

1 **Genomic diversity and antimicrobial resistance among non-typhoidal *Salmonella***
2 **associated with human disease in The Gambia**

3

4 **Authors:**

5 Saffiatou Darboe¹, Richard S. Bradbury², Jody Phelan³, Abdoulie Kanteh¹, Abdul-Khalie
6 Muhammad¹, Archibald Worwui¹, Shangxin Yang⁴, Davis Nwakanma¹, Blanca Perez-
7 Sepulveda⁵, Samuel Kariuki⁶, Brenda Kwambana-Adams^{1,7*} and Martin Antonio^{1*}

8

9 ***These authors contributed equally to this article**

10 **Author affiliations**

11 1. Medical Research Council Unit, The Gambia at London School of Hygiene and
12 Tropical Medicine
13 2. Federation University, Melbourne, Australia
14 3. London School of Hygiene and Tropical Medicine, London, United Kingdom
15 4. University of California, Los Angeles, California, USA
16 5. University of Liverpool, United Kingdom
17 6. Kenyan Medical Research Institute, Nairobi, Kenya
18 7. University College London, London, United Kingdom

19

20 **Corresponding author:**

21 Saffiatou Darboe, Laboratory Services, Medical Research Council Unit The Gambia at London
22 School of Hygiene and Tropical Medicine, P.O Box 273 Banjul, The Gambia; email:
23 Saffiatou.Darboe@lshtm.ac.uk

24

25 **Article summary line:**

26 This study revealed high serovar diversity in non-typhoidal *Salmonella* serovars in The Gambia
27 with *Salmonella* Typhimurium ST19 and *Salmonella* Enteritidis ST11 the most prevalent
28 serovars causing bacteraemia. Serovars responsible for gastroenteritidiss were much more
29 diverse. Importantly, high genetic diversity was noted for *Salmonella* Enteritidis with the
30 presence of the virulent multidrug resistant *S.* Enteritidis West African clade present.

31

32 **Running title:**

33 Genetic diversity and antibiogram of non-typhoidal *Salmonella* in The Gambia

34

35 **Key words:**

36 Non-typhoidal *Salmonella* (NTS), invasive NTS (iNTS), *Salmonella* Typhimurium,
37 *Salmonella* Enteritidis, The Gambia.

38 **Abstract:**

39 Non-typhoidal *Salmonella* associated with multidrug resistance cause invasive disease in sub-
40 Saharan African. Specific lineages of serovars *S. Typhimurium* and *S. Enteritidis* are
41 implicated. We characterised the genomic diversity of 100 clinical Non-typhoidal *Salmonella*
42 collected from 93 patients in 2001 from the eastern and 2006 to 2018 in the western regions of
43 The Gambia respectively. Phenotypic susceptibility applied Kirby Baur disk diffusion and
44 whole genome sequencing utilized Illumina platforms. The predominant serovars were *S.*
45 *Typhimurium* ST19 (31/100) and *S. Enteritidis* ST11 (18/100) restricted to invasive disease
46 with the notable absence of *S. Typhimurium* ST313. Phylogenetic analysis performed in the
47 context of 495 African strains from the European Nucleotide Archive confirmed the presence
48 of the *S. Enteritidis* virulent epidemic invasive multidrug resistant West African clade.
49 Multidrug resistance including chloramphenicol and azithromycin has emerged among the
50 West African *S. Enteritidis* clade 7/9 (78%) with potential for spread, thus having important
51 implications for patient management warranting systematic surveillance and epidemiologic
52 investigations to inform control.

53

54 **Data summary:**

55 Sequences are deposited in the NCBI sequence reads archive (SRA) under BioProject
56 ID:PRJEB38968. The genomic assemblies are available for download from the European
57 Nucleotide Archive (ENA) : <http://www.ebi.ac.uk/ena/data/view/>. Accession numbers
58 SAMEA6991082 to SAME6991180

59 **Introduction:**

60 Non-typhoidal *Salmonella* (NTS) serovars are a common cause of foodborne gastroenteritis
61 but can also cause severe disseminated infections dependent on the pathogen's virulence and
62 the host's immune status [1,2]. Globally, there are over 2,800 serovars, some of which are
63 adapted to non-human hosts [3]. The global annual estimate of *Salmonella* gastroenteritis is
64 93.8 million illnesses with 155,000 deaths [4]. The highest mortality occurs in Africa which
65 accounts for 4,100 deaths annually with an incidence of 320/100,000 population [4]. Most
66 cases of *Salmonella* gastroenteritis in immunocompetent hosts are self-limiting and do not
67 require antimicrobial therapy; however, infections in infants, the elderly and
68 immunocompromised patients do require antimicrobial treatments such as ciprofloxacin, 3rd
69 generation cephalosporins or azithromycin [5].

70 The clinical characteristics of non-typhoidal salmonellosis emerging in Africa represent a
71 changing disease pattern, from gastroenteritis to invasive disease with a case fatality ratio of
72 20-25% [1,6-8]. Although NTS in diarrhoea is less well characterised in Africa, it may be
73 predisposition to invasive disease. Invasive NTS (iNTS) disease, mainly bacteraemia. iNTS is
74 globally estimated at 3.4 million illnesses annually, disproportionately affecting those in sub-
75 Saharan Africa (sSA), with over 50% associated with HIV infection, malnutrition, recent
76 malaria and children between 6 months to 3 years of age [6,8,9]. iNTS disease has a markedly
77 different presentation, closer to enteric fever in its clinical form than typical NTS disease [8].
78 The predominant serovars responsible for invasive disease in sSA are specialised lineages of
79 *Salmonella enterica* serovars Enteritidis and Typhimurium that are distinct from those
80 circulating in other parts of the world [1,10]. Whole genome sequencing (WGS) has provided
81 new insights into the host adapted signatures associated with pathogenicity and metabolism of
82 these *S. Typhimurium* lineages and *S. Enteritidis* clades characterised by genomic degradation
83 and accessory genome [1,11].

84 The closely related *S. Typhimurium* ST313 lineages I and II evolved independently around 52
85 and 35 years ago respectively with the acquisition of the chloramphenicol acetyltransferase (*cat*)
86 resistance gene [7]. Both lineages have been shown to carry a *S. Typhimurium* virulence
87 plasmid, commonly known as pSLT, which also encodes genes conferring resistance to
88 common antimicrobials including tetracycline, sulfamethoxazole-trimethoprim and
89 chloramphenicol [7,11]. In addition, two related, but phylogenetically different epidemic
90 clades of *S. Enteritidis* ST11, the West African clade and the Central/Eastern African clade,
91 characterised by the presence of chloramphenicol acetyl resistance genes *catA1* and *catA2*,
92 respectively, plus the incomplete set of *tra* genes, emerged between 1933 and 1945 [1]. The
93 utility of second-line antimicrobials such as fluoroquinolones, azithromycin and extended
94 spectrum cephalosporins is limited in treating these emerging MDR strains [12].

95 In The Gambia, iNTS remains a leading cause of invasive diseases, [13] unlike *S. Typhi* which
96 causes typhoid fever in many low and middle income countries (LMIC). We previously
97 described regional serovar variation and emerging MDR in The Gambia [14,15]: *S.*
98 *Typhimurium* was found to be more prevalent in the western region, while *S. Enteritidis*,
99 including MDR strains, were found to be more prevalent in the eastern region. In this context,
100 we performed whole-genome analysis of clinical NTS isolates to determine prevalent
101 genotypes and antimicrobial resistance genes. The resulting analysis can be used to help guide
102 clinical management and control of NTS diseases in The Gambia.

103

104 **Methods and Materials:**

105 **Study setting and population**

106 The study was conducted at the Medical Research Council Unit The Gambia at the London
107 School of Hygiene and Tropical Medicine (MRCG @ LSHTM) using clinical NTS isolates
108 from the eastern (Upper River Region) and western (West Coast Region and Greater Banjul
109 Area) regions of The Gambia (Figure 1). The eastern region, located on the far east side of the
110 river Gambia, is the commercial centre and a busy economic hub, with an estimated population
111 of 200,000 people. It is an important transit point for merchandise and people going into eastern
112 Senegal, Mali and Guinea Conakry. The western region is densely populated, with a population
113 of over 1 million people including the capital city, Banjul (Figure 1) [16]. Malaria declined in
114 recent years but remains endemic with peak transmission occurring from July to November
115 [17]. Malnutrition remains a problem with the prevalence of underweight, stunting and wasting
116 among children under 5 years old estimated at 16.4%, 25.0% and 4.3% respectively [18]; HIV
117 prevalence among adults aged 15 – 49 years is estimated at 2.1% [19].

118 **Sample collection, microbiological procedures and antimicrobial susceptibility testing**

119 The study evaluated 100 clinical NTS from 93 patients admitted to hospital with suspected
120 sepsis, gastroenteritis or other focal infections in the eastern and western regions of The
121 Gambia (Table 1). Seven patients had multiple samples collected during the same infection
122 episode (Table 2). Three patients had concurrent bacteraemia and gastroenteritis, two had
123 bacteraemia with meningitis whilst two had bacteraemia with two sampling episodes. All NTS
124 from the eastern region (20) were isolated in 2001 from 18 patients, and those from the western
125 region (80) were isolated between 2006 to 2018 from 75 patients (Table 1). All isolates were
126 stored in 15% (v/v) glycerol broth at -70°C. The isolates were grown on MacConkey agar
127 overnight at 37°C in the Clinical Microbiology Laboratory. The laboratory is accredited to

128 Good Clinical Laboratory Practice (GCLP; 2010) and ISO15189 (2015) as previously
129 described [14]. Antimicrobial susceptibility for amoxicillin-clavulanate, ampicillin,
130 cefotaxime, cefoxitin, ceftazidime, ceftriaxone, cefuroxime, chloramphenicol, ciprofloxacin,
131 gentamicin, nalidixic acid, sulfamethoxazole-trimethoprim and tetracycline, were tested on
132 Mueller-Hinton agar (MHA) using the Kirby-Bauer disk diffusion method. Interpretation was
133 done according to the 2017 Clinical Laboratory Standard Institute (CLSI) guidelines [20].
134 Antimicrobial agents were from BD Oxoid (Basingstoke, United Kingdom) and *Escherichia*
135 *coli* (ATCC 25922) was used for quality control.

136 **DNA extraction and whole genome sequencing**

137 Genomic DNA was extracted and sequenced in two locations; the MRCG (n=33), and sample
138 processing (n=67) at the University of Liverpool (UK) with DNA sequencing at the Earlham
139 Institute (UK). The extraction protocol for the MRCG used the QIAamp DNA Mini kit
140 (Qiagen, Germany) to extract the DNA from 1mL of an overnight culture grown in triple soya
141 broth (TSB) from BD Oxoid (Basingstoke, United Kingdom) at 37°C, according to
142 manufacturer's instructions, and quantified using a Qubit fluorometer (ThermoFisher, Qubit
143 dsDNA HS Assay). Libraries were prepared using the Nextera XT kit using the Illumina MiSeq
144 system. The DNA extraction and sequencing of samples processed at the University of
145 Liverpool were carried out using an optimised method for large-scale sequencing [21],
146 including the bespoke LITE (Low Input, Transposase Enabled) pipeline for library
147 construction, and Illumina HiSeq sequencing technology. Both sites used the 2x150 bp read
148 protocol.

149 **Genome assembly and *in silico* analysis**

150 The quality of the raw reads was assessed using FASTQC [22] where on average, all reads had
151 a quality Phred score (Qscore) above 30. Paired-end reads were trimmed using Trimomatic

152 [23] and assembled into contigs using SPades, with default settings [24]. *In silico* serotyping
153 of the core genome MLST (cgMLST) and serovar was predicted using the *Salmonella in Silico*
154 Typing resource (SISTR) platform [25]. eBurst Groups (eBGs) were assigned using the
155 Enterobase platform which is based on the allelic identity that accounts for homologous
156 recombination, defined by Achtman as closely related natural genetic clusters/populations of
157 two or more sequence types connected by pair-wise identity or single locus variants [26].

158 **Phylogenetic analysis**

159 Assembled contigs were annotated using Prokka (v1.14.6). The pan-genome was determined
160 using Roary (v3.13.0) [27], taking the GFF files from Prokka as input with default settings.
161 The pan-genome was aligned using Mafft (v7.464) to generate a high-quality sequence
162 alignment. The alignment was used to create a maximum likelihood phylogeny using IQ-TREE
163 (v1.6.12). The phylogenetic tree was visualised and annotated using the interactive Tree Of
164 Life (iTOL). iTOL annotations input files for the tree were generated using custom python
165 scripts (<https://github.com/jodypheilanitol-config-generators>). Antimicrobial resistance
166 (AMR), plasmids and virulence genes were detected by ResFinder [28], PlasmidFinder [29]
167 and virulence factor gene database (VFDB) with a minimum coverage and nucleotide identity
168 of 90% as the cut-off. Publicly available data was downloaded from the European Nucleotide
169 Archive (ENA) to compare the strains from this study against other African strains. All
170 sequence reads from the African samples belonging to the taxid 149539 (NCBI:txid149539)
171 were downloaded and assembled/annotated using the same methods as detailed above. The
172 pan-genome phylogeny was constructed using the same methods as outlined above.

173 **Statistical analysis:**

174 The independent variables were serovars and the dependent variable was disease category. The
175 relationships between the serovar and disease were analysed using logistic regression with

176 measures of association expressed in odds ratios. No power calculations were performed and
177 an alpha value of 0.1 was considered statistically significant. All statistical analyses were
178 performed in Stata, Version 13.1 (StataCorp. 2013. Stata Statistical Software: Release 13.
179 College Station, TX: StataCorp LP.)

180 **Ethical Review and Approval**

181 The study received ethical approval from the Joint MRC/Gambia Government Ethics
182 Committee (SCC1498).

183 **Results:**

184 **Isolate source, associated disease syndrome and regional serovars differences**

185 One hundred isolates recovered from clinical samples from eastern (n=20) and western (n=80)
186 regions of The Gambia were analyzed (Table 1). Isolates were recovered from patients of all
187 ages, with a median age range of 5-14 years. Isolates from the eastern region were
188 predominantly from invasive disease (17 blood and 2 CSF) with only 1 gastroenteritis (stool)
189 source cases. Isolates from the western region were associated with invasive disease (48 blood
190 and 1 CSF), gastroenteritis (25 stool), and other focal non-invasive infections (5 abscesses/pus
191 and 1 urine) (Table 3). Overall, high serovar diversity was noted. *Salmonella* serovars other
192 than *S. Enteritidis*, *S. Typhimurium* and *S. Virchow* were primarily responsible for
193 gastroenteritis (17/26; 65.4%), whilst *S. Typhimurium* was the leading cause of invasive
194 disease (Table 4). *S. Typhimurium* and *S. Enteritidis* were 5 times and twice as likely to cause
195 invasive disease than gastroenteritis respectively.

196 **Sequence types and eBurst groups**

197 All *S. Typhimurium* were in eBG1 and assigned to a single sequence type, ST19 with one or
198 two allelic variants (Table 5). All *S. Enteritidis* belonged to eBG4 assigned to ST11 and
199 ST1925, including two isolates having single locus allelic variants. *S. Virchow* was in eBG9
200 and assigned to three different STs as follows: ST181, ST755 and ST841. The four *S. Hull*
201 isolates belonged to eBG330 and assigned ST1996 with single locus variant. *S. Stanleyville*
202 eBG79 (ST339), *S. Poona* eBG46 (ST308) and *S. Give* eBG67 all belonged to ST516.

203 **AMR genes, AMR phenotypes, plasmid replicons and virulence genes**

204 Antimicrobial resistance genes belonging to eight classes of antimicrobials were detected, plus
205 a biocide tolerance genetic determinant. Interestingly, genes *aac(6')-Iaa_1* and *mdf(A)_1*
206 encoding an aminoglycoside modifying enzyme and a multidrug transporter, respectively, were
207 present in all strains, but did not have any detectable phenotypic effects on our isolates (Figure

208 2). Other AMR genes were harboured by 16/100 (16.0%) isolates and confer resistance to
209 aminoglycosides (*aph_3_Ib* and *aph_6_Id*; n=12), tetracyclines (*tet_A* and *tet_B*; n=4),
210 trimethoprim (*dfrA14*, *dfrA7* and *dfrA8*; n=8), sulfamethoxazole (*sul2* and *sull*; n=7),
211 ampicillin (*blaTEM-1B*; n=8), fosfomycin (*fosA7_1*; n=8), azithromycin (*mph_A*; n=3) and
212 chloramphenicol (*catA1_1*; n=2) (Figure 2). Possession of three or more AMR genes was
213 found in 9/100 (9.0%) isolates, 7/9 (77.8%) of which were found in *S. Enteritidis*.

214 Phenotypic resistance was observed for tetracycline, ampicillin, sulfamethoxazole-
215 trimethoprim and chloramphenicol in 9/100 (9%) isolates, correlating with the presence of
216 resistance genes, except for streptomycin, fosfomycin and azithromycin that were not
217 phenotypically tested (Figure 2). The odds of resistance to ampicillin, sulfamethoxazole-
218 trimethoprim and tetracycline were 51, 20 and 25 times more likely for *S. Enteritidis* than all
219 other serovars combined (Table 6). No resistance to gentamicin was observed phenotypically
220 despite the presence of two aminoglycoside resistance genes (*aph_3_Ib* and *aph_6_Id*), which
221 only confer resistance to streptomycin.

222 Nineteen different plasmid replicons were detected in 66/100 (66%) isolates; 7 isolates
223 harboured one plasmid replicon, 39 harboured two, 16 harboured three and 4 harboured four
224 plasmid replicons (Supplementary table 2). The most common plasmid types were *IncFII*
225 (n=55) and *IncFIB* (n=50), harboured by all *S. Typhimurium* and all but the two
226 chloramphenicol-resistant *S. Enteritidis* (Table 7). The *IncN_1* plasmid was associated with
227 MDR including azithromycin resistance and was only found in *S. Enteritidis* from the eastern
228 region (Figure 4a). The *Inc* plasmid is reported to be associated with beta-lactam, streptomycin
229 and sulphonamide resistance. Interestingly, the *IncI1_Alpha* was harboured by the two
230 chloramphenicol MDR *S. Enteritidis* strains from the western region and the susceptible strains
231 from the eastern region (Figure 4b). Notably, no plasmid replicons were detected in *S.*
232 Bradford, *S. Hull*, *S. Stanleyville*, *S. Rubislaw*, *S. Vinoohradyl* and 1,4,12,27:g,m:1,2 serovars.

233 A total of 115 virulence genes were found with notable absence of *entA*, *entB*, *entE*, *faeC*, *faeD*,
234 *faeE*, *fepC*, *fepG* in all Gambian NTS serovars (Figure 3). We also identified virulence genes
235 encoding toxins, fimbriae and flagella facilitate invasion, adhesion, type III secretion and
236 survival within host, among other functions increasing bacterial virulence (Figure 3). The
237 highest average number of virulence genes was seen for *S. Typhimurium* (mean: 111/115;
238 96.52%) with the notable absence of the *cdtB*, *ssPH1* and *shdA* genes. In contrast, the number
239 of virulence genes *S. Enteritidis* isolates was smaller (mean: 105/115, 91%), with most isolates
240 missing the *cdtB*, *gogB*, *grvA*, *shdA*, *sinH*, *slrP*, *sseK2* and *ssPH1* genes.

241 **Phylogenetic analysis**

242 The SNP analysis showed the isolates are clustered into respective serovars and geographic
243 location (Figure 3). *S. Typhimurium* ST19 demonstrated clonality whilst *S. Enteritidis* was
244 much diverse (Supplementary figures 1 and 2). To put our data within the wider regional context,
245 we compared our *S. Enteritidis* strains to 495 available African *S. Enteritidis* genomes from the
246 European Nucleotide Archive (ENA). Our analysis revealed considerable genetic diversity
247 which fell into three clades: the North American poultry-associated clade [30] and the global
248 epidemic clade known to cause human gastroenteritis in addition to the West African clade
249 known to cause invasive diseases carrying the *catA1* gene [1] (Figure 4a). All *S. Enteritidis*
250 strains from the eastern region (n=9) and 3 from the western region fell within the West African
251 clade, clustering closely with *S. Enteritidis* strains from Ghana, Guinea and Mali. Among these,
252 7/12 (58.3%) were MDR (5 from the eastern region and two from the western region) and the
253 remaining were pan susceptible strains (4 from the eastern region plus one western region).
254 Among all strains within the West African clade from the subregion in the study, azithromycin
255 resistance *mph_A_2* gene was only harboured by strains from the eastern region (Figure 4b).
256 Strains belonging to the North American clade were isolated from blood (n=1) and stool (n=2),
257 whilst those within the global epidemic strains were isolated from blood (n=2) and urine (n=1).

258 **Discussion:**

259 We used phylogenetic analysis to confirm the circulation of a diverse range of NTS serovars
260 including, the epidemic *S. Enteritidis* West African clade mainly in the eastern region of The
261 Gambia, as far back as 2001. This clade is associated with high mortality, harbouring MDR
262 and exhibit genome degradation facilitating an invasive lifestyle, warranting further
263 epidemiological investigations and surveillance as it has important implication in treatment
264 [1,31]. Interestingly, not all *S. Enteritidis* in this study within the clade harboured resistance
265 genes. The *S. Enteritidis* exhibited diversity with other global lineages present. Remarkably,
266 this study found a closely related clonal lineage of *S. Typhimurium* ST19 causing invasive
267 NTS disease as opposed ST313 virulent lineage, which was reported to be circulating in other
268 parts of sSA [7,32]. A possible explanation is that the sequence type ST313 is mainly associated
269 with HIV infection which has a low prevalence in The Gambia [19]. Nevertheless,
270 Panzenhagen *et al.*, reported *S. Typhimurium* ST19-lineage that has evolved in Brazil similar
271 to ST313 restricted to invasive diseases [33]. This unique pathogenesis warrants further
272 comparative genomic and epidemiological investigations into the *S. Typhimurium* ST19-
273 lineage [13].

274 Two-thirds of serovars responsible for gastroenteritis in this setting were serovars other than
275 *S. Typhimurium* and *S. Enteritidis* as opposed to other parts of the world where these two
276 serovars account for the highest burden [34]. The great diversity in serovars causing
277 gastroenteritis as opposed to iNTS may suggest that NTS gastroenteritis may not be a
278 predisposition to iNTS in The Gambia. In addition, NTS was not a major cause of
279 gastroenteritis in this setting [35]. Although a huge gap exist regarding transmission dynamics
280 of NTS in sSA [36], more insight is needed in understanding the relationship between NTS
281 gastroenteritis and iNTS disease. In addition, the past two decades has revealed geographical
282 serovar diversity between the two regions, indicating a possible regional specific

283 epidemiological pattern of NTS in The Gambia. However, the time difference in the sampling
284 between the two regions may confound the difference in location and warrant further
285 investigation. Nonetheless, previous phenotypic studies have highlighted these serovar
286 differences [14,15].The changing disease pattern of NTS in sSA, associated with specific
287 lineages of *S. Typhimurium* and *S. Enteritidis* remain a major concern and warrant surveillance
288 [1,9,10,37]. Although a recent decline has been reported for iNTS, it remains a leading cause
289 of bacteraemia in The Gambia [38,39]. Three cases of *Salmonella* bacterial meningitis were
290 included in this study, all of which were found in paediatric patients under 10 years old.
291 Although rare, NTS meningitis has been reported elsewhere in Africa, and is often associated
292 with high case fatality [40,41]. Therefore, NTS needs to be considered in the differential
293 diagnosis of bacterial meningitis following post-vaccine declines in the prevalence of Hib,
294 *Neisseria meningitidis* and pneumococcal meningitis [38,42].

295 Antimicrobial resistance was found to be correlated with serovar, plasmid replicon and
296 geographical location. MDR was confined within *S. Enteritidis* noted for first-line antibiotics
297 such as ampicillin, sulfamethoxazole-trimethoprim, tetracycline and chloramphenicol.
298 Although no fluroquinolone or cephalosporin resistance was identified, implying these drugs
299 might still be effective in The Gambia, the emergence of azithromycin resistance gene *mph_A*
300 requires further monitoring as a recommended drug of choice for iNTS [43]. Nevertheless, the
301 aminoglycoside resistance gene *aac(6')-Iaa* and a multi-drug transporter gene *mdf(A)* were
302 present in all serovars including pan-susceptible isolates. This highlights the potential of using
303 genomic-based AMR prediction to monitor AMR determinants for emerging resistance. Our
304 study did not phenotypically test streptomycin susceptibility which lacks clinical breakpoints
305 and it is not used in the treatment of infections. In addition, the streptomycin resistance genes
306 were frequently found to lack expression [44]. While the development of AMR has been mainly
307 attributed to antibiotic misuse in humans and animals, evidence has shown that environmental

308 factors such as poor sanitation, hygiene and access to clean water may be equally responsible
309 for driving resistance in LMIC [45,46].

310 Although the differences in sampling timepoint was a major limitation in the study, the
311 diversity of AMR between serovars and geographic regions highlights the need for real-time
312 surveillance as well as region-appropriate interventions to effectively combat AMR.
313 Geographic differences seen in AMR may suggest differences in selective pressure and
314 ecological factors thus suggesting need for location specific control measures. The study by
315 Carroll *et al.* underscored distinct factors such as use of antimicrobials in food producing
316 animals as contributing to emergence and dispersal of AMR in humans [47]. Our findings are
317 consistent with other studies that show NTS serovar differences in geographical locations
318 within the same country [47,48]. A correlation between phenotypic and genotypic resistance
319 was also observed (Figure 2). The *IncN* type plasmid was strongly associated with resistance
320 and was found only in MDR *S. Enteritidis*, thus requiring closer surveillance. This plasmid is
321 associated with dissemination of antimicrobial resistance with high potential of spread [49].

322 We found many virulence genes, however, the identification of virulence factors coding for
323 specific phenotypic traits can be challenging, due to differences in specific traits among
324 serovars [50]. Notwithstanding, the pathogenic success of NTS serovars is directly linked to
325 their plethora of virulence factors aided by host susceptibility, serovar fitness, infectious dose
326 and antimicrobial resistance (AMR) [51]. Further studies are needed to understand the clinical
327 implications of these virulence genes.

328 There are several limitations in this study. First, the isolates were collected at different time
329 points, with a lag of up to 18 years between the two different regions, which may lead to
330 missing temporal differences. However, the higher AMR prevalence of *S. Enteritidis* in the
331 eastern region as early as 2001 compared to the more recent western region proves the point
332 that AMR emerged a lot earlier and more prevalent in the eastern region. Second, relatively

333 few isolates were analysed from only two regions due to limited microbiology capacity and
334 therefore our results may not reflect the entirety of strains and lineages of the NTS in The
335 Gambia.

336 In conclusion, this study has revealed great serovar diversity in serovars responsible for
337 gastroenteritis and iNTS and provides evidence for the emergence of MDR *S. Enteritidis*
338 epidemic West African clade in The Gambia. These findings have important implications for
339 antimicrobial prescription policies and regional surveillance of NTS disease. We have
340 demonstrated that a robust genomic epidemiological surveillance of NTS by WGS can be
341 instrumental in generating the critical knowledge and timely information for better disease
342 management and prevention.

343

344 **Acknowledgement:**

345 We thank the following for their support in the study: Jay C.D Hinton, Senior Investigator
346 Award grant recipient of the Liverpool for leading the 10k *Salmonella* project, Nurudeen
347 Ikumapayi of MRCG@LSHTM for support in providing the isolates from the eastern regions.
348 We are also grateful to Jarrai Manneh and Abdul Karim Sesay for providing support and
349 training with the Illumina sequencing in the MRCG@LSHTM, Buntung Ceesay and Mamadou
350 Jallow of MRCG@LSHTM for contributing to the microbiology laboratory analysis. We thank
351 the patients, Clinical Laboratories, and Services of the Medical Research Council Unit.

352

353 **Author notes:** Supporting data and protocols are provided as supplementary material and
354 available.

355

356 **Conflict of interest:**

357 We declare no conflict of interest

358 **Author contributions:**

359 Conceptualiztion: SD, RSB, MA and BKA.

360 Laboratory analysis and sequencing of isolates in MRCG: SD

361 Data transfer of sequence reads into analysis pipeline AW, AK and JP

362 Processing and sequencing of isolates in the UK, including data transfer. BPS

363 Data curation: SD, AW, AK

364 Formal analysis: SD and AKM

365 Writing original draft: SD

366 Review and editing: SD, RSB, SY, DN, BPS, BKA, MA

367 Review of final draft: all authors

368 Supervision: SK, BKA and MA

369 Project Administration: SD

370

371 **Funding information**

372 This project was jointly supported by MRCG @ LSHTM; the Global Challenges Research

373 Fund (GCRF) data & resources grant BBS/OS/GC/000009D and the BBSRC Core Capability

374 Grant to the Earlham Institute BB/CCG1720/1. This project was also partly supported by the

375 Wellcome Trust Senior Investigator Award (106914/Z/15/Z) to Jay C. D. Hinton. The source

376 of funding has no role in the design, decision to publish and writing of the manuscript.

377

378

379 **References**

- 380 1. Feasey NA, Hadfield J, Keddy KH, Dallman TJ, Jacobs J, Deng X, et al. Distinct
381 *Salmonella Enteritidis* lineages associated with enterocolitis in high-income settings
382 and invasive disease in low-income settings. *Nat Genet.* 2016;48(10):1211–7.
- 383 2. Jones TF, Ingram AL, Cieslak PR, Vugia DJ, Tobin-D'Angelo M, Hurd S, et al.
384 *Salmonellosis Outcomes Differ Substantially by Serotype.* *J Infect Dis.*
385 2008;198(1):109–14.
- 386 3. Langridge GC, Fookes M, Connor TR, Feltwell T, Feasey N, Parsons BN, et al.
387 Patterns of genome evolution that have accompanied host adaptation in *Salmonella*.
388 *Proc Natl Acad Sci U S A.* 2015;112(3):863–8.
- 389 4. Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O'Brien SJ, et al. The Global
390 Burden of Nontyphoidal *Salmonella* Gastroenteritis. *Clin Infect Dis.* 2010;50(6):882–
391 9.
- 392 5. Crump JA, Sjölund-Karlsson M, Gordon MA, Parry CM, et al. Epidemiology, clinical
393 presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial
394 management of invasive *Salmonella* infections. Vol. 28, *Clinical Microbiology*
395 *Reviews.* 2015. p. 901–37.
- 396 6. Ao TT, Feasey NA, Gordon MA, Keddy KH, Angulo FJ, Crump JA. Global Burden of
397 Invasive Nontyphoidal *Salmonella* Disease, 2010. *Emerg Infect Dis.* 2015
398 Jun;21(6):941–9.
- 399 7. Okoro CK, Kingsley RA, Connor TR, Harris SR, Parry CM, Al-Mashhadani MN, et
400 al. Intracontinental spread of human invasive *Salmonella* Typhimurium pathovariants
401 in sub-Saharan Africa. *Nat Genet.* 2012;44(11):1215–21.
- 402 8. Feasey NA, Dougan G, Kingsley RA, Heyderman RS, Gordon MA. Invasive non-
403 typhoidal salmonella disease: An emerging and neglected tropical disease in Africa.

404 Vol. 379(9835), The Lancet. 2012. p. 2489–99.

405 9. Uche I V, MacLennan CA, Saul A. A Systematic Review of the Incidence, Risk

406 Factors and Case Fatality Rates of Invasive Nontyphoidal Salmonella (iNTS) Disease

407 in Africa (1966 to 2014). *PLoS Negl Trop Dis.* 2017;11(1):e0005118.

408 10. Kingsley RA, Msefula CL, Thomson NR, Kariuki S, Holt KE, Gordon MA, et al.

409 Epidemic multiple drug resistant *Salmonella Typhimurium* causing invasive disease in

410 sub-Saharan Africa have a distinct genotype. *Genome Res.* 2009;19(12):2279–87.

411 11. Okoro CK, Barquist L, Connor TR, Harris, Simon R, Clare S, Stevens MP, et al.

412 Signatures of Adaptation in Human Invasive *Salmonella Typhimurium* ST313

413 Populations from Sub-Saharan Africa. *PLoS Negl Trop Dis.* 2015;9(6):e0003848.

414 12. Lunguya O, Lejon V, Phoba M-F, Bertrand S, Vanhoof R, Glupcznski Y, et al.

415 Antimicrobial Resistance in Invasive Non-typhoid *Salmonella* from the Democratic

416 Republic of the Congo: Emergence of Decreased Fluoroquinolone Susceptibility and

417 Extended-spectrum Beta Lactamases. *PLoS Negl Trop Dis.* 2013;7(3):e2103.

418 13. Darboe S, Okomo U, Muhammad A, Ceesay B, Jallow M, Usuf E, et al. Community-

419 acquired Invasive Bacterial Disease in Urban Gambia , 2005 – 2015 : A Hospital-based

420 Surveillance. *Clin Infect Dis.* 2019;69(Suppl 2):105–13.

421 14. Kwambana-Adams B, Darboe S, Nabwera H, Forster-Nyarko E, Ikumapayi UN, Secka

422 O, et al. *Salmonella* infections in The Gambia, 2005-2015. *Clin Infect Dis.*

423 2015;61(Suppl 4):S354-362.

424 15. Ikumapayi UN, Antonio M, Sonne-Hansen J, Biney E, Enwere G, Okoko B, et al.

425 Molecular epidemiology of community-acquired invasive non-typhoidal *Salmonella*

426 among children aged 2-29 months in rural Gambia and discovery of a new serovar,

427 *Salmonella enterica* Dingiri. *J Med Microbiol.* 2007;56(11):1479–84.

428 16. The Gambia Bureau Statistics. The Gambia Demographic and Health Survey.

429 2014;(April):2014–5.

430 17. Ceesay SJ, Casals-Pascual C, Nwakanma DC, Walther M, Gomez-Escober N, Fulford
431 AJ., et al. Continued decline of malaria in The Gambia with implications for
432 elimination. *PLoS One*. 2010;5(8):e12242.

433 18. UNICEF, WHO WBJ child malnutrition estimates (J). Prevalence of underweight,
434 weight for age [Internet]. 2013 [cited 2020 Jul 7]. Available from:
435 <https://data.worldbank.org/indicator/SH.STA.MALN.ZS?locations=GM>

436 19. National AIDS Secretariat. The Gambia Global AIDS Response Progress Report
437 [Internet]. 2015. Available from:
438 https://www.unaids.org/sites/default/files/country/documents/GMB_narrative_report_2015.pdf

440 20. CLSI. Performance standards for antimicrobial susceptibility testing. Performance
441 Standards for Antimicrobial Susceptibility Testing; Twenty-seventh Informational
442 Supplement. CLSI Document M100-S27. 2017.

443 21. Perez-Sepulveda BM, Heavens D, Pulford C V, Predeus A V., Low R, Webster H, et
444 al. Title : An accessible , efficient and global approach for the large-scale sequencing
445 of bacterial genomes. *bioRxiv* [Internet]. 2020 [cited 2020 Jul 25];1–33. Available
446 from: <https://www.biorxiv.org/content/10.1101/2020.07.22.200840v1>

447 22. Wingett SW and AS. FASTQ Screen: A tool for multi-genome mapping and quality
448 control. *F1000Research*. 2018;7:1338.

449 23. Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina
450 sequence data. *Bioinformatics*. 2014;30(15):2114–20.

451 24. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al.
452 SPAdes: A new genome assembly algorithm and its applications to single-cell
453 sequencing. *J Comput Biol*. 2012;19(5):455–77.

454 25. Yoshida C, Brumwell SL, Lingohr EJ, Ahmad A, Blimkie TM, Kogan BA, et al. Draft
455 whole-genome sequences of 25 *Salmonella enterica* strains representing 24 serovars.
456 *Genome Announc.* 2016;4(2):e01718-15.

457 26. Achtman M, Wain J, Weill FX, Nair S, Zhou Z, Sangal V, et al. Multilocus sequence
458 typing as a replacement for serotyping in *Salmonella enterica*. *PLoS Pathog.*
459 2012;8(6):e1002776.

460 27. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, et al. Roary:
461 Rapid large-scale prokaryote pan genome analysis. *Bioinformatics*. 2015 May
462 25;31(22):3691–3.

463 28. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al.
464 Identification of acquired antimicrobial resistance genes. *J Antimicrob Chemother.*
465 2012;67(11):2640–4.

466 29. Carattoli A, Zankari E, Garcíá-Fernández A, Larsen M V, Lund O, Villa L, et al. In
467 Silico detection and typing of plasmids using plasmidfinder and plasmid multilocus
468 sequence typing. *Antimicrob Agents Chemother.* 2014;58(7):3895–903.

469 30. Deng X, Desai PT, den Bakker HC, Mikoleit M, Tolar B, Trees E, et al. Genomic
470 epidemiology of *Salmonella enterica* serotype Enteritidis based on population structure
471 of prevalent lineages. *Emerg Infect Dis.* 2014;20(9):1481–9.

472 31. Aldrich C, Hartman H, Feasey N, Chattaway MA, Dekker D, Al-Emran HM, et al.
473 Emergence of phylogenetically diverse and fluoroquinolone resistant *salmonella*
474 *enteritidis* as a cause of invasive nontyphoidal *salmonella* disease in Ghana. *PLoS*
475 *Negl Trop Dis.* 2019;13(6):e0007485.

476 32. Branchu P, Bawn M, Kingsley RA. Genome variation and molecular epidemiology of
477 *Salmonella enterica* serovar *Typhimurium* pathovariants. *Infect Immun.* 2018;86(8):1–
478 17.

479 33. Panzenhagen PHN, Paul NC, Conte CA, Costa RG, Rodrigues DP, Shah DH.
480 Genetically distinct lineages of *Salmonella* Typhimurium ST313 and ST19 are present
481 in Brazil. *Int J Med Microbiol.* 2018 Mar 1;308(2):306–16.

482 34. Hendriksen RS, Vieira AR, Karlsmose S, Lo Fo Wong DMA, Jensen AB, Wegener
483 HC, et al. Global monitoring of salmonella serovar distribution from the world health
484 organization global foodborne infections network country data bank: Results of quality
485 assured laboratories from 2001 to 2007. *Foodborne Pathog Dis.* 2011 Aug 1;8(8):887–
486 900.

487 35. Kotloff KL, Nataro JP, Muhse K. Burden and aetiology of diarrhoeal disease in infants
488 and young children in developing countries (the Global Enteric Multicenter Study,
489 GEMS): a prospective, case-control study. *Lancet.* 2013.

490 36. Gordon M a. Europe PMC Funders Group Invasive Non-typhoidal *Salmonella* Disease
491 – epidemiology , pathogenesis and diagnosis. *Curr Opin Infect Dis.* 2012;24(5):484–9.

492 37. Mahon BE, Fields PI. Invasive Infections with Nontyphoidal *Salmonella* in Sub-
493 Saharan Africa. *Microbiol Spectr.* 2016;4(3).

494 38. Zaman SMA, Howie SRC, Ochoge M, Secka O, Bah A, Baldeh I, et al. Impact of
495 routine vaccination against *Haemophilus influenzae* type b in The Gambia: 20 years
496 after its introduction. *J Glob Health.* 2020;10(1):010416.

497 39. Mackenzie G, Ceesay SJ, Hill PC, Walther M, Bojang KA, Satoguina J, et al. A
498 decline in the incidence of invasive non-typhoidal salmonella infection in the gambia
499 temporally associated with a decline in malaria infection. *PLoS One.*
500 2010;5(5):e10568.

501 40. Molyneux EM, Mankhambo LA, Ajib P, Graham SM, Forsyth H, Amos P, et al. The
502 outcome of non-typhoidal salmonella meningitis in Malawian children, 1997-2006.
503 *Ann Trop Paediatr.* 2009 Mar;29(1):13–22.

504 41. Keddy KH, Sooka A, Musekiwa A, Smith AM, Ismail H, Tau NP, et al. Clinical and
505 microbiological features of salmonella meningitis in a South African Population, 2003-
506 2013. *Clin Infect Dis.* 2015;61(Suppl 4):S272-82.

507 42. Mackenzie GA, Hill PC, Jeffries DJ, Hossain I, Uchendu U, Ameh D, et al. Effect of
508 the introduction of pneumococcal conjugate vaccination on invasive pneumococcal
509 disease in The Gambia: a population-based surveillance study. *Lancet Infect Dis.*
510 2016;16(6):703-11.

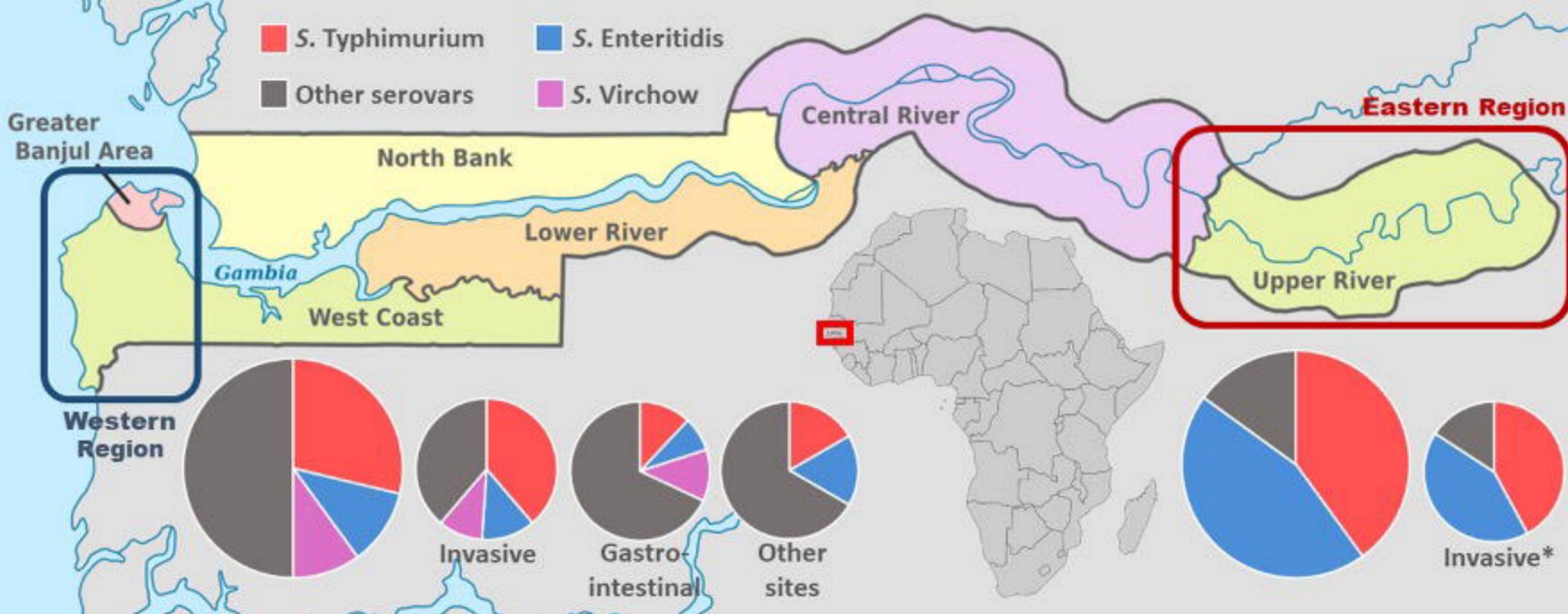
511 43. Gomes C, Martínez-Puchol S, Palma N, Horna G, Ruiz-Roldán L, Pons MJ, et al.
512 Macrolide resistance mechanisms in Enterobacteriaceae: Focus on azithromycin. Vol.
513 43, *Critical Reviews in Microbiology*. Taylor and Francis Ltd; 2017. p. 1-30.

514 44. Springer B, Kidan YG, Prammananan T, Ellrott K, Böttger EC, Sander P. Mechanisms
515 of streptomycin resistance: Selection of mutations in the 16S rRNA gene conferring
516 resistance. *Antimicrob Agents Chemother.* 2001;45(10):2877-84.

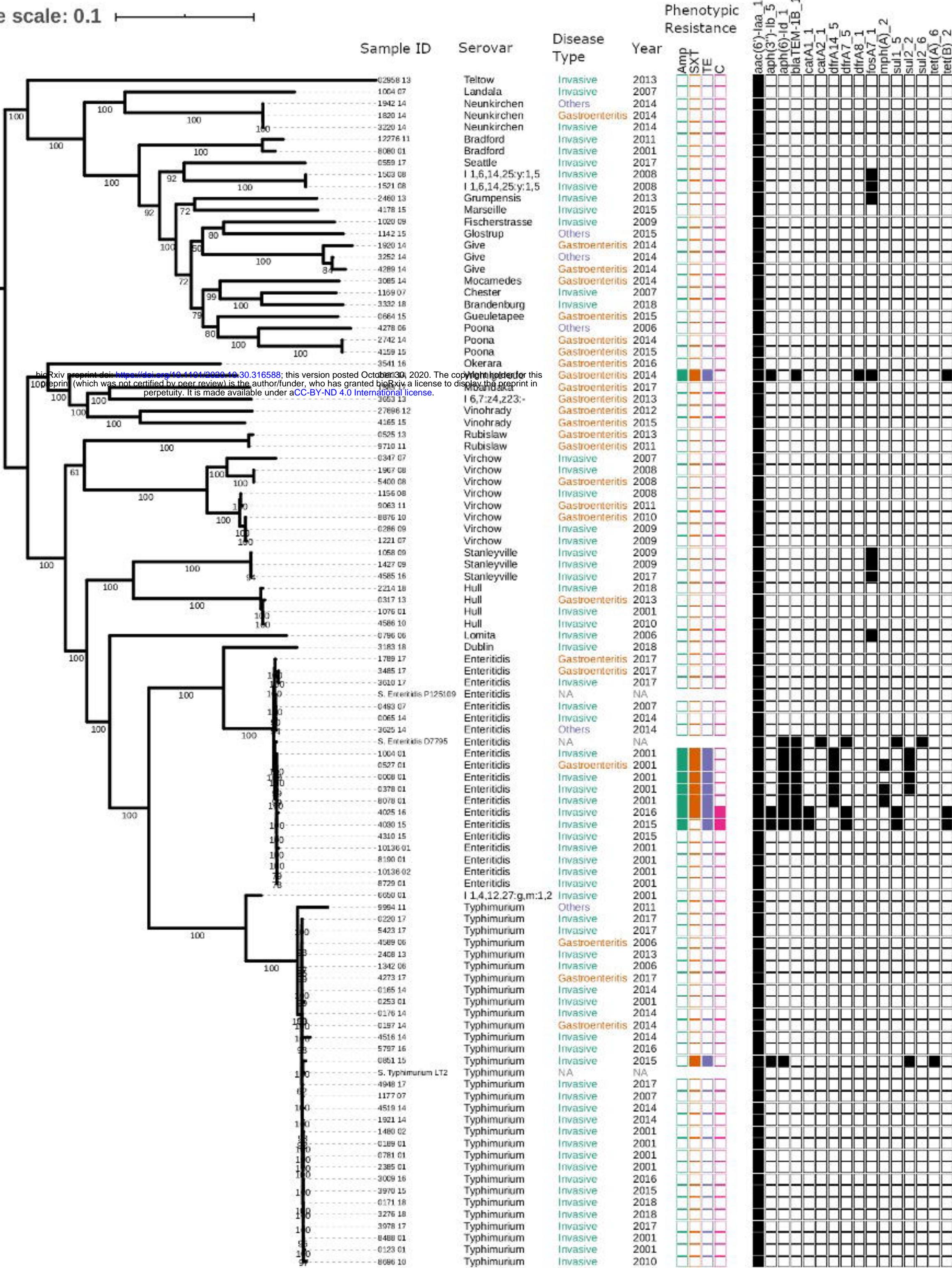
517 45. Afema JA, Byarugaba DK, Shah DH, Atukwase E, Nambi M, Sischo WM. Potential
518 sources and transmission of salmonella and antimicrobial resistance in Kampala,
519 Uganda. *PLoS One.* 2016;11(3):e0152130.

520 46. Laxminarayan R, Duse A, Wattal C, Zaidi AK., Wertheim HF., Sumpradit N, et al.
521 Antibiotic resistance-the need for global solutions. Vol. 13, *The Lancet Infectious*
522 *Diseases.* 2013. p. 1057-98.

523 47. Carroll LM, Wiedmann M, den Bakker H, Siler J, Warchocki S, Kent D, et al. Whole-
524 genome sequencing of drug resistant *Salmonella enterica* isolates from dairy cattle and
525 humans in New York and Washington States reveals source and geographic
526 associations. *Appl Environ Microbiol.* 2017;83(12).


527 48. Kariuki S, Oundo JO, Muyodi J, Lowe B, Threlfall E, Hart CA. Genotypes of
528 multidrug-resistant *Salmonella enterica* serotype *typhimurium* from two regions of

529 Kenya. FEMS Immunol Med Microbiol. 2000;29(1).


530 49. García-Fernández A, Villa L, Moodley A, Hasman H, Miriagou V, Guardabassi L, et
531 al. Multilocus sequence typing of IncN plasmids. J Antimicrob Chemother. 2011
532 Sep;66(9):1987–91.

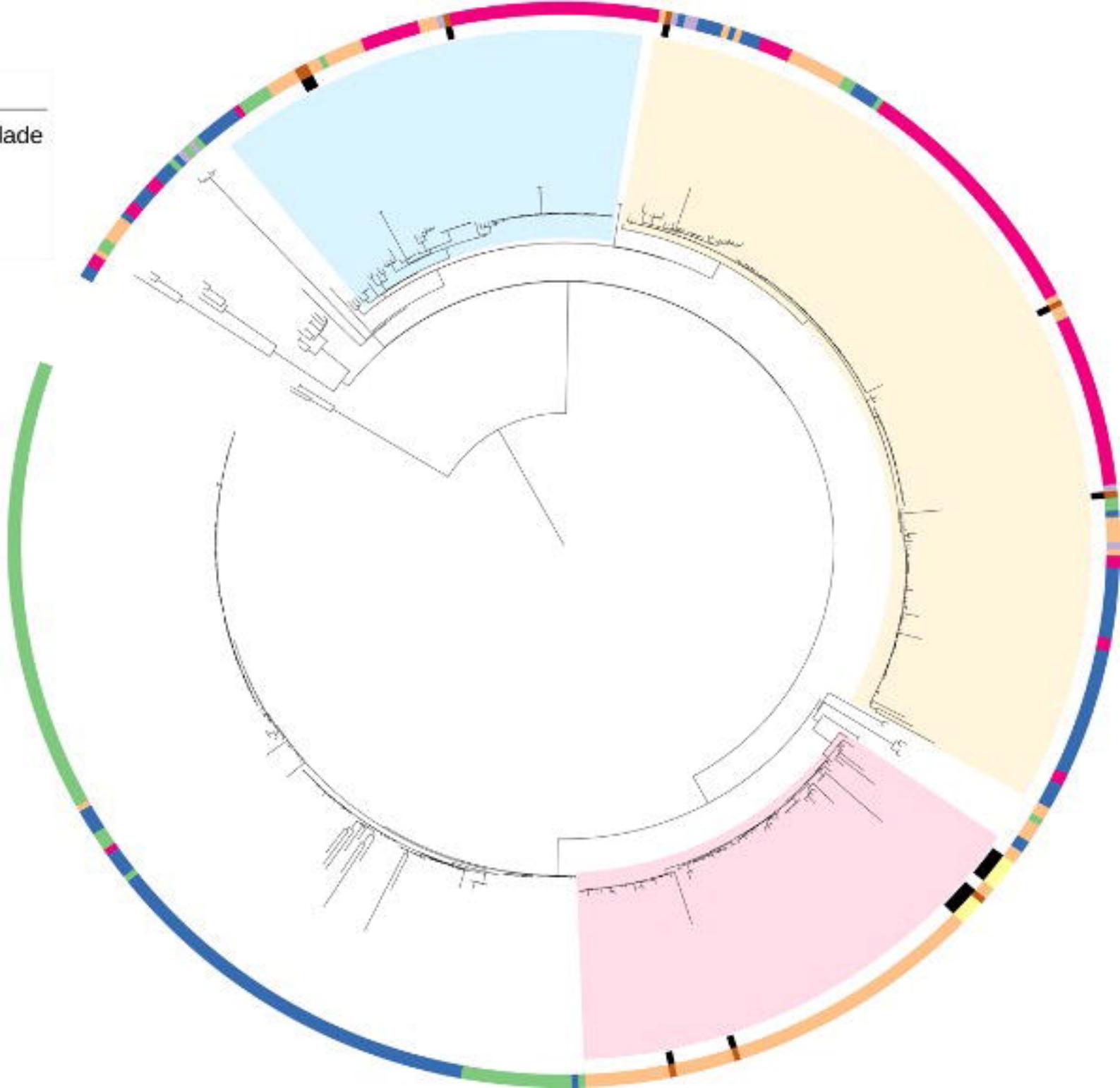
533 50. Van Asten AJAM, Van Dijk JE. Distribution of “classic” virulence factors among
534 *Salmonella* spp. FEMS Immunol Med Microbiol. 2005;44(3):251–9.

535 51. Cheng RA, Eade CR, Wiedmann M. Embracing diversity: Differences in virulence
536 mechanisms, disease severity, and host adaptations contribute to the success of
537 nontyphoidal salmonella as a foodborne pathogen. Front Microbiol. 2019;
538
539

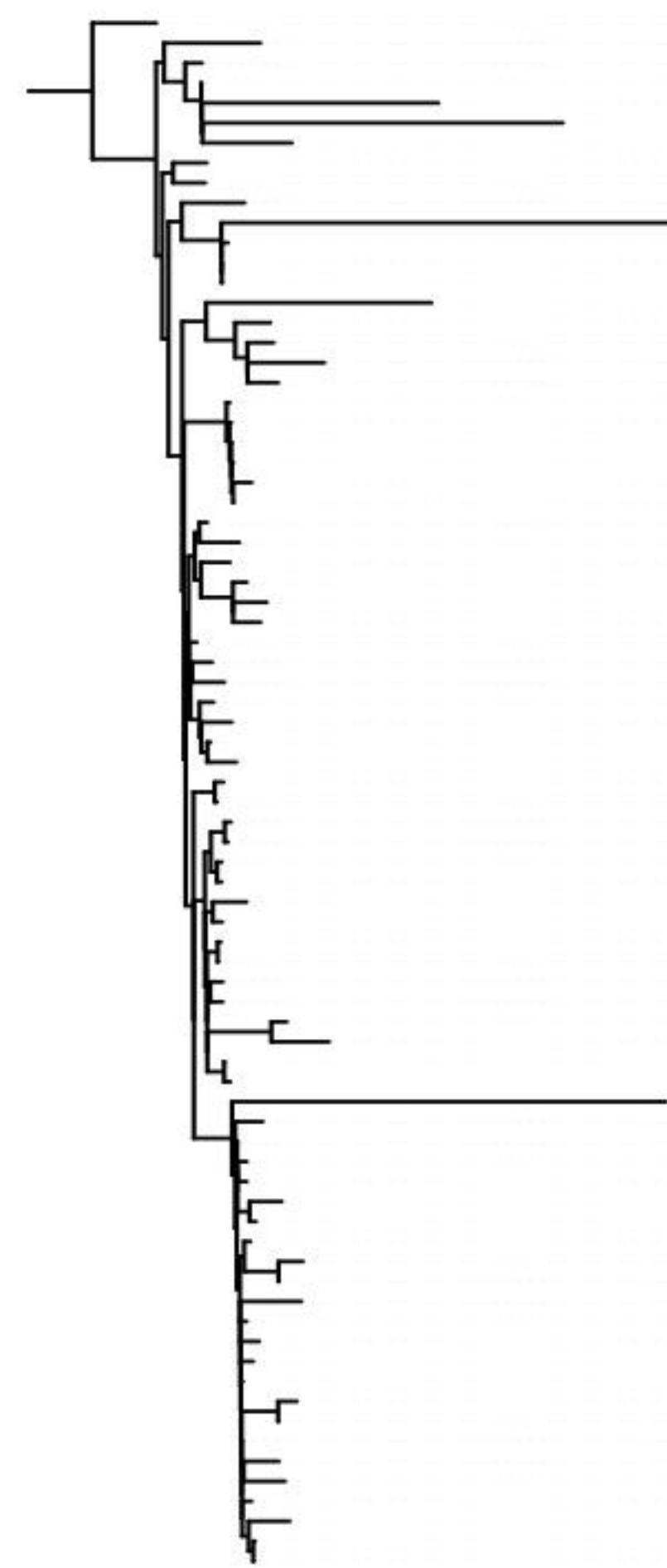
Tree scale: 0.1

Tree scale: 0.001

Colored ranges


- N. American Poultry associated clade
- Global epidemic clade
- West African clade

Study samples


■ Sample

region


- Central
- East
- Gambia - East
- Gambia - West
- North
- South
- West

Tree scale: 0.0001

ERR369407 Guinea
ERR369362 Guinea
1004_01 Gambia - Eastern region
0527_01 Gambia - Eastern region
0378_01 Gambia - Eastern region
0008_01 Gambia - Eastern region
8078_01 Gambia - Eastern region
ERR374208 Mali
ERR374240 Mali
4810_16 Gambia - Western region
10136_01 Gambia - Eastern region
8729_01 Gambia - Eastern region
10136_02 Gambia - Eastern region
8190_01 Gambia - Eastern region
ERR984873 Ghana
ERR369370 Mali
ERR369382 Mali
ERR025172 Mali
ERR374207 Mali
ERR369404 Mali
ERR374221 Mali
ERR374210 Mali
ERR374224 Mali
ERR369389 Mali
ERR369400 Mali
ERR374214 Mali
ERR374239 Mali
ERR374209 Mali
ERR374248 Mali
ERR374220 Mali
ERR374244 Mali
ERR369388 Senegal
ERR369341 Mali
ERR369342 Mali
ERR369343 Mali
ERR374247 Mali
ERR369374 Cote d'Ivoire
ERR374243 Mali
ERR1010027 Ghana
ERR1010129 Ghana
ERR025166 Mali
ERR369408 Mali
ERR369413 Senegal
ERR369417 Senegal
ERR369409 Mali
ERR374213 Mali
ERR374215 Mali
ERR374221 Mali
ERR369368 Mali
ERR374218 Mali
ERR025185 Mali
ERR025174 Mali
ERR369344 Mali
ERR374225 Mali
4025_16 Gambia - Western region
ERR374217 Mali
ERR374235 Mali
ERR374211 Mali
ERR374212 Mali
ERR374229 Mali
ERR374241 Mali
ERR374223 Mali
ERR374232 Mali
ERR984822 Ghana
4030_16 Gambia - Western region
ERR374246 Mali
ERR374216 Mali
ERR374219 Mali
ERR374234 Mali
ERR374222 Mali
ERR374238 Mali
ERR374233 Mali
ERR374242 Mali
ERR374245 Mali
ERR374230 Mali
SRR7293289 Ghana
ERR374231 Mali
ERR374236 Mali

Table 1. Baseline characteristics of Gambian non-typhoidal *Salmonella* disease patients from whom isolates were cultured for use in this study

		<i>N (%)</i>	<i>eastern region</i>	<i>western region</i>
<i>Age range</i>	0-4 years	42 (45.2)	4 (25.0)	38 (50.7)
	5-14 years	21 (22.6)	12 (65.0)	9 (12.0)
	≥15 years	26 (27.9)	2 (10.0)	24 (32.0)
	Unknown	4 (4.3)	0	4 (5.3)
<i>Gender</i>	Male	51(54.3)	10 (55.6)	41 (54.7)
	Female	38(41.5)	7 (38.9)	31 (41.3)
	Unknown	4 (4.2)	1 (5.5)	3 (4.0)
<i>Source</i>	Invasive disease	68 (68.0)	19 (95.0)	49 (61.2)
	Gastroenteritis	26 (26.0)	1 (5.0)	25 (31.3)
	Other	6 (6)	0	6 (7.5)
<i>Serovars</i>	<i>S. Enteritidis</i>	18 (18.0)	9 (45.0)	9 (11.2)
	<i>S. Typhimurium</i>	31 (31.0)	8 (40.0)	23 (28.8)
	<i>S. Virchow</i>	8 (8.0)	0	8 (10.0)
	Other serovars*	43 (43.0)	3 (15.0)	40 (50.0)

*Shown in figure supplementary table

Table 2. Patients with multisite NTS simultaneous infections

Patient	Sex	Age range (yrs)	Infection source	Serovar	Region	Date isolated
1	Male	0-4	Bacteraemia	<i>S. Enteritidis</i>	western	19/9/2017
			Gastroenteritis	<i>S. Enteritidis</i>		14/9/2017
2	Female	35-39	Bacteraemia	<i>S. Typhimurium</i>	western	1/1/2014
			Gastroenteritis	<i>S. Typhimurium</i>		1/1/2014
3	Male	0-4	Bacteraemia	<i>S. Virchow</i>	western	1/3/2009
			Meningitis	<i>S. Virchow</i>		1/3/2009
4	Male	30-34	Bacteraemia	<i>S. Typhimurium</i>	western	1/11/2006
			Gastroenteritis	<i>S. Typhimurium</i>		1/11/2006
5	Female	0-4	Bacteraemia	1,6,14,25:y:1,5	western	1/10/2008
			Bacteraemia	1,6,14,25:y:1,5		1/10/2008
6	Male	5-9	Bacteraemia	<i>S. Enteritidis</i>	eastern	1/10/2001
			Bacteraemia	<i>S. Enteritidis</i>		1/10/2001
7	Male	0-4	Bacteraemia	<i>S. Typhimurium</i>	eastern	1/12/2001
			Meningitis	<i>S. Typhimurium</i>		1/12/2001

Table 3. Gambian non-typhoidal *Salmonella* serovar distribution by infection in this study

	eastern region (2001) n=20			western region (2006-2018) n=80		
	Infection source					
	Invasive disease	Gastroenteritis	Other	Invasive disease	Gastroenteritis	Other*
	<u>Total</u>	19	1	0	<u>Total</u>	49
		Bacteraemia	Meningitis		Bacteraemia	Meningitis
		17	2		48	1
<i>S. Enteritidis</i>	9	8 (47.1)	0	1	0	2 (8.0)
<i>S. Typhimurium</i>	8	6 (35.3))	2	0	19 (39.6)	0
<i>S. Virchow</i>	0	0	0	0	4 (8.3)	1
<i>Other serovars</i>	3	3 (17.6)	0	0	19 (39.6)	0
					17 (68.0)	4 (66.8)

*Other = Abscess/pus and urine isolates

Table 4. Gambian non-typhoidal *Salmonella* serovar distribution and disease prevalence

Serovar	Total	Invasive N (%)	Gastroenteritis N (%)	Others N (%)	Odds of Invasive vs Gastroenteritis	95% CI	p value
<i>S. Typhimurium</i>	100	68	26	6			
31	27 (39.7)	3 (11.5)	1 (16.7)	5.05	1.38; 18.48	0.014	
<i>S. Enteritidis</i>	18	14 (20.6)	3 (11.5)	1 (16.7)	1.99	.52; 7.58	0.315
<i>S. Virchow</i>	8	5 (7.4)	3 (11.5)	0 (0)	0.61	0.13, 2.75	0.519
Other serovars	43	22 (32.4)	17 (65.4)	4 (66.7)	0.25	0.10; 0.66	0.005

Table 5. eBurst groups of the major Gambian NTS serovars responsible for clinical disease

Serovars	Sequence type	eBG	Number
<i>S. Enteritidis</i>	11	4	15
	1925	4	1
	11	4	2*
<i>S. Typhimurium</i>	19	1	29
	19	1	2*
<i>S. Virchow</i>	181	9	2
	755	9	1
	841	9	4
	841	9	1*

*One or two allelic variants of ST.

Table 6. Odds of *S. Enteritidis* resistance against other NTS serovars causing disease in The Gambia

Antimicrobials	<i>S. Enteritidis</i> n=18	Other serovars n=72	Odds of <i>S.</i> <i>Enteritidis</i> vs all serovars	95% CI	P-value
<i>Ampicillin</i>	7	1	51.5	5.78; 459.60	<0.001
sulfamethoxazole- trimethoprim	6	2	20.0	3.61; 110.74	0.001
Tetracycline	7	2	25.5	4.68; 138.39	<0.001
Chloramphenicol	2	0	1	NA	NA

Table 7. Summary of plasmid replicons and serovar in The Gambian non-typhoidal *Salmonella* isolates

Plasmid Type	Total	S. Enteritidis n=18	S. Typhimurium n=31	S. Virchow n=8	Other serovars n=43
<i>IncFII_S_1</i>	55	16	31	0	8
<i>IncFIB_S_1</i>	50	16	31	0	3
<i>IncII_1_Alpha</i>	6	5	0	0	1
<i>IncN_1</i>	5	5	0	0	0
<i>IncX1_1</i>	4	0	2	0	2
<i>IncFIB_pKPHS1_1_pKPHS1</i>	4	0	0	0	4
<i>IncFII_SARC14_1_SARC14</i>	3	0	0	0	3
<i>IncFII_p14_1_p14</i>	3	0	0	0	3
<i>IncL/M_pOXA-48_1_pOXA-48</i>	3	0	1	0	2
<i>pSL483_1</i>	3	0	3	0	0
<i>ColRNAI_1</i>	2	0	1	0	1
<i>Col_MG828_1</i>	2	0	1	1	0
<i>IncFIB_pB171_1_pB171</i>	2	0	0	0	2
<i>IncI2_1_Delta</i>	2	0	1	0	1
<i>IncX1_4</i>	1	1	0	0	0
<i>IncX3_1</i>	1	1	0	0	0
<i>repUS21_rep_pWBG764</i>	1	0	0	0	1
<i>IncFII_pRSB107_1_pRSB107</i>	1	0	0	0	1
<i>pENTAS02_1</i>	1	0	0	0	1