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Abstract

The large majority of variants identified by GWAS are non-coding, motivating detailed
characterization of the function of non-coding variants. Experimental methods to assess
variants’ effect on gene expressions in native chromatin context via direct perturbation are low-
throughput. Existing high-throughput computational predictors thus have lacked large gold
standard sets of regulatory variants for training and validation. Here, we leverage a set of
14,807 putative causal eQTLs in humans obtained through statistical fine-mapping, and we use
6,121 features to directly train a predictor of whether a variant modifies nearby gene expression.
We call the resulting prediction the expression modifier score (EMS). We validate EMS by
comparing its ability to prioritize functional variants with other major scores. We then use EMS
as a prior for statistical fine-mapping of eQTLs to identify an additional 20,913 putatively causal
eQTLs, and we incorporate EMS into co-localization analysis to identify 310 additional
candidate genes across UK Biobank phenotypes.

Introduction

Although genome wide association studies (GWAS) have identified large numbers of loci
associated with complex traits'?, identifying the underlying biological mechanisms is often
difficult. Two particular challenges are that (1) the majority of the associated variants are in non-
coding regions’, and (2) the association signals from GWAS studies typically contain a large
number of variants in linkage disequilibrium (LD)3. Interpreting associations in GWAS to identify
the underlying causal mechanisms requires an understanding of the function of non-coding
variants at single variant resolution.
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Many approaches to characterize non-coding variants exist. Large-scale consortium studies*®
have provided a map of functional and regulatory elements across the genome in different cell
types that are enriched in various trait heritability®'°. Reporter assays have been powerful tools
to test variant effects in cellular contexts, but typical high-throughput massive parallel reporter
assays (MPRAs)'"'2 do not represent the native chromatin context in the human genome. Direct
introduction of single base pair variants in the native genome are still low-throughput'. RNA-
seq studies combined with genotyping or whole-genome sequencing have highlighted loci that
are associated with gene expression in humans (eQTLs)'*'®. However, as with GWAS, eQTL
studies associate loci, rather than individual causal variants, to gene expression.

Statistical fine-mapping®'"'® is used to disentangle tightly correlated structures of the nearby
genetic variants in LD to elucidate causal variant(s) in a locus identified by a genetic association
study such as a GWAS on an eQTL study. For example, Benner et al'® uses stochastic search
to enumerate and evaluate possible causal configurations, and Wang et al*° performs iterative
Bayesian stepwise selection to prioritize causal variants. Such fine-mapping methods have
been applied to identify putative causal eQTLs (i.e., variants that modify gene expression in
native chromatin context) that are valuable both for understanding gene regulation and for
interpreting GWAS signals at a locus'*'®?"2*, However, fine-mapped eQTLs fall short of
genome-wide characterization of non-coding function, as many variants fail to be identified
because of LD or small effect size.

While not providing the same level of confidence as genome editing or fine-mapped eQTLs,
computational predictions are informative about variant function in native chromatin in human
cells, and can be applied to every variant in the genome. For example, state-of-the-art
computational methods predict the effects of non-coding genetic variants on the epigenetic
landscape and on gene expression as a function of sequence context using deep neural
networks?®3°. These methods, rather than directly training on gold standard expression-
modifying variants, instead predict expression level or other outcomes as a function of
sequence, and then score variants based on the difference in predicted expression between the
two alleles.

Here, we combine such computational predictions with the large-scale, though not
comprehensive, gold standard data provided by statistical fine-mapping of eQTLs, with two
goals: to improve on existing computational predictors, and to expand the set of confidently-
identified eQTLs. Toward the former goal, we combine an existing sequence-based predictor?®
with epigenetic data and other gene features into a single predictor, leveraging fine-mapped
eQTLs*' as training data. Specifically, we directly train a predictor of whether a variant modifies
expression using 14,807 putative expression-modifying variant-gene pairs in humans as training
data and utilizing 6,121 features; we call the resulting prediction the expression modifier score
(EMS). Toward the second goal, we use EMS as a prior for statistical fine-mapping of eQTLs
(analogous to recently-performed functionally-informed fine-mapping of complex traits®2-3*),
increasing fine-mapping resolution and identifying an additional 20,913 variants across 49
tissues. Finally, using UK Biobank (UKBB)*® phenotypes as an example, we show that EMS can
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be incorporated into co-localization analysis at scale, and we identify 310 additional candidate
genes for UK Biobank phenotypes.

Results

Functional enrichment of fine-mapped eQTLs

To define the set of putative expression-modifying variant-gene pairs, we analyzed results of
recent fine-mapping of cis-eQTLs (+-1 Mb window) from GTEx v8'®%' including the 14,807
variant-gene pairs with posterior inclusion probability (PIP) greater than 0.9 according to two
methods'®?° across 49 tissues (Fig. S1, S2). The size of our dataset allowed us to quantify the
enrichment of putative causal variant-gene pairs for several functional annotations, including deep
learning-derived variant effect scores from Basenji?®?° and distance to canonical transcription
starting site (TSS), with high precision (Fig. 1, S3, S4). Our results are consistent with previous
studies®*3®: putative causal variant-gene pairs are enriched for a number of functional annotations,
such as 5’'UTR, H3K4me3 (>10x enrichment compared to random variant-gene pairs) or distance
to TSS (>500x enrichment for variant-gene pairs with distance to TSS<100), but are not strongly
enriched for introns (0.966x), and are depleted for a histone mark related to heterochromatin state

(H3K9me3; 0.510x enrichment).

Building a predictor for putative causal eQTLs [EMS]

Next, we built a random forest classifier of whether a given variant is a putative causal eQTL for
a given gene using 807 binary functional annotations including cell-type-specific histone
modifications as well as non-cell type specific annotations from the baseline model*®, 5,313
Baseniji features corresponding to functional activity predictors?®?°, and distance to TSS. We then
scaled the output score of the random forest classifier to reflect the probability of observing a
positively labeled sample in a random draw from all the variant-gene pairs (Fig. 2a, Methods),
and named this scaled score the expression modifier score (EMS). We performed the above
process for 49 tissues in GTEx v8 individually, to obtain the EMS for variant-gene pairs in each
tissue. In other words, EMS is an estimated probability of a variant-gene pair being a putative
causal eQTL in a specific tissue, given the >6,000 functional annotations of the variant-gene pair.
For whole blood, the Basenji scores together had 55.0% of the feature importance for EMS, and
distance to TSS had feature importance of 43.1%. The binary functional annotations together had
less than 2% of importance (Fig. 2b, c¢). Analyses of other tissues also showed that (1) distance
to TSS is by far the most important single feature, (2) Baseniji scores individually explain a small
fraction of predictor performance but are collectively equally or more important than the distance
to TSS, and (3) compared to the distance to TSS and Baseniji scores, the feature importances of
both cell-type specific and non-specific binary functional annotations are much smaller
(Supplementary File 1).

Performance evaluation of EMS:

To evaluate the performance of EMS, we focused on whole blood and compared EMS (calculated
by leaving one chromosome out at a time to avoid overfitting) to other genomic scores?**"*°, EMS
achieved higher prediction accuracy than other genomic scores for putative causal eQTLs (top
bin enrichment for held-out putative causal eQTLs 18.3x vs. 15.1x for distance to TSS, the second
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best, Fisher's exact test p=3.33 - 10~*, Fig. 3a; AUPRC=0.884 vs. 0.856 when using distance to
TSS, the second best, Fig. S5; Methods). EMS was among the top-performing methods in
prioritizing experimentally suggested regulatory variants from reporter assay experiments'?*,
despite not varying distance to TSS, the most informative feature (Fig. 3b-c, Fig. S6, Methods).
Finally, EMS was also among the top-performing methods in prioritizing putative causal non-
coding variants for hematopoietic traits in the UKBB dataset (17.6x for EMS, best, vs 17.1x for
DeepSEA, the second best; Fig. 3d), although there are known differences between the genetic
architectures of cis-gene expression and complex traits*’. These results were consistent when
we performed the same set of analyses in different datasets: hematopoietic traits in BioBank
Japan*® (BBJ) and lymphoblastoid cell line (LCL) eQTL in Geuvadis '*?? (Fig. S7).

Functionally-informed fine-mapping using EMS

Since EMS is in units of estimated probability, one natural way to utilize EMS for better
prioritization of putative causal eQTLs is to use it as a prior for statistical fine-mapping. We
developed a simple algorithm for approximate functionally-informed fine-mapping and applied it
with EMS as a prior to obtain a functionally-informed posterior, denoted PIPeus, in whole blood
(Methods). As expected, we found that PIPeus identified more putative causal eQTLs than the
original PIP calculated with a uniform prior, denoted PIP.n. Specifically, 95.4% of variants with
PIPuni> 0.9 also had PIPems> 0.9 (2,152 out of 2,255), while only 33.8% of variants with PIPgus>
0.9 had PIPui> 0.9 (1,125 out of 3,277; Fig. 4a). Similarly, credible sets mostly decreased in size
(Fig. 4b, Supplementary File 2). Previous work in functionally-informed fine-mapping®* adjusted
the prior so that the maximum prior value did not exceed 100 times the minimum prior value. We
conducted a second round of functionally-informed fine-mapping with a similar adjustment of the
prior, identifying fewer additional putative causal eQTLs, as expected (1,125 with EMS as a prior
vs 269 with EMS adjusted to a max/min ratio of 100 as a prior; Fig. S8).

We evaluated the quality of PIPems by comparing it with PIPu.ir and a publicly available eQTL fine-
mapping result that uses distance to TSS as a prior'®® (denoted PIPpapg) in two ways (Other
methods for functionally-informed fine-mapping based on expectation maximization®***% would
be computationally intensive for a dataset this size, while the recently introduced PolyFun is
designed for complex traits.). First, PIPems had the highest enrichment level of reporter assay
QTLs*' (raQTLs) in the PIP>0.9 bin (16.8x vs 12.9x in PIPyn and 11.4x in PIPpap.c, Fisher’s exact
test p=1.65 - 1072 between PIPems and PlPpap.c; Fig. 4c). Second, complex trait causal non-
coding variants were comparably enriched in PIP>0.9 bins (Fig. §9). These results suggest that
PIPews is a valid measure for identifying putative causal cis-regulatory variants.

Applying functionally-informed PIP (PIPens) in gene prioritization across 95 traits

We next compared the utility of PIPems to PIPunit for complex trait gene prioritization, as in Weeks
et al**. To do this, we first calculated PIPgeus for 49 GTEXx tissues using EMS of matched tissues
as priors (Fig. $10, S11), resulting in a total of 20,913 additional eQTLs with PIPens>0.9 (Fig. 5,
S$12; Supplementary File 3). We then co-localized the eQTL signals with 95 UKBB phenotypes.
Using the gold standard gene set described in ref [44], PIPevs achieved higher precision and
higher recall than PPy, (Table. 1, Methods). Overall, PIPeus elucidated 310 candidate genes for
UKBB phenotypes that were not identified with PIPunir (Supplementary File 4). On the other hand,
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PIPbap.c showed lower precision than PIPens and PIPuni but higher recall (Table 1), suggesting
the value of future studies in investigating different priors in eQTL fine-mapping and the trade-off
between precision and recall for gene prioritization.

An example of PIPews resolving a credible set that is ambiguous with PIPu.ir is shown in Fig. 6.
Here, four variants upstream of CITED4 are in perfect LD in GTEX, giving PIPusif = 0.25 for all four
(Fig. $13). In UKBB, the four variants are also in high LD, with PIP for neutrophil count between
0.133 and 0.181 for all four. Thus, standard colocalization analysis does not identify CITED4 as
a neutrophil count-related gene (CLPP less than 4.53 - 1072 for all variants; Methods). However,
one of the four variants, rs35893233, creates a binding motif of SP/1, a transcription factor known
to be involved in myeloid differentiation*>“®, and presents epigenetic activity in myeloid-related
cell types, such as showing the highest baseniji score for cap analysis gene expression (CAGE)*’
activity in acute myeloid leukemia (AML). This variant has >25x greater EMS than the other three
variants (1.73-1073 vs 6.11-107°,1.00 - 1075 and 8.62 - 10, respectively), enabling PIPeys to
narrow down the credible set to the single variant (PIPems = 0.956 for rs35893233). Integrating
EMS into the co-localization analysis thus allows identification of CITED4 as a neutrophil count-
related gene (CLPP=0.173). Additional examples are described in Fig. S14.

Discussion

In this study we introduced EMS, a prediction of the probability that a variant has a cis-
regulatory effect on gene expression in a tissue. To derive EMS, we trained a random forest
model that takes >6,000 features. By analyzing the importance of each feature in the model, we
showed that the importance of direct epigenetic measurements such as binary histone mark
peak annotation is relatively limited once distance to TSS and deep learning-derived variant
effect scores (Baseniji) were incorporated. Taking whole blood as an example, we showed that
EMS accurately prioritizes putative causal eQTLs, reporter-assay active variants, and putative
complex trait causal non-coding variants. We provided a broader set of putative causal variants
(n=20,913 across 49 tissues) by using EMS as a prior to perform approximate functionally-
informed eQTL fine-mapping, and utilized EMS for co-localization analysis to identify 310
additional candidate genes for complex traits.

Evaluating predictors of non-coding variant function is complicated by the absence of gold
standard data. While EMS outperformed other scores for prioritizing putative causal eQTLs,
which we believe to be the closest to gold standard of existing large-scale base pair-resolution
data sets, it did not outperform existing scores in prioritizing reporter assay active variants or
putative complex trait causal non-coding variants. These latter two datasets, while valuable for
independent validation, do not fully recapitulate the challenge of prioritizing causal expression-
modifying variants in native context***%, On the other hand, we recognize that putative causal
eQTLs on a held-out chromosome do not constitute a fully independent validation set. As
genome editing technologies continue to improve, we look forward to future large-scale datasets
that will enable independent, gold standard evaluation and comparison of scores of non-coding
functions at base-pair resolution.
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Although our work refines our understanding of cis-gene regulatory mechanisms at single
variant resolution, it also presents limitations. First, there are biases in the way the training
variants are ascertained: the power to call a putative causal variant is affected by the
recombination rate and the allele frequency of the variant***°, and the GTEx cohort is highly
biased towards adult samples with European ancestry background. Second, although we utilize
over 6,000 features in EMS, larger sets of variant and gene annotations such as 3D
configuration of genome®'*2, constraint®*° or pathway enrichment** of genes could allow us to
further improve prediction accuracy. Third, we simplified the prediction task by thresholding PIP.
We formed a binary classification problem rather than a regression problem to build a predictor
due to a highly skewed distribution of PIP, and because of LD-induced biases in variants with
intermediate PIPs, but with larger sample size and a more principled hierarchical model, we
could potentially take advantage of variants with intermediate PIP as well.

In this work, we focused on the task of predicting putative causal eQTLs. Future work could use
a similar framework to predict putative causal splicing QTLs or other molecular QTLs for which
statistical fine-mapping has identified a large number of high-PIP variants. In addition, although
noisy effect size estimates from eQTL studies present a challenge, future work could explore
leveraging features correlated with the sign and magnitude of effect (Fig. S15) to estimate these
values. As recent studies have suggested, such approaches would also be valuable in
understanding the gene expression and complex trait regulation landscape in light of natural
selection®. Our approach of utilizing statistical fine-mapping of eQTLs to define training data,
assembling large number of features to train a predictor, and using the predictor output to expand
the set of putative causal eQTLs is highly generalizable. EMS for all variant-gene pairs in GTEx
v8 are publicly available for 49 tissues. Our study provides a powerful resource for deciphering
the mechanisms of non-coding variation.
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Figure 1. Examples of the enrichment of variant-gene pairs in whole blood eQTL PIP bins
for functional genomics features

Enrichments of variant-gene pairs in different PIP bins in binary functional features (non-tissue
specific, a; tissue-specific in peripheral blood mononuclear cells, b), deep learning-derived
regulatory activity (CAGE*’) prediction in Neutrophils (c), and distance to TSS (d) are shown.
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Figure 2. Schematic overview and feature importance of the Expression Modifier Score
(EMS)

a. EMS is built by (1) defining the training data based on fine-mapping of GTEx v8 data, (2)
annotating the variant-gene pairs with functional features, and (3) training a random forest
classifier. We do this for each tissue. b,c. Feature importance (Mean Decrease of Impurity = MDI*®)
for four different feature categories (b), and top features for each category (c). Baseline
annotations are non-tissue specific binary annotations from Finucane et af, and histone marks
are tissue-specific binary histone mark annotations from Roadmap®.
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Comparison of the different scoring methods in prioritizing putative causal whole blood eQTLs in
GTEXx v8 (a), massive parallel reporter assay (MPRA) saturation mutagenesis hits'? (b), reporter
assay QTLs*' (raQTLs) (c), and putative hematopoietic trait causal variants in UKBB (d) in
different score percentiles.
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Figure 4. Functionally-informed fine-mapping with EMS as a prior

a. Number of variant-gene pairs in different PIP bins using a uniform prior vs. EMS as a prior. b.
Number of variants in the 95% credible set (CS) identified by fine-mapping with uniform prior vs.
EMS as a prior. c. Enrichment of reporter assay QTLs (raQTLs) in different PIP bins (gray: publicly
available eQTL PIP using DAP-G®, blue: uniform prior, orange: EMS as a prior).
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Figure 6. An example of a putative causal eQTL prioritized by EMS

rs35873233, an upstream variant of CITED4, was prioritized by functionally-informed fine-
mapping using EMS as a prior. From top to the bottom: PIP with uniform prior (PIPu.i), EMS, PIP
with EMS as a prior (PIPews); Baseniji score for CAGE* activity in acute myeloid leukemia (AML),
H3K27me3 narrow peak in K562 cell line (red if the variant is on the peak, blue otherwise),
sequence context®® of the alternative allele aligned with the binding motif®' of SP/1, and PIP for
neutrophil count in UKBB*"* with uniform prior.
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Table 1. Precision and recall of the gene prioritization task for three different PIPs

method tool prior precision recall
PIPems SuSIE EMS 0.556 0.052
PIPunit SuSiE uniform 0.525 0.039
PIPpap-c DAP-G Distance to TSS | 0.500 0.078
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Methods:

The Expression Modifier Score (EMS)

Fine-mapping of GTEx v8 data is described in Ulirsch et. al°’ and is summarized in the
Supplementary Methods. We constructed a binary classification task by labeling the variant-
gene pairs with PIP>0.9 for both of the two fine-mapping methods (FINEMAP'® and SuSiE?) as
positive, and the ones with PIP<0.0001 for both methods as negative. Each variant-gene pair was
annotated with 6,121 features (distance to TSS annotated in the GTEx v8 dataset, 12 non-cell
type specific binary features from the LDSC baseline model®, 795 cell type specific binary features
from the Roadmap Epigenomics Consortium®, where variants falling in narrow peak are annotated
as 1, and others are 0, and 5,313 deep-learning derived cell type-specific features generated by
the Basenji model?®?°; Supplementary File 5). The 152 most predictive features were selected
based on different prediction accuracy metrics such as F1 measure and mean decrease of
impurity (MDI) for each feature (Supplementary Methods). A combination of random search
followed by grid search was performed to tune the hyperparameter for a random forest classifier
that maximizes the AUROC of the binary prediction in the held-out dataset (Supplementary File
6). Finally, for each prediction score bin, we calculated the fraction of positively labeled samples
and scaled the output score, to derive the EMS. Further details are described in the
Supplementary Methods.

|31

Performance evaluation of EMS

To evaluate the performance of EMS, for each chromosome, we trained EMS using all the other
chromosomes to avoid overfitting. CADD*’ v1.4 and GERP* scores were annotated using the
hail®” annotation database (https:/hail.is), and ncER*’ scores were downloaded from
https://github.com/TelentiLab/ncER_datasets. In order to annotate the DeepSEA%* v1.0 and
Fathmm?®® v2.3 non-coding scores, we mapped hg38 coordinates to hg19 using the hail liftover
function, removed variants that do not satisfy 1 to 1 matching, and followed their web instructions
(https://humanbase.readthedocs.io/en/latest/deepsea.html, and http://fathmm.bio
compute.org.uk) to score the variants. Insertion and deletions were not included in the Fathmm
scores. For DeepSEA, we calculated the e-values from the individual features, following ref [4].
We computed the area under the receiver operating characteristic curve and the precision recall
curve (Fig. S5) as well as enrichments of different variant-gene pairs or variants as described in
the next sections (Fig. 3).

Computation of enrichment

Enrichment of a specific set of variant-gene pairs (e.g. putative causal variants in GTEx whole
blood) in a score bin is defined as the probability of drawing a variant-gene pair in the set given
that the variant-gene is in the score bin, divided by the overall probability of drawing a variant-
gene pair in the set. The error bar denotes the standard error of the numerator, divided by the
denominator (we assumed the standard error of the denominator is small enough, since the total
number of variant-gene pairs is typically large; >100,000,000 for all the variant-gene pairs in GTEx
v8). When testing binary functional features as in Fig. 1, the score is the individual functional
feature, and the set is defined by the specific PIP bin.
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enrichment analysis of eQTL, complex trait, and reporter assay data

Saturation mutagenesis data'> was downloaded from the MPRA data access portal
(http://mpra.gs.washington.edu). An MPRA hit was defined as having a bonferroni-significant
association p-value (lower than 0.05 divided by the total number of variant-cell type pairs) for at
least one cell type, regardless of the effect size and direction. The raQTL data*' was downloaded
from https://osf.io/w5bza/wiki’/home/. EMS was re-scaled to have a constant distance to TSS (200
bp, roughly representing the scale of typical distance to TSS in plasmids'?), which is expected to
significantly decrease the performance of EMS compared to in native genome. Similarly, when
comparing EMS with other scores for enrichments of MPRA hits or raQTLs, distance to TSS was
not used for the comparison.

Fine-mapping of UKBB traits is described in Ulirsch et al*'. To focus on non-coding regulatory
effects, we annotated the variants in VEP®® v85 and filtered out coding and splice variants for the
UKBB dataset. For each (non-coding) variant, we calculated the maximum PIP over all the
hematopoietic traits, as well as the maximum Whole-Blood EMS over all the genes in the cis
window of the variant, since a variant can have different regulatory effect on different genes, for
different phenotypes. A variant was defined as putative hematopoietic trait-causal if it has SuSiE
PIP higher than 0.9 in any of the hematopoietic traits. In UKBB, we focused on the variants that
exist in the GTEx v8 dataset to reduce the calculation complexity.

For all four datasets, the variants (or variant-gene pairs in GTEX) other than putative causal ones
were randomly downsampled to achieve a total number of variants to be exactly 100,000, to
reduce the computational burden while keeping enough number of variants to observe statistical
significance. GTEx enrichment, MPRA hits enrichment, raQTL enrichment and UKBB enrichment
are thus defined as the enrichment of putative causal eQTLs, MPRA hits, raQTLs and putative
hematopoietic-trait causal variants in the downsampled dataset respectively.

Approximate functionally-informed fine-mapping using EMS
In the Sum of Single Effects (SuSIiE) model, for a given gene, the vector b of true SNP effects on
that gene is modeled as a sum of vectors with only one non-zero element each:

L
b = Eb,
=1

[lbillo = 1
where b and b; are vectors of length m and m is the number of variants in the locus. Intuitively,
each b; corresponds to the contribution of one causal variant. One output of SuSIE is a set of m-
vectors a4,..., a;, with a; (v) equal to the posterior probability that b;(v) # 0; i.e., that the [-th
causal variant is the variant v. Credible sets are computed for each [ from «;, and credible sets
that are not “pure” -- i.e., that contain a pair of variants with absolute correlation less than 0.5 --
are pruned out. The «; are also used to compute PIPs.

Our algorithm for approximate functionally-informed fine-mapping takes the approach of re-
weighting the posterior probability calculated using the uniform prior, analogous to ref [33], and
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proceeds as follows. For each gene and each tissue, we start with a;, ..., @, computed by SuSIiE
using the uniform prior. For each [, if a;corresponds to a pure credible set, we re-weight each
element of ; by the EMS of the corresponding variant, and we normalize so that the sum is equal
to 1, obtaining @&;. In other words, letting w,...w,, denote the EMSs for the m variants, we
define &,;(v) for the variant v to be

Wyt (U)

a(v) =
$=1 wya;(u)

if a; corresponds to a pure credible set; otherwise, we set @; = «;. We then use the updated
a,,.., @ to compute updated PIPs and credible sets as in the original SuSIE method. See
Supplementary Methods for further details.

Performance evaluation of PIPems and application to gene prioritization

PIP using distance to TSS as a prior (PIPpar.c) was downloaded from the GTEx portal
(https://gtexportal.org/). The raQTL data was downloaded from https://osf.io/w5bzg/wiki/home/,
and the negative variants were randomly downsampled to a total of 100,000 variants. For complex
trait causal non-coding variant prioritization, a threshold of PIP>0.1 was chosen to account for low
sample size. We defined a gene prioritization task using 49 tissues in GTEx v8 and 95 complex
traits in UKBB using the following steps (further details are described in Weeks et al.**):

Across all traits, we identified 1 Mb regions centered at unresolved credible sets (no coding variant
with PIP>0.1) that additionally contained at least one “gold standard gene” (protein-coding variant
with PIP>0.5) for the same trait. There were 2,897 such regions and 1,161 gold standard genes.
Our intuition is that the gene with the fine-mapped protein-coding variant is most likely to be the
primary causal signal, and that a nearby non-coding signal is more likely to act through this gene
(i.e. via regulation) than through a different gene.

For each gene-region pair, we defined the co-localization posterior probability (CLPP) for the gene
to be the maximum of the product of the eQTL PIP and trait PIP, across all tissues and all variants
in the unresolved credible set. A gene is prioritized if it has CLPP > 0.1 and it has the maximum
CLPP in its region. We compute the precision as the number of correctly prioritized genes (where
the prioritized gene is also the gene with the primary, protein-coding signal) divided by the total
number of prioritized genes. We compute recall as the number of correctly prioritized genes
divided by the total number of gold standard genes. The total number of candidate genes is
defined as the number of gene-trait pairs presenting CLPP>0.1 in at least one tissue and variant.
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