depth across samples,

548 samples were normalized by dividing the reads per ASV in a sample by the sum of

549  usable reads in that sample, resulting in a table of relative abundance frequencies,

550  which were used for analyses, with the exception of alpha-diversity calculations, for

551  which all samples were normalized to an even read depth of 29,918 ASVs per sample.
552  Alpha diversity was determined with the estimate_richness function in the R package
553 phyloseq-v1.30.0 (89), and significance was tested by ANOVA using the aov function in
554  the R stats package. Beta diversity (PCoA) was performed using the ordinate function in
555 the R package phyloseq-v1.30.0 (89). Sample type separation was determined by

556 pairwise PERMANOVA with 1,000 permutations using the adonis and

557 calc_pairwise_permanovas functions in the R packages vegan-v2.5.6 (90) and

558 mctoolsr-v0.1.1.2. Tukey-HSD tests used the HSD.test function in the R package
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559  Agricolae-v1.3.1. The combined metabolite and bacterial ASV heatmaps were

560 generated using the R package pheatmap-v1.0.12.

561

562 Metabolite extraction and LC-MS

563 Root water content was estimated by lyophilizing root tissue and calculating the

564 difference between wet and dry weights. Root samples for submission were then

565 normalized such that the lightest sample was 0.2 g (wet weight) and each other sample
566  was at least 0.2 g. Rhizosphere and soil water contents were estimated to obtain similar
567 amounts of material. The overall difference in percent water content between samples
568 was minimal (2.5-6.5%). For extraction of polar metabolites from root tissue (0.2-0.3 g
569  wet weight), samples were first lyophilized dry, then 500 uL of methanol was added,
570 followed by a brief vortex and sonication in a water bath for 10 min. Samples were

571  centrifuged 5 min at 5,000 rpm, then supernatant transferred to 2 mL tubes, dried in a
572  SpeedVac (SPD111V, Thermo Scientific, Waltham, MA), and extracts stored at -80 °C.
573  For soil and rhizosphere samples (1.25 g wet weight), polar metabolites were extracted
574  similarly but samples were not lyophilized prior to extraction, 2 mL LC-MS grade water
575 was added followed by vortex and water bath sonication for 30 min, centrifugation for 7
576  min at 7,000 rpm, then supernatant transferred to a 5 mL tube, frozen and lyophilized
577  dry, and extracts stored at -80 °C.

578

579 In preparation for LC-MS, soil and rhizosphere extracts were resuspended with 300 L
580 methanol containing internal standards (~15 uM average of 5-50 uM of 13C,15N Cell

581  Free Amino Acid Mixture; 4-(3,3-dimethyl-ureido)benzoic acid; 3,6-dihydroxy-4-
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582 methylbenzoic acid; d5-benzoic acid; 9-anthracene carboxylic acid; 13C-trehalose; 13C-
583 mannitol), vortexed and sonicated 10 min, centrifuged 5 min at 5,000 rpm, supernatant
584  centrifuge-filtered 2.5 min at 2 500 rpm (0.22 um hydrophilic PVDF), then 150 pL

585 transferred to LC-MS glass autosampler vials. Root extracts were resuspended

586  similarly, but with resuspension volume varied to normalize by root dry weight.

587

588 Chromatography was performed using an Agilent 1,290 LC stack, with MS and MS/MS
589  data collected using a Thermo QExactive Orbitrap MS (Thermo Scientific, Waltham,
590 MA). Full MS spectra were collected from m/z 70-1,050 at 70,000 resolution in both

591 positive and negative ion modes, with MS/MS fragmentation data acquired using

592 stepped 10, 20, and 40 eV collision energies at 17,500 resolution. Chromatography was
593 performed using a HILIC column (Agilent InfinityLab Poroshell 120 HILIC-Z, 2.1 x 150
594 mm, 2.7 um, #673775-924) at a flow rate of 0.45 mL/min with a 2 L injection volume.
595 To detect metabolites, samples were run on the HILIC column at 40 °C equilibrated with
596  100% buffer B (95:5 ACN:H20 with 5 mM ammonium acetate) for 1 min, diluting buffer
597 B down to 89% with buffer A (100% H20 with 5 mM ammonium acetate and 5 uM

598 methylenediphosphonic acid) over 10 min, down to 70% B over 4.75 min, then down to
599 20% B over 0.5 min, followed by isocratic elution in 80% buffer A for 2.25 min. Samples
600 consisted of 3 biological replicates each and 3 extraction controls, with sample injection
601  order randomized and an injection blank (2 uL MeOH) run between each sample.

602

603 Metabolite identification and analysis
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604 Metabolite identification was based on exact mass and comparing retention time (RT)
605 and MS/MS fragmentation spectra to that of standards run using the same

606 chromatography and MS/MS method. Custom Python code (91) was used to analyze
607 LC-MS data. For each feature detected (unique m/z coupled with RT), a score (0 to 3)
608 was assigned representing the level of confidence in the metabolite identification.

609 Positive identification of a metabolite had detected m/z <5 ppm or 0.001 Da from

610 theoretical as well as RT < 0.5 min compared to a pure standard run using the same
611  LC-MS method. The highest level of positive identification (score of 3) for a metabolite
612  also had matching MS/MS fragmentation spectra compared to either an outside

613 database (METLIN) (92) or internal database generated from standards run and

614  collected on a QExactive Orbitrap MS. Identifications were invalidated if MS/MS from
615 the sample mismatched that of the standard. MS/MS mirror plots for metabolites are
616  presented in supplemental figure 1.

617

618  Atotal of 112 and 122 polar metabolites were predicted in positive and negative ion
619 modes respectively (supplemental table 1). If a metabolite was observed in both ion
620 modes, the mode with higher peak height was selected for the merged metabolite

621  profile (n=168) used for all analyses. Values below the limit of detection were imputed
622  with the lowest observed values in the dataset rounded down (2,400 or 1,900 for

623  positive or negative ion modes respectively) (supplemental table 2). Principal

624 components analysis of metabolite profiles was performed using the prcomp function in
625 the R stats package. Venn diagram construction utilized Venny-v2.1.0 (93). All other

626 metabolite analyses were performed using MetaboAnalyst-v4.0 (94, 95). Heatmaps
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627  were generated using Euclidean distance and Ward clustering algorithms. We

628 evaluated enriched or depleted metabolites with the cutoffs of logy fold change greater
629 than 2 or less than -2, and a p-value of less than 0.05.

630

631 Plant root growth assays

632  Sterilized seeds of the sorghum cultivar RTx430 were germinated on petri dishes with
633  autoclaved Milli-Q water or autoclaved Milli-Q water containing the defined

634  concentration of Pip overnight in the dark at 28 °C, before being transferred to a growth
635 chamber (28/22 °C, 16 h day, ppf ~250 umol m?s™). The Arabidopsis ecotype Columbia
636  (Col-0) was used in this study. Mutant lines fmo-1 (SALK_026163) (96), npr1-1

637 (CS3726) (97), rbohd/rbohf (CS68522) (98), and azi1-2 (SALK_085727) (70) were

638 obtained from the Arabidopsis Biological Resource Center (99). Sterilized seeds were
639 grown on MS plates containing 1/2x Murashige and Skoog salt mix, 1% sucrose (pH
640 5.8), 0.8% agar, and the defined concentration of Pip. Plants were first stratified for 3
641 days at 4°C before being transferred to a growth chamber (21 °C, 16 h day, ppf ~120
642 pmol m?s™). Root lengths were measured using ImageJ-v1.52a software (100). ANOVA
643 was performed using the aov function in the R stats package and Tukey-HSD tests

644  used the HSD.test function in the R package Agricolae-v1.3.1. SAR pathway image in
645  figure 6b was created with BioRender.com.

646

647  Data availability

648  All datasets and scripts for analysis are available through github

649  (https://github.com/colemanderr-lab/Caddell-2020) and all short read data can be
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650 accessed through NCBI BioProject PRUNA655744. Raw metabolomics data will be

651 made available through the Joint Genome Institute Genome Portal.
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992 Tables
993 Table 1. Detailed information on significantly changed metabolites between drought and

994  watered roots

Measured MSMS

Molecular  Measured ppm RTpeak RT quality lon Log2 p-value g-value Significant
Proposed metabolite formula m/z error _ (minutes) error score* mode (FC) (root) (root) compartment(s)**
methionine C5H11NO2S 148.044 1.748 10.6 0.1 1 negative 3.21 0.001 0.016 RzZS
proline C5H9NO2 116.071 2.444 1.1 0.1 1 positve 2.82 0.001 0.016 RZS
betaine C5H12NO2+ 118.087 2.456 7.8 0.2 1 positve 2.48 0.000 0.016 RZS
carnitine C7H16NO3+ 162.113 0.503 13.2 0.2 1 positive 2.43 0.012 0.038 RZS
N-trimethyllysine C9H21N202+ 189.160 0.178 16.8 0.1 1 positve 5.49 0.002 0.020 Rz
3-hydroxykynurenine C10H12N204 225.087 0.497 1.2 0.1 0 positve 4.54 0.012 0.038 Rz
lysine C6H14N202 147.113 0.569 17.0 0.1 1 positve 4.24 0.001 0.016 RZ
taurine C2H7NO3S  126.022 1.176 12.3 0.0 0 positve 3.94 0.012 0.038 RZ
arginine C6H14N402 175.119 0.691 17.0 0.1 1 positve 3.81 0.002 0.018 Rz
pipecolic acid C6H11NO2  130.086 0.888 11.0 0.0 1 positve 3.39 0.001 0.016 Rz
allothreonine// homoserine// C4HINOS3 120.066 1.912 13.7 0.1 0 positve 3.25 0.003 0.021 RZ
threonine
valine C5H11NO2  116.072 1.809 11.2 0.0 1 negative 3.15 0.003 0.020 Rz
1-aminocyclopropane-1- C4H7NO2 102.055 3.955 13.7 0.6 1 positive 3.14 0.003 0.020 Rz
carboxylic acid
2-amino-2-methylpropanoic C4HINO2 104.071 4.409 12.5 0.0 1 positive 2.98 0.004 0.025 RZ
acid
asparagine C4H8N203  133.061 0.814 14.5 0.1 1 positve 291 0.006 0.027 Rz
cis-4-hydroxy-proline//trans-  C5HINO3 130.051 0.823 13.4 0.3 0 negative 2.90 0.004 0.022 Rz
4-hydroxyproline
guanidinoacetic acid C3H7N302 118.061 2.161 14.0 0.1 0 positve 243 0.003 0.020 RZ
deoxycarnitine C7H16NO2+ 146.118 0.662 13.3 0.2 1 positve 2.39 0.024 0.061 Rz
serotonin C10H12N20 177.102 0.870 8.7 0.1 0 positve 3.47 0.042 0.087 RO
histidinol C6H11N3O  142.098 0.107 12.9 0.2 0 positve 2.95 0.014 0.044 RO
trans-4-hydroxyproline C5HINOS3 132.066 0.768 13.4 0.1 0 positve 2.83 0.004 0.022 RO
o-acetyl-serine C5HINO4 148.060 0.072 11.4 0.1 -1 positve 2.83 0.016 0.045 RO
4-methoxyphenylacetic acid ~ C9H1003 184.097 0.912 1.1 0.0 0 positve 2.79 0.005 0.026 RO
riboflavin C17H20N406 377.146 1.147 46 0.0 0 positve 2.67 0.004 0.025 RO
hippuric acid C9HINO3 180.066 0.924 4.6 0.3 0 positive 241 0.009 0.034 RO
acetylcholine C7H16NO2+ 146.118 0.496 2.1 0.1 1 positve 2.38 0.010 0.036 RO
pyridoxamine C8H12N202 169.097 0.267 10.2 0.0 0 positve 2.12 0.001 0.016 RO
abscisic acid C15H2004  247.133 1.332 1.1 0.0 0 positve 2.05 0.006 0.026 RO
2,3-dihydroxybenzoic acid// C7H604 153.020 1.467 4.0 0.1 0 negative -2.11 0.000 0.012 RO
2,5-dihydroxybenzoic acid//
3,4-dihydroxybenzoic acid
xylitol C5H1205 175.058 4.087 5.1 0.0 0 positve -3.16 0.001 0.016 RO
4-methylcatechol C7H802 123.045 1.158 4.3 0.4 0 negative -3.73 0.001  0.016 RO

*MSMS quality scores: 1 (MSMS matches ref. std.); 0.5 (possible match); 0 (no MSMS collected or no appropriate ref available); -1 (MSMS poor
match to ref. std.)

995 **Compartment(s) with significant Log2 (fold change): Root, rhizosphere, and soil (RZS); root and rhizosphere (RZ); root only (RO)

996
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997 Table 2. Detailed information on significantly changed metabolites 24 hours after

998 rewatering

Measured MSMS
Molecular Measured ppm RT peak RT quality lon Log2 p-value g-value Significant

Proposed metabolite formula m/z error (minutes) error score* mode (FC) (root) (root) compartment
4-imidazoleacetic acid C5H6N202 127.050 0.936 13.9 0.2 1 positve -2.44 0.049 0.296 rhizosphere
1-aminocyclopropane-1- C4H7NO2 102.055 3.955 13.7 0.6 1 positve -2.44 0.047 0.296 rhizosphere
carboxylic acid

pipecolic acid C6H11NO2 130.086 0.888 11.0 0.0 1 positve -2.45 0.048 0.296 rhizosphere
carnitine C7H16NO3+ 162.113 0.503 13.2 0.2 1 positve -2.49 0.017 0.231 rhizosphere
melatonin C13H16N202 233.128 1.296 1.2 0.0 0 positve -2.89 0.011 0.213 rhizosphere
3-hydroxyanthranilic acid C7H7NO3 152.036 1.229 1.8 0.1 0 negative -3.11 0.003 0.135 rhizosphere
syringic acid C9H1005 197.046 0.404 1.6 0.1 1 negative -3.42 0.040 0.296 rhizosphere
cytidine 2',3"-cyclic mono- C9H12N307P 306.049 1.863 14.0 0.2 0 positive -3.44 0.047 0.296 rhizosphere

phosphoric acid

abscisic acid C15H2004 247.133 1.332 1.1 0.0 0 positive -3.56 0.002 0.135 rhizosphere
galactitol//mannitol C6H1406 181.072 1.680 9.7 0.1 1 negative -3.58 0.026 0.263 rhizosphere
4-methylcatechol C7H802 123.045 1.158 4.3 0.4 0 negative -4.45 0.005 0.169 rhizosphere
2,3-dihydroxybenzoic acid/ C7H604 153.020 1.467 4.0 0.1 0 negative -4.45 0.040 0.296 rhizosphere
2,5-dihydroxybenzoic acid/

3,4-dihydroxybenzoic acid

erythritol C4H1004 121.051 0.626 3.2 0.0 1 negative -5.04 0.024 0.252 rhizosphere
arabitol C5H1205 151.061 1.358 5.6 0.2 1 negative -5.29 0.003 0.135 rhizosphere
sn-glycero-3-phosphocholine C8H21NO6P+ 258.110 0.111 14.8 0.2 1 positive -5.66 0.017 0.231 rhizosphere
guanosine 3',5'-cyclic C10H12N507P 346.055 0.947  13.9 0.2 0 positive -5.73 0.000 0.019 rhizosphere
monophosphoric acid

ferulic acid C10H1004 193.051 0.614 1.3 0.1 1 negative -5.75 0.008 0.181 rhizosphere
lactose//trehalose C12H22011 401.131  1.143 14.4 0.1 1 negative -3.07 0.002  0.340 soil

*MSMS quality scores: 1 (MSMS matches ref. std.); 0.5 (possible match); 0 (no MSMS collected or no appropriate ref available); -1 (MSMS
999 poor match to ref. std.)
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1001  Figure captions

1002

1003  Figure 1. Sorghum root-associated microbiome responds to drought and

1004 rewatering. A Representative image of sorghum plants following eight weeks of a
1005 preflowering drought (TP8). B Phylum level relative abundances of sorghum root,
1006  rhizosphere, and soil microbiomes at TP8 and 24 hours after rewatering (24h DW) in
1007  well-watered (W) or drought (D) plots. C Alpha diversity (Shannon) of sorghum root,
1008 rhizosphere, and soil. D Beta diversity (PCoA) of sorghum root, rhizosphere, and soil
1009 microbiomes at TP8 and 24 hours after rewatering in well-watered control or drought
1010  plots. E-J Relative abundances of individual lineages that displayed a significant

1011  difference in abundance between watering treatments (ANOVA, Tukey-HSD, P<0.05).
1012

1013  Figure 2. Metabolic profiles during drought differ by compartment. A Heatmap of
1014  relative peak heights of all observed metabolites (n=168) across root, rhizosphere
1015  (rhizo), and soil compartments and watered (W) and drought (D) treatments. B Principal
1016  component analysis (PCA) plot of root, rhizosphere, and soil metabolites. C

1017  Proportional Venn diagram of drought enriched metabolites in root, rhizosphere, or soll
1018  (D/W Logg fold change >2, t-test p<0.05). D-E Heatmap of the subset of metabolites
1019  that were enriched or depleted in roots during drought, with the predicted identity of
1020 metabolites listed beside each row.

1021

1022  Figure 3. Rewatering depletes rhizosphere metabolites following a prolonged

1023  drought. A Heatmap of relative peak heights of all observed metabolites (n=168)
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1024  across three compartments (root, rhizosphere (rhizo), and soil), three treatments

1025 (watered (W), drought (D), drought rewatered (DW), and two time points (time point 8
1026  (TP8) and 24 hours later (24h)). B-C Heatmap of the subset of metabolites that were
1027  depleted after rewatering (DW/D Log» fold change < -2, t-test p<0.05), with the

1028  predicted identity of metabolites listed beside each row. Note, all significant depletions
1029  were observed in the rhizosphere, except trehalose, which occurred in soil. D Principal
1030 component analysis (PCA) plot of root, rhizosphere, and soil metabolites.

1031

1032  Figure 4. Pipecolic acid abundance pattern mirrors drought markers. A The top 10
1033  metabolites correlated with the drought marker betaine across all sample types,

1034 treatments, and time points. B-D Log1o peak heights of individual metabolites. Each
1035  point represents an individual sample of root (green), rhizosphere (blue), or soil (yellow).
1036  Dashed lines represent the limit of detection for individual metabolites, based on the
1037 average logio peak heights of the sample blanks for root (red) or rhizosphere and soll
1038  (blue). E Heatmap of relative abundance of all metabolites and bacteria ASVs (grouped
1039  at the class level), clustered within the root, across treatments (watered (W), drought
1040 (D), drought rewatered (DW), and time points (time point 8 (TP8) and 24 hours later
1041 (24h)). F Zoom-in of Actinobacteria and closely clustering root metabolites, as

1042  highlighted in pink in figure 4e. Actinobacteria and the metabolites that are closely

1043  correlated with betaine (as in figure 4a) are in bold.

1044

1045 Figure 5. Pipecolic acid reduces root growth. A Root lengths of sterilized sorghum

1046  seedlings after 7 days of growth in water containing 0, 0.1, or 1 mM pipecolic acid (Pip).
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1047  Different letters indicate a significant difference in root length (ANOVA, Tukey-HSD,
1048 p<0.05). This experiment was performed twice with similar results. B Two

1049 representative seedlings from each treatment were photographed at the time of

1050 measurement. C Root lengths of sterilized Arabidopsis seedlings after 10 days of

1051  growth in 2 MS+ 1% sucrose agar media containing 0, 0.001, 0.01, 0.1, or 1 mM Pip.
1052  Different letters indicate a significant difference in root length (ANOVA, Tukey-HSD,
1053 p<0.05). Different colors represent plants from independent experiments (n=3). D One
1054  representative plate from 0 and 1 mM pipecolic acid treatments were photographed at
1055  the time of measurement.

1056

1057  Figure 6. Pipecolic acid root growth reduction is SAR-independent. A Root length
1058  of Arabidopsis Col-0 (WT) and Arabidopsis mutants grown on 1/2MS + 1% sucrose
1059 plates containing 0 or 1 mM Pip. Significance between treatments was evaluated by
1060 ANOVA with Tukey’s HSD posthoc test (p<0.05). Different colors represent plants from
1061  independent experiments. B Simplified SAR pathway. Highlighted in red are the

1062  Arabidopsis mutants used to evaluate a potential interaction between SAR and Pip-

1063  mediated root growth suppression.
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