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Abstract

Immersive virtual reality (VR) enables naturalistic neuroscientific studies while maintaining ex-
perimental control, but dynamic and interactive stimuli pose methodological challenges. We
here probed the link between emotional arousal, a fundamental property of affective experi-
ence, and parieto-occipital alpha power under naturalistic stimulation:

37 young healthy adults completed an immersive VR experience, which included rollercoaster
rides, while their EEG was recorded. They then continuously rated their subjective emotional
arousal while viewing a replay of their experience. The association between emotional arousal
and parieto-occipital alpha power was tested and confirmed by (1) decomposing the continu-
ous EEG signal while maximizing the comodulation between alpha power and arousal ratings
and by (2) decoding periods of high and low arousal with discriminative common spatial pat-
terns and a Long Short-Term Memory recurrent neural network.

We successfully combine EEG and a naturalistic immersive VR experience to extend previous
findings on the neurophysiology of emotional arousal towards real-world neuroscience.
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Introduction

While humans almost constantly interact with complex, dynamic environments, lab-based
studies typically use simplified stimuli in passive experimental situations. Trading realism for
experimental control happens at the expense of the representativity of the experimental design
(Brunswik, 1955), that is, the degree to which effects found in the lab generalize to practical
everyday-life conditions. This is particularly true for affective phenomena like emotions.

Emotional arousal as a fundamental property of affective expe-
rience

Emotions are subjective, physiological, and behavioural responses to personally meaningful
external stimuli (Mauss & Robinson, 2009) or self-generated mental states (e.g., memories;
Damasio et al., 2000) and underlie our experience of the world (James, 1884, 1890; Seth, 2013).
Emotions are crucial for physical and mental health (Gross & Mufioz, 1995) and their investi-
gation has long been at the core of experimental psychology (Wundt, 1897).

Dimensional accounts conceptualize emotions along the two axes of valence and arousal
(Duffy, 1957; Kuppens et al., 2013; Russell, 1980; Russell & Feldman Barrett, 1999; Wundt,
1897): Valence differentiates states of pleasure and displeasure, while (emotional) arousal
describes the degree of activation or intensity that accompanies an emotional state.’

Emotions have been linked to activity in the autonomic (ANS) and the central nervous system
(CNS; Dalgleish, 2004). It has thereby been difficult to consistently associate individual (i.e.,
discrete) emotion categories with specific response patterns in the ANS (cf. Kragel & LaBar,
2013; Kreibig, 2010; Siegel et al., 2018) or in distinct brain regions (Lindquist et al., 2012; but
cf. Saarimaki et al., 2016). Rather, emotions seem to be dynamically implemented by sets of
brain regions and bodily activations that are involved in basic psychological (i.e., also non-
emotional) operations (i.e., “psychological primitives”; Lindquist et al., 2012). In this view, hu-
mans are typically in fluctuating states of pleasant or unpleasant arousal (“core affect”; Russell
& Feldman Barrett, 1999; Lindquist, 2013), which can be influenced by external stimuli. Emo-
tional arousal could thereby be a “common currency” to compare different stimuli or events
(Lindquist, 2013) and represent fundamental neural processes that underlie a variety of emo-
tions (Wilson-Mendenhall et al., 2013). It can fluctuate quickly — on the order of minutes (Kup-
pens et al., 2010) or seconds (Mikutta et al., 2012) — and has been connected to ANS activity,
as measured by pupil diameter (Bradley et al., 2008) or skin conductance (Bach et al., 2010).
At the brain level, emotional arousal was linked to lower alpha power, particularly over parietal
electrodes (Luft & Bhattacharya, 2015; Koelstra et al., 2012). The parieto-occipital alpha
rhythm, typically oscillating in the frequency range of 8 to 13 Hz, is the dominant EEG rhythm
in awake adults with eyes closed (Berger, 1929), where it varies with vigilance (Olbrich et al.,
2009). However, in tasks of visual processing (i.e., with eyes open), parieto-occipital alpha

T Different types of arousal have been proposed and investigated (e.g., sexual, autonomic, emotional; Russell,
1980) — also in the context of altered states of consciousness (e.g., through anaesthesia or sleep). They may
share psychological (e.g., increase in sensorimotor and emotional reactivity; Pfaff et al., 2012) and physiological
aspects (e.g., sympathetic activation) but are not synonymous. We here explicitly refer to arousal in the context of
(the subjective experience of) emotions.
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power was linked to active attentional processes (e.g., distractor suppression; Kelly et al.,
2006; Klimesch, 2012) or, more generally, to functional inhibition for information gating (Jen-
sen & Mazaheri, 2010). Physiologically, alpha oscillations were associated with large-scale
synchronization of neuronal activity (Buzsdki, 2006) and metabolic deactivation (Moosmann
etal., 2003).

In sum, bodily (e.g., central, autonomic) responses interact in complex ways across situations,
and activity in the brain is central for emotions and their subjective component (Barrett, 2017
Seth, 2013). As (emotional) arousal is a fundamental property not only of emotions but of sub-
jective experience in general (Adolphs et al.,, 2019), an investigation of its neurophysiology,
reflected in neural oscillations, is essential to understanding the biology of the mind.

Studying emotional arousal and its neurophysiology in the lab

Studies that investigated emotions or emotional arousal in laboratory environments typically
used static images. For example, more emotionally arousing relative to less emotionally arous-
ing (e.g., neutral) pictures were associated with an event-related desynchronization (i.e., de-
crease in power) in alpha oscillations in posterior channels (Cesarei & Codispoti, 2011; Schu-
bring & Schupp, 2019; but cf. Uusberg et al., 2013). In a study, in which emotional arousal was
induced through pictures and music, blocks of higher emotional arousal were associated with
decreased alpha power compared to blocks of lower emotional arousal (Luft & Bhattacharya,
2015). However, emotion-eliciting content that is repeatedly presented in trials creates an ar-
tificial experience for participants (Bridwell et al., 2018); it hardly resembles natural human
behaviour and its (neuro-)physiology, which unfold over multiple continuous timescales (Huk
et al., 2018). Moreover, such presentations lack a sense of emotional continuity. External
events often do not appear suddenly but are embedded in an enduring sequence, in which
emotions build-up and dissipate. Real-life scenarios also include anticipatory aspects where
emotional components can be amplified or even suppressed, thus rendering the relationship
between the corresponding neuronal events and subjective experience more complex than the
one typically studied with randomized or partitioned presentations of visual or auditory stimuli.

Virtual Reality (VR) technology — particularly immersive VR, in which the user is completely
surrounded by the virtual environment — affords the creation and presentation of computer-
generated scenarios that are contextually rich and engaging (Diemer et al., 2015). As more
naturalistic (i.e., dynamic, interactive, and less decontextualized) experiments allow to study
the brain under conditions it was optimized for (Gibson, 1979; Hasson et al., 2020), and their
findings may more readily generalize to real-world circumstances and provide better models
of the brain (Matusz et al., 2019; Shamay-Tsoory & Mendelsohn, 2019).

In this study, we aimed to link subjective emotional arousal with alpha power in a naturalistic
(i.e., dynamic and interactive) setting. Participants completed an immersive VR experience
that included virtual rollercoaster rides while their EEG was recorded. They then continuously
rated their emotional arousal while viewing a replay of their previous experience (McCall et al.,
2015).
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Methodological challenges of naturalistic experiments

To tackle the challenges of data acquired in naturalistic settings and with continuous stimuli,
we make use of recent advances in signal processing and statistical modelling: Spatial filtering
methods (originally developed for brain-computer interfaces, BCls; Blankertz et al., 2008), have
recently gained popularity in cognitive neuroscience (M. X. Cohen, 2018; Zuure & Cohen, 2020).
Spatial filters can be used as dimensionality reduction techniques that combine data from
multiple M/EEG channels to obtain a new signal (component) with a higher signal-to-noise
ratio (SNR; Lotte et al., 2018; Parra et al., 2005). The filters can be optimized in different ways,
for example by solving Generalized Eigenvalue Decomposition problems, to maximize the dif-
ference in the signal of interest between experimental conditions (de Cheveigné & Parra, 2014;
Rivet et al., 2009) or against signals in the neighbouring frequency ranges (Nikulin et al., 2011).
Spatial filtering has also been used to analyze continuous (sparse) data collected in natural-
istic experiments, for example, to find inter-subjective correlations in neuroimaging data of
participants watching the same movie (Biessmann et al., 2014; Dmochowski et al., 2012;
Gaebler et al.,, 2014) or following the same lecture (Cohen et al., 2018; Poulsen et al., 2016).

For the present experiment, two spatial filtering methods were applied to link alpha power and
subjective emotional arousal: Source Power Comodulation (SPoC; Déhne et al., 2014) and
Common Spatial Patterns (CSP; Blankertz et al., 2008; Ramoser et al., 2000).

SPoC is a supervised regression approach, in which a target variable (here: subjective emo-
tional arousal) guides the extraction of relevant M/EEG oscillatory components (here: alpha
power). SPoC has been used to predict single-trial reaction times from alpha power in a hand
motor task (Meinel et al., 2016), muscular contraction from beta power (Sabbagh et al., 2020),
and difficulty levels of a video game from theta and alpha power (Naumann et al., 2016). CSP
is used to decompose a multivariate signal into components that maximize the difference in
variance between distinct classes (here: periods of high and low emotional arousal). CSP is
being used with EEG for BCI (Blankertz et al., 2007) or to decode workload (Schultze-Krafft,
2016). Formally, SPoC is an extension of CSP for regression-like decoding problems with a
continuous target variable (Déhne et al., 2014).

In addition to M/EEG-specific spatial filtering methods, non-linear machine learning methods
are suited for the analysis of continuous, multidimensional recordings from naturalistic exper-
iments. Deep neural networks transform high-dimensional data into target output variables
(here: different states of emotional arousal) by finding statistical invariances and hidden rep-
resentations in the input (Goodfellow et al., 2016; LeCun et al., 2015; Schmidhuber, 2015). For
time-sequential data, Long Short-Term Memory (LSTM) recurrent neural networks (RNNs) are
particularly suited (Greff et al., 2017; Hochreiter & Schmidhuber, 1995, 1997). Via nonlinear
gating units, the LSTM determines which information flows in and out of the memory cell in
order to find long- and short-term dependencies over time. LSTMs have been successfully ap-
plied for speech recognition (Graves et al., 2013), language translation (Luong et al., 2015), or
scene analysis in videos (Donahue et al., 2015), but also to detect emotions in speech and
facial expressions (Wollmer et al., 2010, 2008) or workload in EEG (Bashivan et al., 2016; He-
fron et al,, 2017). In comparison to other deep learning methods, LSTMs are “quick learners”
(due to their efficient gradient flow) and thus suitable for the continuous and sparse data rec-
orded under naturalistic stimulation with VR.
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The present study tested the hypothesis of a negative association between parieto-occipital
alpha power and subjective emotional arousal under dynamic and interactive stimulation.
Combining immersive VR and EEG, this study aimed to (1) induce variance in emotional arousal
in a naturalistic setting and (2) capture the temporally evolving and subjective nature of emo-
tional arousal via continuous ratings in order to (3) assess their link to oscillations of brain
activity in the alpha frequency range. The link between subjective emotional arousal and alpha
power was then tested by decoding the former from the latter using the three complementary
analysis techniques SPoC, CSP, and LSTM.
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Results

Participants

45 healthy young participants (22 men, M+SD: 24.6+3.1, range: 20-32 years) completed the
experiment. Data from 8 participants needed to be discarded due to technical problems (n =
5) or electrode malfunctioning (n = 1); one participant discontinued the experiment and an-
other participant reported having taken psychoactive medication. The data from 37 partici-
pants entered the analysis (17 men, age: M+SD: 25.143.1, range: 20-31 years). After quality
assurance during the EEG preprocessing, data from 26 participants in the nomov and 19 in the
mov condition entered the statistical analyses that included EEG data.

Self-reports

Questionnaires

From before (M+SD: 8.68+2.82, range: 6-17) to after the experiment (M+SD: 11.82+5.24, range:
6-29), the overall simulator sickness (e.g., nausea, headache) increased significantly (t(36) =
3.72,p =.0007). As the trait questionnaires are not the focus of this study, their results will be
reported elsewhere.

Emotional arousal ratings

The retrospective emotional arousal ratings for the VR experience, averaged across all sub-
jects and timepoints, were 46.94+12.50 (M+SD, range: 16.17-66.29) in the nomov and
50.06+12.55 (M+SD, range: 18.00-69.94) in the mov condition. Qualitatively, the emotional
arousal was highest for the Andes Coaster, lower for the Space Coaster, and lowest for the
break (see Figure 1).
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Figure 1: Emotional arousal ratings of the experience (with head movement; see Figure S1 for
the ratings from the no-movement condition). Colored lines: individual participants; black line:
mean across participants; vertical lines (light grey): beginning of the three phases (Space
Coaster, Break, Andes Coaster); vertical lines (dark grey): manually labelled salient events (for
illustration). Bottom row: Exemplary screenshots of the VR experience.

Neurophysiology

SPoC

SPoC results (Figure 2) showed that for 24/26 (92.30 %) participants in the nomov and 15/19
(78.94 %) participants in the mov condition (see Table S3 for single-participant results), the
component having the highest absolute lambda value corresponded with the one that maxim-
ized the negative correlation between z and alpha power. Among the components that max-
imized inverse covariance, 9/26 (34.61 %) for the nomov and 6/19 (31.57 %) for the mov con-
dition remained statistically significant (p <.05) after a permutation-based test (500 iterations,
exact p values are reported in Table S3). The global mean lambda value of these components
was -0.46 for the nomov (range: -1.49 - +0.08) and -0.42 for the mov condition (range: -1.61 -
+0.01). The mean Spearman correlation value between the target variable z (subjective rat-
ings) and z.s; (estimated target variable) was significantly different from zero for both the
nomov (M+SD:-.20+.10 ; range: -.36 - +.12; t,omov(25) = -9.84; p < .001) and the mov condition
(M+SD:-.20+.11; range: -.40 - +.007; t,,(18) =-8.16; p < .001).

CSP

As assessed by a 10-fold cross-validation, the mean classification accuracies, averaged
across subjects, for the model based on CSP decomposition and LDA classification were
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60.8317.40 % (M+SD; range: 47.22 - 77.78 %) for the nomov, and 60.76+6.58 % (MxSD; range:
48.33 - 71.67 %) for the mov condition. Both were significantly above chance level (t,omov(25)
=7.47, Promov < .007; toy(18) = 7.12, pmov < .001). At the single-subject level, the classification
accuracy was significantly above chance level (p < .05; assessed with an exact, two sided bi-
nomial test against chance level, i.e. 50 % of samples correctly classified) for 17/26 (65.39 %)
participants in the nomov, and for 12/19 (63.16 %) participants in the mov condition (see Table
S3 for single-participant results). The spatial patterns yielded by the CSP decomposition are
shown in Figure 4 (across participants) and in Figure S2 (individual participants). Correspond-
ing alpha power sources (located via eLORETA) are shown In Figure 5.

LSTM

After a random search over a constrained range of hyperparameters (HPs), we extracted the
best individual HP set per subject (see Supplementary Material for the list of best HPs per
condition). The mean classification accuracy was 59.42+4.57 % (MxSD; range: 52.22 % - 68.33
%) for the nomov, and 61.29+4.5 % (M+SD; range: 53.89 % - 71.11 %) for the mov condition.
Both were significantly above chance level (tomov(25) = 10.82, promov < .007; tro(16) = 10.51,
Pmov < .001). At the single-subject level, the classification accuracy was significantly above
chance level for 16/26 (61.54 %) participants in the nomov condition, and for 16/19 (84.21 %)
participants in the mov condition (same test as for CSP results; see Table S3 for single-partic-
ipant results).

Comparison of model performances

As an illustration of the prediction behaviour across all three models in one participant (with
high performance for all three decoding approaches: rankspoc = 3, rankcsp = 2, rank sty = 1), see
Figure 2. Correlations of performances across models and experimental conditions are shown
in Figure 6. The (positive) correlation between the two binary classification approaches (CSP,
LSTM) was significant (after Bonferroni multiple-comparison correction), irrespective of the
experimental condition (nomov, mov), meaning that subjects who could be better classified
with CSP also yielded better results in the LSTM-based classification. In a repeated-measures
ANOVA testing for differences in the accuracies of the two binary classification models (CSP,
LSTM) and the two conditions (nomov, mov), none of the effects was significant: neither the
main effect model (F(1,17) = 0.02, p = .904) nor the main effect condition (F(1,17) =0.72,p =
.408) or their interaction (F(1,17) = 1.59, p = .225). For a further comparison of the perfor-
mances of the classification approaches, the respective confusion matrices are depicted in
Figure 3 (average across the subjects per condition and model).
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Figure 2: Predictions (turquoise line, dots) across models trained on the data of one participant
in the movement condition (SPoC normalized negative z.s, here comodulation; CSP: posterior
probability; LSTM: tanh output). Top row: Highest negatively correlating SPoC component (for
visualization we depict the z-score of the rating and of the negative square root of z.). Middle
and lower row: Model predictions on validation sets (across the cross-validation splits) for CSP
and LSTM, respectively. The gray curvy line in each panel indicates the continuous subjective
rating of the participant. Horizontal dotted lines indicate the class borders. The area between
these lines is the mid-tercile which was discarded for CSP and LSTM analyses. Class member-
ship of each rating sample (1-s) is indicated by the circles at the top and bottom of the rating.
A model output falling under or above the decision boundary (db) indicates the model predic-
tion for one over the other class, respectively. The correct or incorrect prediction is indicated
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by the color of the circle (green and red, respectively), and additionally colour-coded as area
between model-output (turquoise) and rating.
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Figure 3: Confusion matrices of the classification accuracies for higher and lower self-reported
emotional arousal using LSTM (lower row) and CSP (upper row) in the condition without (left
column) and with (right column) head movement.
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Figure 4: Spatial patterns resulting from SSD, SPoC, and CSP decomposition. Colors represent
absolute normalized pattern weights (inverse filter matrices) averaged across all subjects per
condition (nomov: without head movement, mov: with head movement). Before averaging, the
pattern weight vectors of each individual subject were normalized by their respective L2-norm.
To avoid cancellation due to the non polarity-aligned nature of the dipolar sources across sub-
jects, the average was calculated from the absolute pattern weights. SSD allows the extraction
of components with a clearly defined spectral peak in the alpha frequency band. Shown are
the patterns associated with the four SSD components that yielded the best signal-to-noise
ratio (left column). The SSD filtered signal was the input for the decoding approaches SPoC,
CSP, and LSTM: SPoC adds a spatial filter, optimizing the covariance between the continuous
emotional arousal ratings and alpha power. Shown here is the pattern of the component which
yielded the strongest negative relation (according to our hypothesis of an inverse relationship
between emotional arousal and alpha power). CSP decomposition yielded components with
maximal alpha power for low-arousing epochs and minimal for high-arousing epochs (bottom
row in the CSP panel) or vice versa (upper row in the CSP panel). The high correspondence
between the patterns resulting from SPoC and the CSP patterns associated with maximum
power for low arousing episodes reflects the hypothesized negative relationship between al-
pha power and emotional arousal. (NB: As the LSTM results cannot be topographically inter-
preted, they are not depicted here.)
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Figure 5: The projection of SPoC and CSP components in source space confirms the link be-
tween emotional arousal and alpha oscillations in parieto-occipital regions. Colors represent
the inversely modelled contribution of the cortical voxels to the respective spatial pattern
yielded by SPoC or CSP. We applied the same normalization and averaging procedures as for
the topoplots in Figure 4. Upper row: averaged across all subjects per condition (nomov, mov).
Lower row: patterns of one individual (the same as in Figure 2).
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Figure 6: Correlation of performance across methods (SPoC, CSP, LSTM) and conditions
(nomov: no-movement, mov: movement). The model performance metrics are classification
accuracy (CSP and LSTM) and correlation coefficients (SPoC; NB: based on our hypothesis of
an inverse relationship between emotional arousal and alpha power, more negative values in-
dicate better predictive performance). Plots above and below the diagonal show data from the
nomov (yellow axis shading, upper right) and the mov (blue axis shading, lower left) condition,
respectively. Plots on the diagonal compare the two conditions (nomov, mov) for each method.
In the top left corner of each panel, the result of a (Pearson) correlation test is shown. Lines

depict a linear fit with the .95 confidence interval plotted in grey.
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Discussion

The general aim of this study was to capture the dynamic relationship between subjective ex-
perience and neurophysiology under naturalistic stimulation using immersive VR. The hypoth-
esized link between EEG alpha power and self-reported emotional arousal could be confirmed
by relating alpha power components to continuous retrospective ratings of emotional arousal
(using SPoC) as well as by decoding states of higher and lower emotional arousal from them
(using CSP and LSTMs), particularly in parieto-occipital regions. In addition to extending our
knowledge about the functional anatomy of emotional arousal, these findings support previ-
ous results from classical studies and confirm them under more naturalistic conditions. They
thereby pave the way for real-world scenarios and applications.

Physiological and psychological concomitants of emotional
arousal

In studies with event-related stimulation or block designs, more emotionally arousing com-
pared to less emotionally arousing images, videos, and sounds were associated with event-
related decreases in alpha power, predominantly over parieto-occipital electrodes (Cesarei &
Codispoti, 2011; Luft & Bhattacharya, 2015; Schubring & Schupp, 2019; Uusberg et al., 2013;
Koelstra et al., 2012). While such stimuli provide a high degree of experimental control in terms
of low-level properties and presentation timings, the emotional experience under event-related
stimulation differs substantially from the emotional experience in real-life settings, which is
perceptually complex, multisensory, and continuously developing over time.

Our results provide evidence that the neural mechanisms reflected in modulations of alpha
power — particularly in parieto-occipital regions — also bear information about the subjective
emotional state of a person undergoing an immersive and emotionally arousing experience.
They thereby suggest that findings from event-related, simplified stimulation generalize to
more naturalistic (i.e., dynamic and interactive) settings. Brain activity in parietal cortices was
also linked to emotional processing in fMRI studies (e.g., Lettieri et al., 2019).

Paralleling the idea of emotional arousal being a dimension of “core affect” (Russell & Feldman
Barrett, 1999) and a psychological primitive that underlies many mental phenomena, also al-
pha oscillations have been connected to various psychological “core processes”: For instance,
modulations of alpha power were linked to attention (Van Diepen et al., 2019) and memory
(Klimesch, 2012). More generally, neural oscillations in the alpha frequency range were sug-
gested to serve functional inhibition of irrelevant sensory input (Jensen & Mazaheri, 2010; cf.
Foster & Awh, 2019) and to code for the location and the timing of task-relevant stimuli (Foster
et al., 2017). Such processes can be functionally linked to emotional arousal: During emotion-
ally arousing experiences, preferred and enhanced processing of relevant sensory stimuli (e.g.,
indicating potential threats) is an adaptive behavior. In line with this, modulations of alpha
oscillations over parietal sensors have been linked to threat processing (Grimshaw et al.,
2014). Variations in emotional arousal and alpha power may, thus, have guided attention and
memory formation also in our experiment: During particularly arousing parts of the roller-
coaster, participants may have directed their attention to specific parts of the visual scene, for
example, to foresee the end of the looping. Moreover, our inverse modelling (Figure 5) has also
localized arousal-related alpha sources in sensorimotor cortices, which could correspond to
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somatic experiences typically associated with rollercoasters. Our results motivate experi-
mental work that will model the link between emotional arousal and alpha oscillations by sys-
tematically varying additional variables (e.g., attention, sensorimotor processing). We argue
that studying such relationships in naturalistic settings allows to embrace and learn statistical
interdependencies that are characteristic of the real world.

VR as a step towards a real-world neuroscience

More naturalistic experimental stimulation, for example using immersive VR, allows to test the
brain under conditions it was optimized for and thereby improve the discovery of neural fea-
tures and dynamics (Gibson, 1979; Hasson et al., 2020). Findings from naturalistic studies can
test the real-world relevance of results obtained in highly controlled, abstract laboratory set-
tings (Matusz et al., 2019; Shamay-Tsoory & Mendelsohn, 2019). Challenges of using VR for
more naturalistic research designs are the creation of high-quality VR content, more complex
technical setups, and discomfort caused by the immersion into the virtual environment (Pan &
Hamilton, 2018; Vasser & Aru, 2020). In our study, only one participant stopped the experiment
because of cybersickness. This low number may result from the relatively short length of the
VR experience (net length: <20 min) and the professionally produced VR stimulation. Shorter
exposure times (Rebenitsch & Owen, 2016) and experiences that elicit stronger feelings of
presence have been associated with lower levels of cybersickness (Weech et al., 2019).

Combining EEG with VR provides additional challenges: the SNR can decrease due to mechan-
ical interference of the VR headset with the EEG cap and due to movement artifacts when the
participant interacts with the virtual environment (e.g., head rotations). To ensure high data
quality, we applied multiple measures to prevent, identify, reject, or correct artifacts in the EEG
signal (see Methods section for details). Ultimately, the performance of all three decoding
models did not differ significantly for both conditions (nomov, mov). We suggest that, with
appropriate quality assurance during data acquisition and analysis (leading to more data re-
jection/correction for mov than for nomov), EEG can be combined with immersive VR and free
head movements. Other studies of mobile brain imaging, even recording outdoors and with
full-body movements, came to similar conclusions (Debener et al., 2012).

Evaluating EEG data from naturalistic experiments using com-
plementary methods

Each of the applied decoding approaches allows for different insights and interpretations, but
overall, they yield converging results.

SPoC and CSP

SPoC and CSP share advantages that are common to most spatial filtering methods based on
Generalized Eigenvalue Decomposition, namely precise optimization policies, high speed and
interpretability (see Introduction). The similarity between the two approaches and their inter-
pretability becomes apparent in the resulting spatial patterns: the normalized and averaged
SPoC topoplots and source localizations in both conditions (nomov, mov) resemble the ones
extracted via CSP to maximize power for the low-arousal epochs of the experience (Figures 4
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and 5). SPoC and CSP solve a similar problem here: extracting components whose power is
minimal during states of high emotional arousal and maximal during states of low arousal.

This indicates that SPoC and CSP exploited similar spatial informational patterns in the input
data. However, the datasets handed to the SPoC and CSP models were not identical. For the
CSP analysis, only the upper and lower extreme of the arousal ratings were included (i.e. % of
the data), while epochs with medium arousal ratings (i.e., 4 of the data) were excluded,
whereas SPoC was trained on the full continuous datastream. There are two potential expla-
nations for the observation that SPoC and CSP nevertheless yield similar spatial patterns: ei-
ther the most relevant information was encoded in the most extreme parts of the experience,
or there is a truly linear relationship between alpha power and emotional arousal that can be
queried on all parts of this spectrum ranging from low to high emotional arousal.

We observed a high degree of variability across participants (see Table S1) with less than 70
% of participants for CSP (and less than 35 % for SPoC) yielding significant results on the
single-subject level. This variability reflects the difficulty of some features and classifiers to
generalize across subjects, which has been reported in the BClI literature (Krusienski et al.,
2011; Nurse et al,, 2015). LSTM, as a non-linear model class that is less constrained in the
choice of its features, can complement SPoC and CSP.

LSTM

Despite having recently gained more attention with the fast progress of deep learning (e.g.,
more efficient hardware and software implementations), LSTMs still need to stand up to well-
established models such as CSP for EEG analysis. We found that the LSTM can extract fea-
tures from neural input components that reflect changes in subjective emotional arousal and
that the accuracy of its predictions in both conditions (nomov, mov) matched closely the ones
of CSP (see Figures 3 and 6). It is noteworthy that for the CSP model, the (LDA-based) classi-
fication rested on narrowly defined spectral features of the signal while for the LSTM model,
the input was the signal in the time-domain and the feature selection process was part of the
model fitting. The strong correlation between the predictions of the two models suggests that
the LSTM extracts similar information as the CSP to make its prediction, namely power. Higher
accuracies may be achievable with LSTM models due to their non-convex optimization land-
scape. However, in our two-step hyperparameter search, we found that for each subject a
range of different hyperparameter settings led to similar prediction accuracies (see Supple-
mentary Material). Model ensembles, although computationally demanding, could further in-
crease the robustness of the estimates (Opitz & Maclin, 1999; Rokach, 2010; Dietterich, 2000).
Although it is often stated that deep learning models require large datasets (for an empirical
perspective, see Hestness et al., 2017), our model, with its architecture of 1-2 LSTM layers
followed by 1-2 fully connected layers, converged in less than 200 training iterations on a rela-
tively small dataset. This quick convergence is partly due to the fast gradient-flow through the
memory cell of the LSTM during the weight update, which is an additional advantage of the
LSTM over other RNNs (Doetsch et al., 2014; Hochreiter & Schmidhuber, 1997). Additionally,
the spatial-spectral filtering in our study (i.e., SSD-based extraction of narrow-band alpha com-
ponents) may have eased the training of the LSTM. With more data, an LSTM could be trained
on raw data or longer segments of the EEG to preserve more of the continuous structure and
ultimately exploit its central property of detecting long-term dependencies in the input.


https://doi.org/10.1101/2020.10.24.353722
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.24.353722; this version posted November 10, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

18

In contrast to SPoC and CSP, we did not compute explanatory topoplots or sources from the
LSTM, since the analysis of predictions on input level in non-linear deep learning models con-
stitutes a challenge in itself (i.e., “black box” problem of deep learning). However, “explainable
artificial intelligence” (XAl) is an active area of research in machine learning, aiming to open
this “black box”. For EEG, there are attempts to create topologically informative maps in the
signal space that explain the decision of simple shallow neural networks (Sturm et al., 2016).
Also for the more complex LSTM model, XAl methods were applied, for example, on text data
(Arras et al.,, 2017; see also Lapuschkin, 2019). However, exploring and validating these ap-
proaches on our data was beyond the scope of this study.

In summary, we find that SPoC, CSP, and LSTM can be used to decode subjective emotional
arousal from EEG acquired during a naturalistic immersive VR experience. The source of the
alpha oscillations could be localized in parieto-occipital regions.

Compared to other EEG decoding paradigms (e.g., lateralized motor imagery; Herman et al.,
2008), the accuracy of our models was relatively low. This may be a consequence of (1) the
fast changing events in the VR experience (particularly the rollercoasters), (2) the asynchro-
nicity of the two data streams as participants retrieved their emotional states from memory in
retrospective ratings, (3) the generally high inter-individual variability in the interpretability of
subjective self-reports (Blascovich, 1990), and (4) the “single-trial” study design and its rela-
tively short time series. With respect to (1)-(3), people’s memory for feelings and events is
susceptible to distortions and biases (Kaplan et al.,, 2016; Levine & Safer, 2002). Following
McCall et al. (2015), we elicited the memory recall by showing participants an audiovisual re-
play of their experience from their own perspective in the VR headset while recording continu-
ous ratings. This aimed to minimize biases related to the point of view (Berntsen & Rubin, 2006;
Marcotti & Jacques, 2018) or time scale (e.g. Fredrickson & Kahneman, 1993) during recall (as
discussed in McCall et al., 2015). Lastly, while our research aimed to explore the role of the
alpha frequency band in the appraisal of emotional arousal (see Introduction), higher frequen-
cies could carry additional information about the phenomenon leading to better model predic-
tions. However, higher frequency bands also include non-neural (e.g., muscle activity-related)
signals, limiting the interpretability of those results.

Limitations

Our study has limitations that need to be considered when interpreting the results:

While being engaging, emotionally arousing and tolerable for the subjects, the commercial
content used for stimulation did not provide access to the source code in order to control and
extract stimulus features (e.g., height or speed of the rollercoasters). In general, creating high-
quality VR content is a challenge for research labs, but there are recent efforts to provide
toolboxes that facilitate customized VR development (e.g., Underwood Project; Schofield &
McCall, 2020) and scientific experimentation in VR (e.g., Griibel et al., 2017; Brooks et al, 2019).

The length of the experience was chosen to minimize habituation to the stimulus and incon-
venience caused by the recording setup (EEG electrodes and VR headset). This led to relatively
short recording times per subject and condition. Data sparsity, however, is challenging for de-
coding models, which need a sufficient amount of data points for model training and evalua-
tion, where especially larger training sets lead to more robust predictions (Hestness et al.,
2017). We used cross-validation, which is commonly applied in scenarios of limited data, to
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achieve a trade-off between training and validation data (Varoquaux et al., 2017). Nevertheless,
the models and results can be expected to perform more robustly with more training data.

Finally, emotional arousal is a multi-faceted mind-brain-body phenomenon that involves the
situated organism and its interaction with the environment. The training data for multivariate
models such as the LSTM can include other modalities, such as peripheral physiological (e.g.,
HR, GSR) or environmental (e.g., optical flow) features. Naturalism can be further increased by
sensorimotor interaction (beyond head movements) in immersive VR (McCall et al., 2015) or
by mobile EEG studies in real-world environments (Debener et al., 2012), which, however, poses
further challenges to EEG signal quality (Gwin et al., 2010).

Conclusion

We conclude that different levels of subjectively experienced emotional arousal can be de-
coded from neural information in naturalistic research designs. We hope that combining im-
mersive VR and neuroimaging not only augments neuroscientific experiments but also in-
creases the generalizability and real-world relevance of neuroscientific findings.
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Methods and Materials

Participants

45 healthy young participants were recruited via the participant database at the Berlin School
of Mind and Brain (an adaption of ORSEE; Greiner, 2015). Previous studies on the relationship
between emotional arousal and neural oscillations reported samples of 19-32 subjects (e.g.,
Koelstra et al., 2011; Luft & Bhattacharya, 2015). We recruited more participants to compen-
sate for anticipated dropouts due to the VR setup and to ensure a robust estimate of the model
performances. Inclusion criteria were right-handedness, normal or corrected-to-normal vision,
proficiency in German, no (self-reported) psychiatric or neurological diagnoses in the past ten
years, and less than 3 hours of experience with VR. Participants were requested to not drink
coffee or other stimulants one hour before coming to the lab. The experiment took ~2.5 hours,
and participants were reimbursed with 9 € per hour. They signed informed consent before their
participation, and the study was approved by the Ethics Committee of the Department of Psy-
chology at the Humboldt-Universitat zu Berlin.

Setup, stimuli, and measures

The experiment was conducted in a quiet room, in which the temperature was kept constant
at 24°C.

Neurophysiology / EEG

30 channels of EEG activity were recorded in accordance with the international 10/20-system
(Sharbrough et al., 1991) using a mobile amplifier (LiveAmp32) and active electrodes (actiCap;
both by BrainProducts, Gilching, Germany). Two additional electrooculogram (EOG) electrodes
were placed below and next to the right eye to track eye movements. Data were sampled at
500 Hz with a hardware-based low-pass filter at 131 Hz and referenced to electrode FCz. The
amplifier was placed on a high table in the back of the participant to minimize the pull on
electrode cables and provide maximal freedom for head movements. The VR headsetwas
placed carefully on top of the EEG cap, and impedances were brought below 10 kQ. With the
same amplifier, electrocardiography and galvanic skin responses were additionally acquired.
These peripheral physiological data and the inter-individual differences in interoceptive accu-
racy are beyond the scope of this paper, and their results will be reported elsewhere.

Virtual Reality (VR) head-mounted display (HMD)

An HTC Vive HMD (HTC, New Taipei, Taiwan) and headphones (AIAIAI Tracks, ApS, Copenha-
gen, Denmark) were placed on top of the EEG cap using small, custom-made cushions to avoid
pressure artifacts and increase comfort. The HTC Vive provides stereoscopy with two 1080 x
1200-pixel OLED displays, a 110° field-of-view, and a frame rate of 90 Hz. The user’s head po-
sition is tracked using infrared light, accelerometry, and gyroscopy. Head movements were
recorded by adapting scripts from https://github.com/Omnifinity/OpenVR-Tracking-Example/.
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Immersive VR experience / stimulation

Stimulation comprised two commercially available rollercoaster rides (“Russian VR Coasters”
by Funny Twins Games, Ekaterinburg, Russia, on Steam) that were separated by a 30-s break
(during which participants kept their eyes open and looked straight): the “Space” rollercoaster,
a 153-s ride through planets, asteroids, and spaceships and the “Andes” rollercoaster, a 97-s
ride through a mountain scenery (for more details, see Supplementary Material). The two roller-
coaster rides were commercially available on Steam. The rollercoasters were selected for their
length (i.e., not leading to physical discomfort by uninterruptedly wearing the HMD for too long)
and content (i.e., inducing variance in emotional arousal). The experience (i.e., the sequence
“Space”-break-“Andes”) was kept constant across participants.

Self-reports

Questionnaires

Atthe beginning of the experiment, participants completed two arousal-related questionnaires:
(1) the “Trait” subscale of the “State-Trait Anxiety Inventory” (STAI-T; Spielberger, 1983, 1989)
and (2) the “Sensation Seeking” subscale of the “UPPS Impulsive Behaviour Scale” (UPPS;
Schmidt et al., 2008; Whiteside & Lynam, 2001). Before and after the experiment, participants
completed a customized version of the “Simulator Sickness Questionnaire” (SSQ, Bouchard et
al., 2017) comprising three items from the nausea (general discomfort, nausea, dizziness) and
three items from the oculomotor subscale (headache, blurred vision, difficulty concentrating)
to capture potential VR side effects (Sharples et al., 2008). After the experiment, participants
also rated the presence and valence of their experience (the results will be reported else-
where).

Emotional arousal

After each VR experience, participants watched a 2D recording (recorded using OBS Studio,
https://obsproject.com/) of their experience on a virtual screen (SteamVR’s “view desktop”
feature), that is, without removing the HMD. They recalled and continuously rated their emo-
tional arousal by turning a dial (PowerMate USB, Griffin Technology, Corona, CA, USA; sampling
frequency: 50 Hz), with which they manipulated a vertical rating bar, displayed next to the video,
ranging from low (0) to high (100) in 50 discrete steps (McCall et al., 2015; see Figure 7B). The
exact formulation was “When we show you the video, please state continuously how emotion-
ally arousing or exciting the particular moment during the VR experience was” (German: “Wenn
wir dir das Video zeigen, gebe bitte durchgehend an, wie emotional erregend, bzw. aufregend
der jeweilige Moment wahrend der VR Erfahrung war"). To present the playback video and the
rating bar a custom script written in Processing (v3.0) was used.

Procedure

Participants came to the lab and filled in the pre-test questionnaires. After the torso and limb
electrodes had been attached, participants completed a heartbeat guessing task (Schandry,
1981) to assess inter-individual differences in interoceptive accuracy (the results of peripheral
physiology and interoception will be reported elsewhere). Then, the EEG cap was attached, and
the HMD was carefully placed on top of it. To prevent or minimize (e.g., movement-related)
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artefacts, customized cushions were placed below the straps of the VR headset to reduce the
contact with the EEG sensors. In addition, the VR experience took place while seated and with-
out full body movements (participants were asked to keep their feet and arms still during the
recordings). A white grid was presented in the HMD to ensure that the participants’ vision was
clear. They then completed a 10-min resting-state phase (5 min eyes open, 5 min eyes closed),
before experiencing the first VR episode, which consisted of the two virtual rollercoaster rides
and the intermediate break: First the “Space” and then, after the break, the “Andes” roller-
coaster. In the subsequent rating phase, they recalled and continuously rated their emotional
arousal while viewing a 2D recording of their experience. Importantly, each participant com-
pleted the VR episode (plus rating) twice: once while not moving the head (nomov) and once
while freely moving the head (mov) during the VR experience. The sequence of the movement
conditions was counterbalanced across participants (n = 19 with nomov condition first). At
the end of the experiment, participants completed two additional questionnaires (the SUS and
the questionnaire on subjective feelings of presence and valence during the virtual roller-
coaster rides) before they were debriefed.

Figure 7: Schematic of experimental setup. (A) The participants underwent the experience
(two rollercoasters separated by a break) in immersive VR, while EEG was recorded. (B) They
then continuously rated the level of emotional arousal with a dial viewing a replay of their ex-
perience. The procedure was completed twice, without and with head movements.

Data analysis

To exclude effects related to the on- or offset of the rollercoasters, data recorded during the
first and the last 2.5 s of each rollercoaster were removed and the inter-individually slightly
variable break was cropped to 30 s. The immersive VR experience that was analysed thus
consisted of two time series of 270 s length per participant (nomov and mov).

Self-reports

Questionnaires

Inter-individual differences as assessed by the trait questionnaires were not the focus of this
study, and their results (together with the peripheral physiological and interoception data) will
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be reported elsewhere. The sum of the simulator sickness ratings before and after the experi-
ment was compared using a paired t-test.

Emotional arousal

Emotional arousal ratings were resampled to 1 Hz by averaging non-overlapping sliding win-
dows, yielding one arousal value per second. For the classification analyses, ratings were di-
vided by a tertile split into three distinct classes of arousal ratings (low, medium, high) per
participant. For the binary classification (high vs low arousal), the medium arousal ratings were
discarded.

Neurophysiology

Preprocessing

EEG data were preprocessed and analyzed with custom MATLAB scripts building on the EE-
GLAB toolbox (v13.5.4b; Delorme & Makeig, 2004). The preprocessing steps were applied sep-
arately for data recorded during the nomov and mov conditions (i.e., without and with head
movement). Continuous data were downsampled to 250 Hz (via the ‘pop_resample.m’ method
in EEGLAB) and PREP pipeline (v0.55.2; Bigdely-Shamlo, Mullen, Kothe, Su, & Robbins, 2015)
procedures were applied for detrending (1 Hz high-pass filter, Hamming windowed zero-phase
sinc FIR filter, cutoff frequency (-6 dB): 0.5 Hz, filter order: 827, transition band width: 1 Hz),
line-noise removal (line frequency: 50 Hz), robust referencing to average, and detection as well
as spherical interpolation of noisy channels. Due to the relatively short lengths of the time
series, the default fraction of bad correlation windows (parameter ‘badTimeTheshold’, used to
demark bad channels) was increased to 0.05. For all other parameters, PREP’s default values
were kept. On average, 2.08 and 2.47 channels per subject were interpolated in the nomov and
mov condition, respectively. Data remained high-pass filtered for the further steps of the anal-
ysis. Retrospective arousal ratings were added to the data sets, labelling each second of data
with an associated arousal rating used as target for the later classification and regression
approaches.

ICA decomposition was used to identify and remove EEG artifacts caused by eye movements,
blinks, and muscular activity. To facilitate the decomposition, ICA projection matrices were
calculated on a subset of the data from which the noisiest parts had been removed. To this
end, a copy of the continuous data was split into 270 epochs of 1 s length. Epochs containing
absolute voltage values >100 pV in at least one channel (excluding channels that reflected eye
movements, i.e., EOG channels, Fp1, Fp2, F7, F8) were deleted. Extended infomax (Lee et al.,
1999) ICA decomposition was calculated on the remaining parts of the data (after correcting
for rank deficiency with a principal component analysis). Subjects with >90 to-be-deleted
epochs (33% of the data) were discarded from further analyses (nomov: n = 5; mov: n = 10).
Artifactual ICA components were semi-automatically selected using the SASICA extension
(Chaumon et al., 2015) of EEGLAB and visual inspection. On average, 13.41 (nomov) and 10.31
(mov) components per subject were discarded. The remaining ICA weights were back-pro-
jected onto the continuous time series.

Dimensionality reduction: SSD in the (individual) alpha frequency range

Our main hypothesis was that EEG-derived power in the alpha frequency range allows the dis-
crimination between different states of arousal. To calculate alpha power, we adopted spatio-
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spectral decomposition (SSD; Nikulin et al., 2011) which extracts oscillatory sources from a
set of mixed signals. Based on Generalized Eigenvalue Decomposition, it finds the linear filters
that maximize the signal in a specific frequency band and minimize noise in neighbouring fre-
quency bands. A pre-processing with SSD has been previously shown to increase classifica-
tion accuracy in BCI applications (Haufe, Dahne, et al., 2014). The alpha frequency range is
typically fixed between 8 and 13 Hz. The individual alpha peak frequency, however, varies intra-
and inter-individually, for example, with age or cognitive demand (Haegens et al., 2014; Mierau
et al.,, 2017). To detect each participant’s individual peak of alpha oscillations for the SSD, (1)
the power spectral density (PSD) of each channel was calculated using Welch’s method
(segment length = 5s = sampling frequency [i.e., 250 Hz] with 50% overlap) in MATLAB
(pwelch function). (2) To disentangle the power contribution of the 1/f aperiodic signal from
the periodic component of interest (i.e., alpha), the MATLAB wrapper of the FOOOF toolbox
(v0.1.1; Haller et al., 2018; frequency range: ]0-40] Hz, peak width range: 1-12 Hz, no minimum
peak amplitude, threshold of 2 SD above the noise of the flattened spectrum) was used. The
maximum power value in the 8-13 Hz range was considered the individual alpha peak fre-
quency a;, on which the SSD bands of interest were defined (bandpass signal a; + 2 Hz, band-
stop noise a; + 3 Hz, bandpass noise a;+ 4 Hz).

The entire procedure was separately applied to the nomov and the mov condition to account
for potential peak variability (Haegens et al., 2014; Mierau et al., 2017). SSD was then com-
puted based on these peaks. A summary of the resulting individual alpha peak frequencies can
be found in Table S1.

SSD Components Selection

The SSD components with sufficient alpha information (i.e., power in the alpha frequency
range that exceeds the noise level) were selected with the following steps (see Figure 8):

(1) The power spectral density of a component was calculated using Welch's method
(segment length = 5s = sampling frequency [i.e., 250 Hz] with 50% overlap) imple-
mented in SciPy (v. 1.4.1., Jones, Oliphant, & Peterson, 2001).

(2) The 1/f curve was fitted in the signal range between ]0-40] Hz, excluding a 4 Hz win-

dow around the individual alpha peak frequency q; of the subject i. The 1/f curve was
1

a~xb

defined (in log scale) as f~1 = log( ), Where x is the given component in the fre-

quency domain, a serves as stretch parameter, and b represents the slope of the 1/f
curve.

(3) After fitting these parameters, the signal was detrended with respect to the estimated
1/f curve.

(4) Those components were selected, whose alpha peak power in the detrended alpha
window (as defined in (1)) was (A) greater than zero plus a decision threshold, which
was set to .35 ”H—VZZ and (B) higher than the mean amplitude of the adjacent frequency
flanks of 2-Hz width on both sides of the window, i.e. maxpower(alpha peak) —
max(mean power(flank)) = 1.45 SD (after z-scoring the detrended signal). The two
criteria guaranteed the selection of components with a clearly defined alpha-amplitude

peak over the noise-threshold defined by f~(see Figure 8).
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Figure 8: Schematic of the selection of individual alpha components using spatio-spectral de-
composition (SSD). (Left) 1/f-estimation (dotted grey line) to detrend SSD components (solid
turquoise line). (Right) After detrending the signal, components were selected, whose peak in
the detrended alpha window (centred at the individual alpha peak, vertical dotted grey line)
was (A) >0.35 V?/Hz (indicated by horizontal dotted red line) and (B) higher than the bigger of
the two mean amplitudes of the adjacent frequency flanks (2-Hz width).

Particularly the combination of SSD with narrow-band filtering in the alpha-frequency range
lowers the probability of signal contamination elicited by artifact-related oscillations, which
are typically strongest in frequency ranges above (e.g., muscular activity; Muthukumaras-
wamy, 2013) or below the alpha band (e.g., skin potentials, Kappenman & Luck, 2010, or eye
blinks, Manoilov, 2007; for a comprehensive overview, see also Chaumon et al., 2015). Decod-
ing models (CSP, LSTM, SPoC; described below) were trained on those subjects with at least
4 selected SSD components (26 in the nomov and 19 in the mov). On average, 7.63 of 18.81
(40.53 %) in the nomov and 5.63 of 15.22 (36.98 %) SSD components were selected in the mov
condition. Importantly, SSD components had spatial topographies corresponding to occipito-
parietal and fronto-central source locations, thus covering brain areas previously implicated in
emotional arousal and its regulation.

Source-Power Comodulation (SPoC)

To test the hypothesis that alpha power in the EEG covaries with the level of subjective emo-
tional arousal, SPoC? (v1.1.0; Dédhne et al., 2014) was applied to EEG data composed of the
selected SSD components and filtered around the central individual alpha peak. The super-
vised decomposition procedure takes the variable z as target, which comprised the continuous
arousal ratings (z-scored; 270 s per participant). To reach the same temporal resolution as z
(i.e., 1 Hz), EEG data were epoched into 270 consecutive segments of 1 s length. The power of
a SPoC component ( § = WX, where WT corresponds the transpose of the unmixing matrix
W and X to the data matrix in SSD space) in a specific epoch (e) can be approximated by the
variance of its signal within that time interval (Var[§ ](¢)D&hne et al., 2014). SPoC was sepa-
rately applied to each participant, producing a number of components equal to the number of

2 Throughout the paper, “SPoC” refers to SPoC, (for details, see Dahne et al., 2014)
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previously selected SSD components. The stability and significance of the extracted compo-
nents was tested with a permutation approach (500 iterations): z values were randomly shuf-
fled to create a surrogate target variable with randomized phase but same auto-correlation.
Lambda values (A, i.e., component-wise covariance between z and alpha power) were then
calculated for each iteration to generate a naive probability density function (i.e., null-hypoth-
esis distribution) and to estimate the probability that the lambda value that was calculated
with the original target variable z was obtained by chance. Given our main hypothesis of an
inverse relationship between alpha power and self-reported emotional arousal, we only re-
tained, for each participant, the component with the highest negative lambda value A (disre-
garding the p-value to avoid circularity; Kriegeskorte et al., 2009). In accordance with the pri-
mary objective of SPoC to reconstruct the target variable z, group-level statistics were then
computed on the correlation coefficient r between z and z..;, which is obtained via the following
formula: z,s; = Var[W®TX](e) (Where i is the index of the aforementioned most negative se-
lected component).

Since the extracted linear spatial filters W cannot be directly interpreted (Haufe, Meinecke, et
al., 2014), topographical scalp projection of the components are represented by the columns
of the spatial patterns matrix A obtained by inverting the full matrix W (Figure 4).

Common Spatial Patterns (CSP)

To further test the hypothesis of a link between alpha power and subjective emotional arousal,
we aimed to distinguish between the most and the least arousing phases of the experience by
using features of the alpha band-power of the concurrently acquired EEG signal. We followed
an approach which has successfully been used in BCl research to discriminate between event-
or state-related changes in the bandpower of specific frequency ranges in the EEG signal: The
Common Spatial Patterns (CSP) algorithm specifies, by means of a Generalized Eigenvalue
Decomposition, a set of spatial filters to project the EEG data onto components whose band-
power maximally relates to the prevalence of one of two dichotomous states (Blankertz et al.,
2008; Ramoser et al., 2000). In our case, we were interested in distinguishing moments that
had been rated to be most (top tertile) and least arousing (bottom tertile).

Using the EEGLAB extension BCILAB (v1.4-devel, Kothe & Makeig, 2013), data of the selected
SSD components, bandpass filtered around the individual alpha peak + 2 Hz, were epoched in
1-s segments. This sample length was chosen to enable the extraction of neural features and
corresponding changes in the subjective experience, while maximising the number of samples
from the sparse datasets. Epochs with mid-level arousal ratings (middle tertile) were dis-
carded, yielding 180 epochs (90 per class) for each subject (per movement condition). To as-
sess the classification performance, a randomized 10-fold cross-validation procedure, a com-
mon solution for sparse training data (Bishop, 2006), was used. Per fold, a CSP-based feature
model was calculated on the training data by decomposing the signal of the selected SSD
components according to the CSP algorithm. A feature vector comprising the logarithmized
variance of the four most discriminative CSP components (using two columns from each side
of the eigenvalue decomposition matrix as spatial filters) was extracted per epoch. Data from
the training splits were used to train a linear discriminant analysis (LDA) on these feature vec-
tors (Fisher, 1936). Covariance matrices used for calculating the LDA were regularized by ap-
plying the analytic solution implemented in BCILAB (Ledoit & Wolf, 2004). The LDA model was
then used to classify the feature vectors extracted from the epochs in the test split to predict
the according arousal label. Average classification accuracy (defined as 1 —
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misclassification rate) over the ten folds was taken as outcome measure to assess the pre-
dictive quality of the approach. To allow a spatial interpretation of the projections, like with the
SPoC components, the spatial patterns of the two most extreme CSP components (associated
with the largest and smallest eigenvalue) that were used to calculate the feature vectors for
the linear classification were plotted in Figure 4 (normalized and averaged across subjects per
condition) and Figure S2 (per single subject and condition). Source localized patterns are
shown in Figure 5.

Source Localization

Exact Low Resolution Tomography Analysis (eLORETA; Pascual-Marqui, 2007) was used to
localize the sources corresponding to the component extracted via SPoC and CSP. Our pipe-
line was based on the work of Idaji et al. (2020), who customized the eLORETA implementation
of the MEG/EEG Toolbox of Hamburg (https://www.nitrc.org/projects/meth/).

Our forward model was constructed via the New York Head model (Haufe, Meinecke, et al.,
2014; Haufe & Ewald, 2019; Huang et al., 2016) with approximately 2000 voxels and by using
28 out 30 scalp electrodes (TP9 and TP10 were removed because they are not contained in
the model). Crucially, we focused on dipoles perpendicular to the cortex. eLORETA was then
used to construct a spatial filter for each voxel from the leadfield matrix, and respective
sources were computed by multiplying the resultant demixing matrix with the spatial patterns
(A) of the selected SPoC and CSP components. Inverse modelling was computed separately
per participant and condition before it was averaged for each condition across all subjects
(Figure 5).
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Long Short-Term Memory (LSTM) Recurrent Neural Network

Deep learning models have become a useful tool to decode neural information (e.g., Agrawal
et al., 2014; Khaligh-Razavi & Kriegeskorte, 2014). Applying a deep learning approach to the
time series of EEG recordings (e.g., Bashivan et al., 2016) can be achieved using Long Short-
Term Memory (LSTM) recurrent neural networks (Hochreiter & Schmidhuber, 1995, 1997). With
their property to store and control relevant information over time, they can find adjacent as
well as distant patterns in (time) sequential data. The LSTM analysis was implemented in the
Python-based deep learning library TensorFlow (v.1.14.0; Google Inc., USA; Abadi et al., 2015;
Zaremba et al., 2015).

Prediction
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Figure 9: Schematic of the Long Short-Term Memory (LSTM) recurrent neural network (RNN).
At each training step, the LSTM cells successively slide over 250 data-arrays of neural compo-
nents (Xi=o, Xt=1, ... , X7=249) corresponding to 1-s of the EEG recording. At each step t, the LSTM
cell computes its hidden state h;. Only the final LSTM output (hy) at time-step T=249 is then
fed into the following fully connected (FC) layer. The outputs of all (LSTMs, FCs) but the final
layer are normalised by Rectified linear units (ReLU) or exponential linear units (ELU). Finally,
the model prediction is extracted from the last FC layer via a tangens hyperbolicus (tanh).
Note: depending on model architecture, there were 1-2 LSTM layers, and 1-2 FC layers.
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Model Architecture and Hyperparameter Search

Deep learning models usually have a high variance due to random weight initialization, archi-
tectural choices, and hyperparameter HPs (Geman et al., 1992; but see Neal et al., 2019). We
here used a two-step random search (Bergstra & Bengio, 2012) strategy in order to find optimal
HPs, to reduce the model variance and make the search computationally feasible. First, a
broad random search was applied on a random subset of ten subjects (20 random combina-
tions) in each condition. Then, the two best HPs per subject were taken and applied to the
datasets of all subjects. Due to time constraints and computational complexity, the HP search
was limited to a predefined range of settings and the model architecture was constrained to
maximal two LSTM layers followed by maximal two fully connected layers (FC; Hefron et al.,
2017; see Figure 9). Each layer size Is; varied between 10 and 100 nodes (Is; € 10, 15, 20, 25,
30, 40, 50, 65, 80, 100), and a successive layer needed to be equal or smaller in size (bottleneck
architecture). The output of each layer was squashed through either rectified linear units or
exponential linear units, which both allow for steeper learning curves in contrast to conven-
tional activation functions such as sigmoid nonlinearity (Clevert et al., 2016). The output of the
last network layer (FC,) was fed into a tangens hyperbolicus (tanh) to match the binned ratings,
which were labelled with -1 or 1, respectively. We applied a mean-squared error loss to calcu-
late the difference between the model output (i.e. the prediction) and the labels, leading to a
stronger weighting of losses at the upper- or lower-class border, respectively. To control and
tax too large model weights, different regularization methods (L7, L2) with different regulari-
zation strengths (1 € 0.00, 0.18, 0.36, 0.72, 1.44) were tested. Weights were optimized using
Adam (learning rate: Ir € 1e?, 1€, 5e*) due to its fast convergence (Kingma & Ba, 2015; see
also Ruder, 2017). The number of input components (SSD, N¢omp: N € [1, 10]) was treated as
HP. The specific Ncomp Nneural components were successively drawn according to the order of
the SSD selection.

Training procedure

The final dataset per subject was a three-dimensional tensor of size 270x250x70 (epochs x
samples x components). If less than 10 components were extracted for a given subject, the
tensor was filled with zero-vectors. After some test runs and visual observation of the conver-
gence behaviour of the learning progress, training iterations were set to 20 (i.e., the model ran
20 times through the whole training dataset). The 1-sec samples were fed into the LSTM in
random mini-batches of size 9 (bs = 9), since training on batches allows for faster and more

robust feature learning (Ruder, 2017), leading to the following input tensor at training step ts:

xbsx250x10
train,ts .

Statistical Evaluation

To test whether the results of the binary modelling approaches (CSP, LSTM) were statistically
significant, exact binomial tests were conducted per subject and experimental condition
(nomov, mov) over all 180 epochs of the respective time series (nomov, mov). To do so, for
each of the binary modelling approaches (CSP, LSTM), the predictions for the single epochs in
the ten test splits of the CV were concatenated to a single vector. The proportion of correct
and false predictions was then compared to a null model with prediction accuracy 0.5 (chance
level). To test the average (across subjects) classification accuracies of the binary models, we
calculated one-sample t-tests, comparing the mean accuracy of the respective model for both
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experimental conditions against the theoretical prediction accuracy of a random classifier
(0.5). To test whether classification accuracies differed between the two models (CSP, LSTM)
or between the experimental conditions (nomov, mov), a repeated-measures ANOVA was con-
ducted on the accuracy scores of all subjects with preprocessed data from both conditions (n
=18).

For SPoC, in addition to the aforementioned within-participants permutation approach yielding
a single p-value for each component, group-level statistics were assessed: The hypothesis of
a negative correlation between alpha power and emotional arousal was tested with a one-
sample, one-tailed t-test on the correlation values between z and z.;, which assessed whether
the mean correlation value per condition was significantly lower than 0.

The code for preprocessing of the data, the three prediction models, and the statistical evalu-
ation is available on GitHub (https://github.com/SHEscher/NeVRo).
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