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DDA: data-dependent acquisition 

DIA: data-independent acquisition 

MBR: match-between-runs 

FDR: false discovery rate 

LDA: linear discriminant analysis 

EM: expectation-maximization 

LFQ: label-free quantification 

CV: coefficient of variation 

FAIMS: high-field asymmetric ion mobility spectrometry 
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Abstract 

Missing values weaken the power of label-free quantitative proteomic experiments to uncover true 

quantitative differences between biological samples or experimental conditions. Match-between-

runs (MBR) has become a common approach to mitigate the missing value problem, where 

peptides identified by tandem mass spectra in one run are transferred to another by inference 

based on m/z, charge state, retention time, and ion mobility when applicable. Though tolerances 

are used to ensure such transferred identifications are reasonably located and meet certain 

quality thresholds, little work has been done to evaluate the statistical confidence of MBR. Here, 

we present a mixture model-based approach to estimate the false discovery rate (FDR) of peptide 

and protein identification transfer, which we implement in the label-free quantification tool 

IonQuant. Using several benchmarking datasets generated on both Orbitrap and timsTOF mass 

spectrometers, we demonstrate superior performance of IonQuant with FDR-controlled MBR 

compared to MaxQuant (19-38 times faster; 6-18% more proteins quantified and with comparable 

or better accuracy). We further illustrate the performance of IonQuant, and highlight the need for 

FDR-controlled MBR, in two single-cell proteomics experiments, including one acquired with the 

help of high-field asymmetric ion mobility spectrometry (FAIMS) separation. Fully integrated in 

FragPipe computational environment, IonQuant with FDR-controlled MBR enables fast and 

accurate peptide and protein quantification in label-free proteomics experiments.      
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Introduction 

Due to its sensitive and high-throughput nature, liquid chromatography-mass spectrometry (LC-

MS) is a popular technology to identify and quantify peptides and proteins from complex samples. 

Various approaches to LC-MS data acquisition (1-4) have been developed, among which data-

dependent acquisition (DDA) remains the most commonly used strategy. In the course of a DDA 

run, eluted peptides are introduced into a mass spectrometer, where peptide ions are sampled 

for fragmentation and identified from the resulting tandem mass (MS/MS) spectra. Precursor 

peptide ion intensities are assumed to be correlated with the actual peptide amount, yielding 

relative peptide and, after an additional peptide to protein roll-up step, protein quantification. 

Peptide ions successfully targeted and identified by MS/MS are used to calculate peptide and 

then protein abundances. However, due to the stochastic nature of intensity-based sampling of 

peptide ions for MS/MS analysis, not all peptides are consistently identified in all runs. This in turn 

gives rise to missing quantification values, weakening essential comparisons between different 

biological samples or experimental conditions. Missing values are generally more prevalent in 

DDA proteomics than in genomics or transcriptomics. The issue of missing data can be alleviated 

to some degree using the data-independent acquisition (DIA) strategy (5-9). However, as label-

free quantification using DDA data remains popular, there is a critical need to improve 

computational solutions for this method. 

 

To address the missing value problem in DDA-based proteomics, a number of <identification 

transfer= approaches have been devised (10-13), exemplified by the match-between-runs (MBR) 

option in MaxQuant (14, 15) that allows <transfer= of identified precursor peptide peaks from one 

run (referred to below as donor run) to another (acceptor). Given a peak identified by MS/MS in 

the donor run, attributes such as m/z, charge state, and retention time, are used to locate a 

corresponding peak in the acceptor run that is most likely the same peptide. The intensity of the 
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donor peak is then assigned to the acceptor peak, thus filling in the missing value. With more 

quantified features in common between runs, a greater number of peptides and proteins can be 

compared among different runs and experiments, increasing the depth of experimental findings 

(16, 17). 

 

While the goal of MBR is to mitigate the missing value problem, it has the potential to introduce 

false positives, as transferred peaks have not been rigorously identified using MS/MS spectra in 

the acceptor run. Lim et al. (18) evaluated the false transfer rate of MBR using a two-organism 

dataset. They concluded that there was a considerable proportion of false positives from MBR 

when using MaxQuant, yet most were removed with additional filtering as part of the LFQ 

calculations. However, in practical settings, even with the additional filtering, FDR of MBR may 

still be unacceptably high. Thus, this subject deserves a more rigorous treatment that can be 

generalized across different samples and experimental designs. Here, we propose a semi-

supervised approach to control the FDR of MBR, extending our earlier work on FDR for protein 

identification (4, 19) and DIA quantification (20, 21). We implement FDR-controlled MBR in 

IonQuant (22), which has been extended to support LC-MS data both with and without ion mobility. 

We also implement a new protein abundance calculation module in IonQuant based on the 

MaxLFQ strategy (15), improving upon our previously described top-N approach (21, 22). Using 

the dataset from Lim et al. (18), we reproduce the authors findings and demonstrate that IonQuant 

with FDR-controlled MBR has a lower false positive rate and higher sensitivity compared to 

MaxQuant. With two additional datasets from timsTOF Pro mass spectrometers, we demonstrate 

that FDR-controlled MBR results in higher quantification precision (lower CV), accuracy, and 

sensitivity. Finally, we demonstrate that IonQuant displays high sensitivity and precision in single-

cell data with or without high-field asymmetric ion mobility spectrometry (FAIMS) separation, and 

that FDR control for MBR is crucial in such datasets. Overall, we propose an efficient approach 
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to perform MBR with FDR control while maintaining high quantification accuracy and precision. 

We implement the new methods as a default option in IonQuant, readily available as a standalone 

tool or within our integrated computational platform FragPipe (https://fragpipe.nesvilab.org/).  

 

Experimental Procedures 

Experimental Design and Statistical Rationale 

We used five datasets in this work. In all datasets, we estimated the identification false-discovery 

rate using the target-decoy approach (4). For MSFragger, PSMs, peptides, and proteins were 

filtered at 1% PSM and 1% protein identification FDR. For MaxQuant, PSMs and peptides were 

filtered at 1% PSM FDR, and proteins were filtered at 1% protein FDR, which is MaxQuant9s 

default setting. A two-organism dataset (H. sapiens and S. cerevisiae) with 40 LC-MS runs from 

Lim et al. (18) was generated on an Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher 

Scientific). In this dataset, 20 runs include only H. sapiens proteins, while the remaining 20 runs 

contain a mixture of H. sapiens and S. cerevisiae proteomes. S. cerevisiae peptides transferred 

to the 20 H. sapiens-only runs by MBR are false positives and were used to evaluate the false 

positive rate. We also employed two datasets from timsTOF Pro (Bruker), as in our previous work 

(22). A HeLa dataset with 4 replicate injections from Meier et al. (23) was used to evaluate the 

sensitivity (i.e., quantified protein count) and precision (i.e., coefficient of variation (CV)) of 

quantification across replicate runs. A three-organism timsTOF dataset (H. sapiens, S. cerevisiae, 

and E. coli) with 6 runs from Prianichnikov et al. (24) was used to evaluate quantification accuracy, 

and contains two experimental conditions with ground truth protein ratios: 1:1 (H. sapiens), 2:1 

(S. cerevisiae), and 1:4 (E. coli). A single-cell dataset published by Williams et al. (25) was 

generated on an Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific). This 

dataset contains 3 replicate runs with 0 cell (blank runs), 11 replicates with 1 cell, 4 replicates with 
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3 cells, 4 replicates with 10 cells, and 4 replicates with 50 cells. Numbers of quantified peptides 

and proteins were used to evaluate sensitivity, and quantification CV was used to evaluate 

precision. The last dataset was also from a HeLa single-cell experiment (26), acquired on an 

Orbitrap Eclipse Tribrid mass spectrometer with the help of FAIMS separation. There are 3 single 

HeLa cell runs, 3 blank runs, and 3 library runs generated from 100 cells. Numbers of quantified 

proteins were used to evaluate sensitivity. 

 

Indexing-based MBR 

We developed a fast MBR algorithm based on indexing. In IonQuant (22), an index of each run is 

built and written to the disk for fast feature extraction, which supports data with and without ion 

mobility information. The peak tracing and normalization modules were improved to make it more 

sensitive and robust compared to the initial release of IonQuant. The new version performs 

resampling to make the peaks have the same time interval. Then, it performs Savitzky-Golay 

smoothing (27), finds the boundaries, and subtracts background noise using Skyline9s approach 

(https://skyline.ms/wiki/home/software/Skyline/page.view?name=tip_peak_calc). In the 

normalization module, the whole m/z range is now divided into 10 bins with the same number of 

ions, which makes normalization more robust for sparse data or samples with large differences in 

abundance. 

 

Given a run with possible missing values that will accept ions (acceptor run) and a separate run 

that will be used to fill these missing values (donor run), correlations between the two runs are 

calculated using overlapped ions9 retention times, intensities, and ion mobilities if applicable: (ý × ÿ1 + ý × ÿ2)/ 2 or (ý × ÿ1 + ý × ÿ2 + ý × ÿ3)/ 3, where ý is the overlapping ratio (28); ÿ1, ÿ2, 

and ÿ3 are Spearman9s rank correlation coefficients of retention time, intensity, and ion mobility, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2021. ; https://doi.org/10.1101/2020.11.02.365437doi: bioRxiv preprint 

https://skyline.ms/wiki/home/software/Skyline/page.view?name=tip_peak_calc
https://doi.org/10.1101/2020.11.02.365437
http://creativecommons.org/licenses/by-nc-nd/4.0/


respectively. Up to n (user-specified 8MBR top runs9 parameter, 10 by default) donor runs with the 

highest correlations (which must be greater than user-specified 8MBR min correlation9 parameter, 

0 by default) are selected. 

 

For each ion in every selected donor run, we locate the target region within the acceptor run using 

an approach similar to FlashLFQ (29). First, pairs of retention times from the corresponding ions 

are collected and sorted according to the value from the donor run. Using ýÿ and ÿÿ to denote the 

retention times of ÿ-th pair of ions from the donor and acceptor runs, respectively, we have pairs 

from (ý1, ÿ1) to (ý� , ÿ�) sorted by ýÿ, where þ is the number of overlapped ions. Given a donor 

ion with retention time ā, we find its position in the sorted pairs satisfying ýÿ f ā < ýÿ+1. Then, we 

collect all pairs satisfying ýÿ 2 τ f ýĀ  f  ýÿ + τ, where τ is a predefined tolerance (8MBR RT 

window9 parameter, 1 minute by default). With those pairs, we generate a list whose elements are ÿĀ 2 ýĀ, and calculate the median (�) and median absolute deviation (σ) of that list. The possible 

target range in the retention time dimension is then: 

[ýÿ +� 2 2�, ýÿ +�+ 2σ] (1) 
If ion mobility data are used, we take the same approach to locate the target range in the ion 

mobility dimension (controlled by the 8MBR IM window9 parameter, 0.05 by default). The 

transferred ion9s m/z equals the donor ion9s m/z adjusted by mass calibration error (mass 

calibration is performed by MSFragger (30)). After locating the target region in m/z, retention time, 

and ion mobility if applicable, we trace all peaks within the region using our recently described 

algorithm (22). Two isotope peaks (+1 and +2) are also traced to check the charge state and the 

isotope distribution. Peak boundaries are allowed to extend beyond the target region9s retention 

time and ion mobility bounds. Peak tracing is performed rapidly using the index, after which the 

donor ion9s peptide information is assigned to the traced monoisotopic peak.  
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IonQuant can automatically detect if the data were acquired using FAIMS. If FAIMS was used, 

IonQuant builds separate spectral indexes corresponding to each compensation voltage. Then, 

peak tracing, ion detection, and ion transfer are performed within each compensation voltage. 

 

MBR false discovery rate estimation 

To estimate the rate at which false transfers occur, we adopted a supervised semi-parametric 

mixture model that we previously applied in a number of related applications (19, 20). For each 

successfully transferred donor ion (i.e., target ion), we try to transfer a decoy ion, created to have 

the same retention time and ion mobility (if applicable) but with a large m/z shift (31-33). To 

generate a decoy, we first shift the m/z by +11×1.0005 Th. If there is no traceable peak in that 

region, we keep decreasing the m/z shift by 1.0005 Th until we successfully trace a peak or until 

the m/z shift reaches +4 Th. 

 

For all transferred target and decoy ions, we calculate four (without ion mobility) or five (with ion 

mobility) scores (Table 1). For one of these scores (using the 0/+1/+2 peaks), Kullback-Leibler 

divergence is used to compare the quality of the traced isotopic distribution to a theoretical one 

given m/z and charge state, where the Poisson distribution is used as theoretical (34).  

 

We classify all transferred ions (identified with sequence, charge, and modification information) 

into four types: a target ion that has not been identified by MS/MS in the acceptor run (type 1); a 

decoy ion that is from a m/z-shifted type 1 ion (type -1); a target ion that has already been identified 

by MS/MS (type 2); or a decoy ion that is from a m/z-shifted type 2 ion (type -2). Following the 
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strategy we previously used for DIA data (20),  we train a linear discriminant analysis (LDA) model 

using scores from type 2 and -2 ions. From the trained LDA, we calculate a final score for each 

type 1 and -1 ion:  

Ā =∑ýÿÿ Āÿ (2) 
where Ā is the final score, ýÿ are the weights from LDA, and Āÿ are the scores detailed in Table 1. 

If multiple ions were transferred to one location, the top scoring one is kept. 

Using the final scores from type 1 and -1 ions, we estimate a posterior probability of correct 

identification transfer by fitting a mixture model: 

ÿ(Ā) = π0ÿ0(Ā) + π1ÿ1(Ā) (3) 
where ÿ0  is the distribution of correctly transferred ions, ÿ1  is the distribution of incorrectly 

transferred ions, π0 and π1 are the respective priors of false and true transferred ions. We use 

the expectation-maximization (EM) algorithm (20) to estimate the coefficients and distributions in 

Equation (3). 

 

After fitting the mixture model, we calculate a posterior probability for each transferred ion using 

þ(Āÿ) = π1ÿ1(Āÿ)π0ÿ0(Āÿ) + π1ÿ1(Āÿ) (4) 
where Āÿ is the score of the transferred ion. Then, we calculate an ion-level MBR FDR using the 

posterior probability (35) of type 1 ions: 

���̂(ā) = ∑ (1 2 þ(Āÿ))ý�≥þ∑ �ý�≥þÿ (5) 
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where ā is a score threshold and ∑ �ý�≥þÿ  is the number of type 1 ions whose score is larger than ā. We can also calculate peptide- and protein-level FDR for MBR by collapsing ions with the same 

sequence or protein and using the highest probability entry in the FDR calculation. 

 

Calculating protein intensity using MaxLFQ algorithm 

Cox et al. proposed MaxLFQ (15) algorithm to calculate protein intensity with peptide intensities. 

It has a high precision (low CV) according to our previous study (22). We implemented it in 

IonQuant to provide a new (default) option in addition to the top-N approach. 

 

Given a study with N experiments (samples), and a protein with M quantified peptide ions, for 

each peptide ion þ ∈ [1,ý] we calculate a log-ratio of its intensities between experiments ÿ and Ā: 
ÿÿ,Ā(þ) = log �ÿ(þ)�Ā(þ) = log �ÿ(þ) 2 log �Ā(þ) (6) 

where �ÿ(þ) is the intensity of peptide ion þ from ÿ-th experiment. If the ion is not quantified in 

experiment ÿ  or Ā , we do not calculate the corresponding log ratio. Then, we have a linear 

relationship among the log-transformed protein intensities and their peptide ion log-ratios: 

þÿ 2 þĀ = �ÿ,Ā (7) 
where þÿ  is the (unknown) log-transformed protein intensity in ÿ-th experiment and �ÿ,Ā  is the 

median of the log-ratios ÿÿ,Ā(þ) among all peptide ions þ from 1 to ý. Given the set of 1 to þ 

experiments, Equation (7) can be expressed in a matrix form 

�� = � (8) 
where 
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�ÿ,Ā = {21                   (ÿ b Ā)∑ �(ÿ, Ā)�21
ÿ=1      (ÿ = Ā) (9) 
� = [þ1⋮þ�] 

�� =
{  
  ∑ �ÿ,Ā �
Ā=ÿ+1                     (ÿ = 1)
∑ �ÿ,Ā �
Ā=ÿ+1 2∑�Ā,ÿÿ

Ā=1  (ÿ > 1) 
In Equation (9), �(ÿ, Ā) equals 1 if there is a peptide ion quantified in both experiment ÿ and Ā, and 

0 otherwise. Equation (8) can be efficiently solved with Cholesky decomposition to get the log-

transformed protein intensity þÿ. Then, the protein intensity in experiment ÿ equals þ��. 
 

Validation of the FDR for MBR approach using two-organism dataset 

We used 40 runs from Lim et al. (18) (ProteomeXchange (36) identifier PXD014415) to evaluate 

the sensitivity and precision of FDR-controlled MBR. This dataset contains 20 runs with only H. 

sapiens proteins and 20 with a mixture of H. sapiens (90%) and S. cerevisiae (10%) proteins, all 

acquired on an Orbitrap Fusion Lumos mass spectrometer. Further sample preparation and data 

acquisition details can be found in the original publication (18). We used FragPipe (version 13.0) 

with MSFragger (37) (version 3.0), Philosopher (38) (version 3.2.7), and IonQuant (22) (version 

1.5.5) to analyze this dataset. For this analysis pipeline, raw spectral files were first converted to 

mzML using ProteoWizard (version 3.0.20066) with vendor9s peak picking. We used MaxQuant 

(39) (version 1.6.14.0) and also Skyline (40) (version Skyline-daily (64-bit) 20.2.1.315 

(3785d2eb9)) for comparison. We used raw spectral files for MaxQuant and spectral files 

converted to the mzML format for other tools. A protein sequence database of reviewed H. 
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sapiens (UP000005640) and S. cerevisiae (UP000002311) from UniProt (41) (reviewed 

sequences only; downloaded on Jan. 15, 2020) and common contaminant proteins (26448 

proteins total) was used. For the MSFragger analysis, precursor and (initial) fragment mass 

tolerance were set to 50 ppm and 20 ppm, respectively. Reversed protein sequences were 

appended to the original database as decoys. Mass calibration and parameter optimization were 

enabled. Isotope error was set to 0/1/2, and one missed trypsin cleavage was allowed. Peptide 

length was set from 7 to 50, and peptide mass was set to 500 to 5000 Da. Oxidation of methionine 

and acetylation of protein N-termini were set as variable modifications. Carbamidomethylation of 

cysteine was set as a fixed modification. Maximum allowed variable modifications per peptide 

was set to 3. Philosopher (38) with PeptideProphet (42) and ProteinProphet (43) was used to 

estimate identification FDR. The PSMs were filtered at 1% PSM and 1% protein identification 

FDR. Quantification and MBR was performed with IonQuant. The minimum number of ions 

parameter required for quantifying a protein was set to 2 (default). To test the performance of 

FDR control for MBR, the maximum number of runs used for transfer was set to 40, and the 

minimum required correlation between the donor and acceptor run was set to 0. Ion-, peptide-, 

and protein-level MBR FDR thresholds were all set to 1% unless otherwise noted. Protein 

intensities were computed using the re-implementation of MaxLFQ protein intensity calculation 

algorithm described above. Default values were used for all the remaining parameters. For 

MaxQuant comparisons, the parameters were set as close to those described above as possible, 

with maximum modifications per peptide set to 3, maximum missed cleavages set to 1, LFQ 

enabled with default settings, maximum peptide mass set to 5000, built-in contaminant proteins 

were not used, and the second peptide option was not used. Default values were used for all the 

remaining MaxQuant parameters.  
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For Skyline comparisons, pep.xml files from PeptideProphet were loaded with probability 

threshold 0.9486 that corresponds to 1% peptide-ion level FDR in this dataset. A protein FASTA 

file filtered with 1% protein FDR was also loaded to make sure that Skyline was processing the 

peptides additionally filtered with 1% protein FDR. Retention time filtering tolerance was set to 

0.4 minutes, the same tolerance as in IonQuant. After loading all PSMs, we let Skyline generate 

decoys by reversing the sequences and shifting the precursor masses. Then, we reintegrated the 

peaks by training a model with the built-in mProphet (44). Finally, we exported a peptide 

quantification report with estimated q-values, and filtered the data using 0.01 threshold.  

 

We classified a peptide as an S. cerevisiae peptide if it only maps to S. cerevisiae proteins. We 

classified a peptide as H. sapiens if it maps to at least one H. sapiens protein. The classification 

was done based on the protein name in the searched protein sequence database: those ending 

with <_HUMAN= were classified as H. sapiens proteins and those ending with <_YEAST= were 

classified as S. cerevisiae proteins. 

 

Quantification precision comparison using four HeLa cell lysate replicates 

We used four replicate HeLa cell lysate runs acquired on a timsTOF Pro mass spectrometer (23) 

with 100 ms TIMS accumulation time to evaluate quantification precision when MBR is used. As 

in the previous section, we used FragPipe (version 13.0) with MSFragger (version 3.0), 

Philosopher (version 3.2.7), and IonQuant (version 1.5.5) to analyze this dataset. MaxQuant 

(version 1.6.14.0) was used to perform a benchmark comparison. Raw spectral files (.d extension) 

were used. The sequence database contained reviewed H. sapiens (UP000005640) proteins and 

common contaminants from UniProt (downloaded on Sep. 30, 2019; 20463 sequences). The 

minimum number of ions parameter required for quantifying a protein was set to 2 unless 
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otherwise noted. For MBR in IonQuant, MBR top runs parameter was set to 3 and MBR min 

correlation was set to 0. Ion-, peptide-, and protein-level MBR FDR threshold were set to 1%. 

Remaining parameters were identical to those in the previous section. We used the number of 

proteins quantified in at least two runs and quantification CV across replicates to evaluate the 

performance. 

 

Quantification accuracy comparison using the three-organism dataset 

We used the three-organism dataset by Prianichnikov et al. (24) to demonstrate the accuracy of 

IonQuant with MBR. There are six runs from two experimental conditions (A and B) in which H. 

sapiens, S. cerevisiae, and E. coli proteins are mixed at known ratios. The ratios between 

conditions A and B are 1:1 (H. sapiens), 2:1 (S. cerevisiae), and 1:4 (E. coli). These data were 

acquired on a timsTOF Pro mass spectrometer, and details of the sample preparation and data 

generation can be found in the original publication (24). We used FragPipe (version 13.0) with 

MSFragger (version 3.0), Philosopher (version 3.2.7), and IonQuant (version 1.5.5) to analyze the 

data. MaxQuant results published by Prianichnikov et al. (24) were used as a benchmark 

comparison. Using the latest MaxQuant (version 1.6.14.0), a reviewed UniProt protein sequence 

database, and parameters closest to those of MSFragger and IonQuant yielded results similar to 

those in the original publication (Supporting Figure S1). A combined database of reviewed H. 

sapiens (UP000005640), S. cerevisiae (UP000002311), and E. coli (UP000000625) sequences 

from UniProt (30788 sequences downloaded Apr. 18, 2020) was used. Ion-, peptide-, and protein-

level MBR FDR thresholds were set to 1%. The minimum number of ions parameter required for 

quantifying a protein was set to 2. Allowed missed cleavages was set to 2, and all other 

parameters were the same as those in the previous section. We used LFQbench (45) to plot the 

protein quantification results. 
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Single-cell dataset analysis 

We used 26 runs published by Williams et al. (25) to demonstrate IonQuant9s performance with 

single-cell data. There are 3 replicates containing 0 cells which served as negative controls, 11 

replicates containing 1 cell, 4 replicates containing 3 cells, 4 replicates containing 10 cells, and 4 

replicates containing 50 cells. The data were generated on an Orbitrap Fusion Lumos mass 

spectrometer (Thermo Fisher Scientific) over a 30 minute LC gradient, with MS/MS spectra 

acquired in the ion trap. Details of the sample preparation and data acquisition can be found in 

Williams et al. (25). The raw data files were converted to mzML format using ProteoWizard 

(version 3.0.19302) with vendor9s peak picking. We used FragPipe (version 13.0) with MSFragger 

(version 3.0), Philosopher (version 3.2.7), and IonQuant (version 1.5.5) to analyze the data. We 

also used MaxQuant (version 1.6.14.0) as a benchmark. The database was downloaded along 

with the data (20129 proteins, ProteomeXchange (36) identifier MSV000085230). In MSFragger 

analysis, common contaminants and reversed protein sequences were appended by Philosopher. 

In MaxQuant analysis, the built-in contaminant sequences were used. The precursor mass 

tolerance was set to 20 ppm, and the initial fragment mass tolerance was set to 0.6 Da. Two 

missed cleavages were allowed. IonQuant (version 1.5.5) with and without MBR was used. The 

MBR top runs parameter for MBR transfer was set to 26 and the minimum required correlation 

was kept at 0. The MaxLFQ protein intensity calculation algorithm was used. The minimum 

number of ions parameter required for quantifying a protein was set to 1. Multiple ion-level MBR 

FDR thresholds were applied. The rest of the parameters are the same as those used in the 

previous section. MaxQuant9s parameters were set as close as possible to those used in 

MSFragger and IonQuant. We used the numbers of quantified peptides and proteins to evaluate 

the sensitivity, and we used CV to evaluate the precision of label free quantification with MBR. 
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Single-cell FAIMS dataset analysis 

We used 9 runs published by Cong et al. (26) to demonstrate the performance of analyzing single-

cell data from an Orbitrap Eclipse Tribrid mass spectrometer (Thermo Fisher Scientific) coupled 

with FAIMS. There are 3 single HeLa cell runs, 3 blank runs served as negative controls, and 3 

runs with 100 HeLa cells that served as a library for MBR. Each run has two compensation 

voltages: -55 V and -70 V. The sequence database contains reviewed H. sapiens (UP000005640) 

proteins and common contaminants from UniProt (downloaded on Sep. 30, 2019; 20463 

sequences). We used FragPipe (version 13.0) with MSFragger (version 3.0), Philosopher (version 

3.2.7), and IonQuant (version 1.5.5) to analyze the data. Raw spectral files were first converted 

to the mzML format using ProteoWizard (version 3.0.20253) with vendor9s peak picking. The 

number of allowed donor runs was set to 9. The rest of the parameters are the same as those 

used in the previous section. MaxQuant (version 1.6.14.0) was used for comparison. Since 

MaxQuant does not support FAIMS data natively, we split each raw file into separate mzXML files 

using FAIMS-MzXML-Generator (https://github.com/PNNL-Comp-Mass-Spec/FAIMS-MzXML-

Generator). Scans in each mzXML file have the same compensation voltage (46). Then, we 

assign fraction number 1 to the mzXML files with compensation voltage equal to -55 V, and 

fraction number 3 to the mzXML files with compensation voltage equal to -70 V (Supporting 

Figure S3). In this way, ions are only allowed to be transferred among the files with the same 

compensation voltage. The rest of the parameters were set as close as possible to those used in 

MSFragger and IonQuant. We compared the number of quantified proteins with and without MBR 

from MaxQuant and IonQuant. 

 

Run time comparison 
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We used the two-organism dataset with 40 Orbitrap Fusion Lumos runs and the HeLa dataset 

with 4 timsTOF Pro runs to demonstrate the speed of label-free quantification coupled with FDR-

controlled MBR in IonQuant (version 1.5.5). MaxQuant (version 1.6.14.0) was used for 

comparison. For the two-organism dataset, we used a combined database of reviewed H. sapiens 

(UP000005640) and S. cerevisiae (UP000002311) sequences from UniProt (41) plus common 

contaminants  (26448 proteins downloaded Jan. 15, 2020). For the HeLa dataset, a database of 

reviewed H. sapiens (UP000005640) proteins from UniProt (20463 proteins downloaded on Sep. 

30, 2019) and common contaminants was used. Reversed proteins sequences were appended 

to both databases as decoys for MSFragger analysis. All other parameters are identical to those 

used in the previous section. All analyses were run on a desktop with 4 CPU cores (Intel Xeon 

E5-1620 v3, 3.5 GHz, 8 logical cores) and 128 GB memory. We isolated quantification-specific 

run times from MaxQuant log files. 

 

Results and Discussion 

FDR-controlled MBR 

We developed an MBR module in IonQuant enabling accurate and fast label-free quantification 

with match-between-runs peptide ion transfer with the help of the indexing functionality in 

IonQuant (see Figure 1 for an overview). For each experiment (acceptor run) in the analysis, ion-

level Spearman9s rank correlation coefficients with all other experiments are calculated, where an 

ion is defined as the combination of peptide sequence, modification pattern, and charge state. 

The percentage of ions overlapping between two runs is used as a weight in the calculation (28). 

For each acceptor run, IonQuant picks the top N runs with a correlation larger than a certain 

threshold as donor runs. Both parameters (8MBR top runs9 and <MBR min correlation9 can be 

adjusted by the user). Given an ion from a donor run, IonQuant locates a region in the acceptor 
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run where the transferred ion is likely to be using m/z, retention time, and ion mobility (if applicable) 

distributions from both runs (see Figure 1 and Experimental Procedures). For simplicity, we use 

retention time to describe the region-finding process. Given an ion from a donor run, all ions within 

a predefined retention time tolerance are collected. Retention time differences from pairs of ions 

overlapping between the runs are calculated, and the median and median absolute deviation of 

these differences are found. Then the region for transfer is determined using Equation (1). We 

use the same approach to locate the ion mobility region. After getting a 1-D (without ion mobility) 

or 2-D (with ion mobility) region, IonQuant traces peaks using the donor ion9s m/z, taking any 

mass calibration correction into account. In addition to the monoisotopic peak, two additional 

isotope peaks (+1 and +2) are also included in peak tracing so that the isotopic distribution and 

charge state can be used in the evaluation. Finally, IonQuant assigns the donor ion9s peptide to 

each traced peak and calculates four (without ion mobility) or five (with ion mobility) scores (Table 

1) measuring the quality of the peptide ion transfer. 

 

In conventional MBR, most notably in MaxQuant, ions matching tolerance criteria are transferred 

without statistically assessing the confidence in the transfer. Here, we propose a semi-parametric 

mixture-modeling approach to estimate the FDR of transferred ions (see Experimental 

Procedures). Briefly, decoy ion transfers are generated by transferring ions with an m/z shift. All 

transferred ions are classified into four types: the ion has not been identified by MS/MS (type 1); 

the ion is a decoy type 1 ion (type -1); the ion has been identified by MS/MS (type 2); and the ion 

is a decoy type 2 ion (type -2). IonQuant trains a linear discriminant analysis (LDA) model with 

type 2 and -2 ions to separate the target and decoy ions. Using the trained model, a final score is 

calculated for each of the type 1 and -1 ions (Equation (2)). A mixture model (Equation (3)) is built 

using type 1 and -1 ions, and the expectation-maximization (EM) algorithm is used to fit the model 

and subsequently calculate the posterior probability. Finally, global ion-level FDR (Equation (5)) 
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is calculated using the local FDR, equal to one minus the posterior probability (Equation (4)). 

IonQuant also calculates peptide and protein level FDR by collapsing ions with the same peptide 

and protein, respectively. 

 

In the remainder of the manuscript, we demonstrate the accuracy of FDR-controlled MBR using 

a two-organism dataset, and the precision and accuracy of subsequent label-free quantification 

by using HeLa replicate runs, a three-organism dataset, and two single-cell dataset, respectively.  

 

Evaluation of FDR-controlled MBR method 

We used the dataset published by Lim et al. (18) to evaluate the false positive rate of FDR-

controlled MBR (see Experimental Procedures). The dataset is comprised of 20 LC-MS files 

from H. sapiens-only proteins (<H=) and 20 from a mixture of H. sapiens (90%) and S. cerevisiae 

(10%) proteins (<HY=). With MBR, S. cerevisiae peptides transferred from HY to H runs are known 

to be false positives, and can be used to evaluate the false positive rate, equal to false positives 

(S. cerevisiae peptides in H runs) divided by negatives (S. cerevisiae peptides in total). To ensure 

all S. cerevisiae peptides in the HY runs have the chance to be transferred, the number of top 

runs used in transferring was set to 40 and minimum required correlation was set to 0. In 

evaluation, a peptide was assigned to S. cerevisiae if all proteins it maps to are from S. cerevisiae, 

or to H. sapiens if at least one of its proteins is from H. sapiens.  

 

Overall, IonQuant coupled with MSFragger identified 45875 unique H. sapiens peptides and 4610 

unique S. cerevisiae peptides, ~19% and ~31% more H. sapiens and S. cerevisiae peptides 

compared to MaxQuant, respectively (Table 2, Supporting Table S1). More peptides were also 
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identified or transferred in individual runs with MSFragger and IonQuant. In transferring ions 

between the runs, IonQuant had a lower false positive rate than MaxQuant, 2.3% compared to 

2.7%. The numbers listed for MaxQuant in Table 2 differ slightly from Figure S1 in Lim et al. (18) 

because of small differences in data analysis settings and version of the tools used. Figure 2 

shows average peptide coverage, average peptide false positive rate, average protein coverage, 

and average protein false positive rate with respect to different MBR FDR thresholds. The 

peptide/protein coverage values shown are H. sapiens peptides/proteins in each H run divided by 

total H. sapiens peptides/proteins identified in the dataset. Peptide coverage increases from 57% 

to 79% with the inclusion of MBR, and protein coverage increases from 87% to 96%. As the MBR 

FDR threshold is increased, neither peptide nor protein coverage increase significantly, indicating 

most H. sapiens peptides have been successfully transferred by IonQuant already at 1% MBR 

FDR. The false positive rate continues to rise when the MBR FDR threshold is increased, as 

expected. 

 

In comparing with the results from Skyline, we noticed that using three scores (intensity, retention 

time difference, and precursor mass error) had a lower false positive rate (Supporting Table 

S12), 5.2% vs 10.4%, than using the default set of scores in training a model using the built-in 

mProphet. Despite this improvement, mProphet9s false positive rate remained higher than 

IonQuant9s (2.3%). The peptide numbers in Skyline without MBR are similar to those from 

IonQuant since both tools were processing the PSMs from MSFragger. 

 

Improved protein quantification with FDR-controlled MBR  

We used four HeLa cell lysate replicates acquired on a timsTOF Pro published by Meier et al. (23) 

to demonstrate the sensitivity and precision of label-free quantification coupled to FDR-controlled 
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MBR (see Experimental Procedures). We previously (22) performed a similar analysis of the 

same dataset, but without MBR and with protein abundances calculated from peptide ion 

intensities using top-N peptide approach. In this work we use a new protein abundance calculation 

module in IonQuant implemented according to the MaxLFQ (15) algorithm (see Experimental 

Procedures). 

 

Table 3 lists the numbers of proteins quantified in at least two runs and the CV from each method. 

Detailed ion and protein lists can be found in Supporting Table S2 and Supporting Table S3. 

The results from IonQuant and MaxQuant (both with MaxLFQ method) are shown, which were 

run under similar settings of requiring either a minimum of 1 or 2 peptide ions in pair-wise ratio 

calculation in MaxLFQ method (referred to as 8Min ions9 in IonQuant and 'LFQ min. ratio count' 

in MaxQuant). Enabling MBR (MBR+) improved the number of quantified proteins without a 

significant increase in protein quantification CV. For example, with min 2 ion setting, IonQuant 

MBR+ quantified 9% more proteins (5527 vs 5061) while maintaining a CV similar to IonQuant 

MBR- (3.6% and 3.5%, respectively). Compared to MaxQuant, IonQuant quantified more proteins 

and with greater precision (lower CVs) in all pair-wise comparisons between the tools under 

comparable settings. For example, with minimum ion count set to 1, IonQuant with MBR+ 

quantified 6346 proteins with a CV of 4.0%, compared to 5950 proteins with a CV of 5.3% for 

MaxQuant with MBR+. IonQuant9s maxLFQ-based protein abundance calculation method also 

had lower CVs compared to IonQuant with MSstats (47) for peptide to protein intensity roll-up, 

whereas our initial (top-N peptide based) strategy for protein abundance calculation in IonQuant 

was inferior to that of MSstats (22) (Supporting Table S13).  
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We also used the three-organism mixture dataset published by Prianichnikov et al. (24) to 

demonstrate the accuracy of label-free quantification when FDR-controlled MBR is employed (see 

Experimental Procedures). There are three replicates each of two experimental conditions, 

where the ratios between the two conditions are 1:1 (H. sapiens), 2:1 (S. cerevisiae), and 1:4 (E. 

coli). Since these proteomes were mixed at known ratios, we can evaluate the accuracy of the 

label-free quantification algorithm by comparing the estimated ratio against the ground truth. 

MaxQuant results published by Prianichnikov et al. (24) were used as a benchmark. We also 

repeated the analysis with a more recent version of MaxQuant (version 1.6.14.0), a newer 

reviewed protein database, and parameters as close as possible to those used in MSFragger and 

IonQuant, and got similar results (Supporting Figure S1). We used LFQbench (45) to summarize 

the analyses and visualize the results (Figure 3 and Supporting Figure S2). As expected, both 

MaxQuant and IonQuant quantified more proteins with MBR than without MBR. IonQuant 

quantified 6% and 23% more proteins compared to MaxQuant with and without MBR, respectively 

(Figure 3, Supporting Table S4, Supporting Table S5). IonQuant also had fewer outliers than 

MaxQuant. The peptide level comparison (Supporting Figure S2) showed the same trend in 

comparing IonQuant with MaxQuant. 

 

FDR-controlled MBR in single-cell data 

We then evaluated the performance of IonQuant with FDR-controlled MBR in single-cell datasets. 

The first dataset (24) consisted of 5 biological replicates with 1, 3, 10, and 50 cells. In addition, 

blank runs (0-cells) were also acquired and used as a negative control for MBR. MaxQuant with 

and without MBR were used as a benchmark.  
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We first evaluated the number of quantified proteins (proteins with non-zero intensities) (Figure 

4(a)). Detailed ion and protein lists can be found from Supporting Table S6 and Supporting 

Table S7. Of note, MaxQuant with MBR (MBR+) reported on average 68 proteins from a replicate 

of the blank (0-cell) run, which is much more than MaxQuant MBR- (14 proteins), IonQuant MBR- 

(19 proteins), and IonQuant MBR+ (31 proteins with 1% FDR). This by itself indicates a noticeable 

false transfer rate of MaxQuant9s MBR in these data. MSFragger with IonQuant, without MBR 

(MBR-), identified and quantified a higher number of proteins per sample on average than 

MaxQuant across all groups of samples. As expected, as the number of cells per sample 

increases, the average number of proteins quantified per sample, with or without MBR, increases 

for both MaxQuant and IonQuant. Comparing the numbers from MaxQuant MBR+ and IonQuant 

MBR+ with FDR set to 1% shows that IonQuant still has a higher number of transferred proteins 

than MaxQuant, which demonstrates the high sensitivity of IonQuant coupled with MSFragger.   

 

Figure 4(b) shows the number of peptides and proteins quantified in at least two runs, and protein 

quantification CV from analyzing 11 replicates of 1-cell sample with MaxQuant and IonQuant, 

respectively. Without MBR, IonQuant measured more peptides (1409 vs 1208) and more proteins 

(406 vs 371), while achieving a lower CV (19.3% vs 27.0%) compared with MaxQuant. With MBR 

and 1% FDR control, IonQuant also measured more peptides (4457 vs 3937) and more proteins 

(1030 vs 918) while maintaining a lower CV (24.1% vs 26.0%) compared with MaxQuant. 

 

FDR-controlled MBR in single-cell data with FAIMS 

We used 9 runs (26) from an Orbitrap Eclipse Tribrid mass spectrometer (Thermo Fisher Scientific) 

coupled with FAIMS to further demonstrate the necessity of controlling FDR for MBR in sparse 

datasets. There are 3 blank samples containing cell-free supernatant analyzed as negative control, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2021. ; https://doi.org/10.1101/2020.11.02.365437doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.02.365437
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 single HeLa cell samples, and 3 samples with 100 HeLa cells to be used as a library for MBR. 

Each run has two compensation voltages: -55 V and – 70 V. MaxQuant with and without MBR 

was again used for comparison. Since MaxQuant does not natively support FAIMS data, we split 

each run into two: one has scans with -55 V and the other has scans with -70 V. In MaxQuant 

analysis, files with different compensation voltages were assigned to different fractions (i.e., 1 and 

3, Supporting Figure S3). IonQuant automatically detects and handles FAIMS data, so this 

manual step is not necessary. 

 

Table 4 shows the number of quantified proteins (proteins with non-zero intensities) from blank 

and single-cell HeLa samples (the corresponding ions and protein lists can be found in 

Supporting Table S8 and Supporting Table S9). Both MaxQuant and IonQuant with MBR- 

identified a relatively large number of proteins in the blank samples (79 and 97 on average per 

replicate, respectively). This suggests that the blank samples in this experiment cannot be 

considered as true negative controls for MBR, further highlighting the need for statistical FDR 

control. While MaxQuant with MBR+ quantified significantly more proteins in the single-cell 

samples than with MBR- (on average, 1230 vs 557), with MBR+ it also reported on average 492 

proteins in the blank samples. In contrast, IonQuant with MBR+ and 1% FDR quantified a 

comparable number of proteins (on average, 1156) in the single-cell runs as MaxQuant with 

MBR+, however, the number of quantified proteins in the blank samples has not increased as 

significantly as with MaxQuant. Applying more lenient MBR FDR thresholds of 2% or 5% in 

IonQuant results in a significant increase in the number of quantified proteins, while the number 

of proteins in the blank samples increases as well but still stays below that of MaxQuant with 

MBR+.   
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Overall, our results above suggest that application of the MBR strategy with no FDR control to 

sparse datasets, such as single-cell FAIMS data, may result in a high rate of false transfers. 

IonQuant, with its ability to estimate FDR, provides the users a way to control the rate of false 

transfers by applying an FDR threshold of their choice. This dataset also invites a discussion 

regarding a reasonable FDR threshold to apply in different scenarios. In a typical whole cell lysate 

data, the saturation in the number of quantified proteins is clearly reached at a small FDR 

threshold (e.g., around 1% FDR in Figure 2(a)). In such datasets, applying a more lenient FDR 

threshold is likely to reduce the overall quantification accuracy with no noticeable improvement in 

the number of quantified proteins. Single-cell datasets, on the other hand, are naturally sparser, 

with more peptides and proteins that can be transferred from other single-cell runs, and especially 

from the <library= runs (i.e., from boosting samples containing a higher number of cells). In such 

cases, using a more lenient (e.g., 2%) MBR FDR threshold may be considered, provided that 

downstream data analysis tools (e.g., for pathway-level analysis) are sufficiently robust toward 

quantification errors (48). 

 

Speed of indexing-based MBR in IonQuant 

Finally, we compared the computational time required by IonQuant (version 1.5.5) and MaxQuant 

(version 1.6.14.0), both with MBR enabled. The HeLa dataset (timsTOF Pro) and the two-

organism dataset from (Orbitrap Fusion Lumos) were used, comprised of 4 and 40 LC-MS files, 

respectively (Experimental Procedures). For MaxQuant, only jobs related to quantification and 

MBR were counted (Supporting Table S10 and Supporting Table S11). Table 5 displays the 

run time of these tools in minutes. IonQuant is approximately 19 or 38 times faster than MaxQuant 

in analyzing the data with or without ion mobility, respectively. The reason that IonQuant exhibits 

a smaller gain in speed compared with MaxQuant when analyzing the timsTOF Pro data is that 

most of the IonQuant runtime is spent loading the raw data via the vendor-provided library (22). 
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Conclusions 

Match-between-runs (MBR) is a commonly used approach to quantify additional peptides and 

proteins by transferring information across different samples. It largely mitigates the missing value 

problem of DDA-based label-free quantification, increasing data completeness for improved 

differential analyses. Peptides are transferred from one run to the other by aligning retention time 

and ion mobility (if applicable). Due to the dynamic range and complexity of proteomic samples, 

low signal-to-noise ratios and co-isolation interference can result in incorrectly transferred ions. 

To our knowledge, there was previously no method to control the rate of false transfers in DDA-

based MBR in practical settings. To address this issue, we have described a method to estimate 

and control the FDR for MBR with the help of mixture modeling and the target-decoy concept. We 

implemented MBR with FDR control in our quantification tool, IonQuant. Our experiments and 

comparisons with a frequently used tool MaxQuant showed that IonQuant allowed fewer false 

positive transfers while maintaining high sensitivity. We also highlight the importance of FDR 

control when MBR is applied to sparse datasets such as those from single-cell FAIMS proteomics 

experiments. Furthermore, by way of advanced indexing technology, IonQuant performs MBR 

with unmatched speed, making it well-suited even for analysis of large-scale datasets. 
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The two-organism data was published by Lim et al. (18) and can be found at the 

ProteomeXchange Consortium website (36) with identifier PXD014415. The HeLa cell lysate data 

was published by Meier et al. (23) and can be found at the ProteomeXchange Consortium website 

with the identifier PXD010012. The three-organism data was published by Prianichnikov et al. (24) 

and can be found at the ProteomeXchange Consortium website with identifier PXD014777. The 

single-cell data was published by Williams et al. (25) and can be found at the ProteomeXchange 

Consortium website with identifier MSV000085230. MSFragger and IonQuant programs were 

developed in the cross-platform Java language and can be accessed at 

http://msfragger.nesvilab.org/ and https://ionquant.nesvilab.org/. Peptide list can be accessed at 

https://dx.doi.org/10.5281/zenodo.4574598. 
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Table 1. List of individual scores used to compute the composite score for each transferred ion. 

Score Explanation 

Log10(intensity) 
Log-transformed intensity of a traced peak. 
The intensity can be from an area (without ion 
mobility) or a volume (with ion mobility). 

Log10(KL) 

Log-transformed Kullback-Leibler divergence 
of an experimental isotope distribution and the 
theoretical isotope distribution. 0, +1, and +2 
isotope peaks are used. The absolute value is 
also square root transformed. 

Abs(ppm) 
Absolute value of the mass error (in ppm) 
from a traced peak. The value is also square 
root transformed. 

IM diff 
Ion mobility difference between an acceptor 
ion and its donor ion. The value is also square 
root transformed. 

RT diff 
Retention time difference between an 
acceptor ion and its donor ion. The value is 
also square root transformed. 
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Table 2. Peptides quantified by MaxQuant and IonQuant in analyzing the two-organism dataset 
with MBR. MSFragger was used to provide identification result for IonQuant. <Sample H= indicates 
H. sapiens-only samples and <Sample HY= indicates samples with a mixture of H. sapiens and S. 
cerevisiae proteins. There are 20 runs in each sample type. <MBR+= and <MBR-= indicate that the 
analysis was performed with and without match-between-runs (MBR), respectively. For each 
analysis, unique peptide counts (± range of counts) are listed along with per run identification 
rates (% of all observed peptides found in each run). 

MaxQuant  IonQuant 

Total unique H. 
sapiens peptides 

38405 
 

Total unique H. 
sapiens peptides 

45875 

Sample H, MBR - 19360±648 50.4%  Sample H, MBR - 26032±499 56.8% 

Sample HY, MBR - 18945±522 49.3%  Sample HY, MBR - 25683±716 56.0% 

Sample H, MBR + 31129±637 81.0%  Sample H, MBR + 36450±283 79.5% 

Sample HY, MBR + 29747±730 77.5%  Sample HY, MBR + 36113±625 78.7% 

Total unique S. 
cerevisiae peptides 

3527 
 

Total unique S. 
cerevisiae peptides 

4610 

Sample H, MBR - 20±5 0.6%  Sample H, MBR - 26±6 0.6% 

Sample HY, MBR - 1848±93 52.4%  Sample HY, MBR - 2597±82 56.3% 

Sample H, MBR + 98±10 2.7%  Sample H, MBR + 105±16 2.3% 

Sample HY, MBR + 2858±63 81.0%  Sample HY, MBR + 3625±62 78.6% 
 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2021. ; https://doi.org/10.1101/2020.11.02.365437doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.02.365437
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 3. Proteins quantified in at least two runs and coefficients of variation (CV) from four HeLa 
cell lysate replicates. <MBR+= and <MBR-= indicate that the analysis was performed with and 
without match-between-runs (MBR), respectively.. 

Tool 
Proteins 

quantified 
CV 

MaxQuant 

MBR- 
min 1 ion 5406 5.3% 

min 2 ion 4186 4.3% 

MBR+ 
min 1 ion 5950 5.3% 

min 2 ion 5073 4.7% 

IonQuant 

MBR- 
min 1 ion 5971 4.0% 

 min 2 ions 5061 3.5% 

MBR+ 
min 1 ion 6346 4.0% 

 min 2 ions 5527 3.6% 
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Table 4. Number of proteins with non-zero intensities from MaxQuant (MQ) and IonQuant (IQ). 

<MBR+= and <MBR-= indicate that the analysis was performed with and without match-between-

runs (MBR), respectively. The total nonredundant protein count in parentheses, and average 

proteins per run are outside parentheses. 

  MQ MBR- MQ MBR+ IQ MBR- 

IQ MBR+, 

1% FDR 

IQ MBR+, 

2% FDR 

IQ MBR+, 

5% FDR 

Blank 79 (152) 492 (887) 97 (195) 153 (314) 252 (548) 482 (954) 

Single-cell 

HeLa 557 (853) 1230 (1902) 756 (1024) 1156 (1638) 1481 (2093) 2046 (2591) 
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Table 5. Run time comparison (in minutes) of quantification-related tasks using the HeLa 

dataset (4 timsTOF Pro runs) and the two-organism dataset (40 Orbitrap Fusion Lumos runs). 

 HeLa two-organism 

MaxQuant 699 1056 

IonQuant 37 28 
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Figure 1. (a) Overview of match-between-runs in IonQuant. For each acceptor run (unfilled 
central point with blue outline) ion-level correlations with all other runs (filled blue and gray points) 
are calculated, where distance from the central point represents correlation. The top N runs 
(numbered blue points) within the correlation threshold (gray area) are selected as eligible donor 
runs. For every ion in each eligible donor run, target and decoy (m/z-shifted) transfer regions are 
located using retention time (and ion mobility if applicable). Peak tracing in the acceptor run is 
used to determine the isotopic distribution and the charge state. All matches are evaluated, and 
the top scoring donor for each acceptor peak is selected for transfer. (b) All matches/transferred 
ions are classified into one of the four categories shown. Type 2 and -2 matches are used to train 
a linear discriminant analysis (LDA) model. The trained LDA is then used to calculate the final 
score for type 1 and -1 matches. A posterior probability of correct transfer is estimated by fitting 
a mixture model, allowing estimation of ion-, peptide-, and protein-level false discovery rate (FDR) 
for match-between-runs. 
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Figure 2. Per-run proteome coverage and observed false positive rate as a function of the model-

estimated false discovery rate (FDR) threshold. Coverage is equal to the number of H. sapiens 

peptides/proteins from one run divided by the total number of H. sapiens peptide/protein 

identifications in the entire experiment. The false positive rate is equal to the number of S. 

cerevisiae peptides/proteins from one run divided by the total number of S. cerevisiae 

peptides/proteins. 
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Figure 3. Ground-truth protein quantification results from MaxQuant and IonQuant from a mixture 

of three different proteomes. MaxQuant results are as published by Prianichnikov et al. 2020. 

<MBR+= and <MBR-= indicate that the analysis was performed with and without match-between-

runs (MBR), respectively. S. cerevisiae proteins are shown in orange, H. sapiens in green, and E. 

coli in purple. The known ratios of condition A over condition B are 2:1 (S. cerevisiae), 1:1 (H. 

sapiens), and 1:4 (E. coli). The horizontal colored dashed lines (orange, green, and purple) 

indicate the true ratios. The black dashed lines are fitted curves from observed ratios. Box plots 

of the intensities are shown to the right of each scatter plot panel. 
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Figure 4. Peptides and proteins from MaxQuant and IonQuant analysis of the single-cell dataset. 

<MBR+= and <MBR-= indicate that the analysis was performed with and without match-between-

runs, respectively. (a) Numbers of proteins with non-zero intensities from samples with 0 cells 

(blank runs), 1 cell, 3 cells, and 10 cells, respectively. Two ion-level MBR false discovery rate 

(FDR) thresholds (1% and 5%) were applied. Black dots indicate the numbers from individual 

runs. (b) Peptides/proteins quantified in at least two runs and protein quantification coefficient of 

variation (CV) from 11 replicates of 1 cell samples, as a function of FDR threshold. <MQ= indicates 
MaxQuant and <IQ= indicates IonQuant. Black curves and dots indicate the CV of the 

corresponding tool. 
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