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Abstract 

Data-centric approaches have been utilized to develop predictive methods for elucidating 

uncharacterized aspects of proteins such as their functions, biophysical properties, subcellular 

locations and interactions. However, studies indicate that the performance of these methods 

should be further improved to effectively solve complex problems in biomedicine and 

biotechnology. A data representation method can be defined as an algorithm that calculates 

numerical feature vectors for samples in a dataset, to be later used in quantitative modelling 

tasks. Data representation learning methods do this by training and using a model that employs 

statistical and machine/deep learning algorithms. These novel methods mostly take inspiration 

from the data-driven language models that have yielded ground-breaking improvements in the 

field of natural language processing. Lately, these learned data representations have been 

applied to the field of protein informatics and have displayed highly promising results in terms of 

extracting complex traits of proteins regarding sequence-structure-function relations. In this study, 

we conducted a detailed investigation over protein representation learning methods, by first 

categorizing and explaining each approach, and then conducting benchmark analyses on; (i) 

inferring semantic similarities between proteins, (ii) predicting ontology-based protein functions, 

and (iii) classifying drug target protein families. We examine the advantages and disadvantages 

of each representation approach over the benchmark results. Finally, we discuss current 

challenges and suggest future directions. We believe the conclusions of this study will help 

researchers in applying machine/deep learning-based representation techniques on protein data 

for various types of predictive tasks. Furthermore, we hope it will demonstrate the potential of 

machine learning-based data representations for protein science and inspire the development of 

novel methods/tools to be utilized in the fields of biomedicine and biotechnology. 
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Introduction 

Protein informatics, which can be defined as the use of molecular modelling and data-driven 

computational methods (e.g., machine learning, statistical modelling) on the proteome to create 

efficient and scalable solutions, is increasingly becoming an active field of research. The 

computational methods to come out of such research have the potential to impact daily life 

through the fields of biomedicine and biotechnology, which have a current market size of 417 

Billion USD and is expected to reach 729 Billion USD in 2025 . Functional annotation of proteins 

is critical for protein informatics, as they are the primary inputs to said computational methods. As 

of October 2020, there are around 189 million protein entries in the UniProt knowledgebase; 

however, only 0.56 million (around 0.3%) of them are manually reviewed and annotated by expert 

curators, indicating a large gap between the current sequencing and annotation capacities. This 

gap is mainly due to the cost and time intensive nature of in vitro and in vivo experiments and the 

manual curation of their results. To supplement experimental and curation-based annotation, 

automated in silico approaches are being used. In this context, many research groups have been 

working on developing new computational methods to predict proteins9 enzymatic activities1,2,3, 

biophysical properties4,5,6, interactions7, 3-D structures8,9,10, and ultimately, their functions11,12,13. 

Protein function prediction (PFP) is the assignment of semantic meaning (i.e., functional 

definitions) to proteins, automatically or semi-automatically. The primary terminology for the 

functions of biomolecules are codified in the Gene Ontology (GO), a hierarchical network of 

concepts that annotate molecular functions of genes and proteins, as well as their subcellular 

localizations and the biological processes in which they are involved14. The most comprehensive 

benchmark project for PFP is the Critical Assessment of Functional Annotation (CAFA) 

challenge15, in which participants predict GO-based functional associations for target proteins. 

CAFA challenges so far indicate that PFP is still an open problem. 

It has been shown in literature that complex computational problems, where features are high 

dimensional and have complex/non-linear relationships, are amenable to deep learning-based 

techniques16. These techniques can efficiently learn task-related representations from noisy and 

high dimensional input data. Thus, deep learning has been successfully applied to various 

domains such as computer vision, natural language processing, and the life sciences17,18,19,20. 

Deep learning is also a promising avenue of attack for protein informatics. Features of proteins 

should be extracted and encoded as quantitative/numerical vectors to be used in machine/deep 

learning-based predictive modelling. A protein representation model, given the raw input features 

of a protein, calculates a feature vector that is a succinct and an orthogonal representation of the 
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protein. An optimally trained predictive system can efficiently learn features of samples and 

perform the prediction task using these representations as input. Protein representation 

construction approaches can be grouped under two categories; (i) classical protein 

representations (i.e., the model-driven approach), which are generated using predefined rules 

about properties such as the evolutionary relationships between genes/proteins or the 

physicochemical properties of amino acids, and (ii) learned protein representations (i.e., the data-

driven approach), which are constructed using statistical and machine learning algorithms (e.g. 

artificial neural networks) that are optimized on predefined tasks, such as the prediction of the 

next amino acid on the sequence. Here, the ultimate aim of these representation models is not 

the prediction of the next amino acid for some sequence, this task is only used in the objective 

function during the training of the representation model and to measure its success (i.e., its ability 

to represent the inherent properties of proteins). Later, the output of the trained model, which is 

the representation feature vector, can be used for other protein informatics-related tasks such as 

the prediction of function. In this sense, representation learning models leverage the transfer of 

knowledge from one task to another. The generalized form of this process is known as transfer 

learning21 and it is reported to be a highly efficient data-analysis approach in terms of time and 

cost22. Due to this ability, protein representation learning models minimize the need for data 

labeling23. 

Protein representation learning methods collect data from one or more resources (e.g., 

sequences, interactions, etc.) and employ either supervised or unsupervised learning to train a 

model, which outputs the representation vector to be used in various protein informatics related 

applications. Supervised and unsupervised training are the two main approaches of system 

training in artificial learning. Supervised methods require labelled data (e.g., gene/protein entries 

that are annotated with biomolecular functional definitions such as GO terms), which is mostly 

produced via experimental procedures and manual curation in protein science. Since the 

annotation procedure has a high cost, only a small percentage of biomolecular data is labelled. 

On the other hand, unsupervised models do not need labelling, which makes it easily applicable 

to any type of biomedical data. However, unsupervised models generally require larger training 

datasets and additional computational power, especially when deep learning-based methods are 

used (e.g. GPT-3 which is a state-of-the-art language model trained with 300 billion tokens which 

costs 3.14E+23 flops24 ). In the framework of data representation learning approaches, 

unsupervised methods can further be divided into local and global models25. Methods in the 

former group construct representations based on the local context (e.g., in a language model, 

words surrounding the word of interest in a text), whereas in the latter, the sample is evaluated in 

terms of a larger, global context (e.g., the whole paragraph or document, the word of interest 

belongs to). 
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Protein representation learning method development is a new but highly active area of research, 

and it mostly gets its technical inspiration from approaches proposed for natural language 

processing (NLP). It is shown in the literature that various protein representation learning 

methods, especially the ones that incorporate deep learning, have been successful at extracting 

relevant inherent features of proteins (Table 1). However, there is no comparative study to 

systematically evaluate the performance of these methods via quantitative benchmarks, in the 

context of artificially learning the functional aspects/properties of proteins. Nevertheless, gaining 

knowledge on complex relationships between sequences, structures, interactions and functions 

of proteins is especially critical for proposing novel solutions to current biomedical and 

biotechnological problems. 

In this study, we conduct an investigation of the available protein representation learning methods 

that were proposed since 2015, with a detailed benchmark analysis regarding the potential of 

these methods to capture the functional properties of proteins. We explain both classical and 

learning-based methods to provide insight into their respective approaches to represent proteins, 

and we classify these methods according to their technical aspects and objectives (please see 

Methods section and the supplementary information document). Aiming to evaluate how much 

each representation model captures different facets of functional information, we constructed and 

applied benchmarks based on; (i) semantic similarity inference between proteins, (ii) ontology-

based protein function prediction, and (iii) drug-target protein family classification (Results 

section). Finally, we discuss the results and current issues, and provide a perspective on the 

future of learned protein representations (Discussion section). The whole study is summarized in 

Fig. 1a. We expect that the discussion and conclusions of this study will inform researchers who 

would like to apply machine/deep learning-based representation techniques on biomolecular data 

for predictive modelling. We believe our investigation will be valuable in gaining insight about the 

potential of machine learning-based protein representation models in retrieving complex 

functional relationships of proteins, since previous studies mostly evaluated a few methods over 

tasks related to the structural features23,26. Finally, we hope this study will inspire new ideas for 

the development of novel, sophisticated and robust approaches to solve open problems in protein 

informatics.  
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Results 

In this section, we focus on protein representation benchmark analyses. The review of the 

literature, including the construction and application of protein representations (Fig. 1b), and their 

technical and objective-based classification and evaluation (Fig. 2) are given in the Methods 

section and in the supplementary information document. 

Nine different representation learning methods have been selected for our functional property-

based benchmarks, according to their previously reported success in predictive tasks, and 

subject to their availability as open access tools or ready to use pre-constructed feature vectors. 

During the selection process, we also considered the source protein features/attributes used to 

train these methods (e.g., sequence, PPIs, etc.) and the algorithmic approaches, with the aim of 

covering a wide variety of methodologies. The methods included in the benchmark are thus; 

LearnedEmbeddingVec27, SeqVec28, Mut2Vec29, Gene2Vec30, TCGA_Embedding31, ProtVec4, 

TAPE-BERT_Avg23, TAPE-BERT_Pool 23, UniRep23, along with two classical representations: 

APAAC 32 and k-sep-bigrams33, as baselines. Technical information about these tools is given in 

the Methods section. A near-comprehensive summary of 35 protein representation learning 

methods obtained from the literature, including the above-mentioned benchmark methods, is 

given in Table 1. 

Semantic Similarity Inference 

In this analysis, we aim to measure how much information about biomolecular functional similarity 

is captured by the representation models. In this context, Gene ontology (GO) annotations are 

utilized, which signify the molecular functions, large-scale biological roles, and subcellular 

localizations of proteins. We first calculated vector similarities, which are defined in terms of 

pairwise quantitative similarities (e.g., cosine, Manhattan and Euclidean) between representation 

vectors of proteins in our dataset. These similarities were then compared to the ground truth 

functional similarities, which are measured based on the actual GO annotations of these proteins 

using standard semantic similarity measures (e.g., Lin similarity34). To be able to compare the 

success of different protein representation methods, we calculated Spearman rank-order 

correlation values between representation vector similarities and the actual GO-based semantic 

similarities of the same protein pairs, using 4 different test datasets (explained in the Methods 

section). Higher correlation values indicate higher success. The results based on cosine similarity 

are shown in Fig. 3. Performance results considering the Manhattan similarity and Euclidean 

distance measures can be found in Fig. S3 and S4. 

According to the results presented in Fig. 3a, UniRep is the most successful representation 

model in the GO molecular function (MF) category, considering all four datasets. Mut2Vec29 is the 
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best performer in the GO biological process (BP) except for the <all proteins= dataset, and 

TCGA_Embedding achieved the highest correlation score in the GO cellular component (CC) 

category. Mut2Vec is also among the top three methods in MF and CC categories. 

TCGA_Embedding is also in the top three in the GO BP category. BERT, Gene2Vec, and 

LearnedEmbeddingVec are other notable methods but did not achieve the top performance in 

any of the categories. 

UniRep23 is based on multiplicative LSTM35. We propose two reasons to explain the higher 

performance of UniRep. The first reason can be that, UniRep constructs and uses a training 

sequence dataset with low bias (consisting of 24 million UniRef5036 protein entries, which are 

filtered by a 50% similarity threshold from the from UniProtKB, instead of using all available 

protein sequences in the data source), which might be providing better generalization capability. 

The second reason may be the size and the information content of the model. In our benchmarks, 

we employed the <UniRep Fusion'' model since this version had the highest performance 

according to the original UniRep study. This model was built with the concatenation of the <final 

hidden state=, <final cell state=, and <average hidden state= of the LSTM model, each of which has 

a size of 1x1900, providing a total vector size of 5700. In our opinion, the concatenation of the 

different states might have enhanced the protein representation vector with different levels of 

semantic information, since the level and type of information learnt at each layer is claimed to be 

distinct16. 

Mut2Vec29 was originally developed to predict the effects of mutations, but surprisingly it 

performed very well in our analysis considering the BP based semantic similarities. The model 

was developed using patient mutation profiles, biomedical literature and protein-protein 

interactions. The last two datasets may include information considering the role of the proteins in 

BPs. For example, considering that two proteins are interacting, then observing them as a part of 

the same BP is highly probable. Similarly, supposing two proteins had a role in the same BP, they 

may frequently be observed together in the same text (e.g., article). As a result, those proteins 

would probably be embedded proximally in the vectorial semantic space. We are suggesting that 

the top performance of Mut2Vec probably depends on these factors. 

TCGA_Embedding31 exploited gene expression data and a simple learning system inspired by 

non-negative matrix factorization. With this approach, the authors constructed a representation 

with a vector size of 50, which is one of the smallest representations in our benchmark. 

TCGA_Embedding scored the best performance in the prediction of CC-based semantic 

similarities, together with a notable performance considering the BP-based similarities. Similar to 

TCGA_Embedding, the Gene2Vec30 model utilizes gene co-expression data with the skip-gram 

algorithm. The model performed well in both BP and CC based semantic similarity inference 

tasks. Gene (co)expression profiles are one of the least studied data types for developing protein 
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representations as only a few studies exist; however, it is found to be quite informative to infer the 

similarities between proteins in terms of the BPs they take part in and the CCs that they localize 

to. It was reported in the literature that there is a correlation between the expression profiles and 

the subcellular locations of genes/proteins, which was evaluated in the context of machine 

learning-based prediction of protein localizations37,38.  It was also discussed in the results of the 

CAFA Pi challenge (over the bacterial motility and biofilm formation biological processes) that 

gene expression is a critical input data type for predicting the biological roles of proteins15. 

TAPE-BERT23 had the second place in the MF-based similarity inference task. TAPE-BERT (a bi-

directional transformer) is the only method that uses the self-attention mechanism in this analysis. 

Technical details of BERT and the self-attention are discussed elsewhere39,40. Similar to the 

success of the BERT model in word sequences (sentences)41, TAPE-BERT model can represent 

protein sequences with high accuracy. It should also be noted that the implementation we used 

here was directly obtained from the TAPE benchmark study23 without any fine-tuning. TAPE-

BERT may perform better in protein informatics tasks with further optimization. 

Finally, LearnedEmbeddingVec27, which is a simple model that takes protein sequences at the 

input level to process them using doc2vec42, scored as good as the TAPE-BERT23 models in our 

semantic similarity based analysis. The size of the TAPE-BERT models were notably larger 

compared to LearnedEmbeddingVec27 (i.e., 12 hidden layers with 768 neurons for each layer, as 

opposed to 1 hidden layer with 64 neurons). We argue that some of the shallow models still 

preserve their significance, especially in MF-based semantic similarity inference. 

Ontology-based Protein Function Prediction 

As the second benchmark of our study, we aimed to assess the success of protein representation 

models in terms of automated protein function prediction (PFP). In this analysis, Gene Ontology14 

(GO) term annotations of proteins were used to train and test the same 11 protein representation 

models via supervised machine learning based classification. In this benchmark, we preferred to 

use a linear classifier (i.e., linear support vector classification from scikit-learn43) in order to 

prevent non-linear transformations on the protein representation vectors, since the relevant 

information hidden in proteins should have been captured and extracted by the representation 

model beforehand, if the model is successful. This way, we could evaluate the protein 

representation models in terms of their success in extracting this information without additional 

factors. 

Here, we also discussed a critical topic that was mostly overlooked in previous PFP studies, the 

assessment of the performance in terms of annotated GO term specificity. This is important since 

there is a relation between the specificity of a GO term (i.e., its location of the graph of GO) and 
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its informativeness. For example, considering an annotation with the GO term <negative 

regulation of molecular function= the provided information is too general. These GO terms are 

generally located near the root of the GO graph and called <shallow terms=. If the same protein 

was annotated with the GO term <negative regulation of double-stranded telomeric DNA binding=, 

which is a descendent term of the previous one, the annotation would have been more 

informative. In order to take this phenomenon into account in our analysis, we simply grouped 

GO terms under three categories as shallow, normal, and specific; according to their level on the 

directed acyclic graph of GO (see Methods). 

One key problem in applying deep learning to protein informatics is the requirement for high 

amounts of training data11. To examine this issue in our benchmark, we considered a grouping 

among GO terms regarding the number of proteins they are annotated to. This approach is 

expected to uncover the performance of representation learning models in terms of learning with 

only a few training examples, which also is the case for a considerable number of informative GO 

terms. Furthermore, some of the protein functions are studied well and some others are under-

studied, which creates a discrepancy in terms of the number of annotated proteins. We expect 

that this approach will be useful to assess the representations considering their ability to learn 

under-studied functional properties. For this, we created three categories that point out the 

number of the proteins annotated to a GO term as; low, middle, and high (see Methods). 

PFP performance results are given for 9 different GO groups using F1-score based heat maps in 

Fig. 4. The overall GO term prediction performance results (averaged over 9 different GO groups) 

in terms of recall, precision, F1-score, accuracy, and Hamming distance are given in Table S4. It 

is important to mention that these performances are higher compared to the results of CAFA 

challenges, due to the way we modelled the experiment. We only run a test sample on the model 

that contains its true label as one of the 5 tasks (i.e., GO terms), instead of running all test 

samples on all prediction models. The reason behind this experimental design choice was to 

prevent the accumulation of the scores of all benchmarked methods in low performance regions 

(especially for hard-to-predict ontologies such as BP), which would prevent the observation of the 

performance differences in-between. 

It is shown in both Fig. 4 and Table S4 that, in the MF prediction task, top methods showed 

similar performances across almost all GO groups (e.g., low, high, specific, shallow, etc.), among 

which SeqVec28 got the top place, and k-sep-bigrams33, TAPE-BERT23 models and UniRep44 

came right after. For BP and CC prediction tasks, SeqVec was the best performer together with 

k-sep-bigrams, and runner ups were again TAPE-BERT models and UniRep. We also observed 

that these methods are clustered together in all three heat maps, considering their performances 

(Fig. 4). These four representation learning methods share common characteristics that can 

explain their similar performance in the PFP benchmark. First of all, they are all based on large 
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state-of-the-art sequence modelling algorithms: LSTM (SeqVec and UniRep with 93M and 18.2M 

parameters, respectively) and a Transformer (TAPE-BERT with 110M parameters). Also, they 

share the same model training objective, prediction of the next amino acid on the sequence. 

Finally, they were all trained with large datasets (24M sequences for UniRep, 33M for SeqVec 

and 31M domain sequences for TAPE-BERT). 

We also calculated model performances  averaged for each GO group (Table S5), especially to 

observe the scores for challenging groups; the <low= group which contain GO terms that have low 

effective number of proteins (during dataset preparation, we eliminated highly similar proteins by 

filtering through UniRef clusters, to be able to take the effective number of samples into account 

while grouping GO terms), and the <specific= group consisting of GO terms that are leaf nodes, or 

are close to the leaf nodes, in the GO hierarchy. In Table S5, mean F1-score results (considering 

the average of all methods) indicate that low number of samples is a problem for BP and CC 

categories, but not so much for MF category, where there is generally an explicit relation between 

the input (i.e., sequence) and the label. On the other hand, we could not observe a trend in 

performance change in terms of GO term specificity. As a result, it can be stated that prediction 

success for informative specific terms may be solely related to the effective number of training 

proteins. For the MF-low category, k-sep-bigrams (F1:0.916) and SeqVec (F1:0.914) achieved 

the best performances. In the BP-low and CC-low categories, k-sep-bigrams had the best F1-

scores with 0.548 and 0.556, respectively. For the MF-specific and BP-specific categories, the 

SeqVec model got the top scores with F1:0.945 and F1:0.732, respectively. Considering the CC-

specific category, the k-sep-bigrams model again got first place with F1:0.552. These results 

showed that, for the tasks where the number of labelled data points are low, the representation 

capability of classical (model-driven) methods is still higher compared to learning-based (data-

driven) models. 

Overall, the best performing method in the protein function prediction benchmark, considering all 

GO categories, was SeqVec28, whereas, k-sep-bigrams33, a classical protein representation 

based on evolutionary relationships, got second place with scores close to the top performer. 

Drug Target Protein Family Classification 

In our third benchmark analysis, we aimed to measure the performance of protein 

representations in the framework of drug discovery, with the prediction of drug target proteins9 

main families (i.e., enzymes, membrane receptors, transcription factors, ion channels and 

others). Since these families are made up of proteins with distinct structural characteristics, this 

benchmark analysis will also reflect the ability of these representations in learning structural 

properties. Furthermore, by using a data source other than GO annotations, we seek to diversify 

our benchmark and to evaluate the representations from a different perspective. Similar to the 
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ontology-based protein function prediction benchmark, here we preferred to use a multi-task 

linear SVM classifier in order to solely measure the ability of learned protein representations in 

extracting the complex protein attributes/properties. 

The number of samples in this analysis was lower compared to the previous benchmarks (Table 

S6), as we only used human target proteins listed in the ChEMBL database45. Since there is an 

imbalance in terms of the number samples for each task (i.e., protein family), MCC was taken as 

the most reliable indicator in comparing the representation methods. According to the average 

cross-validation results of our multi-task classification model (Fig. 5), SeqVec28 model is the best 

method in all metrics, whereas TAPE-BERT_Avg23  came a close second. UniRep44, TAPE-

BERT_Pool23 , and k-sep-bigrams33 models also provided remarkable performances. Family 

specific prediction scores (Fig. S5) showed that SeqVec provided the best performance in terms 

of enzymes. For membrane receptors, UniRep provided the best performance, followed by 

SeqVec. For transcription factors, TAPE-BERT_Avg took the top place. For ion channels and 

others, SeqVec was again the best performer. 

Given that SeqVec was also very successful in the protein function prediction benchmark, 

especially in MF prediction, and that protein family information is related to functions, there is a 

plausible correlation between these results. SeqVec uses the ELMO model46, a bi-directional 

LSTM with 93M parameters capable of learning long sequential patterns, which is stated to be 

highly efficient for language modeling41. The most evident difference of SeqVec from the other 

successful state of the art models in our study (e.g., UniRep and TAPE-BERT) in terms of the 

model architecture is that SeqVec contains a CNN layer to embed the amino acids in the 

sequence onto a latent space, before the LSTM layers. In the original ELMO model, the same 

approach, charCNN47, was mainly used to obtain word vectors of fixed size. It is also important to 

mention that SeqVec displayed a moderate performance on the semantic similarity inference 

benchmark. This observation indicates that, although protein function prediction and semantic 

similarity inference can be seen as correlated tasks due to sharing the same information source, 

specialized solutions are required for each one. The moderate performance of SeqVec on 

semantic similarity inference might be explained by the noise on the original representation 

vectors that SeqVec produced. This noise may be filtered out by a simple feature selection during 

our supervised training in the PFP and drug target protein family classification benchmarks, as a 

result, SeqVec was successful. However, there was no supervised training in semantic similarity 

inference. This phenomenon was also observed in the original SeqVec study (see Fig. 2 of the 

SeqVec paper28). In the first t-SNE plot of this figure, protein classes are distributed 

heterogeneously when the unsupervised model was directly used to generate protein 

representation vectors. Contrarily, when the representation vectors generated by the supervised 

model were used, the classes were successfully clustered.  
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Discussion 

The volume of AI-based protein informatics studies has been growing lately to further the 

understanding of the complex relations between sequence, structure and function48. In this study, 

we evaluated protein representation learning methods in terms of their ability to capture functional 

properties of proteins, to be utilized, ultimately, to overcome critical challenges in protein 

informatics, biotechnology, and biomedicine domains. These models, with their modest resource 

requirements and high representation performance, can be (re)used for a variety of tasks. Thus, 

we argue that learned representations will play an essential role in protein research and 

development in the near future. 

In the PFP benchmark, performances observed in CC and BP GO term prediction tasks were 

lower compared to the MF prediction. This observation is plausible since most of the learning-

based methods use protein sequence data as input, and sequence is not a direct marker for 

localization (without the cleaved signal peptides) or the biological role of proteins. Also, we 

observed that the success rate in CC term prediction decreases with the decreasing number of 

annotated proteins. A similar observation was valid for MF and BP categories as well; however, 

the effect was less pronounced. On the other hand, we did not observe a similar trend in 

performance change with increasing or decreasing term specificities. Nevertheless, it is possible 

to state that the issue at hand is still critical since many of the informative <specific= GO terms 

have <low= number of annotated proteins. 

In semantic similarity inference and drug target protein family prediction benchmarks, we 

observed that some of the learned representations are superior to the classical ones in terms of 

predictive performance, thus justifying the benefit of the data-driven approach to represent the 

functional properties of biomolecules. On the other hand, k-sep-bigrams, a classical protein 

representation method that does not need any training, could compete with deep learning-based 

protein representation methods in the PFP benchmark. These results indicate that evolutionary 

relationships are correlated with functional properties of biomolecules to such a degree that a 

simple representation that utilizes this feature can perform as good as the most complex 

sequence modelling methods. In the light of these results, we claim that the explicit incorporation 

of evolutionary information into the training of representation learning models would lead to 

significant improvements considering predictive performances in protein informatics. 

Nevertheless, we still claim that learned protein representations, in their current state, are 

essential for different reasons. First of all, learning-based models produce reusable vectors, 

which can be optimized towards increasing predictive performance in challenging tasks (e.g., BP 

GO term or 3-D structure prediction) with further training on selected supervised tasks. Second, 

studies indicate that protein representation learning models can also be employed for designing 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.28.359828doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.28.359828
http://creativecommons.org/licenses/by/4.0/


 

12 

new proteins using the learned probability distributions of the proteins in the training set49,50. This 

is not possible with classical representations. The topic of protein design is discussed further, 

below. Third, the results of our benchmarks indicate that the approach of learning protein 

representations is an excellent application field for transfer learning, as it is possible to train a 

model that could generate a representation vector, and use this vector for various related 

predictive tasks (e.g., training the model via the prediction of the next amino acid in the sequence 

and later using the trained model for predicting functions, interactions, or structures). 

In benchmark studies, the possibility of data leak from training to test is a critical issue that should 

be considered during performance testing. Data leak can be defined as the accidental share of 

knowledge between train and test, leading to overoptimistic performance measurements. In our 

analyses, we observed that certain representation models performed well in tasks that are 

biologically related to the tasks that these models were trained on; although the data and the 

actual tasks were different from each other. For example, Gene2Vec utilized a hyperparameter 

optimization task, which aims to maximize the clustering of genes within MSigDB51 functional 

pathways. This task is assumed to have latent knowledge about BP and CC based protein 

semantic similarity inference and ontology-based PFP benchmarks, where Gene2Vec showed a 

notable performance. Likewise, Mut2Vec29 uses protein-protein interaction data for training, and 

we found that this model is successful in predicting BP and CC related tasks. It is highly probable 

that two interacting proteins are localized to the same cellular compartment or have a role in the 

same biological process. Finally, TAPE-BERT, one of the best performers especially in the MF-

based PFP and drug-target protein family classification, is trained on protein domain sequences 

provided by the Pfam database. The selection of the sequence fragments based on protein 

families can be stipulated to have led to knowledge transfer from Pfam to the protein 

representation vectors calculated by TAPE-BERT. In our opinion, these cases of knowledge 

transfer are unlikely to be counted as examples of data leak from training to test, since the data 

and the tasks used in train and test were completely independent. Hence, these protein 

representation models should be considered successful in terms of inferring relevant information 

from the input data, in the scope of this study. Nonetheless, particulars of such knowledge 

transfer is an interesting topic to be further investigated in future studies. 

There are several challenges within the field of protein representations. First of them is related to 

the assessment of newly proposed methods, as the proper evaluation of stability and robustness 

of models is critical. So far in the literature, protein representation models are tested only with 

small-scale datasets and limited tasks. On the other hand, there are studies (unrelated to protein 

informatics) in which authors proposed new approaches for rigorously evaluating the properties of 

data representation models52354. These studies can be exploited and adapted for the evaluation of 

learned protein representations. Another key challenge is associated with model sizes. In the 
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NLP domain, the number of parameters is steadily increasing with every new high-performance 

model (e.g., state-of-the-art GPT-3 model has 175 billion parameters). As most of the successful 

protein representation learning approaches are based on NLP models, this trend is also observed 

in the protein representation field55. This may pose a critical problem in terms of increasing the 

computational cost to extreme scales, especially for embedding large samples56 using sequence-

based protein representations, where each amino acid in a sequence is modelled as a word in a 

sentence26. To make a simple comparison, the average size of a sentence in English is 21.7 

words57; however, the median number of amino acids in human proteins is 36158, which makes 

the problem even more pronounced for protein informatics. There are potential solutions for this 

issue in the literature56,59361, mainly proposed for NLP-related tasks. These solutions may also be 

exploited for protein sequence representations. It should also be noted that model sizes (e.g., 

number of hidden layers, total number of parameters) are not necessarily correlated with 

performance in protein representation models26. We observed this phenomenon in our 

benchmarks as well. For example, the UniRep model has 18.2M parameters but could compete 

with much larger models such as SeqVec (93M parameters) and TAPE-BERT (110M 

parameters). Therefore, constructing larger and more complex models may not always be the 

solution for better representations. Instead, investing time and resources on the incorporation of 

diverse types of biological data into the models would be a better choice. 

Model interpretability is a critical topic to understand why a model behaves the way it does. In an 

interpretable (i.e., explainable) representation, all features are encoded in a distributed form, 

which means that the feature(s) corresponding to each dimension on the vector is known. 

However, most of the learned protein representations are not interpretable/explainable. In other 

words, the meaning of a feature encoded in a dimension of the output vector is not known. For 

example, presence of a TIM barrel structure in a protein might be encoded in the 5th dimension 

of its representation vector, whereas, the molecular weight information may be shared between 

the 3rd and 4th dimensions. In the general field of data science, disentanglement studies try to 

associate the real properties of input samples with individual dimensions of the output vectors62. 

The disentanglement of protein representations is a new subject, and only a few representation 

model developers have explored this issue so far44,49, as a result, there is yet to be a systematic 

approach. Therefore, systematic benchmarking platforms are required for the standardized 

evaluation of protein representation model interpretabilities. 

Most of the protein representation models so far are trained using only one type of data (e.g., 

protein sequence). However, protein knowledge is associated with multiple types of biological 

data, such as protein-protein interactions (PPI), post-translational modifications, gene/protein 

(co)expressions, etc., along with sequences. According to the best of our knowledge, only a few 

of the available protein representation models are trained with more than two types of data29,63. 
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Among the methods in our benchmark study, Mut2Vec29,63 harmonized multiple types of data (i.e., 

PPIs, mutations and biomedical texts), and produced more accurate results than many of the 

solely sequence based representations in GO BP and CC based PFP. We propose that the 

integration of additional types of protein related data may further augment the accuracy in 

predictive tasks. Furthermore, there is a clear requirement in the literature for holistic protein 

vectors that can effectively represent proteins from a generalized point of view, to be used for 

various different proteins informatics-related purposes. In our opinion, it may be possible to 

create these holistic representations by concatenating multiple representation vectors that were 

previously constructed using different types of biological data (as a means of pre-training), and 

training a new model using the integrated version of these vectors over high-level supervised 

tasks such as predicting biological processes and/or complex structural features (Fig. S6). 

Protein design is one of the key challenges in biotechnology64. Rational protein design involves 

evaluating the activities and functions of many different alternative sequences/structures to 

provide the most promising candidates for experimental validation, which can be seen as an 

optimization problem65. The sequence space to be explored for this purpose is enormous. For 

example, the mean length of human proteins is around 350 amino acids, for which 20^350 

different combinations exist. In the last three decades, computational approaches have been 

utilized for designing proteins with an increasing intensity, which produced promising results 

considering enzyme design66368, protein folding and assembly69, and protein surface design to 

develop efficient antibodies70 and biosensors71. Most of these methods use the quantum 

mechanical calculations72,73 , molecular dynamics74,75  and statistical mechanics76,77, all of which 

have exceptionally high computational costs78, and require expert knowledge. On the other hand, 

methods based on statistical heuristics demand less computing resources, but have lower 

performance. 

Recent studies showed that artificial learning-based generative modelling can be employed for de 

novo protein design. Generative modelling is an approach, as opposed to discriminative 

modelling, in the machine learning domain79, where synthetic samples are produced, that obey a 

probability distribution learnt from real samples. To accomplish this task, it is required to learn the 

representations of samples in the training dataset. Recently, deep learning has become the key 

approach for generative model architectures80, which have been applied in various fields 

including protein/peptide design. For example, Greener et al.81 utilized variational auto-encoders 

to design metal-binding proteins. In another study, Gupta and Zou82 showed that generative 

adversarial networks (GANs) could be used for designing proteins through the construction of 

synthetic encodings of DNA sequences. In the work by Biswas et al., variants of two different 

proteins (a fluorescent protein and a hydrolase) could successfully be designed with improved 

functional activity50. In another study, Tubiana et al. showed that proteins can be designed by 
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defining preferred functions by conditioning a Restricted Boltzmann Machine-based protein 

representation model49. Furthermore, it was possible to generate direct 3-D coordinates of full-

atom antibody backbones83 and to design peptides with anticancer properties84 (validated by in 

vitro experiments) with deep generative modelling. In the field of drug discovery and 

development, learned representations have been employed for molecular property prediction85, 

drug-target interaction prediction86 and de novo drug design87. These studies indicate that 

representation learning is critical for novel applications in both protein and ligand (drug) design. 

We believe protein representation learning approaches will have an influence on various fields of 

the protein science with real-world applications, in the near future, thanks to their flexibility to 

integrate heterogeneous protein data at the input level (i.e., physical and chemical 

properties/attributes, functional annotations, etc.), and their ability to efficiently extract complex 

hidden features. 
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Methods 

In this section, we first explain different approaches in representing proteins, along with an 

evaluation of representation learning methods from a technical point of view. A section 

specifically dedicated to classical representation methods is provided under supplementary 

information section 1. We then summarize representation learning methods according to their 

training objectives and provide detailed information about those we included in our benchmark 

analyses (the rest of the protein representation methods are detailed in supplementary 

information section 3). Finally, we present methodological details regarding the datasets, 

modelling approaches, training and test procedures and performance metrics for each 

benchmark task (i.e., semantic similarity inference, ontology-based protein function prediction 

and drug target protein family classification). We shared the source code, models and datasets of 

this study in our repository (https://github.com/serbulent/TrainableRepresentationAnalysis) so that 

the data can be used by other groups for benchmarking new representation models and to 

compare the results with the ones provided in this study. 

Different Approaches for Representing Proteins  

Feature vectors should ideally represent relevant properties of the data at hand (e.g., physical, 

chemical, or biological properties while representing proteins). For example, within the classical 

protein representation approach, a protein can be represented as a 2-dimensional numeric vector 

where the first dimension corresponds to the mean hydrophobicity value, and the second is the 

mean net charge88. Using these simple vectors as input, a classifier can be trained (Fig. S1a). In 

another example shown in Fig. S1b, the representation learning approach is employed, where 

Gene Ontology (GO) based functional annotations of proteins are used as the input data. An 

initial binary matrix that displays the associations between proteins and GO terms, is 

decomposed into latent protein and GO term matrices using matrix factorization. Afterwards, a 

predicted protein vs. GO term matrix is calculated with the dot product of the first, and the 

transpose of the second latent matrices. The error between the original and predicted matrices is 

used to update the parameters of the model during training. When the training is finished, each 

row of the finalized latent matrices is used as a feature vector that represent the respective 

protein or GO term. These feature vectors can then be used as input to other classification or 

clustering models for different predictive tasks. 

In the domain of natural language processing (NLP), one of the first contemporary word 

representation learning methods, word2vec, was developed by Mikolov et al.89 . Word2Vec is an 

unsupervised learning network that calculates a vector representation for each word in a text. In 

word2vec-like NLP models, the learning process is based on the co-occurrence of words. During 
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the training of a word2vec model with the skip-gram architecture, the vector that represents the 

current word is optimized considering the correct prediction of surrounding words. In a successful 

representation model, e.g., the words <protein= and <gene= will be proximally located in the feature 

hyperspace (i.e., they are found to be semantically related to each other), since they are 

frequently observed together. Additionally, the model may also discover relationships between 

these words transitively, if, for example, the word pairs <protein - mRNA= and <mRNA - gene= are 

observed in the input text samples. Word2vec is an example of shallow data representation 

approaches, in which only one effective data processing layer (i.e., the hidden layer in an artificial 

neural network) is presented. Word2vec laid the foundation of many widely-used data 

representation learning methods available today, including protein representations. Later, deeper 

models, in which there are more than one effective data processing layer90, were developed and 

have achieved far better performance on NLP tasks91. 

The first examples of learned protein representations were based on the word2vec algorithm 4,92 

93,94,95,29,96,30 , most of which are still in use today. Since word2vec depends on word co-

occurrence in a limited window, it ignores the larger context which may include critical semantic 

information. For protein sequence-based representations, this larger context can be the whole 

protein sequence. Another embedding method, doc2vec42  includes the whole context to some 

extent and performs better than word2vec on selected tasks. Several methods use doc2vec to 

represent proteins5,27,973101. Also, deep language models, such as BERT91 and ELMO46 were 

originally developed for NLP, and later employed for protein representations23,28. Furthermore, 

Convolutional Neural networks (CNNs), having the ability to learn to summarize the data with 

adaptive filters, have been employed to represent proteins23,63,86,102,103. Additionally, architectures 

that are capable of inferring patterns from sequential data (e.g., protein sequences) using the 

attention mechanism23,55, such as Long Short-Term Memory (LSTM) neural networks23,28,44,104,105 

and transformer based algorithms 106, are used in representation methods. However, transformer-

based methods have shortcomings considering model explainability107,108. For this, Restricted 

Boltzmann Machines (RBM)109,110, with its self-recursive design, are used to construct explainable 

protein representation models49. Finally, hybrid approaches are utilized in the protein 

representation learning literature103,111,112. Most successful protein representations possess 

certain common hallmarks; and these are explained and discussed under supplementary 

information document section 2. 

Summary of the Evaluated Protein Representation Learning Methods 

We group protein representation learning methods9 technical approaches (Fig. 2a), and 

objectives and applications reported in their respective publications (Fig. 2b). Here, we formed 

five main categories according to the application domains; (i) protein interaction prediction 
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(essential for understanding molecular mechanisms and pathways), (ii) physicochemical feature 

prediction (important for protein engineering and drug discovery related tasks), (iii) genetic 

feature prediction, (iv) protein function prediction, and (v) structural feature prediction. Fig. 2b 

categorizes the main domains and specific application fields under each one. Methods with more 

than one objective were classified according to their major objective. The methods that we 

included in our benchmark study (i.e., LearnedEmbeddingVec27, SeqVec28, Mut2Vec29, 

Gene2Vec30, TCGA_Embedding31, ProtVec4, TAPE-BERT_Avg23, TAPE-BERT_Pool23, UniRep 

23, and the two classical representations, APAAC 32 and k-sep-bigrams33) are described below, 

the rest of the methods are explained in supplementary information document section 3. All of 

these protein representation methods are summarized in terms of their technical aspects (e.g., 

learning approach, algorithm, etc.), input data types, vector sizes, objectives, applications, 

importance and available data repositories in Table 1. 

Asgari et al.4 were one of the first to create a protein representation learning model to represent 

proteins by applying word2vec89 in a method they named ProtVec. The authors treated each 

protein sequence as a sentence, and each k-mer (i.e., k length amino acid sequence) as a word. 

Authors claimed that the method could be employed for different problems in protein biology 

including protein function prediction and protein interaction prediction. They evaluated the 

performance of ProtVec in predicting the mass, volume, polarity, hydrophobicity and charge of 

proteins, as well as its accuracy in disordered protein classification. 

In the study by Yang et al.27, learned protein embeddings (i.e., representation vectors) with sizes 

ranging from 4 to 128 dimensions are constructed using the doc2vec algorithm42 on non-

overlapping k-mers. We will call this method <LearnedEmbeddingVec= in the rest of this study, as 

the Yang et al. did not provide a specific name. The authors measured the performance of 

LearnedEmbeddingVec and the effects of hyperparameter optimization on four protein property 

prediction tasks, namely channelrhodopsin (ChR) localization, cytochrome P450 thermostability, 

rhodopsin absorption wavelength, and epoxide hydrolase enantioselectivity with blocking design, 

to compare their model with baseline models (e.g., one-hot encoding and classical feature-based 

representations). Performance values were calculated using mean absolute error (MAE), a 

measure of variation between predicted and actual values; the Kendall rank correlation 

coefficient, which calculates the ordinal accuracy; and log-likelihood. For 3 out of 4 tasks, they 

report that LearnedEmbeddingVec provided the best performance in terms of at least one of 

these metrics. Authors also provide 2-D t-SNE visualizations, which were consistent with the 

reported results. 

Rao et al.23 proposed a comparative study entitled <Tasks Assessing Protein Embeddings''  

(TAPE). The authors constructed three original sequence-based representation models based 

on; (i) Bidirectional Encoder Representations from Transformers (BERT)91 (we will call this TAPE-
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BERT), (ii) an unsupervised LSTM113, and (iii) ResNet114. These three models were trained on 32 

million Pfam115 domains. Additionally, They evaluated two previously developed representations, 

UniRep44 and a supervised LSTM104. This study employs three groups of tasks which are; 

structure-based (i.e., secondary structure prediction and contact prediction), evolutionary (i.e., 

remote homology prediction) and protein engineering (i.e., fluorescence landscape prediction and 

stability landscape prediction). For structure-based tasks, an alignment-based representation 

(proposed as part of the baseline models) achieved the best score. In the evolutionary tasks, the 

pre-trained LSTM model had the top performance. Finally, for protein engineering tasks, TAPE-

BERT was the best in terms of fluorescence landscape prediction and shares the top position 

with ResNet in terms of stability landscape prediction. Results indicated that no single method 

could dominate all of the benchmarking tasks. TAPE-BERT_Avg and TAPE-BERT_Pool are the 

two versions of TAPE-BERT, constructed by averaging and max-pooling the final hidden layer of 

the BERT model. In averaging, a mean value is calculated for each dimension of feature vectors 

that represents amino acids. In max-pooling, the maximum value of each dimension is used to 

create the final protein representation vector. We incorporated both TAPE-BERT_Avg and TAPE-

BERT_Pool in our benchmark analyses. 

In the study conducted by Du et al.30, the method Gene2Vec is proposed, where 200-dimensional 

vectors are calculated to represent genes, using skip-gram89. Hyperparameter tuning (e.g., vector 

size and window size optimization) was applied with the objective of maximizing the clusterdness 

of genes within MSigDB51 functional pathways. The input data, gene co-expression profiles, were 

gathered from the GEO database116. The major objective of the study is predicting gene-gene 

interactions (i.e., the genes acting in the same biological process), in which Gene2Vec was 

reported to be successful. Additionally, it was indicated that the model could summarize latent 

semantic information about genes by accurately representing functional similarities over tissue 

specific gene clusters. We employed gene representation vectors of Gene2Vec in our 

benchmarks by mapping them to canonical forms of their respective gene products (proteins). 

Kim et al.29 trained a mutation representation model named Mut2Vec. The aim of the proposed 

model was the classification of mutations according to their disease-causing effects. In Mut2Vec, 

mutation co-occurrence information, protein-protein interaction (PPI) networks (from BioGRID), 

and biomedical literature abstracts (from PubMed) were used to construct the representation 

model. Among alternatives, the model that utilizes the co-occurrence information via skip-gram89 

was chosen as the finalized representation model. In the Mut2Vec workflow, first mutation co-

occurrences and PubMed texts were used to calculate representation vectors. PPI data was 

integrated at the post-processing phase, using a retrofitting process similar to WordNet117. The 

authors stated that Mut2Vec could separate passenger and driver mutations successfully, and 

that, it produces promising results in the detection of new cancerous mutation candidates. 
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Heinzinger et al.28 used Embeddings from Language Models (ELMO), a bi-directional LSTM 

which is popular in the NLP domain46, to represent proteins using unlabelled protein sequence 

data. The authors aimed to solve the problem of global representation methods9 shortcomings in 

inferring information from the local context, with their method, SeqVec, using a smaller version of 

ELMO with 244k parameters, resulting in a significant speed advantage over up-to-date language 

models such as BERT91. However, their results show that the smaller model could not surpass 

the state-of-the-art methods, especially on sequence level tasks such as secondary structure 

prediction. On the other hand, the model produced competitive results for protein level tasks such 

as subcellular localization prediction. In our opinion, this can be attributed to the extensive 

training dataset and the successful detection of conserved sequence patterns by the LSTM. 

Alley et al. developed the method UniRep44 , a Multiplicative LSTM35 (mLSTM) backed character 

based representation. They tested UniRep on different, mostly protein engineering based, protein 

informatics tasks, including the classification of proteins based on their families and species, and 

the prediction of physicochemical properties and secondary structural elements. The results 

indicate that UniRep could create physicochemically meaningful clusters. Moreover, sequentially 

distant homologous proteins were clustered correctly. Finally, structural information could be 

extracted from UniRep, shown by the successful clustering of proteins based on SCOP118. These 

results were also verified using functional, evolutionary, and structural similarity labelled datasets 

such as HOMSTRAD119 and OXBench120. The authors have also shown that UniRep can predict 

protein stability and variant effects. 

The study conducted by Choy et al. indicates that learned protein representations have potential 

for explaining molecular biological mechanisms of the cell and disease31. In the proposed 

method, first, a gene expression matrix of cancer samples was prepared using data from the 

TCGA database. The authors then applied a matrix decomposition with a fully connected neural 

network layer. Next, through matrix multiplication on these decomposed matrices, they created a 

predicted version of the original matrix. The error between the original and predicted matrices 

was used for backpropagation. The decomposed matrices consisted of gene-features and 

samples-features as dimensions. The authors showed that semantic relationships between 

samples and genes are conserved in their model. Even though the gene expression levels were 

not correlated, functionally related genes are observed in adjacent locations, when the multi-

dimensional distance was calculated on the representation vectors. Additionally, when the 

representation vectors were inspected, it was seen that similar cancer types were clustered in the 

representation space to the extent that the authors claim that molecular subtyping of cancer was 

possible using the representations. We refer to this method as <TCGA_Embedding'' throughout 

this paper, as the authors did not provide a specific name for their model in the original study. 
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Finally, two widely used classical representations (APAAC and k-sep-bigrams) were included to 

our benchmark, as baseline models.  Amphiphilic Pseudo-Amino Acid Composition (APAAC) 

utilizes the physicochemical properties of amino acids together with amino acid compositions32, 

and k-sep-bigrams makes use of the evolutionary relationships between proteins33. We evaluate 

the performance of learned representations in comparison to these baselines, to assess the value 

added by the newer methods. Below, we look at these baseline methods in more detail. 

A general issue in amino acid composition based classical representation methods is the difficulty 

of including residue order information. The Amphiphilic Pseudo Amino Acid Composition 

(APAAC)32 model proposed a solution to this problem by using sequence order coupling and 

hydrophobic correlations together. The model calculates a representation vector with 80-

dimensions (by default), in which the first 20 represent the individual amino acid compositions, 

and the rest represent the hydrophobicity/hydrophilicity correlation factors. The APAAC method 

was found successful in predicting enzyme sub-families using a covariant-discriminant 

predictor32. 

Evolutionary information is widely used in classical protein representations. In k-separated-

bigrams method, row-type matrix transformations on position specific scoring matrices (PSSM), 

which are constructed using multiple sequence alignments generated from the query sequence 

and its homologs, are utilized for calculating the bigram transition probabilities between residues 

that are <k= positions apart from each other. The final representation vectors have the size of 

400x1, each dimension representing a specific transition probability from one amino acid to 

another (20x20). The method was reported to be successful in predicting type IV secretion 

effectors33. 

Semantic Similarity Inference Benchmark 

To construct the dataset of semantic similarity inference benchmark, we downloaded all human 

protein entries in the UniProtKB/Swiss-Prot database and their GO term annotations from the 

UniProt-GOA database in the 2019_11 release. The electronically inferred annotations, labelled 

with the <IEA= evidence code, were excluded from the dataset; leaving only the annotations 

reviewed by human experts. After that, we enriched the dataset by propagating the annotations to 

the parent terms of the asserted GO terms on the directed acyclic graph (DAG) of GO, according 

to the true path rule. Our finalized annotation dataset contained 14,625 distinct GO terms (3,374 

of them belonged to molecular function - MF, 9,820 belonged to biological process - BP, and 

1,431 belonged to cellular component - CC categories) and 326,009 annotations (75,884 of them 

belonged to MF, 154,532 belonged to BP, and 95,593 belonged to CC categories). 
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To be used as the ground-truth/reference data in this benchmark, we calculated the true GO-

based semantic similarities between all proteins in our dataset independently for all GO aspects 

(i.e., MF, BP and CC) using Lin similarity in the GoSemSim package121. Lin similarity34 is based 

on Shannon9s information theory, which states that the information content (IC) of an event is 

negatively proportional to the observation probability (P) of the event. Information content (IC) is 

formulated as; 

 

!"($) 	= ()*(1/$)          (1) 

 

Another concept used in Lin similarity is the least common subsumer (LCS). LCS is the first 

common ancestor of the two GO terms when traveling to the root in the hierarchical GO graph. 

Hence, Lin similarity is defined as; 

 

!"#!"# =
$%&(!()((!,("))

%&((!),%&((")
                (2) 

 

More information about the semantic similarity measures can be found in the literature122. 

Next, we prepared four protein semantic similarity datasets (i.e., <all proteins=, <well annotated 

500=, <well annotated 200= and <sparse uniform=) for each GO category (i.e., MF, BP, and CC), 

hence, twelve datasets were generated in total. The first dataset includes the pairwise GO-based 

semantic similarities between all proteins in our dataset (labelled as <all proteins= in the related 

figures). In this set, 3,077 proteins were used to calculate MF-based pairwise semantic 

similarities, 6,154 proteins were used for BP-based similarities and 4,531 proteins for CC-based 

similarities. In the <all proteins= dataset, there are numerous poorly annotated proteins, most of 

which contain insufficient information about their functional properties. This might introduce a bias 

in the similarity measurements. To mitigate this, we prepared additional subsets and ran the 

same analysis on them as well. The first subset, containing only the top 500 proteins sorted by 

the number of GO annotations (labelled as <well annotated 500= in the related figures). The 

second subset consists only of the top 200 such proteins (labelled as <well annotated 200= in the 

related figures). The similarity distribution is not uniform in the three datasets described above, 

creating very dense similarity score regions (Fig. S2) which significantly decrease the Spearman 

correlation values due to rank changes among the pairs with proximal similarities. This caused an 

accumulation around low correlation values that diminished the discriminative power of the 

measurements. To prevent this, we sampled every thousandth protein pair from the ranked list of 

pairwise similarities from the <well annotated 500= set to generate a uniformly distributed dataset. 

This final dataset contains 247 similarity scores between 40 different proteins (labelled as <sparse 
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uniform= in the related figures). Thus, among our 4 datasets, <sparse uniform= is the most trivial 

one to predict and <all proteins= is the most challenging. 

In the benchmark phase, we compiled the protein representation vectors for the human protein 

entries in our dataset using the selected representation learning methods, which are Gene2Vec30, 

LearnedEmbeddingVec27, Mut2Vec29, ProtVec4, SeqVec28, TCGA_embedding31, 

Tape_BERT_Avg23, Tape_BERT_Pool23 and UniRep44. Pre-calculated vectors, when available, 

were used directly, in other cases these were generated from their respective models. In addition, 

two classical representation methods (i.e., APAAC32 and k-sep-bigrams33) were included as 

baselines. Subsequently, we calculated the pairwise similarities between the proteins, using the 

compiled representation vectors. Cosine similarity, normalized Manhattan distance, and 

normalized Euclidean distance measures are used to evaluate pairwise similarity (normalized 

Manhattan and Euclidean distances are converted to similarities by subtracting them from 1.). 

At this point, we had two pairwise similarity arrays at hand; the first one was calculated by taking 

the GO-derived semantic similarities between the proteins in our dataset into account (i.e., true 

semantic similarities), and the second one consisted of pairwise similarities calculated directly 

from the representation vectors. 

Finally, to observe and to compare the performance of protein representation models for inferring 

these semantic similarities, we calculated the Spearman rank-order correlation123 values 

(explained below under <Performance metrics= sub-section) between the ranked lists of 

representation vector similarities and true semantic similarities. 

Ontology-based Protein Function Prediction Benchmark 

The details of the dataset preparation procedure for the protein function prediction benchmark is 

explained below in six steps. For each GO category (i.e., MF, BP, CC);  

1) We obtained human proteins and their GO term annotations from the <2019_10= version of 

UniProtKB/Swiss-Prot and UniProtGOA databases, respectively. 

2) We excluded all electronically made annotations (evidence code: IEA) from the list of GO 

term annotations with the aim increasing the reliability of annotations and to prevent error 

propagation during prediction. 

3) For each GO term, we created an individual list that includes the accessions of the annotated 

proteins, to be used in model training and testing via cross-validation. We filtered each 

protein list using the UniRef clusters36 by only selecting the representative protein entry from 

each cluster. UniRef provides protein clusters that are formed based on sequence similarity. 

We used UniRef50 clusters, to ensure that there are no protein sequences with more than 
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50% sequence similarity in each list. Here, the aim is to create train/test datasets without 

similar proteins that could otherwise introduce a bias to the analysis. 

4) GO terms were grouped as either <low=, <middle=, or <high= according to the number of 

annotated proteins. GO terms with 2 to 30 annotated proteins were placed in the <low= group, 

terms with 100 to 500 annotated were placed in the <middle= group and terms with more than 

1000 annotated proteins were placed in the <high= group. We deliberately left margins 

between groups to obtain a clear separation. 

5) The specificity of the GO terms was determined as either <shallow=, <normal=, and <specific=. 

In the directed acyclic graph of GO, terms in the first s of the max depth of that branch were 

considered as <shallow=, terms in the second s of the max depth of that branch were 

categorized to <normal=, and the deepest s were placed to <specific= group. It should be 

noted that the max depth varies according to GO category. 

6) Based on the combinations of groups constructed in steps 4 and 5; a total of 9 GO term 

groups (3x3) were formed for each GO category (i.e., MF-low-specific, BP-high-shallow and 

etc.), making a total of 27 groups (9x3). There were no GO terms that correspond to two of 

these groups (e.g., MF-high-specific and CC-high-specific), and therefore, these groups are 

left out of this analysis. Since most of the remaining 25 groups were highly crowded, we 

selected 5 terms from each group for further evaluation (4 groups already had less than five 

GO terms, thus, they were directly incorporated without further selection). We intended to 

select dissimilar GO terms to be able to generalize the results over the whole functional 

spectrum, as much as possible. For this, we calculated pairwise semantic similarities 

between GO terms using Lin similarity, and 5 most dissimilar terms were chosen for each 

group. The statistics of the finalized datasets are given in Table S2 and the identifiers of the 

selected GO terms are given in Table S3. 

Using these datasets, prediction models were constructed (one for each group, mostly made up 

of 5 GO terms) for each protein representation model using the <Linear Support Vector 

Classification= module of the scikit-learn library43 within a multi-task modelling approach, making a 

total number of 275 prediction models (25 GO groups x 11 representation models). A 5-fold 

cross-validation was used to evaluate performance for each model. The hyperparameters of the 

SVM, for all models, were selected based on the default values; the regularization parameter (C) 

was set to 1.0, L2 norm was selected for error penalty, and the squared hinge was chosen for the 

loss function. Since the linear classification model is simple, we assumed that the effect of the 

hyper-parameter selection would be minimal. 
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Drug Target Protein Family Classification Benchmark 

To construct our family classification benchmark dataset, we employed ChEMBL database 

(v.25)45, which contains curated collections of drug/compound-target protein interaction data (i.e., 

bioactivities) to be utilized for experimental and computational research in drug discovery and 

development. Taking into account the hierarchical target protein categorization system presented 

in ChEMBL, we use 4 broad target protein families and grouped the rest of the targets as a fifth 

category (i.e., enzymes, membrane receptors, transcription factors, ion channels, and others). 

The number of proteins for each family and representation method is shown in Table S6. Small 

differences between the dataset sizes of different representation methods was due to the 

availability of vectors, and assumed to be negligible (the largest difference was around 3%). 

UniRef filtering was not used in this benchmark due to small sizes of original datasets (e.g., 

transcription factors class was composed of 82 human target proteins). The family information is 

used as class labels for the multi-task training of the target protein family classification model. 

The stochastic gradient descent classifier -SGDClassifier- (i.e., a linear SVM) from the scikit-learn 

library43 was used with <OneVsRestClassifier= option for the multi-task classification. The 

classifier was used with default parameters; SVM for fitting the SGDClassifier, hinge as the loss 

function, and L2 norm as the error penalty. The model was trained and tested with 10-fold cross-

validation. The whole process was repeated 100 times, and the average results are reported. 

Performance metrics 

In our semantic similarity inference benchmark, we used Spearman rank correlation123. For a 

sample with size n and the ranks of variables !"!!
and !""!

, Spearman rank correlation (!#) can be 

defined as: 

!! = 	1 2
"3 $$

%&

$'(

%(%%'()
               (3) 

 

where difference between ranks for observations is defined by: 

 

&* = !'()*) 2 !'(+*)                  (4) 

 

For ontology-based protein function prediction and drug-target protein family classification 

benchmarks, we mainly used recall, precision, F1-score, accuracy, Matthews correlation 

coefficient124 (MCC) and Hamming distance125 metrics, to evaluate the predictive performance of 

protein representation learning methods. The formulae of these evaluation metrics are given 

below: 
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where tp denotes number of true positive predictions, fp denotes number of false positive 

predictions, fn denotes number of false negative predictions, tn denotes number of true negative 

predictions. Finally, Hamming distance (#)) is defined by: 

 

<8(., >) =
(
9
3 (1 2 @:$;$)
9
*<(                (10) 

 

where u and v are 1-dimensional arrays of real and predicted class labels, respectively, $is the 

Kronecker delta function, and k is the vector dimension. 

In ontology-based protein function prediction benchmark, F1-score and its components precision 

and recall are weighted inversely proportional to the class sizes. Since the classes were highly 

imbalanced, the weighting operation was required for an unbiased analysis. In both ontology-

based protein function prediction and drug target protein family classification benchmarks, 

models were designed as multi-task (i.e., 5 GO terms are predicted by one function prediction 

model, and 5 proteins families are predicted by one family classification model). In ontology-

based protein function prediction benchmark, the models were also designed as multi-label, 

where more than one GO term can be predicted to a test protein (since a protein can have more 

than one function). In this setting, a random predictor would produce a correct prediction once out 

of 32 cases (i.e., 25 different combinations exist for a label vector of size 5x1, one of which is the 

true label vector). Whereas, models are designed as single-label in the drug target protein family 

prediction benchmark (since each protein can only belong one of the main families), meaning that 
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a random predictor would produce a correct prediction once out of 5 cases (i.e., only 5 different 

combinations exist for a label vector of size 5x1, one of which is the true label vector). 
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Figure 1. (a) Overview of the protein representation benchmark study; (b) various data sources/types can 

be utilized to construct representations, and this data can be used to train unsupervised or supervised 

models, and the output representation vectors can be used for diverse applications.  
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(a) 

 

(b) 

 

Figure 2. (a) The classification of the technical approaches used in protein representation learning, and (b) 

the classification of the objectives of protein representation methods.  
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(c) 

 

Figure 3. Performance of protein representation learning methods in inferring pairwise semantic similarities 

between proteins, calculated in terms of Spearman correlation between the ranked true pairwise similarity 

list (calculated using Lin similarities34 between functional annotations of proteins) and the representation-

based ranked pairwise similarity list (calculated using cosine similarities between numerical feature vectors 

of proteins). True semantic similarities are calculated based on GO terms of; (a) molecular function, (b) 

biological process, and (c) cellular component categories.  
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(c) 

 

Figure 4. Heat maps indicating the performance results (weighted F1-scores) of protein representation 

learning methods in ontology-based protein function prediction benchmark in terms of GO; (a) molecular 

function annotations, (b) biological process annotations, and (c) cellular component annotations. 
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Figure 5. Box plots indicating performance results (iF1-score, accuracy and MCC) of protein 

representation learning methods in the drug target protein family classification benchmark. 
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Tables 

Table 1. A near-comprehensive list of protein representation learning methods including names, references, learning approach, depth of the system, utilized 

machine learning algorithm, input data type, vectors sizes, objectives and applications of systems, the importance of studies, and the availability as tools or 

source code (vector sizes vary for some of the methods, in those cases, we indicate the vector sizes that yield the best predictive performance). 

Method name 

and reference 

Learning 

approach 

Depth 

of the 

system 

ML algorithm Input data type Vector Size 

(# of dim.) 

General 

objective(s) of 

the system 

Specific application(s) of 

the method 

Importance of the study Data Repository 

ProtVec4 Unsupervised Shallow Word2vec Protein 

sequence 

100 Structural feature 

prediction and 

physicochemical 

feature prediction 

Disordered protein/region 

prediction 

First word vector-based protein 

representation 

https://github.com/e

hsanasgari/Deep-

Proteomics 

Seq2Vec5  Unsupervised Shallow Doc2vec Protein 

sequence 

250 Sequence-based 

feature prediction 

Protein sequence 

classification and retrieval 

First Doc2vec based protein 

representation 

N/A 

Wan et al.
92  Supervised Shallow Word2vec 

(modified for 

negative 

examples) 

Protein 

sequence 

Morgan 

fingerprints 

100 Interaction 

prediction 

Ligand-target protein 

interaction prediction 

Protein representation model for 

drug-target interaction 

prediction 

N/A 

ProtVecX127  Unsupervised Shallow Word2vec Protein 

sequence 

500 Sequence-based 

feature prediction 

Motif discovery, enzyme 

activity prediction and toxin 

prediction 

Variable length protein 

sequence representation 

https://github.com/e

hsanasgari/dimotif 

DeepDTA86  Supervised Deep Convolutional 

Neural Network 

(CNN) 

Protein and 

ligand 

sequence 

128 Interaction 

prediction 

Ligand-target protein 

interaction prediction 

Unsupervised trained 

representation for protein ligand 

binding affinity prediction 

https://github.com/h

kmztrk/DeepDTA  

Oubounyt et 

al.
111 

Unsupervised Deep Word2vec, 

Doc2vec and 

CNN 

Protein 

sequence 

100 Genetic feature 

prediction 

Alternative splicing 

prediction 

Use of both Word2vec and 

Doc2vec for alternative splicing 

N/A 

DeepCon-QA 6 Unsupervised Shallow Word2vec, hidden 

Markov, CNN 

Protein 

sequence and 

structure 

200 Structural feature 

prediction 

Protein quality assessment Application of protein 

representations on protein 

structure model quality 

assessment 

N/A 

Choy et al.
31   Unsupervised Shallow Artificial neural 

network 

Gene 

expression 

(RNAseq) 

50 Genetic feature 

prediction 

Prediction of 

immunotherapy responders 

Gene expression-based protein 

representation 

https://github.com/z

eochoy/tcga-

embedding 

rawMSA128  Unsupervised Deep CNN-LSTM (Long 

Short-Term 

Memory) 

Protein 

sequence 

300 Structural feature 

prediction 

Secondary structure 

prediction, relative solvent 

accessibility prediction and 

Multiple sequence alignment-

based protein representation 

https://bitbucket.org/

clami66/rawmsa  
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inter-residue contact map 

prediction 

SpliceVec97 Unsupervised Shallow Word2vec, 

Doc2vec and 

multi-layered 

perceptron 

Protein 

sequence 

100 Genetic feature 

prediction 

Alternative splicing 

prediction 

Unsupervised trained 

representation for alternative 

splicing 

N/A 

PhosContext2V

ec98 

Unsupervised Shallow Word2vec and 

Doc2vec 

Protein 

sequence and 

residue-level 

features 

126 Sequence-based 

feature prediction 

Phosphorylation site 

prediction 

A protein representation model 

for phosphorylation site 

prediction 

https://github.com/y

xu132/prot2vec_con

textualvec  

Mejía-Guerra et 

al.
93 

Unsupervised Shallow Word2vec Protein 

sequence 

300 Sequence-based 

feature prediction 

Regulatory region prediction A protein representation model 

for regulatory region prediction 

https://bitbucket.org/

bucklerlab/k-

mer_grammar  

Gene2Vec30 Unsupervised Shallow Word2vec Gene co-

expression 

200 Sequence-based 

feature prediction 

Gene function prediction Gene co-expression-based 

protein representation for gene-

gene interaction 

https://github.com/ji

ngcheng-

du/Gene2vec 

Yang et al.
27 Unsupervised Shallow Doc2vec Protein 

sequence 

64 Physicochemical 

feature prediction 

Prediction of localization, 

thermostability, absorption 

and enantioselectivity 

Application of protein 

representations to predict the 

functional properties of proteins 

https://github.com/fh

alab/embeddings_r

eproduction 

Cohen et al.
129 Unsupervised Shallow Vector Symbolic 

Architectures 

Protein 

sequences and 

amino acid 

properties 

1,000 Sequence-based 

feature prediction 

West Nile virus specific 

immunoglobulin receptor  

search 

Application of protein 

representations on 

immunoglobulin receptor search 

N/A 

Mut2Vec29 Unsupervised Shallow Word2vec Gene 

mutations, 

biomedical 

literature and 

PPI 

300 Genetic feature 

prediction 

Classification of driver and 

passenger mutations 

Mutation based gene 

representation 

http://infos.korea.ac.

kr/mut2vec 

DNA2Vec94  Unsupervised Shallow Word2vec Gene sequence 100 Genetic feature 

prediction 

Nucleotide sequence 

similarity search 

Variable length DNA sequence 

representation 

https://github.com/p

npnpn/dna2vec 

Mol2Vec96 Unsupervised Shallow Word2vec Morgan 

substructures 

300 Sequence-based 

feature prediction 

Kinase activity prediction Word vector-based molecule 

representation 

https://github.com/s

amoturk/mol2vec 

Viehweger et 

al.
100  

Unsupervised Shallow Doc2vec Protein domains 100 Sequence-based 

feature prediction 

Prediction of growth 

medium and growth 

temperature of bacteria 

Protein domain-based 

representation in metagenomics 

https://github.com/p

hiweger/nanotext 

Qi et al.
130 Supervised Shallow Feed-forward 

neural network 

Multiple 

sequence 

alignments and 

35 Sequence-based 

feature prediction, 

structural feature 

prediction and 

Secondary structure, 

solvent accessibility, DNA 

binding, signal peptide, PPI, 

Multi-task distributed continuous 

protein representation 

N/A 
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protein 

sequence 

interaction 

prediction 

trans membrane topology 

and coiled coil predictions 

ProtEmbed131 Supervised Shallow Maximum margin 

ordinal regression 

Protein domain 

sequence 

250 Sequence-based 

feature prediction 

Remote homology 

prediction 

Distributed continuous protein 

representation 

N/A 

G2Vec95 Unsupervised Shallow Word2vec Gene 

expression and 

PPI 

128 Genetic feature 

prediction 

Cancer biomarker prediction Gene expression-based 

representation for cancer 

biomarker prediction 

https://github.com/m

athcom/G2Vec 

DeepText2GO1

32 

Unsupervised Shallow TF-IDF and 

Doc2vec 

Biomedical 

literature and 

protein 

sequence 

201 Sequence-based 

feature prediction 

Protein functional 

annotation 

Text and protein sequence 

integration for protein 

representation 

N/A 

WideDTA63  Unsupervised Deep CNN Protein and 

ligand 

sequence, 

protein 

domains, 

maximum 

common 

substructure 

256 Interaction 

prediction 

Ligand-target protein 

interaction prediction 

Hybrid representation for protein 

binding affinity prediction 

N/A 

SeqVec28  Unsupervised Deep LSTM (ELMO) Protein 

sequence 

1,024 Structural feature 

prediction 

Secondary structure 

prediction and disordered 

region prediction 

Dynamic language model 

implementation for protein 

representation 

https://github.com/R

ostlab/SeqVec 

UniRep44  Unsupervised Deep mLSTM Protein 

sequence 

5,700 Sequence-based 

feature prediction, 

structural feature 

prediction and 

physicochemical 

feature prediction 

Secondary structure 

prediction, protein stability 

prediction, protein semantic 

similarity prediction, and 

protein engineering/design 

Dynamic protein representation 

to be used for diverse protein 

related tasks 

https://github.com/c

hurchlab/UniRep 

TAPE23  Unsupervised Deep LSTM, 

Transformer and 

ResNet 

Protein 

sequence 

2,048 

(LSTM) 

100 (ResNet) 

512 

(Transformer) 

Sequence-based 

feature prediction 

and structural 

feature prediction 

3D structure prediction, 

homology detection, protein 

engineering/design 

Benchmark framework for 

protein embeddings 

https://github.com/s

onglab-cal/tape 

Bepler et al.
104  Supervised Deep Bi-directional 

LSTM 

Global 

structural 

similarity and 

pairwise residue 

contact maps  

100 Structural feature 

prediction 

Structural similarity search 

and protein domain 

prediction 

A novel similarity measure 

between arbitrary-length 

sequences of vector 

embeddings based on a soft 

symmetric alignment (ssa) 

https://github.com/tb

epler/protein-

sequence-

embedding-iclr2019  
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Rives et al.
55  Unsupervised Deep Transformer 

(BERT) 

Protein 

sequence 

1,280 Structural feature 

prediction and 

physicochemical 

feature prediction 

Secondary structure 

prediction and inter-residue 

contact map prediction 

First bi-directional transformer 

implementation validated with 

multiple protein related tasks 

N/A 

D-Space102  Supervised Deep CNN Protein 

sequence 

256 Sequence-based 

feature prediction 

Protein mutagenesis 

analysis, protein profile 

search, protein annotation 

and protein similarity search 

Multi-task large-scale trained 

protein representation 

https://github.com/s

yntheticgenomics/s

gidspace  

Tubiana et al.
49  Unsupervised Shallow Restricted 

Boltzmann 

Machine (RBM) 

Protein 

sequence 

100 Structural feature 

prediction 

Protein engineering/design 

and inter-residue contact 

map prediction 

RBM based model https://github.com/je

rtubiana/ProteinMoti

fRBM  

Kane et al.
101   Unsupervised Shallow Node2vec, 

OhmNet, 

Doc2vec 

Protein 

sequence and 

PPI 

128 Sequence-based 

feature prediction 

Protein function prediction Tissue based function prediction N/A 

Faisal et al.
126  Supervised Shallow Random Forest 

and SVM 

Protein 

sequence 

355 Sequence-based 

feature prediction 

Classification of nuclear 

receptors, protein family 

classification and cell-

penetrating peptide 

prediction 

Use of protein sequence 

fragments to represent a protein 

using multiple descriptors 

N/A 

UDSMProt105 Supervised Deep Bi-directional 

LSTM 

Protein 

sequence 

256 Sequence-based 

feature prediction 

and structural 

feature prediction 

Enzymatic activity 

prediction, remote 

homology and fold detection 

Application of unsupervised 

protein representations for small 

datasets and EC prediction 

https://github.com/n

strodt/UDSMProt 

DeepPrime2Se

c103 

Unsupervised Deep Bi-directional 

LSTM, CNN, 

ELMO and 

Word2vec 

Protein 

sequence 

16 to 2,000 

(Best 

results w/ 

300) 

Structural feature 

prediction 

Secondary structure 

prediction 

Comparison of multiple deep 

representation learning models 

for secondary structure 

prediction 

http://llp.berkeley.ed

u/DeepPrime2Sec 
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