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Abstract

Missing values weaken the power of label-free quantitative proteomic experiments to uncover true
quantitative differences between biological samples or experimental conditions. Match-between-
runs (MBR) has become a common approach to mitigate the missing value problem, where
peptides identified by tandem mass spectra in one run are transferred to another by inference
based on m/z, charge state, retention time, and ion mobility when applicable. Though tolerances
are used to ensure such transferred identifications are reasonably located and meet certain
quality thresholds, little work has been done to evaluate the statistical confidence of MBR. Here,
we present a mixture model-based approach to estimate the false discovery rate (FDR) of peptide
and protein identification transfer, which we implement in the label-free quantification tool
lonQuant. Using several benchmarking datasets generated on both Orbitrap and timsTOF mass
spectrometers, we demonstrate superior performance of lonQuant with FDR-controlled MBR
compared to MaxQuant (19-38 times faster; 6-18% more proteins quantified and with comparable
or better accuracy). We further illustrate the performance of lonQuant, and highlight the need for
FDR-controlled MBR, in two single-cell proteomics experiments, including one acquired with the
help of high-field asymmetric ion mobility spectrometry (FAIMS) separation. Fully integrated in
FragPipe computational environment, lonQuant with FDR-controlled MBR enables fast and

accurate peptide and protein quantification in label-free proteomics experiments.
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Introduction

Due to its sensitive and high-throughput nature, liquid chromatography-mass spectrometry (LC-
MS) is a popular technology to identify and quantify peptides and proteins from complex samples.
Various approaches to LC-MS data acquisition (1-4) have been developed, among which data-
dependent acquisition (DDA) remains the most commonly used strategy. In the course of a DDA
run, eluted peptides are introduced into a mass spectrometer, where peptide ions are sampled
for fragmentation and identified from the resulting tandem mass (MS/MS) spectra. Precursor
peptide ion intensities are assumed to be correlated with the actual peptide amount, yielding
relative peptide and, after an additional peptide to protein roll-up step, protein quantification.
Peptide ions successfully targeted and identified by MS/MS are used to calculate peptide and
then protein abundances. However, due to the stochastic nature of intensity-based sampling of
peptide ions for MS/MS analysis, not all peptides are consistently identified in all runs. This in turn
gives rise to missing quantification values, weakening essential comparisons between different
biological samples or experimental conditions. Missing values are generally more prevalent in
DDA proteomics than in genomics or transcriptomics. The issue of missing data can be alleviated
to some degree using the data-independent acquisition (DIA) strategy (5-9). However, as label-
free quantification using DDA data remains popular, there is a critical need to improve

computational solutions for this method.

To address the missing value problem in DDA-based proteomics, a number of “identification
transfer” approaches have been devised (10-13), exemplified by the match-between-runs (MBR)
option in MaxQuant (14, 15) that allows “transfer” of identified precursor peptide peaks from one
run (referred to below as donor run) to another (acceptor). Given a peak identified by MS/MS in
the donor run, attributes such as m/z, charge state, and retention time, are used to locate a

corresponding peak in the acceptor run that is most likely the same peptide. The intensity of the
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donor peak is then assigned to the acceptor peak, thus filling in the missing value. With more
quantified features in common between runs, a greater number of peptides and proteins can be
compared among different runs and experiments, increasing the depth of experimental findings

(16, 17).

While the goal of MBR is to mitigate the missing value problem, it has the potential to introduce
false positives, as transferred peaks have not been rigorously identified using MS/MS spectra in
the acceptor run. Lim et al. (18) evaluated the false transfer rate of MBR using a two-organism
dataset. They concluded that there was a considerable proportion of false positives from MBR
when using MaxQuant, yet most were removed with additional filtering as part of the LFQ
calculations. However, in practical settings, even with the additional filtering, FDR of MBR may
still be unacceptably high. Thus, this subject deserves a more rigorous treatment that can be
generalized across different samples and experimental designs. Here, we propose a semi-
supervised approach to control the FDR of MBR, extending our earlier work on FDR for protein
identification (4, 19) and DIA quantification (20, 21). We implement FDR-controlled MBR in
lonQuant (22), which has been extended to support LC-MS data both with and without ion mobility.
We also implement a new protein abundance calculation module in lonQuant based on the
MaxLFQ strategy (15), improving upon our previously described top-N approach (21, 22). Using
the dataset from Lim et al. (18), we reproduce the authors findings and demonstrate that lonQuant
with FDR-controlled MBR has a lower false positive rate and higher sensitivity compared to
MaxQuant. With two additional datasets from timsTOF Pro mass spectrometers, we demonstrate
that FDR-controlled MBR results in higher quantification precision (lower CV), accuracy, and
sensitivity. Finally, we demonstrate that lonQuant displays high sensitivity and precision in single-
cell data with or without high-field asymmetric ion mobility spectrometry (FAIMS) separation, and

that FDR control for MBR is crucial in such datasets. Overall, we propose an efficient approach
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to perform MBR with FDR control while maintaining high quantification accuracy and precision.
We implement the new methods as a default option in lonQuant, readily available as a standalone

tool or within our integrated computational platform FragPipe (https:/fragpipe.nesvilab.org/).

Experimental Procedures
Experimental Design and Statistical Rationale

We used five datasets in this work. In all datasets, we estimated the identification false-discovery
rate using the target-decoy approach (4). For MSFragger, PSMs, peptides, and proteins were
filtered at 1% PSM and 1% protein identification FDR. For MaxQuant, PSMs and peptides were
filtered at 1% PSM FDR, and proteins were filtered at 1% protein FDR, which is MaxQuant’s
default setting. A two-organism dataset (H. sapiens and S. cerevisiae) with 40 LC-MS runs from
Lim et al. (18) was generated on an Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher
Scientific). In this dataset, 20 runs include only H. sapiens proteins, while the remaining 20 runs
contain a mixture of H. sapiens and S. cerevisiae proteomes. S. cerevisiae peptides transferred
to the 20 H. sapiens-only runs by MBR are false positives and were used to evaluate the false
positive rate. We also employed two datasets from timsTOF Pro (Bruker), as in our previous work
(22). A Hela dataset with 4 replicate injections from Meier et al. (23) was used to evaluate the
sensitivity (i.e., quantified protein count) and precision (i.e., coefficient of variation (CV)) of
quantification across replicate runs. A three-organism timsTOF dataset (H. sapiens, S. cerevisiae,
and E. coli) with 6 runs from Prianichnikov et al. (24) was used to evaluate quantification accuracy,
and contains two experimental conditions with ground truth protein ratios: 1:1 (H. sapiens), 2:1
(S. cerevisiae), and 1:4 (E. coli). A single-cell dataset published by Williams et al. (25) was
generated on an Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific). This

dataset contains 3 replicate runs with 0 cell (blank runs), 11 replicates with 1 cell, 4 replicates with
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3 cells, 4 replicates with 10 cells, and 4 replicates with 50 cells. Numbers of quantified peptides
and proteins were used to evaluate sensitivity, and quantification CV was used to evaluate
precision. The last dataset was also from a HelLa single-cell experiment (26), acquired on an
Orbitrap Eclipse Tribrid mass spectrometer with the help of FAIMS separation. There are 3 single
Hela cell runs, 3 blank runs, and 3 library runs generated from 100 cells. Numbers of quantified

proteins were used to evaluate sensitivity.

Indexing-based MBR

We developed a fast MBR algorithm based on indexing. In lonQuant (22), an index of each run is
built and written to the disk for fast feature extraction, which supports data with and without ion
mobility information. The peak tracing and normalization modules were improved to make it more
sensitive and robust compared to the initial release of lonQuant. The new version performs
resampling to make the peaks have the same time interval. Then, it performs Savitzky-Golay
smoothing (27), finds the boundaries, and subtracts background noise using Skyline’s approach

(https://skyline.ms/wiki/home/software/Skyline/page.view?name=tip peak calc). In the

normalization module, the whole m/z range is now divided into 10 bins with the same number of
ions, which makes normalization more robust for sparse data or samples with large differences in

abundance.

Given a run with possible missing values that will accept ions (acceptor run) and a separate run
that will be used to fill these missing values (donor run), correlations between the two runs are
calculated using overlapped ions’ retention times, intensities, and ion mobilities if applicable:
(oxr+oxmn)/20r(oxr+o0Xr,+o0xr;3)/3, where o is the overlapping ratio (28); ry, 1,

and r; are Spearman’s rank correlation coefficients of retention time, intensity, and ion mobility,
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respectively. Up to n (user-specified ‘MBR top runs’ parameter, 10 by default) donor runs with the
highest correlations (which must be greater than user-specified ‘MBR min correlation’ parameter,

0 by default) are selected.

For each ion in every selected donor run, we locate the target region within the acceptor run using
an approach similar to FlashLFQ (29). First, pairs of retention times from the corresponding ions
are collected and sorted according to the value from the donor run. Using d; and a; to denote the
retention times of i-th pair of ions from the donor and acceptor runs, respectively, we have pairs
from (d,, a,) to (dy, ay) sorted by d;, where N is the number of overlapped ions. Given a donor
ion with retention time t, we find its position in the sorted pairs satisfying d; <t < d;,;. Then, we
collect all pairs satisfying d; —t < d; < d; + T, where tis a predefined tolerance (‘MBR RT
window’ parameter, 1 minute by default). With those pairs, we generate a list whose elements are
a; — d;, and calculate the median (m) and median absolute deviation (o) of that list. The possible

target range in the retention time dimension is then:
[di+m—20,di+m+2cr] (1)

If ion mobility data are used, we take the same approach to locate the target range in the ion
mobility dimension (controlled by the ‘MBR IM window’ parameter, 0.05 by default). The
transferred ion’s m/z equals the donor ion’s m/z adjusted by mass calibration error (mass
calibration is performed by MSFragger (30)). After locating the target region in m/z, retention time,
and ion mobility if applicable, we trace all peaks within the region using our recently described
algorithm (22). Two isotope peaks (+1 and +2) are also traced to check the charge state and the
isotope distribution. Peak boundaries are allowed to extend beyond the target region’s retention
time and ion mobility bounds. Peak tracing is performed rapidly using the index, after which the

donor ion’s peptide information is assigned to the traced monoisotopic peak.
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lonQuant can automatically detect if the data were acquired using FAIMS. If FAIMS was used,
lonQuant builds separate spectral indexes corresponding to each compensation voltage. Then,

peak tracing, ion detection, and ion transfer are performed within each compensation voltage.

MBR false discovery rate estimation

To estimate the rate at which false transfers occur, we adopted a supervised semi-parametric
mixture model that we previously applied in a number of related applications (19, 20). For each
successfully transferred donor ion (i.e., target ion), we try to transfer a decoy ion, created to have
the same retention time and ion mobility (if applicable) but with a large m/z shift (31-33). To
generate a decoy, we first shift the m/z by +11x1.0005 Th. If there is no traceable peak in that
region, we keep decreasing the m/z shift by 1.0005 Th until we successfully trace a peak or until

the m/z shift reaches +4 Th.

For all transferred target and decoy ions, we calculate four (without ion mobility) or five (with ion
mobility) scores (Table 1). For one of these scores (using the 0/+1/+2 peaks), Kullback-Leibler
divergence is used to compare the quality of the traced isotopic distribution to a theoretical one

given m/z and charge state, where the Poisson distribution is used as theoretical (34).

We classify all transferred ions (identified with sequence, charge, and modification information)
into four types: a target ion that has not been identified by MS/MS in the acceptor run (type 1); a
decoy ion that is from a m/z-shifted type 1 ion (type -1); a target ion that has already been identified

by MS/MS (type 2); or a decoy ion that is from a m/z-shifted type 2 ion (type -2). Following the
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strategy we previously used for DIA data (20), we train a linear discriminant analysis (LDA) model
using scores from type 2 and -2 ions. From the trained LDA, we calculate a final score for each

type 1 and -1 ion:

s:Zwl-bi (2)

where s is the final score, w; are the weights from LDA, and b; are the scores detailed in Table 1.

If multiple ions were transferred to one location, the top scoring one is kept.

Using the final scores from type 1 and -1 ions, we estimate a posterior probability of correct

identification transfer by fitting a mixture model:

f(s) = mofo(s) + myfi(s) 3)

where f, is the distribution of correctly transferred ions, f; is the distribution of incorrectly
transferred ions, my and m; are the respective priors of false and true transferred ions. We use
the expectation-maximization (EM) algorithm (20) to estimate the coefficients and distributions in

Equation (3).

After fitting the mixture model, we calculate a posterior probability for each transferred ion using

T f1(5:)
o fo(si) + M f1(s;)

p(s) = (4)

where s; is the score of the transferred ion. Then, we calculate an ion-level MBR FDR using the
posterior probability (35) of type 1 ions:

Zsizt(l - p(si))

FDR(t) = ST
L=Si>¢t

(5)


https://doi.org/10.1101/2020.11.02.365437
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.02.365437; this version posted March 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

where t is a score threshold and Y; 1,._. is the number of type 1 ions whose score is larger than

Si>t

t. We can also calculate peptide- and protein-level FDR for MBR by collapsing ions with the same

sequence or protein and using the highest probability entry in the FDR calculation.

Calculating protein intensity using MaxLFQ algorithm

Cox et al. proposed MaxLFQ (15) algorithm to calculate protein intensity with peptide intensities.
It has a high precision (low CV) according to our previous study (22). We implemented it in

lonQuant to provide a new (default) option in addition to the top-N approach.

Given a study with N experiments (samples), and a protein with M quantified peptide ions, for

each peptide ion p € [1, M] we calculate a log-ratio of its intensities between experiments i and j:

I;(p)
I;(p)

1;,j(p) = log = log1;(p) —logI;(p) (6)

where I;(p) is the intensity of peptide ion p from i-th experiment. If the ion is not quantified in
experiment i or j, we do not calculate the corresponding log ratio. Then, we have a linear

relationship among the log-transformed protein intensities and their peptide ion log-ratios:
Xi—Xj =my; (7)

where x; is the (unknown) log-transformed protein intensity in i-th experiment and m, ; is the
median of the log-ratios r; ;(p) among all peptide ions p from 1 to M. Given the set of 1 to N

experiments, Equation (7) can be expressed in a matrix form
Ax=b (8)

where
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-1 (EN))
A = = (9)
Y1 an G=)
i=1

j=i+1

b; N i
Z mi‘j - ij,i (l > 1)
j=i+1 j=1

In Equation (9), 1(i,j) equals 1 if there is a peptide ion quantified in both experiment i and j, and
0 otherwise. Equation (8) can be efficiently solved with Cholesky decomposition to get the log-

transformed protein intensity x;. Then, the protein intensity in experiment i equals e*:.

Validation of the FDR for MBR approach using two-organism dataset

We used 40 runs from Lim et al. (18) (ProteomeXchange (36) identifier PXD014415) to evaluate
the sensitivity and precision of FDR-controlled MBR. This dataset contains 20 runs with only H.
sapiens proteins and 20 with a mixture of H. sapiens (90%) and S. cerevisiae (10%) proteins, all
acquired on an Orbitrap Fusion Lumos mass spectrometer. Further sample preparation and data
acquisition details can be found in the original publication (18). We used FragPipe (version 13.0)
with MSFragger (37) (version 3.0), Philosopher (38) (version 3.2.7), and lonQuant (22) (version
1.5.5) to analyze this dataset. For this analysis pipeline, raw spectral files were first converted to
mzML using ProteoWizard (version 3.0.20066) with vendor’s peak picking. We used MaxQuant
(89) (version 1.6.14.0) and also Skyline (40) (version Skyline-daily (64-bit) 20.2.1.315
(3785d2eb9)) for comparison. We used raw spectral files for MaxQuant and spectral files

converted to the mzML format for other tools. A protein sequence database of reviewed H.
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sapiens (UP000005640) and S. cerevisiae (UP000002311) from UniProt (41) (reviewed
sequences only; downloaded on Jan. 15, 2020) and common contaminant proteins (26448
proteins total) was used. For the MSFragger analysis, precursor and (initial) fragment mass
tolerance were set to 50 ppm and 20 ppm, respectively. Reversed protein sequences were
appended to the original database as decoys. Mass calibration and parameter optimization were
enabled. Isotope error was set to 0/1/2, and one missed trypsin cleavage was allowed. Peptide
length was set from 7 to 50, and peptide mass was set to 500 to 5000 Da. Oxidation of methionine
and acetylation of protein N-termini were set as variable modifications. Carbamidomethylation of
cysteine was set as a fixed modification. Maximum allowed variable modifications per peptide
was set to 3. Philosopher (38) with PeptideProphet (42) and ProteinProphet (43) was used to
estimate identification FDR. The PSMs were filtered at 1% PSM and 1% protein identification
FDR. Quantification and MBR was performed with lonQuant. The minimum number of ions
parameter required for quantifying a protein was set to 2 (default). To test the performance of
FDR control for MBR, the maximum number of runs used for transfer was set to 40, and the
minimum required correlation between the donor and acceptor run was set to 0. lon-, peptide-,
and protein-level MBR FDR thresholds were all set to 1% unless otherwise noted. Protein
intensities were computed using the re-implementation of MaxLFQ protein intensity calculation
algorithm described above. Default values were used for all the remaining parameters. For
MaxQuant comparisons, the parameters were set as close to those described above as possible,
with maximum modifications per peptide set to 3, maximum missed cleavages set to 1, LFQ
enabled with default settings, maximum peptide mass set to 5000, built-in contaminant proteins
were not used, and the second peptide option was not used. Default values were used for all the

remaining MaxQuant parameters.
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For Skyline comparisons, pep.xml files from PeptideProphet were loaded with probability
threshold 0.9486 that corresponds to 1% peptide-ion level FDR in this dataset. A protein FASTA
file filtered with 1% protein FDR was also loaded to make sure that Skyline was processing the
peptides additionally filtered with 1% protein FDR. Retention time filtering tolerance was set to
0.4 minutes, the same tolerance as in lonQuant. After loading all PSMs, we let Skyline generate
decoys by reversing the sequences and shifting the precursor masses. Then, we reintegrated the
peaks by training a model with the built-in mProphet (44). Finally, we exported a peptide

quantification report with estimated g-values, and filtered the data using 0.01 threshold.

We classified a peptide as an S. cerevisiae peptide if it only maps to S. cerevisiae proteins. We
classified a peptide as H. sapiens if it maps to at least one H. sapiens protein. The classification
was done based on the protein name in the searched protein sequence database: those ending
with “* HUMAN” were classified as H. sapiens proteins and those ending with “_ YEAST” were

classified as S. cerevisiae proteins.

Quantification precision comparison using four HeLa cell lysate replicates

We used four replicate HelLa cell lysate runs acquired on a timsTOF Pro mass spectrometer (23)
with 100 ms TIMS accumulation time to evaluate quantification precision when MBR is used. As
in the previous section, we used FragPipe (version 13.0) with MSFragger (version 3.0),
Philosopher (version 3.2.7), and lonQuant (version 1.5.5) to analyze this dataset. MaxQuant
(version 1.6.14.0) was used to perform a benchmark comparison. Raw spectral files (.d extension)
were used. The sequence database contained reviewed H. sapiens (UP000005640) proteins and
common contaminants from UniProt (downloaded on Sep. 30, 2019; 20463 sequences). The

minimum number of ions parameter required for quantifying a protein was set to 2 unless
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otherwise noted. For MBR in lonQuant, MBR top runs parameter was set to 3 and MBR min
correlation was set to 0. lon-, peptide-, and protein-level MBR FDR threshold were set to 1%.
Remaining parameters were identical to those in the previous section. We used the number of
proteins quantified in at least two runs and quantification CV across replicates to evaluate the

performance.

Quantification accuracy comparison using the three-organism dataset

We used the three-organism dataset by Prianichnikov et al. (24) to demonstrate the accuracy of
lonQuant with MBR. There are six runs from two experimental conditions (A and B) in which H.
sapiens, S. cerevisiae, and E. coli proteins are mixed at known ratios. The ratios between
conditions A and B are 1:1 (H. sapiens), 2:1 (S. cerevisiae), and 1:4 (E. coli). These data were
acquired on a timsTOF Pro mass spectrometer, and details of the sample preparation and data
generation can be found in the original publication (24). We used FragPipe (version 13.0) with
MSFragger (version 3.0), Philosopher (version 3.2.7), and lonQuant (version 1.5.5) to analyze the
data. MaxQuant results published by Prianichnikov et al. (24) were used as a benchmark
comparison. Using the latest MaxQuant (version 1.6.14.0), a reviewed UniProt protein sequence
database, and parameters closest to those of MSFragger and lonQuant yielded results similar to
those in the original publication (Supporting Figure S1). A combined database of reviewed H.
sapiens (UP000005640), S. cerevisiae (UP000002311), and E. coli (UP000000625) sequences
from UniProt (30788 sequences downloaded Apr. 18, 2020) was used. lon-, peptide-, and protein-
level MBR FDR thresholds were set to 1%. The minimum number of ions parameter required for
quantifying a protein was set to 2. Allowed missed cleavages was set to 2, and all other
parameters were the same as those in the previous section. We used LFQbench (45) to plot the

protein quantification results.
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Single-cell dataset analysis

We used 26 runs published by Williams et al. (25) to demonstrate lonQuant’s performance with
single-cell data. There are 3 replicates containing 0 cells which served as negative controls, 11
replicates containing 1 cell, 4 replicates containing 3 cells, 4 replicates containing 10 cells, and 4
replicates containing 50 cells. The data were generated on an Orbitrap Fusion Lumos mass
spectrometer (Thermo Fisher Scientific) over a 30 minute LC gradient, with MS/MS spectra
acquired in the ion trap. Details of the sample preparation and data acquisition can be found in
Williams et al. (25). The raw data files were converted to mzML format using ProteoWizard
(version 3.0.19302) with vendor’s peak picking. We used FragPipe (version 13.0) with MSFragger
(version 3.0), Philosopher (version 3.2.7), and lonQuant (version 1.5.5) to analyze the data. We
also used MaxQuant (version 1.6.14.0) as a benchmark. The database was downloaded along
with the data (20129 proteins, ProteomeXchange (36) identifier MSV000085230). In MSFragger
analysis, common contaminants and reversed protein sequences were appended by Philosopher.
In MaxQuant analysis, the built-in contaminant sequences were used. The precursor mass
tolerance was set to 20 ppm, and the initial fragment mass tolerance was set to 0.6 Da. Two
missed cleavages were allowed. lonQuant (version 1.5.5) with and without MBR was used. The
MBR top runs parameter for MBR transfer was set to 26 and the minimum required correlation
was kept at 0. The MaxLFQ protein intensity calculation algorithm was used. The minimum
number of ions parameter required for quantifying a protein was set to 1. Multiple ion-level MBR
FDR thresholds were applied. The rest of the parameters are the same as those used in the
previous section. MaxQuant's parameters were set as close as possible to those used in
MSFragger and lonQuant. We used the numbers of quantified peptides and proteins to evaluate

the sensitivity, and we used CV to evaluate the precision of label free quantification with MBR.
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Single-cell FAIMS dataset analysis

We used 9 runs published by Cong et al. (26) to demonstrate the performance of analyzing single-
cell data from an Orbitrap Eclipse Tribrid mass spectrometer (Thermo Fisher Scientific) coupled
with FAIMS. There are 3 single Hela cell runs, 3 blank runs served as negative controls, and 3
runs with 100 HelLa cells that served as a library for MBR. Each run has two compensation
voltages: -55 V and -70 V. The sequence database contains reviewed H. sapiens (UP000005640)
proteins and common contaminants from UniProt (downloaded on Sep. 30, 2019; 20463
sequences). We used FragPipe (version 13.0) with MSFragger (version 3.0), Philosopher (version
3.2.7), and lonQuant (version 1.5.5) to analyze the data. Raw spectral files were first converted
to the mzML format using ProteoWizard (version 3.0.20253) with vendor’s peak picking. The
number of allowed donor runs was set to 9. The rest of the parameters are the same as those
used in the previous section. MaxQuant (version 1.6.14.0) was used for comparison. Since
MaxQuant does not support FAIMS data natively, we split each raw file into separate mzXML files

using FAIMS-MzXML-Generator (https:/github.com/PNNL-Comp-Mass-Spec/FAIMS-MzXML-

Generator). Scans in each mzXML file have the same compensation voltage (46). Then, we
assign fraction number 1 to the mzXML files with compensation voltage equal to -55 V, and
fraction number 3 to the mzXML files with compensation voltage equal to -70 V (Supporting
Figure S3). In this way, ions are only allowed to be transferred among the files with the same
compensation voltage. The rest of the parameters were set as close as possible to those used in
MSFragger and lonQuant. We compared the number of quantified proteins with and without MBR

from MaxQuant and lonQuant.

Run time comparison
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We used the two-organism dataset with 40 Orbitrap Fusion Lumos runs and the HelLa dataset
with 4 timsTOF Pro runs to demonstrate the speed of label-free quantification coupled with FDR-
controlled MBR in lonQuant (version 1.5.5). MaxQuant (version 1.6.14.0) was used for
comparison. For the two-organism dataset, we used a combined database of reviewed H. sapiens
(UP000005640) and S. cerevisiae (UP000002311) sequences from UniProt (41) plus common
contaminants (26448 proteins downloaded Jan. 15, 2020). For the HelLa dataset, a database of
reviewed H. sapiens (UP000005640) proteins from UniProt (20463 proteins downloaded on Sep.
30, 2019) and common contaminants was used. Reversed proteins sequences were appended
to both databases as decoys for MSFragger analysis. All other parameters are identical to those
used in the previous section. All analyses were run on a desktop with 4 CPU cores (Intel Xeon
E5-1620 v3, 3.5 GHz, 8 logical cores) and 128 GB memory. We isolated quantification-specific

run times from MaxQuant log files.

Results and Discussion

FDR-controlled MBR

We developed an MBR module in lonQuant enabling accurate and fast label-free quantification
with match-between-runs peptide ion transfer with the help of the indexing functionality in
lonQuant (see Figure 1 for an overview). For each experiment (acceptor run) in the analysis, ion-
level Spearman’s rank correlation coefficients with all other experiments are calculated, where an
ion is defined as the combination of peptide sequence, modification pattern, and charge state.
The percentage of ions overlapping between two runs is used as a weight in the calculation (28).
For each acceptor run, lonQuant picks the top N runs with a correlation larger than a certain
threshold as donor runs. Both parameters (‘MBR top runs’ and “MBR min correlation’ can be

adjusted by the user). Given an ion from a donor run, lonQuant locates a region in the acceptor


https://doi.org/10.1101/2020.11.02.365437
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.02.365437; this version posted March 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

run where the transferred ion is likely to be using m/z, retention time, and ion mobility (if applicable)
distributions from both runs (see Figure 1 and Experimental Procedures). For simplicity, we use
retention time to describe the region-finding process. Given an ion from a donor run, all ions within
a predefined retention time tolerance are collected. Retention time differences from pairs of ions
overlapping between the runs are calculated, and the median and median absolute deviation of
these differences are found. Then the region for transfer is determined using Equation (1). We
use the same approach to locate the ion mobility region. After getting a 1-D (without ion mobility)
or 2-D (with ion mobility) region, lonQuant traces peaks using the donor ion’s m/z, taking any
mass calibration correction into account. In addition to the monoisotopic peak, two additional
isotope peaks (+1 and +2) are also included in peak tracing so that the isotopic distribution and
charge state can be used in the evaluation. Finally, lonQuant assigns the donor ion’s peptide to
each traced peak and calculates four (without ion mobility) or five (with ion mobility) scores (Table

1) measuring the quality of the peptide ion transfer.

In conventional MBR, most notably in MaxQuant, ions matching tolerance criteria are transferred
without statistically assessing the confidence in the transfer. Here, we propose a semi-parametric
mixture-modeling approach to estimate the FDR of transferred ions (see Experimental
Procedures). Briefly, decoy ion transfers are generated by transferring ions with an m/z shift. All
transferred ions are classified into four types: the ion has not been identified by MS/MS (type 1);
the ion is a decoy type 1 ion (type -1); the ion has been identified by MS/MS (type 2); and the ion
is a decoy type 2 ion (type -2). lonQuant trains a linear discriminant analysis (LDA) model with
type 2 and -2 ions to separate the target and decoy ions. Using the trained model, a final score is
calculated for each of the type 1 and -1 ions (Equation (2)). A mixture model (Equation (3)) is built
using type 1 and -1 ions, and the expectation-maximization (EM) algorithm is used to fit the model

and subsequently calculate the posterior probability. Finally, global ion-level FDR (Equation (5))
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is calculated using the local FDR, equal to one minus the posterior probability (Equation (4)).
lonQuant also calculates peptide and protein level FDR by collapsing ions with the same peptide

and protein, respectively.

In the remainder of the manuscript, we demonstrate the accuracy of FDR-controlled MBR using
a two-organism dataset, and the precision and accuracy of subsequent label-free quantification

by using Hela replicate runs, a three-organism dataset, and two single-cell dataset, respectively.

Evaluation of FDR-controlled MBR method

We used the dataset published by Lim et al. (18) to evaluate the false positive rate of FDR-
controlled MBR (see Experimental Procedures). The dataset is comprised of 20 LC-MS files
from H. sapiens-only proteins (“H”) and 20 from a mixture of H. sapiens (90%) and S. cerevisiae
(10%) proteins (“HY”). With MBR, S. cerevisiae peptides transferred from HY to H runs are known
to be false positives, and can be used to evaluate the false positive rate, equal to false positives
(S. cerevisiae peptides in H runs) divided by negatives (S. cerevisiae peptides in total). To ensure
all S. cerevisiae peptides in the HY runs have the chance to be transferred, the number of top
runs used in transferring was set to 40 and minimum required correlation was set to 0. In
evaluation, a peptide was assigned to S. cerevisiae if all proteins it maps to are from S. cerevisiae,

or to H. sapiens if at least one of its proteins is from H. sapiens.

Overall, lonQuant coupled with MSFragger identified 45875 unique H. sapiens peptides and 4610
unique S. cerevisiae peptides, ~19% and ~31% more H. sapiens and S. cerevisiae peptides

compared to MaxQuant, respectively (Table 2, Supporting Table S1). More peptides were also
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identified or transferred in individual runs with MSFragger and lonQuant. In transferring ions
between the runs, lonQuant had a lower false positive rate than MaxQuant, 2.3% compared to
2.7%. The numbers listed for MaxQuant in Table 2 differ slightly from Figure S1 in Lim et al. (18)
because of small differences in data analysis settings and version of the tools used. Figure 2
shows average peptide coverage, average peptide false positive rate, average protein coverage,
and average protein false positive rate with respect to different MBR FDR thresholds. The
peptide/protein coverage values shown are H. sapiens peptides/proteins in each H run divided by
total H. sapiens peptides/proteins identified in the dataset. Peptide coverage increases from 57%
to 79% with the inclusion of MBR, and protein coverage increases from 87% to 96%. As the MBR
FDR threshold is increased, neither peptide nor protein coverage increase significantly, indicating
most H. sapiens peptides have been successfully transferred by lonQuant already at 1% MBR
FDR. The false positive rate continues to rise when the MBR FDR threshold is increased, as

expected.

In comparing with the results from Skyline, we noticed that using three scores (intensity, retention
time difference, and precursor mass error) had a lower false positive rate (Supporting Table
$12), 5.2% vs 10.4%, than using the default set of scores in training a model using the built-in
mProphet. Despite this improvement, mProphet’s false positive rate remained higher than
lonQuant’s (2.3%). The peptide numbers in Skyline without MBR are similar to those from

lonQuant since both tools were processing the PSMs from MSFragger.

Improved protein quantification with FDR-controlled MBR

We used four Hel a cell lysate replicates acquired on a timsTOF Pro published by Meier et al. (23)

to demonstrate the sensitivity and precision of label-free quantification coupled to FDR-controlled
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MBR (see Experimental Procedures). We previously (22) performed a similar analysis of the
same dataset, but without MBR and with protein abundances calculated from peptide ion
intensities using top-N peptide approach. In this work we use a new protein abundance calculation
module in lonQuant implemented according to the MaxLFQ (15) algorithm (see Experimental

Procedures).

Table 3 lists the numbers of proteins quantified in at least two runs and the CV from each method.
Detailed ion and protein lists can be found in Supporting Table S2 and Supporting Table S3.
The results from lonQuant and MaxQuant (both with MaxLFQ method) are shown, which were
run under similar settings of requiring either a minimum of 1 or 2 peptide ions in pair-wise ratio
calculation in MaxLFQ method (referred to as ‘Min ions’ in lonQuant and 'LFQ min. ratio count'
in MaxQuant). Enabling MBR (MBR+) improved the number of quantified proteins without a
significant increase in protein quantification CV. For example, with min 2 ion setting, lonQuant
MBR+ quantified 9% more proteins (5527 vs 5061) while maintaining a CV similar to lonQuant
MBR- (3.6% and 3.5%, respectively). Compared to MaxQuant, lonQuant quantified more proteins
and with greater precision (lower CVs) in all pair-wise comparisons between the tools under
comparable settings. For example, with minimum ion count set to 1, lonQuant with MBR+
quantified 6346 proteins with a CV of 4.0%, compared to 5950 proteins with a CV of 5.3% for
MaxQuant with MBR+. lonQuant’'s maxLFQ-based protein abundance calculation method also
had lower CVs compared to lonQuant with MSstats (47) for peptide to protein intensity roll-up,
whereas our initial (top-N peptide based) strategy for protein abundance calculation in lonQuant

was inferior to that of MSstats (22) (Supporting Table S13).
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We also used the three-organism mixture dataset published by Prianichnikov et al. (24) to
demonstrate the accuracy of label-free quantification when FDR-controlled MBR is employed (see
Experimental Procedures). There are three replicates each of two experimental conditions,
where the ratios between the two conditions are 1:1 (H. sapiens), 2:1 (S. cerevisiae), and 1:4 (E.
coli). Since these proteomes were mixed at known ratios, we can evaluate the accuracy of the
label-free quantification algorithm by comparing the estimated ratio against the ground truth.
MaxQuant results published by Prianichnikov et al. (24) were used as a benchmark. We also
repeated the analysis with a more recent version of MaxQuant (version 1.6.14.0), a newer
reviewed protein database, and parameters as close as possible to those used in MSFragger and
lonQuant, and got similar results (Supporting Figure S1). We used LFQbench (45) to summarize
the analyses and visualize the results (Figure 3 and Supporting Figure S2). As expected, both
MaxQuant and lonQuant quantified more proteins with MBR than without MBR. lonQuant
quantified 6% and 23% more proteins compared to MaxQuant with and without MBR, respectively
(Figure 3, Supporting Table S4, Supporting Table S5). lonQuant also had fewer outliers than
MaxQuant. The peptide level comparison (Supporting Figure S2) showed the same trend in

comparing lonQuant with MaxQuant.

FDR-controlled MBR in single-cell data

We then evaluated the performance of lonQuant with FDR-controlled MBR in single-cell datasets.
The first dataset (24) consisted of 5 biological replicates with 1, 3, 10, and 50 cells. In addition,
blank runs (0-cells) were also acquired and used as a negative control for MBR. MaxQuant with

and without MBR were used as a benchmark.
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We first evaluated the number of quantified proteins (proteins with non-zero intensities) (Figure
4(a)). Detailed ion and protein lists can be found from Supporting Table S6 and Supporting
Table S7. Of note, MaxQuant with MBR (MBR+) reported on average 68 proteins from a replicate
of the blank (0-cell) run, which is much more than MaxQuant MBR- (14 proteins), lonQuant MBR-
(19 proteins), and lonQuant MBR+ (31 proteins with 1% FDR). This by itself indicates a noticeable
false transfer rate of MaxQuant's MBR in these data. MSFragger with lonQuant, without MBR
(MBR-), identified and quantified a higher number of proteins per sample on average than
MaxQuant across all groups of samples. As expected, as the number of cells per sample
increases, the average number of proteins quantified per sample, with or without MBR, increases
for both MaxQuant and lonQuant. Comparing the numbers from MaxQuant MBR+ and lonQuant
MBR+ with FDR set to 1% shows that lonQuant still has a higher number of transferred proteins

than MaxQuant, which demonstrates the high sensitivity of lonQuant coupled with MSFragger.

Figure 4(b) shows the number of peptides and proteins quantified in at least two runs, and protein
quantification CV from analyzing 11 replicates of 1-cell sample with MaxQuant and lonQuant,
respectively. Without MBR, lonQuant measured more peptides (1409 vs 1208) and more proteins
(406 vs 371), while achieving a lower CV (19.3% vs 27.0%) compared with MaxQuant. With MBR
and 1% FDR control, lonQuant also measured more peptides (4457 vs 3937) and more proteins

(1030 vs 918) while maintaining a lower CV (24.1% vs 26.0%) compared with MaxQuant.

FDR-controlled MBR in single-cell data with FAIMS

We used 9 runs (26) from an Orbitrap Eclipse Tribrid mass spectrometer (Thermo Fisher Scientific)
coupled with FAIMS to further demonstrate the necessity of controlling FDR for MBR in sparse

datasets. There are 3 blank samples containing cell-free supernatant analyzed as negative control,
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3 single Hela cell samples, and 3 samples with 100 HeLa cells to be used as a library for MBR.
Each run has two compensation voltages: -55 V and — 70 V. MaxQuant with and without MBR
was again used for comparison. Since MaxQuant does not natively support FAIMS data, we split
each run into two: one has scans with -55 V and the other has scans with -70 V. In MaxQuant
analysis, files with different compensation voltages were assigned to different fractions (i.e., 1 and
3, Supporting Figure S3). lonQuant automatically detects and handles FAIMS data, so this

manual step is not necessary.

Table 4 shows the number of quantified proteins (proteins with non-zero intensities) from blank
and single-cell HeLa samples (the corresponding ions and protein lists can be found in
Supporting Table S8 and Supporting Table S9). Both MaxQuant and lonQuant with MBR-
identified a relatively large number of proteins in the blank samples (79 and 97 on average per
replicate, respectively). This suggests that the blank samples in this experiment cannot be
considered as true negative controls for MBR, further highlighting the need for statistical FDR
control. While MaxQuant with MBR+ quantified significantly more proteins in the single-cell
samples than with MBR- (on average, 1230 vs 557), with MBR+ it also reported on average 492
proteins in the blank samples. In contrast, lonQuant with MBR+ and 1% FDR quantified a
comparable number of proteins (on average, 1156) in the single-cell runs as MaxQuant with
MBR+, however, the number of quantified proteins in the blank samples has not increased as
significantly as with MaxQuant. Applying more lenient MBR FDR thresholds of 2% or 5% in
lonQuant results in a significant increase in the number of quantified proteins, while the number
of proteins in the blank samples increases as well but still stays below that of MaxQuant with

MBR+.
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Overall, our results above suggest that application of the MBR strategy with no FDR control to
sparse datasets, such as single-cell FAIMS data, may result in a high rate of false transfers.
lonQuant, with its ability to estimate FDR, provides the users a way to control the rate of false
transfers by applying an FDR threshold of their choice. This dataset also invites a discussion
regarding a reasonable FDR threshold to apply in different scenarios. In a typical whole cell lysate
data, the saturation in the number of quantified proteins is clearly reached at a small FDR
threshold (e.g., around 1% FDR in Figure 2(a)). In such datasets, applying a more lenient FDR
threshold is likely to reduce the overall quantification accuracy with no noticeable improvement in
the number of quantified proteins. Single-cell datasets, on the other hand, are naturally sparser,
with more peptides and proteins that can be transferred from other single-cell runs, and especially
from the “library” runs (i.e., from boosting samples containing a higher number of cells). In such
cases, using a more lenient (e.g., 2%) MBR FDR threshold may be considered, provided that
downstream data analysis tools (e.g., for pathway-level analysis) are sufficiently robust toward

quantification errors (48).

Speed of indexing-based MBR in lonQuant

Finally, we compared the computational time required by lonQuant (version 1.5.5) and MaxQuant
(version 1.6.14.0), both with MBR enabled. The HelLa dataset (timsTOF Pro) and the two-
organism dataset from (Orbitrap Fusion Lumos) were used, comprised of 4 and 40 LC-MS files,
respectively (Experimental Procedures). For MaxQuant, only jobs related to quantification and
MBR were counted (Supporting Table S10 and Supporting Table S11). Table 5 displays the
run time of these tools in minutes. lonQuant is approximately 19 or 38 times faster than MaxQuant
in analyzing the data with or without ion mobility, respectively. The reason that lonQuant exhibits
a smaller gain in speed compared with MaxQuant when analyzing the timsTOF Pro data is that

most of the lonQuant runtime is spent loading the raw data via the vendor-provided library (22).
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Conclusions

Match-between-runs (MBR) is a commonly used approach to quantify additional peptides and
proteins by transferring information across different samples. It largely mitigates the missing value
problem of DDA-based label-free quantification, increasing data completeness for improved
differential analyses. Peptides are transferred from one run to the other by aligning retention time
and ion mobility (if applicable). Due to the dynamic range and complexity of proteomic samples,
low signal-to-noise ratios and co-isolation interference can result in incorrectly transferred ions.
To our knowledge, there was previously no method to control the rate of false transfers in DDA-
based MBR in practical settings. To address this issue, we have described a method to estimate
and control the FDR for MBR with the help of mixture modeling and the target-decoy concept. We
implemented MBR with FDR control in our quantification tool, lonQuant. Our experiments and
comparisons with a frequently used tool MaxQuant showed that lonQuant allowed fewer false
positive transfers while maintaining high sensitivity. We also highlight the importance of FDR
control when MBR is applied to sparse datasets such as those from single-cell FAIMS proteomics
experiments. Furthermore, by way of advanced indexing technology, lonQuant performs MBR

with unmatched speed, making it well-suited even for analysis of large-scale datasets.
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The two-organism data was published by Lim et al. (18) and can be found at the
ProteomeXchange Consortium website (36) with identifier PXD014415. The Hela cell lysate data
was published by Meier et al. (23) and can be found at the ProteomeXchange Consortium website
with the identifier PXD010012. The three-organism data was published by Prianichnikov et al. (24)
and can be found at the ProteomeXchange Consortium website with identifier PXD014777. The
single-cell data was published by Williams et al. (25) and can be found at the ProteomeXchange
Consortium website with identifier MSV000085230. MSFragger and lonQuant programs were
developed in the cross-platform Java language and <can be accessed at
http://msfragger.nesvilab.org/ and https://ionquant.nesvilab.org/. Peptide list can be accessed at

https://dx.doi.org/10.5281/zenodo0.4574598.
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Table 1. List of individual scores used to compute the composite score for each transferred ion.

Score Explanation

Log-transformed intensity of a traced peak.
Log10(intensity) The intensity can be from an area (without ion
mobility) or a volume (with ion mobility).
Log-transformed Kullback-Leibler divergence
of an experimental isotope distribution and the
Log10(KL) theoretical isotope distribution. 0, +1, and +2
isotope peaks are used. The absolute value is
also square root transformed.

Absolute value of the mass error (in ppm)
Abs(ppm) from a traced peak. The value is also square
root transformed.

lon mobility difference between an acceptor
IM diff ion and its donor ion. The value is also square
root transformed.

Retention time difference between an

RT diff acceptor ion and its donor ion. The value is
also square root transformed.
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Table 2. Peptides quantified by MaxQuant and lonQuant in analyzing the two-organism dataset
with MBR. MSFragger was used to provide identification result for lonQuant. “Sample H” indicates
H. sapiens-only samples and “Sample HY” indicates samples with a mixture of H. sapiens and S.
cerevisiae proteins. There are 20 runs in each sample type. “MBR+” and “MBR-” indicate that the
analysis was performed with and without match-between-runs (MBR), respectively. For each
analysis, unique peptide counts (+ range of counts) are listed along with per run identification
rates (% of all observed peptides found in each run).

MaxQuant lonQuant
Total unique H. 38405 Total unique H. 45875
sapiens peptides sapiens peptides
Sample H, MBR - 193604648 | 50.4% Sample H, MBR - 26032+499 56.8%
Sample HY, MBR - | 189454522 | 49.3% Sample HY, MBR - | 25683+716 56.0%
Sample H, MBR + | 311294637 | 81.0% Sample H, MBR + | 36450+283 79.5%
Sample HY, MBR + | 29747+730 77.5% Sample HY, MBR + | 36113625 78.7%
Total unique S. 3527 Total unique S. 4610
cerevisiae peptides cerevisiae peptides
Sample H, MBR - 2015 0.6% Sample H, MBR - 2616 0.6%
Sample HY, MBR - | 1848493 52.4% Sample HY, MBR - | 2597+82 56.3%
Sample H, MBR + | 98+10 2.7% Sample H, MBR + 105116 2.3%
Sample HY, MBR + | 2858463 81.0% Sample HY, MBR + | 3625+62 78.6%
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Table 3. Proteins quantified in at least two runs and coefficients of variation (CV) from four HeLa
cell lysate replicates. “MBR+” and “MBR-” indicate that the analysis was performed with and
without match-between-runs (MBR), respectively..

Proteins
Tool quantified Cv
min 1 ion 5406 5.3%
MBR- min 2 ion 4186 4.3%
MaxQuant - -
VBRs min 1 ion 5950 5.3%
min 2 ion 5073 4.7%
min 1 ion 5971 4.0%
lonQuant MBR- min 2 ions 5061 3.5%
u — min 1 ion 6346 4.0%
min 2 ions 5527 3.6%
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Table 4. Number of proteins with non-zero intensities from MaxQuant (MQ) and lonQuant (1Q).
‘“MBR+” and “MBR-” indicate that the analysis was performed with and without match-between-
runs (MBR), respectively. The total nonredundant protein count in parentheses, and average

proteins per run are outside parentheses.

IQ MBR+, IQ MBR+, IQ MBR+,
MQ MBR- MQ MBR+ IQ MBR- 1% FDR 2% FDR 5% FDR
Blank 79 (152) 492 (887) 97 (195) 153 (314) 252 (548) 482 (954)
Single-cell
Hela 557 (853) 1230 (1902) 756 (1024) | 1156 (1638) | 1481 (2093) | 2046 (2591)
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Table 5. Run time comparison (in minutes) of quantification-related tasks using the HelLa
dataset (4 timsTOF Pro runs) and the two-organism dataset (40 Orbitrap Fusion Lumos runs).

Hela two-organism
MaxQuant 699 1056
lonQuant 37 28



https://doi.org/10.1101/2020.11.02.365437
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.02.365437; this version posted March 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a @
.‘\ donor run @ acceptor run O trace isotopic
% : qualified . _ o ahivolopios
o e donor runs and scgre select
® 0 top scoring
0. @ Al ; match for
e £ 2| 0 each acceptor
o R peak
. ® G| it A
[ ] Py E|li N
® retention time retention time ? I‘. H I
repeat for every donor ion m/z
classify all matches train LDA model fit mixture model
«" . 0.6|
O 1 target ion, no MS/MS ®. L , 2, : target
L .
@ -1 decoy ion, no MS/MS A im0 2 04| decoy » multi-level
= ® a L . . c - -
2 target ion with MS/MS 8| = et 8 I | FDR estimation
LR o o 0.2
-2 decoy ion with MS/MS «/e " % 0
© ASRY .
0.0} L -
score 1 -6 ™ 0

score

Figure 1. (a) Overview of match-between-runs in lonQuant. For each acceptor run (unfilled
central point with blue outline) ion-level correlations with all other runs (filled blue and gray points)
are calculated, where distance from the central point represents correlation. The top N runs
(numbered blue points) within the correlation threshold (gray area) are selected as eligible donor
runs. For every ion in each eligible donor run, target and decoy (m/z-shifted) transfer regions are
located using retention time (and ion mobility if applicable). Peak tracing in the acceptor run is
used to determine the isotopic distribution and the charge state. All matches are evaluated, and
the top scoring donor for each acceptor peak is selected for transfer. (b) All matches/transferred
ions are classified into one of the four categories shown. Type 2 and -2 matches are used to train
a linear discriminant analysis (LDA) model. The trained LDA is then used to calculate the final
score for type 1 and -1 matches. A posterior probability of correct transfer is estimated by fitting
a mixture model, allowing estimation of ion-, peptide-, and protein-level false discovery rate (FDR)
for match-between-runs.
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Figure 2. Per-run proteome coverage and observed false positive rate as a function of the model-
estimated false discovery rate (FDR) threshold. Coverage is equal to the number of H. sapiens
peptides/proteins from one run divided by the total number of H. sapiens peptide/protein
identifications in the entire experiment. The false positive rate is equal to the number of S.
cerevisiae peptides/proteins from one run divided by the total number of S. cerevisiae
peptides/proteins.
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Figure 3. Ground-truth protein quantification results from MaxQuant and lonQuant from a mixture
of three different proteomes. MaxQuant results are as published by Prianichnikov et al. 2020.
‘“MBR+” and “MBR-" indicate that the analysis was performed with and without match-between-
runs (MBR), respectively. S. cerevisiae proteins are shown in orange, H. sapiens in green, and E.
coli in purple. The known ratios of condition A over condition B are 2:1 (S. cerevisiae), 1:1 (H.
sapiens), and 1:4 (E. coli). The horizontal colored dashed lines (orange, green, and purple)
indicate the true ratios. The black dashed lines are fitted curves from observed ratios. Box plots
of the intensities are shown to the right of each scatter plot panel.
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Figure 4. Peptides and proteins from MaxQuant and lonQuant analysis of the single-cell dataset.
‘MBR+” and “MBR-” indicate that the analysis was performed with and without match-between-
runs, respectively. (a) Numbers of proteins with non-zero intensities from samples with 0 cells
(blank runs), 1 cell, 3 cells, and 10 cells, respectively. Two ion-level MBR false discovery rate
(FDR) thresholds (1% and 5%) were applied. Black dots indicate the numbers from individual
runs. (b) Peptides/proteins quantified in at least two runs and protein quantification coefficient of
variation (CV) from 11 replicates of 1 cell samples, as a function of FDR threshold. “MQ” indicates
MaxQuant and “IQ” indicates lonQuant. Black curves and dots indicate the CV of the
corresponding tool.
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