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Abstract

Data-centric approaches have been utilized to develop predictive methods for elucidating
uncharacterized aspects of proteins such as their functions, biophysical properties, subcellular
locations and interactions. However, studies indicate that the performance of these methods
should be further improved to effectively solve complex problems in biomedicine and
biotechnology. A data representation method can be defined as an algorithm that calculates
numerical feature vectors for samples in a dataset, to be later used in quantitative modelling
tasks. Data representation learning methods do this by training and using a model that employs
statistical and machine/deep learning algorithms. These novel methods mostly take inspiration
from the data-driven language models that have yielded ground-breaking improvements in the
field of natural language processing. Lately, these learned data representations have been
applied to the field of protein informatics and have displayed highly promising results in terms of
extracting complex traits of proteins regarding sequence-structure-function relations. In this study,
we conducted a detailed investigation over protein representation learning methods, by first
categorizing and explaining each approach, and then conducting benchmark analyses on; (i)
inferring semantic similarities between proteins, (ii) predicting ontology-based protein functions,
and (iij) classifying drug target protein families. We examine the advantages and disadvantages
of each representation approach over the benchmark results. Finally, we discuss current
challenges and suggest future directions. We believe the conclusions of this study will help
researchers in applying machine/deep learning-based representation techniques on protein data
for various types of predictive tasks. Furthermore, we hope it will demonstrate the potential of
machine learning-based data representations for protein science and inspire the development of

novel methods/tools to be utilized in the fields of biomedicine and biotechnology.
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Introduction

Protein informatics, which can be defined as the use of molecular modelling and data-driven
computational methods (e.g., machine learning, statistical modelling) on the proteome to create
efficient and scalable solutions, is increasingly becoming an active field of research. The
computational methods to come out of such research have the potential to impact daily life
through the fields of biomedicine and biotechnology, which have a current market size of 417
Billion USD and is expected to reach 729 Billion USD in 2025. Functional annotation of proteins
is critical for protein informatics, as they are the primary inputs to said computational methods. As
of October 2020, there are around 189 million protein entries in the UniProt knowledgebase;
however, only 0.56 million (around 0.3%) of them are manually reviewed and annotated by expert
curators, indicating a large gap between the current sequencing and annotation capacities. This
gap is mainly due to the cost and time intensive nature of in vitro and in vivo experiments and the
manual curation of their results. To supplement experimental and curation-based annotation,
automated in silico approaches are being used. In this context, many research groups have been

working on developing new computational methods to predict proteins’ enzymatic activities'??,

4,5,6 8,9,10 11,12,13

biophysical properties*>S, interactions’, 3-D structures , and ultimately, their functions
Protein function prediction (PFP) is the assignment of semantic meaning (i.e., functional
definitions) to proteins, automatically or semi-automatically. The primary terminology for the
functions of biomolecules are codified in the Gene Ontology (GO), a hierarchical network of
concepts that annotate molecular functions of genes and proteins, as well as their subcellular
localizations and the biological processes in which they are involved'. The most comprehensive
benchmark project for PFP is the Critical Assessment of Functional Annotation (CAFA)
challenge™, in which participants predict GO-based functional associations for target proteins.

CAFA challenges so far indicate that PFP is still an open problem.

It has been shown in literature that complex computational problems, where features are high
dimensional and have complex/non-linear relationships, are amenable to deep learning-based
techniques'®. These techniques can efficiently learn task-related representations from noisy and
high dimensional input data. Thus, deep learning has been successfully applied to various

domains such as computer vision, natural language processing, and the life sciences'”81920,

Deep learning is also a promising avenue of attack for protein informatics. Features of proteins
should be extracted and encoded as quantitative/numerical vectors to be used in machine/deep
learning-based predictive modelling. A protein representation model, given the raw input features

of a protein, calculates a feature vector that is a succinct and an orthogonal representation of the

U Biotechnology Market Size by Application (Biopharmacy, Bioservices, Bioagriculture, Bioindustries, Bioinformatics), By Technology
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protein. An optimally trained predictive system can efficiently learn features of samples and
perform the prediction task using these representations as input. Protein representation
construction approaches can be grouped under two categories; (i) classical protein
representations (i.e., the model-driven approach), which are generated using predefined rules
about properties such as the evolutionary relationships between genes/proteins or the
physicochemical properties of amino acids, and (ii) learned protein representations (i.e., the data-
driven approach), which are constructed using statistical and machine learning algorithms (e.g.
artificial neural networks) that are optimized on predefined tasks, such as the prediction of the
next amino acid on the sequence. Here, the ultimate aim of these representation models is not
the prediction of the next amino acid for some sequence, this task is only used in the objective
function during the training of the representation model and to measure its success (i.e., its ability
to represent the inherent properties of proteins). Later, the output of the trained model, which is
the representation feature vector, can be used for other protein informatics-related tasks such as
the prediction of function. In this sense, representation learning models leverage the transfer of
knowledge from one task to another. The generalized form of this process is known as transfer
learning®’ and it is reported to be a highly efficient data-analysis approach in terms of time and
cost?. Due to this ability, protein representation learning models minimize the need for data

labeling?®.

Protein representation learning methods collect data from one or more resources (e.g.,
sequences, interactions, etc.) and employ either supervised or unsupervised learning to train a
model, which outputs the representation vector to be used in various protein informatics related
applications. Supervised and unsupervised training are the two main approaches of system
training in artificial learning. Supervised methods require labelled data (e.g., gene/protein entries
that are annotated with biomolecular functional definitions such as GO terms), which is mostly
produced via experimental procedures and manual curation in protein science. Since the
annotation procedure has a high cost, only a small percentage of biomolecular data is labelled.
On the other hand, unsupervised models do not need labelling, which makes it easily applicable
to any type of biomedical data. However, unsupervised models generally require larger training
datasets and additional computational power, especially when deep learning-based methods are
used (e.g. GPT-3 which is a state-of-the-art language model trained with 300 billion tokens which
costs 3.14E+23 flops? ). In the framework of data representation learning approaches,
unsupervised methods can further be divided into local and global models?®. Methods in the
former group construct representations based on the local context (e.g., in a language model,
words surrounding the word of interest in a text), whereas in the latter, the sample is evaluated in
terms of a larger, global context (e.g., the whole paragraph or document, the word of interest

belongs to).
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Protein representation learning method development is a new but highly active area of research,
and it mostly gets its technical inspiration from approaches proposed for natural language
processing (NLP). It is shown in the literature that various protein representation learning
methods, especially the ones that incorporate deep learning, have been successful at extracting
relevant inherent features of proteins (Table 1). However, there is no comparative study to
systematically evaluate the performance of these methods via quantitative benchmarks, in the
context of artificially learning the functional aspects/properties of proteins. Nevertheless, gaining
knowledge on complex relationships between sequences, structures, interactions and functions
of proteins is especially critical for proposing novel solutions to current biomedical and

biotechnological problems.

In this study, we conduct an investigation of the available protein representation learning methods
that were proposed since 2015, with a detailed benchmark analysis regarding the potential of
these methods to capture the functional properties of proteins. We explain both classical and
learning-based methods to provide insight into their respective approaches to represent proteins,
and we classify these methods according to their technical aspects and objectives (please see
Methods section and the supplementary information document). Aiming to evaluate how much
each representation model captures different facets of functional information, we constructed and
applied benchmarks based on; (i) semantic similarity inference between proteins, (ii) ontology-
based protein function prediction, and (iii) drug-target protein family classification (Results
section). Finally, we discuss the results and current issues, and provide a perspective on the
future of learned protein representations (Discussion section). The whole study is summarized in
Fig. 1a. We expect that the discussion and conclusions of this study will inform researchers who
would like to apply machine/deep learning-based representation techniques on biomolecular data
for predictive modelling. We believe our investigation will be valuable in gaining insight about the
potential of machine learning-based protein representation models in retrieving complex
functional relationships of proteins, since previous studies mostly evaluated a few methods over
tasks related to the structural features®>%. Finally, we hope this study will inspire new ideas for
the development of novel, sophisticated and robust approaches to solve open problems in protein

informatics.
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Results

In this section, we focus on protein representation benchmark analyses. The review of the
literature, including the construction and application of protein representations (Fig. 1b), and their
technical and objective-based classification and evaluation (Fig. 2) are given in the Methods

section and in the supplementary information document.

Nine different representation learning methods have been selected for our functional property-
based benchmarks, according to their previously reported success in predictive tasks, and
subject to their availability as open access tools or ready to use pre-constructed feature vectors.
During the selection process, we also considered the source protein features/attributes used to
train these methods (e.g., sequence, PPlIs, etc.) and the algorithmic approaches, with the aim of
covering a wide variety of methodologies. The methods included in the benchmark are thus;
LearnedEmbeddingVec?’, SeqVec?®, Mut2Vec?, Gene2Vec®*, TCGA_Embedding®', ProtVec*,
TAPE-BERT_Avg®, TAPE-BERT_Pool %, UniRep?®, along with two classical representations:
APAAC * and k-sep-bigrams®, as baselines. Technical information about these tools is given in
the Methods section. A near-comprehensive summary of 35 protein representation learning
methods obtained from the literature, including the above-mentioned benchmark methods, is

given in Table 1.

Semantic Similarity Inference

In this analysis, we aim to measure how much information about biomolecular functional similarity
is captured by the representation models. In this context, Gene ontology (GO) annotations are
utilized, which signify the molecular functions, large-scale biological roles, and subcellular
localizations of proteins. We first calculated vector similarities, which are defined in terms of
pairwise quantitative similarities (e.g., cosine, Manhattan and Euclidean) between representation
vectors of proteins in our dataset. These similarities were then compared to the ground truth
functional similarities, which are measured based on the actual GO annotations of these proteins
using standard semantic similarity measures (e.g., Lin similarity®*). To be able to compare the
success of different protein representation methods, we calculated Spearman rank-order
correlation values between representation vector similarities and the actual GO-based semantic
similarities of the same protein pairs, using 4 different test datasets (explained in the Methods
section). Higher correlation values indicate higher success. The results based on cosine similarity
are shown in Fig. 3. Performance results considering the Manhattan similarity and Euclidean

distance measures can be found in Fig. S3 and S4.

According to the results presented in Fig. 3a, UniRep is the most successful representation

model in the GO molecular function (MF) category, considering all four datasets. Mut2Vec® is the
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best performer in the GO biological process (BP) except for the “all proteins” dataset, and
TCGA_Embedding achieved the highest correlation score in the GO cellular component (CC)
category. Mut2Vec is also among the top three methods in MF and CC categories.
TCGA_Embedding is also in the top three in the GO BP category. BERT, Gene2Vec, and
LearnedEmbeddingVec are other notable methods but did not achieve the top performance in

any of the categories.

UniRep® is based on multiplicative LSTM*®. We propose two reasons to explain the higher
performance of UniRep. The first reason can be that, UniRep constructs and uses a training
sequence dataset with low bias (consisting of 24 million UniRef50% protein entries, which are
filtered by a 50% similarity threshold from the from UniProtKB, instead of using all available
protein sequences in the data source), which might be providing better generalization capability.
The second reason may be the size and the information content of the model. In our benchmarks,
we employed the “UniRep Fusion" model since this version had the highest performance
according to the original UniRep study. This model was built with the concatenation of the “final
hidden state”, “final cell state”, and “average hidden state” of the LSTM model, each of which has
a size of 1x1900, providing a total vector size of 5700. In our opinion, the concatenation of the
different states might have enhanced the protein representation vector with different levels of
semantic information, since the level and type of information learnt at each layer is claimed to be

distinct'®.

Mut2Vec? was originally developed to predict the effects of mutations, but surprisingly it
performed very well in our analysis considering the BP based semantic similarities. The model
was developed using patient mutation profiles, biomedical literature and protein-protein
interactions. The last two datasets may include information considering the role of the proteins in
BPs. For example, considering that two proteins are interacting, then observing them as a part of
the same BP is highly probable. Similarly, supposing two proteins had a role in the same BP, they
may frequently be observed together in the same text (e.g., article). As a result, those proteins
would probably be embedded proximally in the vectorial semantic space. We are suggesting that

the top performance of Mut2Vec probably depends on these factors.

TCGA_Embedding®' exploited gene expression data and a simple learning system inspired by
non-negative matrix factorization. With this approach, the authors constructed a representation
with a vector size of 50, which is one of the smallest representations in our benchmark.
TCGA_Embedding scored the best performance in the prediction of CC-based semantic
similarities, together with a notable performance considering the BP-based similarities. Similar to
TCGA_Embedding, the Gene2Vec*® model utilizes gene co-expression data with the skip-gram
algorithm. The model performed well in both BP and CC based semantic similarity inference

tasks. Gene (co)expression profiles are one of the least studied data types for developing protein
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representations as only a few studies exist; however, it is found to be quite informative to infer the
similarities between proteins in terms of the BPs they take part in and the CCs that they localize
to. It was reported in the literature that there is a correlation between the expression profiles and
the subcellular locations of genes/proteins, which was evaluated in the context of machine

3738 |t was also discussed in the results of the

learning-based prediction of protein localizations
CAFA Pi challenge (over the bacterial motility and biofilm formation biological processes) that

gene expression is a critical input data type for predicting the biological roles of proteins'®.

TAPE-BERT? had the second place in the MF-based similarity inference task. TAPE-BERT (a bi-
directional transformer) is the only method that uses the self-attention mechanism in this analysis.
Technical details of BERT and the self-attention are discussed elsewhere®*“°. Similar to the
success of the BERT model in word sequences (sentences)*', TAPE-BERT model can represent
protein sequences with high accuracy. It should also be noted that the implementation we used
here was directly obtained from the TAPE benchmark study? without any fine-tuning. TAPE-

BERT may perform better in protein informatics tasks with further optimization.

Finally, LearnedEmbeddingVec?’, which is a simple model that takes protein sequences at the
input level to process them using doc2vec*?, scored as good as the TAPE-BERT?? models in our
semantic similarity based analysis. The size of the TAPE-BERT models were notably larger
compared to LearnedEmbeddingVec? (i.e., 12 hidden layers with 768 neurons for each layer, as
opposed to 1 hidden layer with 64 neurons). We argue that some of the shallow models still

preserve their significance, especially in MF-based semantic similarity inference.

Ontology-based Protein Function Prediction

As the second benchmark of our study, we aimed to assess the success of protein representation
models in terms of automated protein function prediction (PFP). In this analysis, Gene Ontology™
(GO) term annotations of proteins were used to train and test the same 11 protein representation
models via supervised machine learning based classification. In this benchmark, we preferred to
use a linear classifier (i.e., linear support vector classification from scikit-learn*®) in order to
prevent non-linear transformations on the protein representation vectors, since the relevant
information hidden in proteins should have been captured and extracted by the representation
model beforehand, if the model is successful. This way, we could evaluate the protein
representation models in terms of their success in extracting this information without additional

factors.

Here, we also discussed a critical topic that was mostly overlooked in previous PFP studies, the
assessment of the performance in terms of annotated GO term specificity. This is important since

there is a relation between the specificity of a GO term (i.e., its location of the graph of GO) and
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its informativeness. For example, considering an annotation with the GO term “negative
regulation of molecular function” the provided information is too general. These GO terms are
generally located near the root of the GO graph and called “shallow terms”. If the same protein
was annotated with the GO term “negative regulation of double-stranded telomeric DNA binding”,
which is a descendent term of the previous one, the annotation would have been more
informative. In order to take this phenomenon into account in our analysis, we simply grouped
GO terms under three categories as shallow, normal, and specific; according to their level on the

directed acyclic graph of GO (see Methods).

One key problem in applying deep learning to protein informatics is the requirement for high
amounts of training data'’. To examine this issue in our benchmark, we considered a grouping
among GO terms regarding the number of proteins they are annotated to. This approach is
expected to uncover the performance of representation learning models in terms of learning with
only a few training examples, which also is the case for a considerable number of informative GO
terms. Furthermore, some of the protein functions are studied well and some others are under-
studied, which creates a discrepancy in terms of the number of annotated proteins. We expect
that this approach will be useful to assess the representations considering their ability to learn
under-studied functional properties. For this, we created three categories that point out the

number of the proteins annotated to a GO term as; low, middle, and high (see Methods).

PFP performance results are given for 9 different GO groups using F1-score based heat maps in
Fig. 4. The overall GO term prediction performance results (averaged over 9 different GO groups)
in terms of recall, precision, F1-score, accuracy, and Hamming distance are given in Table S4. It
is important to mention that these performances are higher compared to the results of CAFA
challenges, due to the way we modelled the experiment. We only run a test sample on the model
that contains its true label as one of the 5 tasks (i.e., GO terms), instead of running all test
samples on all prediction models. The reason behind this experimental design choice was to
prevent the accumulation of the scores of all benchmarked methods in low performance regions
(especially for hard-to-predict ontologies such as BP), which would prevent the observation of the

performance differences in-between.

It is shown in both Fig. 4 and Table S4 that, in the MF prediction task, top methods showed
similar performances across almost all GO groups (e.g., low, high, specific, shallow, etc.), among
which SeqVec? got the top place, and k-sep-bigrams®, TAPE-BERT? models and UniRep*
came right after. For BP and CC prediction tasks, SeqVec was the best performer together with
k-sep-bigrams, and runner ups were again TAPE-BERT models and UniRep. We also observed
that these methods are clustered together in all three heat maps, considering their performances
(Fig. 4). These four representation learning methods share common characteristics that can

explain their similar performance in the PFP benchmark. First of all, they are all based on large
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state-of-the-art sequence modelling algorithms: LSTM (SeqVec and UniRep with 93M and 18.2M
parameters, respectively) and a Transformer (TAPE-BERT with 110M parameters). Also, they
share the same model training objective, prediction of the next amino acid on the sequence.
Finally, they were all trained with large datasets (24M sequences for UniRep, 33M for SeqVec
and 31M domain sequences for TAPE-BERT).

We also calculated model performances averaged for each GO group (Table S5), especially to
observe the scores for challenging groups; the “low” group which contain GO terms that have low
effective number of proteins (during dataset preparation, we eliminated highly similar proteins by
filtering through UniRef clusters, to be able to take the effective number of samples into account
while grouping GO terms), and the “specific” group consisting of GO terms that are leaf nodes, or
are close to the leaf nodes, in the GO hierarchy. In Table S5, mean F1-score results (considering
the average of all methods) indicate that low number of samples is a problem for BP and CC
categories, but not so much for MF category, where there is generally an explicit relation between
the input (i.e., sequence) and the label. On the other hand, we could not observe a trend in
performance change in terms of GO term specificity. As a result, it can be stated that prediction
success for informative specific terms may be solely related to the effective number of training
proteins. For the MF-low category, k-sep-bigrams (F1:0.916) and SeqVec (F1:0.914) achieved
the best performances. In the BP-low and CC-low categories, k-sep-bigrams had the best F1-
scores with 0.548 and 0.556, respectively. For the MF-specific and BP-specific categories, the
SeqVec model got the top scores with F1:0.945 and F1:0.732, respectively. Considering the CC-
specific category, the k-sep-bigrams model again got first place with F1:0.552. These results
showed that, for the tasks where the number of labelled data points are low, the representation
capability of classical (model-driven) methods is still higher compared to learning-based (data-

driven) models.

Overall, the best performing method in the protein function prediction benchmark, considering all
GO categories, was SeqVec?®, whereas, k-sep-bigrams®, a classical protein representation

based on evolutionary relationships, got second place with scores close to the top performer.

Drug Target Protein Family Classification

In our third benchmark analysis, we aimed to measure the performance of protein
representations in the framework of drug discovery, with the prediction of drug target proteins’
main families (i.e., enzymes, membrane receptors, transcription factors, ion channels and
others). Since these families are made up of proteins with distinct structural characteristics, this
benchmark analysis will also reflect the ability of these representations in learning structural
properties. Furthermore, by using a data source other than GO annotations, we seek to diversify

our benchmark and to evaluate the representations from a different perspective. Similar to the
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ontology-based protein function prediction benchmark, here we preferred to use a multi-task
linear SVM classifier in order to solely measure the ability of learned protein representations in

extracting the complex protein attributes/properties.

The number of samples in this analysis was lower compared to the previous benchmarks (Table
S6), as we only used human target proteins listed in the ChREMBL database*. Since there is an
imbalance in terms of the number samples for each task (i.e., protein family), MCC was taken as
the most reliable indicator in comparing the representation methods. According to the average
cross-validation results of our multi-task classification model (Fig. 5), SeqVec®® model is the best
method in all metrics, whereas TAPE-BERT_Avg® came a close second. UniRep**, TAPE-
BERT_Pool® , and k-sep-bigrams® models also provided remarkable performances. Family
specific prediction scores (Fig. S5) showed that SeqVec provided the best performance in terms
of enzymes. For membrane receptors, UniRep provided the best performance, followed by
SeqVec. For transcription factors, TAPE-BERT_Avg took the top place. For ion channels and

others, SeqVec was again the best performer.

Given that SeqVec was also very successful in the protein function prediction benchmark,
especially in MF prediction, and that protein family information is related to functions, there is a
plausible correlation between these results. SeqVec uses the ELMO model*®, a bi-directional
LSTM with 93M parameters capable of learning long sequential patterns, which is stated to be
highly efficient for language modeling*'. The most evident difference of SeqVec from the other
successful state of the art models in our study (e.g., UniRep and TAPE-BERT) in terms of the
model architecture is that SeqVec contains a CNN layer to embed the amino acids in the
sequence onto a latent space, before the LSTM layers. In the original ELMO model, the same
approach, charCNN*’, was mainly used to obtain word vectors of fixed size. It is also important to
mention that SeqVec displayed a moderate performance on the semantic similarity inference
benchmark. This observation indicates that, although protein function prediction and semantic
similarity inference can be seen as correlated tasks due to sharing the same information source,
specialized solutions are required for each one. The moderate performance of SeqVec on
semantic similarity inference might be explained by the noise on the original representation
vectors that SeqVec produced. This noise may be filtered out by a simple feature selection during
our supervised training in the PFP and drug target protein family classification benchmarks, as a
result, SeqVec was successful. However, there was no supervised training in semantic similarity
inference. This phenomenon was also observed in the original SeqVec study (see Fig. 2 of the
SeqVec paper®®). In the first t-SNE plot of this figure, protein classes are distributed
heterogeneously when the unsupervised model was directly used to generate protein
representation vectors. Contrarily, when the representation vectors generated by the supervised

model were used, the classes were successfully clustered.

10


https://doi.org/10.1101/2020.10.28.359828
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.28.359828; this version posted October 28, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Discussion

The volume of Al-based protein informatics studies has been growing lately to further the
understanding of the complex relations between sequence, structure and function*®. In this study,
we evaluated protein representation learning methods in terms of their ability to capture functional
properties of proteins, to be utilized, ultimately, to overcome critical challenges in protein
informatics, biotechnology, and biomedicine domains. These models, with their modest resource
requirements and high representation performance, can be (re)used for a variety of tasks. Thus,
we argue that learned representations will play an essential role in protein research and

development in the near future.

In the PFP benchmark, performances observed in CC and BP GO term prediction tasks were
lower compared to the MF prediction. This observation is plausible since most of the learning-
based methods use protein sequence data as input, and sequence is not a direct marker for
localization (without the cleaved signal peptides) or the biological role of proteins. Also, we
observed that the success rate in CC term prediction decreases with the decreasing number of
annotated proteins. A similar observation was valid for MF and BP categories as well; however,
the effect was less pronounced. On the other hand, we did not observe a similar trend in
performance change with increasing or decreasing term specificities. Nevertheless, it is possible
to state that the issue at hand is still critical since many of the informative “specific’ GO terms

have “low” number of annotated proteins.

In semantic similarity inference and drug target protein family prediction benchmarks, we
observed that some of the learned representations are superior to the classical ones in terms of
predictive performance, thus justifying the benefit of the data-driven approach to represent the
functional properties of biomolecules. On the other hand, k-sep-bigrams, a classical protein
representation method that does not need any training, could compete with deep learning-based
protein representation methods in the PFP benchmark. These results indicate that evolutionary
relationships are correlated with functional properties of biomolecules to such a degree that a
simple representation that utilizes this feature can perform as good as the most complex
sequence modelling methods. In the light of these results, we claim that the explicit incorporation
of evolutionary information into the training of representation learning models would lead to
significant improvements considering predictive performances in protein informatics.
Nevertheless, we still claim that learned protein representations, in their current state, are
essential for different reasons. First of all, learning-based models produce reusable vectors,
which can be optimized towards increasing predictive performance in challenging tasks (e.g., BP
GO term or 3-D structure prediction) with further training on selected supervised tasks. Second,

studies indicate that protein representation learning models can also be employed for designing
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new proteins using the learned probability distributions of the proteins in the training set*>*°. This
is not possible with classical representations. The topic of protein design is discussed further,
below. Third, the results of our benchmarks indicate that the approach of learning protein
representations is an excellent application field for transfer learning, as it is possible to train a
model that could generate a representation vector, and use this vector for various related
predictive tasks (e.g., training the model via the prediction of the next amino acid in the sequence

and later using the trained model for predicting functions, interactions, or structures).

In benchmark studies, the possibility of data leak from training to test is a critical issue that should
be considered during performance testing. Data leak can be defined as the accidental share of
knowledge between train and test, leading to overoptimistic performance measurements. In our
analyses, we observed that certain representation models performed well in tasks that are
biologically related to the tasks that these models were trained on; although the data and the
actual tasks were different from each other. For example, Gene2Vec utilized a hyperparameter
optimization task, which aims to maximize the clustering of genes within MSigDB®" functional
pathways. This task is assumed to have latent knowledge about BP and CC based protein
semantic similarity inference and ontology-based PFP benchmarks, where Gene2Vec showed a
notable performance. Likewise, Mut2Vec®® uses protein-protein interaction data for training, and
we found that this model is successful in predicting BP and CC related tasks. It is highly probable
that two interacting proteins are localized to the same cellular compartment or have a role in the
same biological process. Finally, TAPE-BERT, one of the best performers especially in the MF-
based PFP and drug-target protein family classification, is trained on protein domain sequences
provided by the Pfam database. The selection of the sequence fragments based on protein
families can be stipulated to have led to knowledge transfer from Pfam to the protein
representation vectors calculated by TAPE-BERT. In our opinion, these cases of knowledge
transfer are unlikely to be counted as examples of data leak from training to test, since the data
and the tasks used in train and test were completely independent. Hence, these protein
representation models should be considered successful in terms of inferring relevant information
from the input data, in the scope of this study. Nonetheless, particulars of such knowledge

transfer is an interesting topic to be further investigated in future studies.

There are several challenges within the field of protein representations. First of them is related to
the assessment of newly proposed methods, as the proper evaluation of stability and robustness
of models is critical. So far in the literature, protein representation models are tested only with
small-scale datasets and limited tasks. On the other hand, there are studies (unrelated to protein
informatics) in which authors proposed new approaches for rigorously evaluating the properties of
data representation models®?~**. These studies can be exploited and adapted for the evaluation of

learned protein representations. Another key challenge is associated with model sizes. In the
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NLP domain, the number of parameters is steadily increasing with every new high-performance
model (e.g., state-of-the-art GPT-3 model has 175 billion parameters). As most of the successful
protein representation learning approaches are based on NLP models, this trend is also observed
in the protein representation field>®. This may pose a critical problem in terms of increasing the
computational cost to extreme scales, especially for embedding large samples®® using sequence-
based protein representations, where each amino acid in a sequence is modelled as a word in a
sentence®®. To make a simple comparison, the average size of a sentence in English is 21.7
words®’; however, the median number of amino acids in human proteins is 361°, which makes
the problem even more pronounced for protein informatics. There are potential solutions for this

issue in the literature®>9-°"

, mainly proposed for NLP-related tasks. These solutions may also be
exploited for protein sequence representations. It should also be noted that model sizes (e.g.,
number of hidden layers, total number of parameters) are not necessarily correlated with
performance in protein representation models?. We observed this phenomenon in our
benchmarks as well. For example, the UniRep model has 18.2M parameters but could compete
with much larger models such as SeqVec (93M parameters) and TAPE-BERT (110M
parameters). Therefore, constructing larger and more complex models may not always be the
solution for better representations. Instead, investing time and resources on the incorporation of

diverse types of biological data into the models would be a better choice.

Model interpretability is a critical topic to understand why a model behaves the way it does. In an
interpretable (i.e., explainable) representation, all features are encoded in a distributed form,
which means that the feature(s) corresponding to each dimension on the vector is known.
However, most of the learned protein representations are not interpretable/explainable. In other
words, the meaning of a feature encoded in a dimension of the output vector is not known. For
example, presence of a TIM barrel structure in a protein might be encoded in the 5th dimension
of its representation vector, whereas, the molecular weight information may be shared between
the 3rd and 4th dimensions. In the general field of data science, disentanglement studies try to
associate the real properties of input samples with individual dimensions of the output vectors®?.
The disentanglement of protein representations is a new subject, and only a few representation

model developers have explored this issue so far*44°

, as a result, there is yet to be a systematic
approach. Therefore, systematic benchmarking platforms are required for the standardized

evaluation of protein representation model interpretabilities.

Most of the protein representation models so far are trained using only one type of data (e.g.,
protein sequence). However, protein knowledge is associated with multiple types of biological
data, such as protein-protein interactions (PPI), post-translational modifications, gene/protein
(co)expressions, etc., along with sequences. According to the best of our knowledge, only a few

of the available protein representation models are trained with more than two types of data®®%3.
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Among the methods in our benchmark study, Mut2Vec®%® harmonized multiple types of data (i.e.,
PPIs, mutations and biomedical texts), and produced more accurate results than many of the
solely sequence based representations in GO BP and CC based PFP. We propose that the
integration of additional types of protein related data may further augment the accuracy in
predictive tasks. Furthermore, there is a clear requirement in the literature for holistic protein
vectors that can effectively represent proteins from a generalized point of view, to be used for
various different proteins informatics-related purposes. In our opinion, it may be possible to
create these holistic representations by concatenating multiple representation vectors that were
previously constructed using different types of biological data (as a means of pre-training), and
training a new model using the integrated version of these vectors over high-level supervised

tasks such as predicting biological processes and/or complex structural features (Fig. S6).

Protein design is one of the key challenges in biotechnology®®. Rational protein design involves
evaluating the activities and functions of many different alternative sequences/structures to
provide the most promising candidates for experimental validation, which can be seen as an
optimization problem®. The sequence space to be explored for this purpose is enormous. For
example, the mean length of human proteins is around 350 amino acids, for which 20*350
different combinations exist. In the last three decades, computational approaches have been
utilized for designing proteins with an increasing intensity, which produced promising results

66-68

considering enzyme design , protein folding and assembly®®, and protein surface design to

develop efficient antibodies’® and biosensors’’. Most of these methods use the quantum

72,73 74,75 76,77

mechanical calculations , molecular dynamics and statistical mechanics™ "', all of which
have exceptionally high computational costs’®, and require expert knowledge. On the other hand,
methods based on statistical heuristics demand less computing resources, but have lower

performance.

Recent studies showed that artificial learning-based generative modelling can be employed for de
novo protein design. Generative modelling is an approach, as opposed to discriminative
modelling, in the machine learning domain’®, where synthetic samples are produced, that obey a
probability distribution learnt from real samples. To accomplish this task, it is required to learn the
representations of samples in the training dataset. Recently, deep learning has become the key
approach for generative model architectures®®, which have been applied in various fields

1.8" utilized variational auto-encoders

including protein/peptide design. For example, Greener et a
to design metal-binding proteins. In another study, Gupta and Zou® showed that generative
adversarial networks (GANs) could be used for designing proteins through the construction of
synthetic encodings of DNA sequences. In the work by Biswas et al., variants of two different
proteins (a fluorescent protein and a hydrolase) could successfully be designed with improved

functional activity®. In another study, Tubiana et al. showed that proteins can be designed by
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defining preferred functions by conditioning a Restricted Boltzmann Machine-based protein
representation model*®. Furthermore, it was possible to generate direct 3-D coordinates of full-
atom antibody backbones® and to design peptides with anticancer properties®* (validated by in
vitro experiments) with deep generative modelling. In the field of drug discovery and
development, learned representations have been employed for molecular property prediction®®,
drug-target interaction prediction® and de novo drug design®’. These studies indicate that

representation learning is critical for novel applications in both protein and ligand (drug) design.

We believe protein representation learning approaches will have an influence on various fields of
the protein science with real-world applications, in the near future, thanks to their flexibility to
integrate heterogeneous protein data at the input level (i.e., physical and chemical
properties/attributes, functional annotations, etc.), and their ability to efficiently extract complex

hidden features.
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Methods

In this section, we first explain different approaches in representing proteins, along with an
evaluation of representation learning methods from a technical point of view. A section
specifically dedicated to classical representation methods is provided under supplementary
information section 1. We then summarize representation learning methods according to their
training objectives and provide detailed information about those we included in our benchmark
analyses (the rest of the protein representation methods are detailed in supplementary
information section 3). Finally, we present methodological details regarding the datasets,
modelling approaches, training and test procedures and performance metrics for each
benchmark task (i.e., semantic similarity inference, ontology-based protein function prediction
and drug target protein family classification). We shared the source code, models and datasets of
this study in our repository (https://github.com/serbulent/TrainableRepresentationAnalysis) so that
the data can be used by other groups for benchmarking new representation models and to

compare the results with the ones provided in this study.

Different Approaches for Representing Proteins

Feature vectors should ideally represent relevant properties of the data at hand (e.g., physical,
chemical, or biological properties while representing proteins). For example, within the classical
protein representation approach, a protein can be represented as a 2-dimensional numeric vector
where the first dimension corresponds to the mean hydrophobicity value, and the second is the
mean net charge®®. Using these simple vectors as input, a classifier can be trained (Fig. S1a). In
another example shown in Fig. S1b, the representation learning approach is employed, where
Gene Ontology (GO) based functional annotations of proteins are used as the input data. An
initial binary matrix that displays the associations between proteins and GO terms, is
decomposed into latent protein and GO term matrices using matrix factorization. Afterwards, a
predicted protein vs. GO term matrix is calculated with the dot product of the first, and the
transpose of the second latent matrices. The error between the original and predicted matrices is
used to update the parameters of the model during training. When the training is finished, each
row of the finalized latent matrices is used as a feature vector that represent the respective
protein or GO term. These feature vectors can then be used as input to other classification or

clustering models for different predictive tasks.

In the domain of natural language processing (NLP), one of the first contemporary word
representation learning methods, word2vec, was developed by Mikolov et al.®® . Word2Vec is an
unsupervised learning network that calculates a vector representation for each word in a text. In

word2vec-like NLP models, the learning process is based on the co-occurrence of words. During
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the training of a word2vec model with the skip-gram architecture, the vector that represents the
current word is optimized considering the correct prediction of surrounding words. In a successful
representation model, e.g., the words “protein” and “gene” will be proximally located in the feature
hyperspace (i.e., they are found to be semantically related to each other), since they are
frequently observed together. Additionally, the model may also discover relationships between
these words transitively, if, for example, the word pairs “protein - mMRNA” and “mRNA - gene” are
observed in the input text samples. Word2vec is an example of shallow data representation
approaches, in which only one effective data processing layer (i.e., the hidden layer in an artificial
neural network) is presented. Word2vec laid the foundation of many widely-used data
representation learning methods available today, including protein representations. Later, deeper
models, in which there are more than one effective data processing layer®, were developed and
have achieved far better performance on NLP tasks®'.

The first examples of learned protein representations were based on the word2vec algorithm #°2
93.94.95.2996.30 ' most of which are still in use today. Since word2vec depends on word co-
occurrence in a limited window, it ignores the larger context which may include critical semantic
information. For protein sequence-based representations, this larger context can be the whole
protein sequence. Another embedding method, doc2vec* includes the whole context to some
extent and performs better than word2vec on selected tasks. Several methods use doc2vec to
represent proteins®>?"9-1% Also, deep language models, such as BERT®' and ELMO*® were
originally developed for NLP, and later employed for protein representations®*?, Furthermore,
Convolutional Neural networks (CNNs), having the ability to learn to summarize the data with
adaptive filters, have been employed to represent proteins?35386.102.103 ' Aqditionally, architectures

that are capable of inferring patterns from sequential data (e.g., protein sequences) using the

23,55 23,28,44,104,105

attention mechanism=>~°, such as Long Short-Term Memory (LSTM) neural networks
and transformer based algorithms %, are used in representation methods. However, transformer-
based methods have shortcomings considering model explainability’®”'%®. For this, Restricted
Boltzmann Machines (RBM)'%'"° with its self-recursive design, are used to construct explainable
protein representation models*®. Finally, hybrid approaches are utilized in the protein
representation learning literature'®'""2_ Most successful protein representations possess
certain common hallmarks; and these are explained and discussed under supplementary

information document section 2.

Summary of the Evaluated Protein Representation Learning Methods

We group protein representation learning methods’ technical approaches (Fig. 2a), and
objectives and applications reported in their respective publications (Fig. 2b). Here, we formed

five main categories according to the application domains; (i) protein interaction prediction
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(essential for understanding molecular mechanisms and pathways), (ii) physicochemical feature
prediction (important for protein engineering and drug discovery related tasks), (iii) genetic
feature prediction, (iv) protein function prediction, and (v) structural feature prediction. Fig. 2b
categorizes the main domains and specific application fields under each one. Methods with more
than one objective were classified according to their major objective. The methods that we
included in our benchmark study (i.e., LearnedEmbeddingVec?, SeqVec?®, Mut2Vec?,
Gene2Vec®, TCGA _Embedding®!, ProtVec*, TAPE-BERT_Avg?, TAPE-BERT_Pool?®, UniRep
2 and the two classical representations, APAAC *? and k-sep-bigrams*?) are described below,
the rest of the methods are explained in supplementary information document section 3. All of
these protein representation methods are summarized in terms of their technical aspects (e.g.,
learning approach, algorithm, etc.), input data types, vector sizes, objectives, applications,

importance and available data repositories in Table 1.

Asgari et al.* were one of the first to create a protein representation learning model to represent
proteins by applying word2vec® in a method they named ProtVec. The authors treated each
protein sequence as a sentence, and each k-mer (i.e., k length amino acid sequence) as a word.
Authors claimed that the method could be employed for different problems in protein biology
including protein function prediction and protein interaction prediction. They evaluated the
performance of ProtVec in predicting the mass, volume, polarity, hydrophobicity and charge of

proteins, as well as its accuracy in disordered protein classification.

In the study by Yang et al.?’, learned protein embeddings (i.e., representation vectors) with sizes
ranging from 4 to 128 dimensions are constructed using the doc2vec algorithm*? on non-
overlapping k-mers. We will call this method “LearnedEmbeddingVec” in the rest of this study, as
the Yang et al. did not provide a specific name. The authors measured the performance of
LearnedEmbeddingVec and the effects of hyperparameter optimization on four protein property
prediction tasks, namely channelrhodopsin (ChR) localization, cytochrome P450 thermostability,
rhodopsin absorption wavelength, and epoxide hydrolase enantioselectivity with blocking design,
to compare their model with baseline models (e.g., one-hot encoding and classical feature-based
representations). Performance values were calculated using mean absolute error (MAE), a
measure of variation between predicted and actual values; the Kendall rank correlation
coefficient, which calculates the ordinal accuracy; and log-likelihood. For 3 out of 4 tasks, they
report that LearnedEmbeddingVec provided the best performance in terms of at least one of
these metrics. Authors also provide 2-D t-SNE visualizations, which were consistent with the

reported results.

Rao et al.?

proposed a comparative study entitled “Tasks Assessing Protein Embeddings"
(TAPE). The authors constructed three original sequence-based representation models based

on; (i) Bidirectional Encoder Representations from Transformers (BERT)®' (we will call this TAPE-

18


https://doi.org/10.1101/2020.10.28.359828
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.28.359828; this version posted October 28, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

BERT), (ii) an unsupervised LSTM'"®, and (iii) ResNet'". These three models were trained on 32
million Pfam'"® domains. Additionally, They evaluated two previously developed representations,
UniRep* and a supervised LSTM'%. This study employs three groups of tasks which are;
structure-based (i.e., secondary structure prediction and contact prediction), evolutionary (i.e.,
remote homology prediction) and protein engineering (i.e., fluorescence landscape prediction and
stability landscape prediction). For structure-based tasks, an alignment-based representation
(proposed as part of the baseline models) achieved the best score. In the evolutionary tasks, the
pre-trained LSTM model had the top performance. Finally, for protein engineering tasks, TAPE-
BERT was the best in terms of fluorescence landscape prediction and shares the top position
with ResNet in terms of stability landscape prediction. Results indicated that no single method
could dominate all of the benchmarking tasks. TAPE-BERT_Avg and TAPE-BERT_Pool are the
two versions of TAPE-BERT, constructed by averaging and max-pooling the final hidden layer of
the BERT model. In averaging, a mean value is calculated for each dimension of feature vectors
that represents amino acids. In max-pooling, the maximum value of each dimension is used to
create the final protein representation vector. We incorporated both TAPE-BERT_Avg and TAPE-

BERT_Pool in our benchmark analyses.

In the study conducted by Du et al.*°

, the method Gene2Vec is proposed, where 200-dimensional
vectors are calculated to represent genes, using skip-gram®. Hyperparameter tuning (e.g., vector
size and window size optimization) was applied with the objective of maximizing the clusterdness
of genes within MSigDB®" functional pathways. The input data, gene co-expression profiles, were
gathered from the GEO database’'®. The major objective of the study is predicting gene-gene
interactions (i.e., the genes acting in the same biological process), in which Gene2Vec was
reported to be successful. Additionally, it was indicated that the model could summarize latent
semantic information about genes by accurately representing functional similarities over tissue
specific gene clusters. We employed gene representation vectors of Gene2Vec in our

benchmarks by mapping them to canonical forms of their respective gene products (proteins).

Kim et al.?® trained a mutation representation model named Mut2Vec. The aim of the proposed
model was the classification of mutations according to their disease-causing effects. In Mut2Vec,
mutation co-occurrence information, protein-protein interaction (PPI) networks (from BioGRID),
and biomedical literature abstracts (from PubMed) were used to construct the representation
model. Among alternatives, the model that utilizes the co-occurrence information via skip-gram®
was chosen as the finalized representation model. In the Mut2Vec workflow, first mutation co-
occurrences and PubMed texts were used to calculate representation vectors. PPl data was
integrated at the post-processing phase, using a retrofitting process similar to WordNet'"”. The
authors stated that Mut2Vec could separate passenger and driver mutations successfully, and

that, it produces promising results in the detection of new cancerous mutation candidates.
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Heinzinger et al.?® used Embeddings from Language Models (ELMO), a bi-directional LSTM
which is popular in the NLP domain“, to represent proteins using unlabelled protein sequence
data. The authors aimed to solve the problem of global representation methods’ shortcomings in
inferring information from the local context, with their method, SeqVec, using a smaller version of
ELMO with 244k parameters, resulting in a significant speed advantage over up-to-date language
models such as BERT®'. However, their results show that the smaller model could not surpass
the state-of-the-art methods, especially on sequence level tasks such as secondary structure
prediction. On the other hand, the model produced competitive results for protein level tasks such
as subcellular localization prediction. In our opinion, this can be attributed to the extensive

training dataset and the successful detection of conserved sequence patterns by the LSTM.

Alley et al. developed the method UniRep** , a Multiplicative LSTM*® (mLSTM) backed character
based representation. They tested UniRep on different, mostly protein engineering based, protein
informatics tasks, including the classification of proteins based on their families and species, and
the prediction of physicochemical properties and secondary structural elements. The results
indicate that UniRep could create physicochemically meaningful clusters. Moreover, sequentially
distant homologous proteins were clustered correctly. Finally, structural information could be
extracted from UniRep, shown by the successful clustering of proteins based on SCOP''®. These
results were also verified using functional, evolutionary, and structural similarity labelled datasets
such as HOMSTRAD'"® and OXBench'?°. The authors have also shown that UniRep can predict

protein stability and variant effects.

The study conducted by Choy et al. indicates that learned protein representations have potential
for explaining molecular biological mechanisms of the cell and disease®'. In the proposed
method, first, a gene expression matrix of cancer samples was prepared using data from the
TCGA database. The authors then applied a matrix decomposition with a fully connected neural
network layer. Next, through matrix multiplication on these decomposed matrices, they created a
predicted version of the original matrix. The error between the original and predicted matrices
was used for backpropagation. The decomposed matrices consisted of gene-features and
samples-features as dimensions. The authors showed that semantic relationships between
samples and genes are conserved in their model. Even though the gene expression levels were
not correlated, functionally related genes are observed in adjacent locations, when the multi-
dimensional distance was calculated on the representation vectors. Additionally, when the
representation vectors were inspected, it was seen that similar cancer types were clustered in the
representation space to the extent that the authors claim that molecular subtyping of cancer was
possible using the representations. We refer to this method as “TCGA_Embedding" throughout

this paper, as the authors did not provide a specific name for their model in the original study.
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Finally, two widely used classical representations (APAAC and k-sep-bigrams) were included to
our benchmark, as baseline models. Amphiphilic Pseudo-Amino Acid Composition (APAAC)
utilizes the physicochemical properties of amino acids together with amino acid compositions*?,
and k-sep-bigrams makes use of the evolutionary relationships between proteins®®. We evaluate
the performance of learned representations in comparison to these baselines, to assess the value

added by the newer methods. Below, we look at these baseline methods in more detail.

A general issue in amino acid composition based classical representation methods is the difficulty
of including residue order information. The Amphiphilic Pseudo Amino Acid Composition
(APAAC)* model proposed a solution to this problem by using sequence order coupling and
hydrophobic correlations together. The model calculates a representation vector with 80-
dimensions (by default), in which the first 20 represent the individual amino acid compositions,
and the rest represent the hydrophobicity/hydrophilicity correlation factors. The APAAC method
was found successful in predicting enzyme sub-families using a covariant-discriminant

predictor®?.

Evolutionary information is widely used in classical protein representations. In k-separated-
bigrams method, row-type matrix transformations on position specific scoring matrices (PSSM),
which are constructed using multiple sequence alignments generated from the query sequence
and its homologs, are utilized for calculating the bigram transition probabilities between residues
that are “k” positions apart from each other. The final representation vectors have the size of
400x1, each dimension representing a specific transition probability from one amino acid to
another (20x20). The method was reported to be successful in predicting type IV secretion

effectors®.

Semantic Similarity Inference Benchmark

To construct the dataset of semantic similarity inference benchmark, we downloaded all human
protein entries in the UniProtKB/Swiss-Prot database and their GO term annotations from the
UniProt-GOA database in the 2019_11 release. The electronically inferred annotations, labelled
with the “IEA” evidence code, were excluded from the dataset; leaving only the annotations
reviewed by human experts. After that, we enriched the dataset by propagating the annotations to
the parent terms of the asserted GO terms on the directed acyclic graph (DAG) of GO, according
to the true path rule. Our finalized annotation dataset contained 14,625 distinct GO terms (3,374
of them belonged to molecular function - MF, 9,820 belonged to biological process - BP, and
1,431 belonged to cellular component - CC categories) and 326,009 annotations (75,884 of them
belonged to MF, 154,532 belonged to BP, and 95,593 belonged to CC categories).
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To be used as the ground-truth/reference data in this benchmark, we calculated the true GO-
based semantic similarities between all proteins in our dataset independently for all GO aspects
(i.e., MF, BP and CC) using Lin similarity in the GoSemSim package'?'. Lin similarity** is based
on Shannon’s information theory, which states that the information content (IC) of an event is
negatively proportional to the observation probability (P) of the event. Information content (IC) is

formulated as;

Ic(P) =log(1/P) (1)

Another concept used in Lin similarity is the least common subsumer (LCS). LCS is the first
common ancestor of the two GO terms when traveling to the root in the hierarchical GO graph.

Hence, Lin similarity is defined as;

sim __2IC(les(cq,62))
N ™ 1¢(cq)+IC(cy)

More information about the semantic similarity measures can be found in the literature'?.

”

Next, we prepared four protein semantic similarity datasets (i.e., “all proteins”, “well annotated
5007, “well annotated 200” and “sparse uniform”) for each GO category (i.e., MF, BP, and CC),
hence, twelve datasets were generated in total. The first dataset includes the pairwise GO-based
semantic similarities between all proteins in our dataset (labelled as “all proteins” in the related
figures). In this set, 3,077 proteins were used to calculate MF-based pairwise semantic
similarities, 6,154 proteins were used for BP-based similarities and 4,531 proteins for CC-based
similarities. In the “all proteins” dataset, there are numerous poorly annotated proteins, most of
which contain insufficient information about their functional properties. This might introduce a bias
in the similarity measurements. To mitigate this, we prepared additional subsets and ran the
same analysis on them as well. The first subset, containing only the top 500 proteins sorted by
the number of GO annotations (labelled as “well annotated 500” in the related figures). The
second subset consists only of the top 200 such proteins (labelled as “well annotated 200” in the
related figures). The similarity distribution is not uniform in the three datasets described above,
creating very dense similarity score regions (Fig. S2) which significantly decrease the Spearman
correlation values due to rank changes among the pairs with proximal similarities. This caused an
accumulation around low correlation values that diminished the discriminative power of the
measurements. To prevent this, we sampled every thousandth protein pair from the ranked list of
pairwise similarities from the “well annotated 500” set to generate a uniformly distributed dataset.

This final dataset contains 247 similarity scores between 40 different proteins (labelled as “sparse
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uniform” in the related figures). Thus, among our 4 datasets, “sparse uniform” is the most trivial

one to predict and “all proteins” is the most challenging.

In the benchmark phase, we compiled the protein representation vectors for the human protein
entries in our dataset using the selected representation learning methods, which are Gene2Vec®,
LearnedEmbeddingVec?®’, Mut2Vec?, ProtVec*, SeqVec®®, TCGA embedding®',
Tape_BERT_Avg®, Tape_BERT_Pool® and UniRep**. Pre-calculated vectors, when available,
were used directly, in other cases these were generated from their respective models. In addition,
two classical representation methods (i.e., APAAC*? and k-sep-bigrams®?®) were included as
baselines. Subsequently, we calculated the pairwise similarities between the proteins, using the
compiled representation vectors. Cosine similarity, normalized Manhattan distance, and
normalized Euclidean distance measures are used to evaluate pairwise similarity (normalized

Manhattan and Euclidean distances are converted to similarities by subtracting them from 1.).

At this point, we had two pairwise similarity arrays at hand; the first one was calculated by taking
the GO-derived semantic similarities between the proteins in our dataset into account (i.e., true
semantic similarities), and the second one consisted of pairwise similarities calculated directly

from the representation vectors.

Finally, to observe and to compare the performance of protein representation models for inferring
these semantic similarities, we calculated the Spearman rank-order correlation'? values
(explained below under “Performance metrics” sub-section) between the ranked lists of

representation vector similarities and true semantic similarities.

Ontology-based Protein Function Prediction Benchmark

The details of the dataset preparation procedure for the protein function prediction benchmark is

explained below in six steps. For each GO category (i.e., MF, BP, CC);

1) We obtained human proteins and their GO term annotations from the “2019_10" version of

UniProtKB/Swiss-Prot and UniProtGOA databases, respectively.

2) We excluded all electronically made annotations (evidence code: IEA) from the list of GO
term annotations with the aim increasing the reliability of annotations and to prevent error

propagation during prediction.

3) For each GO term, we created an individual list that includes the accessions of the annotated
proteins, to be used in model training and testing via cross-validation. We filtered each
protein list using the UniRef clusters® by only selecting the representative protein entry from
each cluster. UniRef provides protein clusters that are formed based on sequence similarity.

We used UniRef50 clusters, to ensure that there are no protein sequences with more than
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50% sequence similarity in each list. Here, the aim is to create train/test datasets without

similar proteins that could otherwise introduce a bias to the analysis.

GO terms were grouped as either “low”, “middle”, or “high” according to the number of
annotated proteins. GO terms with 2 to 30 annotated proteins were placed in the “low” group,
terms with 100 to 500 annotated were placed in the “middle” group and terms with more than
1000 annotated proteins were placed in the “high” group. We deliberately left margins

between groups to obtain a clear separation.

The specificity of the GO terms was determined as either “shallow”, “normal”, and “specific”.
In the directed acyclic graph of GO, terms in the first ¥4 of the max depth of that branch were
considered as “shallow”, terms in the second ¥z of the max depth of that branch were
categorized to “normal”, and the deepest s were placed to “specific” group. It should be

noted that the max depth varies according to GO category.

Based on the combinations of groups constructed in steps 4 and 5; a total of 9 GO term
groups (3x3) were formed for each GO category (i.e., MF-low-specific, BP-high-shallow and
etc.), making a total of 27 groups (9x3). There were no GO terms that correspond to two of
these groups (e.g., MF-high-specific and CC-high-specific), and therefore, these groups are
left out of this analysis. Since most of the remaining 25 groups were highly crowded, we
selected 5 terms from each group for further evaluation (4 groups already had less than five
GO terms, thus, they were directly incorporated without further selection). We intended to
select dissimilar GO terms to be able to generalize the results over the whole functional
spectrum, as much as possible. For this, we calculated pairwise semantic similarities
between GO terms using Lin similarity, and 5 most dissimilar terms were chosen for each
group. The statistics of the finalized datasets are given in Table S2 and the identifiers of the

selected GO terms are given in Table S3.

Using these datasets, prediction models were constructed (one for each group, mostly made up

of 5 GO terms) for each protein representation model using the “Linear Support Vector

Classification” module of the scikit-learn library*® within a multi-task modelling approach, making a

total number of 275 prediction models (25 GO groups x 11 representation models). A 5-fold

cross-validation was used to evaluate performance for each model. The hyperparameters of the

SVM, for all models, were selected based on the default values; the regularization parameter (C)

was set to 1.0, L2 norm was selected for error penalty, and the squared hinge was chosen for the

loss function. Since the linear classification model is simple, we assumed that the effect of the

hyper-parameter selection would be minimal.
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Drug Target Protein Family Classification Benchmark

To construct our family classification benchmark dataset, we employed ChEMBL database
(v.25)*, which contains curated collections of drug/compound-target protein interaction data (i.e.,
bioactivities) to be utilized for experimental and computational research in drug discovery and
development. Taking into account the hierarchical target protein categorization system presented
in ChEMBL, we use 4 broad target protein families and grouped the rest of the targets as a fifth
category (i.e., enzymes, membrane receptors, transcription factors, ion channels, and others).
The number of proteins for each family and representation method is shown in Table S6. Small
differences between the dataset sizes of different representation methods was due to the
availability of vectors, and assumed to be negligible (the largest difference was around 3%).
UniRef filtering was not used in this benchmark due to small sizes of original datasets (e.g.,
transcription factors class was composed of 82 human target proteins). The family information is
used as class labels for the multi-task training of the target protein family classification model.
The stochastic gradient descent classifier -SGDClassifier- (i.e., a linear SVM) from the scikit-learn
library*® was used with “OneVsRestClassifier” option for the multi-task classification. The
classifier was used with default parameters; SVM for fitting the SGDClassifier, hinge as the loss
function, and L2 norm as the error penalty. The model was trained and tested with 10-fold cross-

validation. The whole process was repeated 100 times, and the average results are reported.

Performance metrics

In our semantic similarity inference benchmark, we used Spearman rank correlation'®. For a
sample with size n and the ranks of variables rg, and rgy,, Spearman rank correlation (r5) can be
defined as:

_ 6 Z?:l dlz

T =
S n(n2-1)

where difference between ranks for observations is defined by:

di=rgX;) —rg(¥;) (4)

For ontology-based protein function prediction and drug-target protein family classification
benchmarks, we mainly used recall, precision, F1-score, accuracy, Matthews correlation
coefficient'* (MCC) and Hamming distance'® metrics, to evaluate the predictive performance of
protein representation learning methods. The formulae of these evaluation metrics are given

below:
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accuracy = __prm (5)
tp+tn+fp+fn

recall = tptffn (6)

precision = tptffp (7)

Flscore = 2. :rreecciisii)o‘r::ieeccczlll ®)

MCC = tp.tn — fp.fn )

— Jp+fp)(Ep+fn)(tn+fp)(tn+fn)

where tp denotes number of true positive predictions, fo denotes number of false positive
predictions, fn denotes number of false negative predictions, tn denotes number of true negative

predictions. Finally, Hamming distance (Dy) is defined by:

Dy(w,v) =+ T, (1 = 8y (10)

where u and v are 1-dimensional arrays of real and predicted class labels, respectively, dis the

Kronecker delta function, and k is the vector dimension.

In ontology-based protein function prediction benchmark, F1-score and its components precision
and recall are weighted inversely proportional to the class sizes. Since the classes were highly
imbalanced, the weighting operation was required for an unbiased analysis. In both ontology-
based protein function prediction and drug target protein family classification benchmarks,
models were designed as multi-task (i.e., 5 GO terms are predicted by one function prediction
model, and 5 proteins families are predicted by one family classification model). In ontology-
based protein function prediction benchmark, the models were also designed as multi-label,
where more than one GO term can be predicted to a test protein (since a protein can have more
than one function). In this setting, a random predictor would produce a correct prediction once out
of 32 cases (i.e., 2° different combinations exist for a label vector of size 5x1, one of which is the
true label vector). Whereas, models are designed as single-label in the drug target protein family

prediction benchmark (since each protein can only belong one of the main families), meaning that
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a random predictor would produce a correct prediction once out of 5 cases (i.e., only 5 different

combinations exist for a label vector of size 5x1, one of which is the true label vector).
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Figure 1. (a) Overview of the protein representation benchmark study; (b) various data sources/types can
be utilized to construct representations, and this data can be used to train unsupervised or supervised

models, and the output representation vectors can be used for diverse applications.
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Figure 3. Performance of protein representation learning methods in inferring pairwise semantic similarities
between proteins, calculated in terms of Spearman correlation between the ranked true pairwise similarity
list (calculated using Lin similarities®* between functional annotations of proteins) and the representation-
based ranked pairwise similarity list (calculated using cosine similarities between numerical feature vectors
of proteins). True semantic similarities are calculated based on GO terms of; (a) molecular function, (b)

biological process, and (c) cellular component categories.
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Figure 4. Heat maps indicating the performance results (weighted F1-scores) of protein representation
learning methods in ontology-based protein function prediction benchmark in terms of GO; (a) molecular

function annotations, (b) biological process annotations, and (c) cellular component annotations.
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Figure 5. Box plots indicating performance results (iF1-score, accuracy and MCC) of protein

representation learning methods in the drug target protein family classification benchmark.
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Tables

Table 1. A near-comprehensive list of protein representation learning methods including names, references, learning approach, depth of the system, utilized

machine learning algorithm, input data type, vectors sizes, objectives and applications of systems, the importance of studies, and the availability as tools or

source code (vector sizes vary for some of the methods, in those cases, we indicate the vector sizes that yield the best predictive performance).

Method name |Learning Depth ML algorithm Input data type |Vector Size |General Specific application(s) of |Importance of the study Data Repository
and reference |approach of the (# of dim.) |objective(s) of the method
system the system
ProtVec* Unsupervised [Shallow |Word2vec Protein 100 (Structural feature |Disordered protein/region First word vector-based protein |https://github.com/e
sequence prediction and prediction representation hsanasgari/Deep-
physicochemical Proteomics
feature prediction
Seqg2Vec?® Unsupervised [Shallow |Doc2vec Protein 250 |Sequence-based |Protein sequence First Doc2vec based protein N/A
sequence feature prediction |classification and retrieval representation
Wan et al.®? Supervised Shallow [(Word2vec Protein 100 (Interaction Ligand-target protein Protein representation model for |N/A
(modified for sequence prediction interaction prediction drug-target interaction
negative Morgan prediction
examples) fingerprints
ProtVecX'?” Unsupervised [Shallow |Word2vec Protein 500 |Sequence-based |Motif discovery, enzyme Variable length protein https://github.com/e
sequence feature prediction |activity prediction and toxin |sequence representation hsanasgari/dimotif
prediction
DeepDTA®® Supervised Deep Convolutional Protein and 128 |Interaction Ligand-target protein Unsupervised trained https://github.com/h
Neural Network ligand prediction interaction prediction representation for protein ligand |kmztrk/DeepDTA
(CNN) sequence binding affinity prediction
Oubounyt et Unsupervised |Deep Word2vec, Protein 100 |Genetic feature Alternative splicing Use of both Word2vec and N/A
al." Doc2vec and sequence prediction prediction Doc2vec for alternative splicing
CNN
DeepCon-QA ® |Unsupervised |Shallow |Word2vec, hidden |Protein 200 |Structural feature |Protein quality assessment |Application of protein N/A
Markov, CNN sequence and prediction representations on protein
structure structure model quality
assessment
Choy et al.®! Unsupervised [Shallow |Artificial neural Gene 50 |Genetic feature Prediction of Gene expression-based protein |https://github.com/z
network expression prediction immunotherapy responders |representation eochoyl/tcga-
(RNAseq) embedding
rawMSA'2 Unsupervised |Deep CNN-LSTM (Long |Protein 300 (Structural feature |Secondary structure Multiple sequence alignment- https://bitbucket.org/
Short-Term sequence prediction prediction, relative solvent  |based protein representation clami66/rawmsa
Memory) accessibility prediction and
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inter-residue contact map
prediction

SpliceVec®” Unsupervised [Shallow |Word2vec, Protein 100 |Genetic feature Alternative splicing Unsupervised trained N/A
Doc2vec and sequence prediction prediction representation for alternative
multi-layered splicing
perceptron
PhosContext2V |[Unsupervised |Shallow |Word2vec and Protein 126 |Sequence-based |Phosphorylation site A protein representation model |https://github.com/y
ec® Doc2vec sequence and feature prediction |prediction for phosphorylation site xu132/prot2vec_con
residue-level prediction textualvec
features
Mejia-Guerra et |Unsupervised [Shallow |Word2vec Protein 300 |Sequence-based |Regulatory region prediction |A protein representation model |https://bitbucket.org/
al.® sequence feature prediction for regulatory region prediction |bucklerlab/k-
mer_grammar
Gene2Vec® Unsupervised [Shallow |Word2vec Gene co- 200 |Sequence-based |Gene function prediction Gene co-expression-based https://github.com/ji
expression feature prediction protein representation for gene- |ngcheng-
gene interaction du/Gene2vec
Yang et al.?’ Unsupervised [Shallow |Doc2vec Protein 64 |Physicochemical |Prediction of localization, Application of protein https://github.com/fh
sequence feature prediction |thermostability, absorption  |representations to predict the alab/embeddings_r
and enantioselectivity functional properties of proteins |eproduction
Cohen et al.'"® |Unsupervised [Shallow |Vector Symbolic  |Protein 1,000 |Sequence-based |West Nile virus specific Application of protein N/A
Architectures sequences and feature prediction |immunoglobulin receptor representations on
amino acid search immunoglobulin receptor search
properties
Mut2Vec?® Unsupervised [Shallow |Word2vec Gene 300 |Genetic feature Classification of driver and  |Mutation based gene http://infos.korea.ac.
mutations, prediction passenger mutations representation kr/mut2vec
biomedical
literature and
PPI
DNA2Vec* Unsupervised [Shallow |Word2vec Gene sequence 100 |Genetic feature Nucleotide sequence Variable length DNA sequence |https://github.com/p
prediction similarity search representation npnpn/dna2vec
Mol2Vec® Unsupervised [Shallow |Word2vec Morgan 300 |Sequence-based |Kinase activity prediction Word vector-based molecule https://github.com/s
substructures feature prediction representation amoturk/mol2vec
Viehweger et Unsupervised [Shallow |Doc2vec Protein domains 100 [Sequence-based |Prediction of growth Protein domain-based https://github.com/p
al.'% feature prediction |medium and growth representation in metagenomics |hiweger/nanotext
temperature of bacteria
Qi et al."™° Supervised Shallow |Feed-forward Multiple 35 |Sequence-based |[Secondary structure, Multi-task distributed continuous [N/A
neural network sequence feature prediction, [solvent accessibility, DNA protein representation

alignments and

structural feature
prediction and

binding, signal peptide, PPI,
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protein
sequence

interaction
prediction

trans membrane topology
and coiled coil predictions

ProtEmbed " Supervised Shallow [Maximum margin |Protein domain 250 |Sequence-based |Remote homology Distributed continuous protein N/A
ordinal regression |sequence feature prediction |prediction representation
G2Vec® Unsupervised [Shallow |Word2vec Gene 128 |Genetic feature Cancer biomarker prediction |Gene expression-based https://github.com/m
expression and prediction representation for cancer athcom/G2Vec
PPI biomarker prediction
DeepText2GO' |Unsupervised |Shallow |TF-IDF and Biomedical 201 |Sequence-based |Protein functional Text and protein sequence N/A
32 Doc2vec literature and feature prediction |annotation integration for protein
protein representation
sequence
WideDTA® Unsupervised |Deep CNN Protein and 256 |Interaction Ligand-target protein Hybrid representation for protein |[N/A
ligand prediction interaction prediction binding affinity prediction
sequence,
protein
domains,
maximum
common
substructure
SeqVec?® Unsupervised |Deep LSTM (ELMO) Protein 1,024 |Structural feature |Secondary structure Dynamic language model https://github.com/R
sequence prediction prediction and disordered implementation for protein ostlab/SeqVec
region prediction representation
UniRep* Unsupervised |Deep mLSTM Protein 5,700 |Sequence-based |Secondary structure Dynamic protein representation |https://github.com/c
sequence feature prediction, |prediction, protein stability  |to be used for diverse protein hurchlab/UniRep
structural feature |prediction, protein semantic |related tasks
prediction and similarity prediction, and
physicochemical |protein engineering/design
feature prediction
TAPEZ Unsupervised |Deep LSTM, Protein 2,048 [Sequence-based |3D structure prediction, Benchmark framework for https://github.com/s
Transformer and |sequence (LSTM) |feature prediction |homology detection, protein |protein embeddings onglab-cal/tape
ResNet 100 (ResNet) |and structural engineering/design
512 |feature prediction
(Transformer)
Bepler et al.'®  [Supervised Deep Bi-directional Global 100 |(Structural feature |Structural similarity search  |A novel similarity measure https://github.com/tb
LSTM structural prediction and protein domain between arbitrary-length epler/protein-

similarity and
pairwise residue
contact maps

prediction

sequences of vector
embeddings based on a soft
symmetric alignment (ssa)

sequence-
embedding-iclr2019
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Rives et al.%® Unsupervised |Deep Transformer Protein 1,280 |Structural feature |Secondary structure First bi-directional transformer  |[N/A
(BERT) sequence prediction and prediction and inter-residue |implementation validated with
physicochemical |contact map prediction multiple protein related tasks
feature prediction
D-Space'® Supervised Deep CNN Protein 256 |Sequence-based |Protein mutagenesis Multi-task large-scale trained https://github.com/s
sequence feature prediction |analysis, protein profile protein representation yntheticgenomics/s
search, protein annotation gidspace
and protein similarity search
Tubiana et al.*® |Unsupervised |Shallow |Restricted Protein 100 (Structural feature |Protein engineering/design |RBM based model https://github.com/je
Boltzmann sequence prediction and inter-residue contact rtubiana/ProteinMoti
Machine (RBM) map prediction fRBM
Kane et al."”" Unsupervised [Shallow |Node2vec, Protein 128 |Sequence-based |Protein function prediction  |Tissue based function prediction [N/A
OhmNet, sequence and feature prediction
Doc2vec PPI
Faisal et al.'® |Supervised Shallow [Random Forest Protein 355 |Sequence-based |Classification of nuclear Use of protein sequence N/A
and SVM sequence feature prediction |receptors, protein family fragments to represent a protein
classification and cell- using multiple descriptors
penetrating peptide
prediction
UDSMProt'% Supervised Deep Bi-directional Protein 256 |Sequence-based |Enzymatic activity Application of unsupervised https://github.com/n
LSTM sequence feature prediction |prediction, remote protein representations for small |strodt/UDSMProt
and structural homology and fold detection |datasets and EC prediction
feature prediction
DeepPrime2Se |Unsupervised |Deep Bi-directional Protein 16 to 2,000 |Structural feature |Secondary structure Comparison of multiple deep http://lip.berkeley.ed
c's LSTM, CNN, sequence (Best |prediction prediction representation learning models (u/DeepPrime2Sec
ELMO and results w/ for secondary structure
Word2vec 300) prediction
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