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Abstract 

 

The large majority of variants identified by GWAS are non-coding, motivating detailed 

characterization of the function of non-coding variants. Experimental methods to assess 

variants9 effect on gene expressions in native chromatin context via direct perturbation are low-

throughput. Existing high-throughput computational predictors thus have lacked large gold 

standard sets of regulatory variants for training and validation. Here, we leverage a set of 

14,807 putative causal eQTLs in humans obtained through statistical fine-mapping, and we use 

6,121 features to directly train a predictor of whether a variant modifies nearby gene expression. 

We call the resulting prediction the expression modifier score (EMS). We validate EMS by 

comparing its ability to prioritize functional variants with other major scores. We then use EMS 

as a prior for statistical fine-mapping of eQTLs to identify an additional 20,913 putatively causal 

eQTLs, and we incorporate EMS into co-localization analysis to identify 310 additional 

candidate genes across UK Biobank phenotypes.  

 

 

Introduction 

 

Although genome wide association studies (GWAS) have identified large numbers of loci 

associated with complex traits1,2, identifying the underlying biological mechanisms is often 

difficult. Two particular challenges are that (1) the majority of the associated variants are in non-

coding regions1, and (2) the association signals from GWAS studies typically contain a large 

number of variants in linkage disequilibrium (LD)3. Interpreting associations in GWAS to identify 

the underlying causal mechanisms requires an understanding of the function of non-coding 

variants at single variant resolution. 
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Many approaches to characterize non-coding variants exist. Large-scale consortium studies4,5 

have provided a map of functional and regulatory elements across the genome in different cell 

types that are enriched in various trait heritability6-10. Reporter assays have been powerful tools 

to test variant effects in cellular contexts, but typical high-throughput massive parallel reporter 

assays (MPRAs)11,12 do not represent the native chromatin context in the human genome. Direct 

introduction of single base pair variants in the native genome are still low-throughput13. RNA-

seq studies combined with genotyping or whole-genome sequencing have highlighted loci that 

are associated with gene expression in humans (eQTLs)14-16. However, as with GWAS, eQTL 

studies associate loci, rather than individual causal variants, to gene expression. 

 

Statistical fine-mapping3,17,18 is used to disentangle tightly correlated structures of the nearby 

genetic variants in LD to elucidate causal variant(s) in a locus identified by a genetic association 

study such as a GWAS on an eQTL study. For example, Benner et al19 uses stochastic search 

to enumerate and evaluate possible causal configurations, and Wang et al20 performs iterative 

Bayesian stepwise selection to prioritize causal variants. Such fine-mapping methods have 

been applied to identify putative causal eQTLs (i.e., variants that modify gene expression in 

native chromatin context) that are valuable both for understanding gene regulation and for 

interpreting GWAS signals at a locus15,16,21-24. However, fine-mapped eQTLs fall short of 

genome-wide characterization of non-coding function, as many variants fail to be identified 

because of LD or small effect size. 

 

While not providing the same level of confidence as genome editing or fine-mapped eQTLs, 

computational predictions are informative about variant function in native chromatin in human 

cells, and can be applied to every variant in the genome. For example, state-of-the-art 

computational methods predict the effects of non-coding genetic variants on the epigenetic 

landscape and on gene expression as a function of sequence context using deep neural 

networks25-30. These methods, rather than directly training on gold standard expression-

modifying variants, instead predict expression level or other outcomes as a function of 

sequence, and then score variants based on the difference in predicted expression between the 

two alleles. 

 

Here, we combine such computational predictions with the large-scale, though not 

comprehensive, gold standard data provided by statistical fine-mapping of eQTLs, with two 

goals: to improve on existing computational predictors, and to expand the set of confidently-

identified eQTLs. Toward the former goal, we combine an existing sequence-based predictor28 

with epigenetic data and other gene features into a single predictor, leveraging fine-mapped 

eQTLs31 as training data. Specifically, we directly train a predictor of whether a variant modifies 

expression using 14,807 putative expression-modifying variant-gene pairs in humans as training 

data and utilizing 6,121 features; we call the resulting prediction the expression modifier score 

(EMS). Toward the second goal, we use EMS as a prior for statistical fine-mapping of eQTLs 

(analogous to recently-performed functionally-informed fine-mapping of complex traits32-34), 

increasing fine-mapping resolution and identifying an additional 20,913 variants across 49 

tissues. Finally, using UK Biobank (UKBB)35 phenotypes as an example, we show that EMS can 
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be incorporated into co-localization analysis at scale, and we identify 310 additional candidate 

genes for UK Biobank phenotypes. 

 

Results 

 

Functional enrichment of fine-mapped eQTLs 

To define the set of putative expression-modifying variant-gene pairs, we analyzed results of 

recent fine-mapping of cis-eQTLs (+-1 Mb window) from GTEx v816,31, including the 14,807 

variant-gene pairs with posterior inclusion probability (PIP) greater than 0.9 according to two 

methods19,20 across 49 tissues (Fig. S1, S2). The size of our dataset allowed us to quantify the 

enrichment of putative causal variant-gene pairs for several functional annotations, including deep 

learning-derived variant effect scores from Basenji28,29 and distance to canonical transcription 

starting site (TSS), with high precision (Fig. 1, S3, S4). Our results are consistent with previous 

studies24,36: putative causal variant-gene pairs are enriched for a number of functional annotations, 

such as 59UTR, H3K4me3 (>10x enrichment compared to random variant-gene pairs) or distance 

to TSS (>500x enrichment for variant-gene pairs with distance to TSS<100), but are not strongly 

enriched for introns (0.966x), and are depleted for a histone mark related to heterochromatin state 

(H3K9me3; 0.510x enrichment). 

 

Building a predictor for putative causal eQTLs [EMS] 

Next, we built a random forest classifier of whether a given variant is a putative causal eQTL for 

a given gene using 807 binary functional annotations including cell-type-specific histone 

modifications as well as non-cell type specific annotations from the baseline model4-6, 5,313 

Basenji features corresponding to functional activity predictors28,29, and distance to TSS. We then 

scaled the output score of the random forest classifier to reflect the probability of observing a 

positively labeled sample in a random draw from all the variant-gene pairs (Fig. 2a, Methods), 

and named this scaled score the expression modifier score (EMS). We performed the above 

process for 49 tissues in GTEx v8 individually, to obtain the EMS for variant-gene pairs in each 

tissue. In other words, EMS is an estimated probability of a variant-gene pair being a putative 

causal eQTL in a specific tissue, given the >6,000 functional annotations of the variant-gene pair. 

For whole blood, the Basenji scores together had 55.0% of the feature importance for EMS, and 

distance to TSS had feature importance of 43.1%. The binary functional annotations together had 

less than 2% of importance (Fig. 2b, c). Analyses of other tissues also showed that (1) distance 

to TSS is by far the most important single feature, (2) Basenji scores individually explain a small 

fraction of predictor performance but are collectively equally or more important than the distance 

to TSS, and (3) compared to the distance to TSS and Basenji scores, the feature importances of 

both cell-type specific and non-specific binary functional annotations are much smaller 

(Supplementary File 1). 

 

Performance evaluation of EMS: 

To evaluate the performance of EMS, we focused on whole blood and compared EMS (calculated 

by leaving one chromosome out at a time to avoid overfitting) to other genomic scores26,37-40. EMS 

achieved higher prediction accuracy than other genomic scores for putative causal eQTLs (top 

bin enrichment for held-out putative causal eQTLs 18.3x vs. 15.1x for distance to TSS, the second 
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best, Fisher9s exact test p=3.33 ç 10!", Fig. 3a; AUPRC=0.884 vs. 0.856 when using distance to 

TSS, the second best, Fig. S5; Methods). EMS was among the top-performing methods in 

prioritizing experimentally suggested regulatory variants from reporter assay experiments12,41, 

despite not varying distance to TSS, the most informative feature (Fig. 3b-c, Fig. S6, Methods). 

Finally, EMS was also among the top-performing methods in prioritizing putative causal non-

coding variants for hematopoietic traits in the UKBB dataset (17.6x for EMS, best, vs 17.1x for 

DeepSEA, the second best; Fig. 3d), although there are known differences between the genetic 

architectures of cis-gene expression and complex traits42. These results were consistent when 

we performed the same set of analyses in different datasets: hematopoietic traits in BioBank 

Japan43 (BBJ) and lymphoblastoid cell line (LCL) eQTL in Geuvadis 14,22 (Fig. S7).  

 

Functionally-informed fine-mapping using EMS 

Since EMS is in units of estimated probability, one natural way to utilize EMS for better 

prioritization of putative causal eQTLs is to use it as a prior for statistical fine-mapping. We 

developed a simple algorithm for approximate functionally-informed fine-mapping and applied it 

with EMS as a prior to obtain a functionally-informed posterior, denoted PIPEMS, in whole blood 

(Methods). As expected, we found that PIPEMS identified more putative causal eQTLs than the 

original PIP calculated with a uniform prior, denoted PIPunif. Specifically, 95.4% of variants with 

PIPunif> 0.9 also had PIPEMS> 0.9 (2,152 out of 2,255), while only 33.8% of variants with PIPEMS>
0.9 had PIPunif> 0.9 (1,125 out of 3,277; Fig. 4a). Similarly, credible sets mostly decreased in size 

(Fig. 4b, Supplementary File 2). Previous work in functionally-informed fine-mapping34 adjusted 

the prior so that the maximum prior value did not exceed 100 times the minimum prior value. We 

conducted a second round of functionally-informed fine-mapping with a similar adjustment of the 

prior, identifying fewer additional putative causal eQTLs, as expected (1,125 with EMS as a prior 

vs 269 with EMS adjusted to a max/min ratio of 100 as a prior;  Fig. S8). 

 

We evaluated the quality of PIPEMS by comparing it with PIPunif and a publicly available eQTL fine-

mapping result that uses distance to TSS as a prior16,23 (denoted PIPDAP-G) in two ways (Other 

methods for functionally-informed fine-mapping based on expectation maximization32,33,36 would 

be computationally intensive for a dataset this size, while the recently introduced PolyFun34 is 

designed for complex traits.). First, PIPEMS had the highest enrichment level of reporter assay 

QTLs41 (raQTLs) in the PIP>0.9 bin (16.8x vs 12.9x in PIPunif and 11.4x in PIPDAP-G, Fisher9s exact 

test p=1.65 ç 10!#  between PIPEMS and PIPDAP-G; Fig. 4c). Second, complex trait causal non-

coding variants were comparably enriched in PIP>0.9 bins (Fig. S9). These results suggest that 

PIPEMS is a valid measure for identifying putative causal cis-regulatory variants. 

 

Applying functionally-informed PIP (PIPEMS) in gene prioritization across 95 traits 

We next compared the utility of PIPEMS to PIPunif for complex trait gene prioritization, as in Weeks 

et al44. To do this, we first calculated PIPEMS for 49 GTEx tissues using EMS of matched tissues 

as priors (Fig. S10, S11), resulting in a total of 20,913 additional eQTLs with PIPEMS>0.9 (Fig. 5, 

S12; Supplementary File 3). We then co-localized the eQTL signals with 95 UKBB phenotypes. 

Using the gold standard gene set described in ref [44], PIPEMS achieved higher precision and 

higher recall than PIPunif (Table. 1, Methods). Overall, PIPEMS elucidated 310 candidate genes for 

UKBB phenotypes that were not identified with PIPunif (Supplementary File 4). On the other hand, 
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PIPDAP-G showed lower precision than PIPEMS and PIPunif but higher recall (Table 1), suggesting 

the value of future studies in investigating different priors in eQTL fine-mapping and the trade-off 

between precision and recall for gene prioritization.  

 

An example of PIPEMS resolving a credible set that is ambiguous with PIPunif is shown in Fig. 6. 

Here, four variants upstream of CITED4 are in perfect LD in GTEx, giving PIPunif = 0.25 for all four 

(Fig. S13). In UKBB, the four variants are also in high LD, with PIP for neutrophil count between 

0.133 and 0.181 for all four. Thus, standard colocalization analysis does not identify CITED4 as 

a neutrophil count-related gene (CLPP less than 4.53 ç 10!# for all variants; Methods). However, 

one of the four variants, rs35893233, creates a binding motif of SPI1, a transcription factor known 

to be involved in myeloid differentiation45,46, and presents epigenetic activity in myeloid-related 

cell types, such as showing the highest basenji score for cap analysis gene expression (CAGE)47 

activity in acute myeloid leukemia (AML). This variant has >25x greater EMS than the other three 

variants (1.73 ç 10!$ vs 6.11 ç 10!%, 1.00 ç 10!%	and 8.62 ç 10!&, respectively), enabling PIPEMS to 

narrow down the credible set to the single variant (PIPEMS = 0.956 for rs35893233). Integrating 

EMS into the co-localization analysis thus allows identification of CITED4 as a neutrophil count-

related gene (CLPP=0.173). Additional examples are described in Fig. S14.  

 

Discussion 

 

In this study we introduced EMS, a prediction of the probability that a variant has a cis-

regulatory effect on gene expression in a tissue. To derive EMS, we trained a random forest 

model that takes >6,000 features. By analyzing the importance of each feature in the model, we 

showed that the importance of direct epigenetic measurements such as binary histone mark 

peak annotation is relatively limited once distance to TSS and deep learning-derived variant 

effect scores (Basenji) were incorporated. Taking whole blood as an example, we showed that 

EMS accurately prioritizes putative causal eQTLs, reporter-assay active variants, and putative 

complex trait causal non-coding variants. We provided a broader set of putative causal variants 

(n=20,913 across 49 tissues) by using EMS as a prior to perform approximate functionally-

informed eQTL fine-mapping, and utilized EMS for co-localization analysis to identify 310 

additional candidate genes for complex traits. 

 

Evaluating predictors of non-coding variant function is complicated by the absence of gold 

standard data. While EMS outperformed other scores for prioritizing putative causal eQTLs, 

which we believe to be the closest to gold standard of existing large-scale base pair-resolution 

data sets, it did not outperform existing scores in prioritizing reporter assay active variants or 

putative complex trait causal non-coding variants. These latter two datasets, while valuable for 

independent validation, do not fully recapitulate the challenge of prioritizing causal expression-

modifying variants in native context42,48. On the other hand, we recognize that putative causal 

eQTLs on a held-out chromosome do not constitute a fully independent validation set. As 

genome editing technologies continue to improve, we look forward to future large-scale datasets 

that will enable independent, gold standard evaluation and comparison of scores of non-coding 

functions at base-pair resolution. 
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Although our work refines our understanding of cis-gene regulatory mechanisms at single 

variant resolution, it also presents limitations. First, there are biases in the way the training 

variants are ascertained: the power to call a putative causal variant is affected by the 

recombination rate and the allele frequency of the variant49,50, and the GTEx cohort is highly 

biased towards adult samples with European ancestry background. Second, although we utilize 

over 6,000 features in EMS, larger sets of variant and gene annotations such as 3D 

configuration of genome51,52, constraint53-55 or pathway enrichment44 of genes could allow us to 

further improve prediction accuracy. Third, we simplified the prediction task by thresholding PIP. 

We formed a binary classification problem rather than a regression problem to build a predictor 

due to a highly skewed distribution of PIP, and because of LD-induced biases in variants with 

intermediate PIPs, but with larger sample size and a more principled hierarchical model, we 

could potentially take advantage of variants with intermediate PIP as well.   

 

In this work, we focused on the task of predicting putative causal eQTLs. Future work could use 

a similar framework to predict putative causal splicing QTLs or other molecular QTLs for which 

statistical fine-mapping has identified a large number of high-PIP variants. In addition, although 

noisy effect size estimates from eQTL studies present a challenge, future work could explore 

leveraging features correlated with the sign and magnitude of effect (Fig. S15) to estimate these 

values. As recent studies have suggested, such approaches would also be valuable in 

understanding the gene expression and complex trait regulation landscape in light of natural 

selection56. Our approach of utilizing statistical fine-mapping of eQTLs to define training data, 

assembling large number of features to train a predictor, and using the predictor output to expand 

the set of putative causal eQTLs is highly generalizable. EMS for all variant-gene pairs in GTEx 

v8 are publicly available for 49 tissues. Our study provides a powerful resource for deciphering 

the mechanisms of non-coding variation. 
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a                b 

 

c         d 

 
Figure 1. Examples of the enrichment of variant-gene pairs in whole blood eQTL PIP bins 

for functional genomics features  

Enrichments of variant-gene pairs in different PIP bins in binary functional features (non-tissue 

specific, a; tissue-specific in peripheral blood mononuclear cells, b), deep learning-derived 

regulatory activity (CAGE47) prediction in Neutrophils (c), and distance to TSS (d) are shown. 
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Figure 2. Schematic overview and feature importance of the Expression Modifier Score 

(EMS) 

a. EMS is built by (1) defining the training data based on fine-mapping of GTEx v8 data, (2) 

annotating the variant-gene pairs with functional features, and (3) training a random forest 

classifier. We do this for each tissue. b,c. Feature importance (Mean Decrease of Impurity = MDI59) 

for four different feature categories (b), and top features for each category (c). Baseline 

annotations are non-tissue specific binary annotations from Finucane et al6, and histone marks 

are tissue-specific binary histone mark annotations from Roadmap5.  
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Figure 3: Performance evaluation of EMS 

Comparison of the different scoring methods in prioritizing putative causal whole blood eQTLs in 

GTEx v8 (a), massive parallel reporter assay (MPRA) saturation mutagenesis hits12 (b), reporter 

assay QTLs41 (raQTLs) (c), and putative hematopoietic trait causal variants in UKBB (d) in 

different score percentiles.  
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Figure 4. Functionally-informed fine-mapping with EMS as a prior 

a. Number of variant-gene pairs in different PIP bins using a uniform prior vs. EMS as a prior. b. 

Number of variants in the 95% credible set (CS) identified by fine-mapping with uniform prior vs. 

EMS as a prior. c. Enrichment of reporter assay QTLs (raQTLs) in different PIP bins (gray: publicly 

available eQTL PIP using DAP-G23, blue: uniform prior, orange: EMS as a prior). 
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Figure 5. Additional putative causal eQTLs identified with functionally-informed fine-

mapping across 49 tissues 

The number of additional putative causal eQTLs (defined by PIPEMS>0.9 and PIPunif<0.9) for 

each tissue is shown in descending order. 
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Figure 6. An example of a putative causal eQTL prioritized by EMS 

rs35873233, an upstream variant of CITED4, was prioritized by functionally-informed fine-

mapping using EMS as a prior. From top to the bottom: PIP with uniform prior (PIPunif), EMS, PIP 

with EMS as a prior (PIPEMS); Basenji score for CAGE47 activity in acute myeloid leukemia (AML), 

H3K27me3 narrow peak in K562 cell line (red if the variant is on the peak, blue otherwise), 

sequence context60 of the alternative allele aligned with the binding motif61 of SPI1, and PIP for 

neutrophil count in UKBB31,35 with uniform prior. 
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Table 1. Precision and recall of the gene prioritization task for three different PIPs 

method tool prior precision recall 

PIPEMS SuSiE EMS 0.556 0.052 

PIPunif SuSiE uniform 0.525 0.039 

PIPDAP-G DAP-G Distance to TSS 0.500 0.078 
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Methods: 

 

The Expression Modifier Score (EMS) 

Fine-mapping of GTEx v8 data is described in Ulirsch et. al31 and is summarized in the 

Supplementary Methods. We constructed a binary classification task by labeling the variant-

gene pairs with PIP>0.9 for both of the two fine-mapping methods (FINEMAP19 and SuSiE20) as 

positive, and the ones with PIP<0.0001 for both methods as negative. Each variant-gene pair was 

annotated with 6,121 features (distance to TSS annotated in the GTEx v8 dataset, 12 non-cell 

type specific binary features from the LDSC baseline model6, 795 cell type specific binary features 

from the Roadmap Epigenomics Consortium5, where variants falling in narrow peak are annotated 

as 1, and others are 0, and 5,313 deep-learning derived cell type-specific features generated by 

the Basenji model28,29; Supplementary File 5). The 152 most predictive features were selected 

based on different prediction accuracy metrics such as F1 measure and mean decrease of 

impurity (MDI) for each feature (Supplementary Methods). A combination of random search 

followed by grid search was performed to tune the hyperparameter for a random forest classifier 

that maximizes the AUROC of the binary prediction in the held-out dataset (Supplementary File 

6). Finally, for each prediction score bin, we calculated the fraction of positively labeled samples 

and scaled the output score, to derive the EMS. Further details are described in the 

Supplementary Methods. 

 

Performance evaluation of EMS 

To evaluate the performance of EMS, for each chromosome, we trained EMS using all the other 

chromosomes to avoid overfitting. CADD37 v1.4 and GERP39 scores were annotated using the 

hail57 annotation database (https://hail.is), and ncER40 scores were downloaded from 

https://github.com/TelentiLab/ncER_datasets. In order to annotate the DeepSEA26 v1.0 and 

Fathmm38 v2.3 non-coding scores, we mapped hg38 coordinates to hg19 using the hail liftover 

function, removed variants that do not satisfy 1 to 1 matching, and followed their web instructions 

(https://humanbase.readthedocs.io/en/latest/deepsea.html, and http://fathmm.bio 

compute.org.uk) to score the variants. Insertion and deletions were not included in the Fathmm 

scores. For DeepSEA, we calculated the e-values from the individual features, following ref [4]. 

We computed the area under the receiver operating characteristic curve and the precision recall 

curve (Fig. S5) as well as enrichments of different variant-gene pairs or variants as described in 

the next sections (Fig. 3). 

 

Computation of enrichment 

Enrichment of a specific set of variant-gene pairs (e.g. putative causal variants in GTEx whole 

blood) in a score bin is defined as the probability of drawing a variant-gene pair in the set given 

that the variant-gene is in the score bin, divided by the overall probability of drawing a variant-

gene pair in the set. The error bar denotes the standard error of the numerator, divided by the 

denominator (we assumed the standard error of the denominator is small enough, since the total 

number of variant-gene pairs is typically large; >100,000,000 for all the variant-gene pairs in GTEx 

v8). When testing binary functional features as in Fig. 1, the score is the individual functional 

feature, and the set is defined by the specific PIP bin.  
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enrichment analysis of eQTL, complex trait, and reporter assay data 

Saturation mutagenesis data12 was downloaded from the MPRA data access portal 

(http://mpra.gs.washington.edu). An MPRA hit was defined as having a bonferroni-significant 

association p-value (lower than 0.05 divided by the total number of variant-cell type pairs) for at 

least one cell type, regardless of the effect size and direction. The raQTL data41 was downloaded 

from https://osf.io/w5bzq/wiki/home/. EMS was re-scaled to have a constant distance to TSS (200 

bp, roughly representing the scale of typical distance to TSS in plasmids12), which is expected to 

significantly decrease the performance of EMS compared to in native genome. Similarly, when 

comparing EMS with other scores for enrichments of MPRA hits or raQTLs, distance to TSS was 

not used for the comparison. 

 

Fine-mapping of UKBB traits is described in Ulirsch et al31. To focus on non-coding regulatory 

effects, we annotated the variants in VEP58 v85 and filtered out coding and splice variants for the 

UKBB dataset. For each (non-coding) variant, we calculated the maximum PIP over all the 

hematopoietic traits, as well as the maximum Whole-Blood EMS over all the genes in the cis 

window of the variant, since a variant can have different regulatory effect on different genes, for 

different phenotypes. A variant was defined as putative hematopoietic trait-causal if it has SuSiE 

PIP higher than 0.9 in any of the hematopoietic traits. In UKBB, we focused on the variants that 

exist in the GTEx v8 dataset to reduce the calculation complexity.  

 

For all four datasets, the variants (or variant-gene pairs in GTEx) other than putative causal ones 

were randomly downsampled to achieve a total number of variants to be exactly 100,000, to 

reduce the computational burden while keeping enough number of variants to observe statistical 

significance. GTEx enrichment, MPRA hits enrichment, raQTL enrichment and UKBB enrichment 

are thus defined as the enrichment of putative causal eQTLs, MPRA hits, raQTLs and putative 

hematopoietic-trait causal variants in the downsampled dataset respectively. 

 

 

Approximate functionally-informed fine-mapping using EMS 

In the Sum of Single Effects (SuSiE) model, for a given gene, the vector � of true SNP effects on 

that gene is modeled as a sum of vectors with only one non-zero element each: 

�	 = 	2�'
(

')*

 

||�'||+ 	= 	1 

where � and �' are vectors of length � and � is the number of variants in the locus. Intuitively, 

each �' corresponds to the contribution of one causal variant. One output of SuSiE is a set of �-

vectors �*, . . . , �( , with �((�) equal to the posterior probability that �'(�) b 0; i.e., that the �-th 

causal variant is the variant �. Credible sets are computed for each � from �', and credible sets 

that are not <pure= -- i.e., that contain a pair of variants with absolute correlation less than 0.5 -- 

are pruned out. The �' are also used to compute PIPs. 

 

Our algorithm for approximate functionally-informed fine-mapping takes the approach of re-

weighting the posterior probability calculated using the uniform prior, analogous to ref [33], and 
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proceeds as follows. For each gene and each tissue, we start with �*, . . . , �( computed by SuSiE 

using the uniform prior. For each �, if �'corresponds to a pure credible set, we re-weight each 

element of �' by the EMS of the corresponding variant, and we normalize so that the sum is equal 

to 1, obtaining 	�;' . In other words, letting �* ...�,  denote the EMSs for the �  variants, we 

define	�;'(�) for the variant � to be 

	�#!(�) 	=
�"�!(�)

3 �#�!(�)
$

#%&

 

if �'  corresponds to a pure credible set; otherwise, we set �;' = �' . We then use the updated 

	�;*, . . ., �;( to compute updated PIPs and credible sets as in the original SuSiE method. See 

Supplementary Methods for further details. 

 

Performance evaluation of PIPEMS and application to gene prioritization 

PIP using distance to TSS as a prior (PIPDAP-G) was downloaded from the GTEx portal 

(https://gtexportal.org/). The raQTL data was downloaded from https://osf.io/w5bzq/wiki/home/, 

and the negative variants were randomly downsampled to a total of 100,000 variants. For complex 

trait causal non-coding variant prioritization, a threshold of PIP>0.1 was chosen to account for low 

sample size. We defined a gene prioritization task using 49 tissues in GTEx v8 and 95 complex 

traits in UKBB using the following steps (further details are described in Weeks et al.44): 

 

Across all traits, we identified 1 Mb regions centered at unresolved credible sets (no coding variant 

with PIP>0.1) that additionally contained at least one <gold standard gene= (protein-coding variant 

with PIP>0.5) for the same trait. There were 2,897 such regions and 1,161 gold standard genes. 

Our intuition is that the gene with the fine-mapped protein-coding variant is most likely to be the 

primary causal signal, and that a nearby non-coding signal is more likely to act through this gene 

(i.e. via regulation) than through a different gene. 

 

For each gene-region pair, we defined the co-localization posterior probability (CLPP) for the gene 

to be the maximum of the product of the eQTL PIP and trait PIP, across all tissues and all variants 

in the unresolved credible set. A gene is prioritized if it has CLPP > 0.1 and it has the maximum 

CLPP in its region. We compute the precision as the number of correctly prioritized genes (where 

the prioritized gene is also the gene with the primary, protein-coding signal) divided by the total 

number of prioritized genes. We compute recall as the number of correctly prioritized genes 

divided by the total number of gold standard genes. The total number of candidate genes is 

defined as the number of gene-trait pairs presenting CLPP>0.1 in at least one tissue and variant. 

 

 

 

 

 

 

 

 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.10.20.347294doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.20.347294
http://creativecommons.org/licenses/by/4.0/


17 

References 

1. Maurano, M. T. et al. Systematic Localization of Common Disease-Associated Variation 

in Regulatory DNA. Science 337, 119031195 (2012). 

2. Paul, D. S., Soranzo, N. & Beck, S. Functional interpretation of non-coding sequence 

variation: Concepts and challenges. Bioessays 36, 1913199 (2014). 

3. Maller, J. B. et al. Bayesian refinement of association signals for 14 loci in 3 common 

diseases. Nat Genet 44, 129431301 (2012). 

4. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57374 

(2012). 

5. Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human 

epigenomes. Nature 518, 3173330 (2015). 

6. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide 

association summary statistics. Nat Genet 47, 122831235 (2015). 

7. Pickrell, J. K. Joint Analysis of Functional Genomic Data and Genome-wide Association 

Studies of 18 Human Traits. Am J Hum Genet 94, 5593573 (2014). 

8. Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. 

Nature 507, 4553461 (2014). 

9. Trynka, G. et al. Chromatin marks identify critical cell types for fine mapping complex trait 

variants. Nat Genet 45, 1243130 (2013). 

10. Trynka, G. & Raychaudhuri, S. Using chromatin marks to interpret and localize genetic 

associations to complex human traits and diseases. Current Opinion in Genetics & 

Development 23, 6353641 (2013). 

11. Tewhey, R. et al. Direct Identification of Hundreds of Expression-Modulating Variants 

using a Multiplexed Reporter Assay. Cell 165, 151931529 (2016). 

12. Kircher, M. et al. Saturation mutagenesis of twenty disease-associated regulatory 

elements at single base-pair resolution. Nature Communications 10, 3583 (2019). 

13. Tian, R. et al. Pitfalls in Single Clone CRISPR-Cas9 Mutagenesis to Fine-Map Regulatory 

Intervals. Genes (Basel) 11, (2020). 

14. Lappalainen, T. et al. Transcriptome and genome sequencing uncovers functional 

variation in humans. Nature 501, 5063511 (2013). 

15. Aguet, F. et al. Genetic effects on gene expression across human tissues. Nature 550, 

2043213 (2017). 

16. The GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across 

human tissues. Science 369, 131831330 (2020). 

17. Chen, W. et al. Fine Mapping Causal Variants with an Approximate Bayesian Method 

Using Marginal Test Statistics. Genetics 200, 7193736 (2015). 

18. Schaid, D. J., Chen, W. & Larson, N. B. From genome-wide associations to candidate 

causal variants by statistical fine-mapping. Nature Reviews Genetics 19, 4913504 

(2018). 

19. Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-

wide association studies. Bioinformatics 32, 149331501 (2016). 

20. Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A simple new approach to variable 

selection in regression, with application to genetic fine mapping. Journal of the Royal 

Statistical Society: Series B (Statistical Methodology) doi:10.1111/rssb.12388. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.10.20.347294doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.20.347294
http://creativecommons.org/licenses/by/4.0/


18 

21. Hormozdiari, F., Kostem, E., Kang, E. Y., Pasaniuc, B. & Eskin, E. Identifying causal 

variants at loci with multiple signals of association. Genetics 198, 4973508 (2014) 

22. Brown, A. A. et al. Predicting causal variants affecting expression by using whole-genome 

sequencing and RNA-seq from multiple human tissues. Nature Genetics 49, 174731751 

(2017). 

23. Wen, X., Lee, Y., Luca, F. & Pique-Regi, R. Efficient Integrative Multi-SNP Association 

Analysis via Deterministic Approximation of Posteriors. The American Journal of Human 

Genetics 98, 111431129 (2016). 

24. Wen, X., Luca, F. & Pique-Regi, R. Cross-Population Joint Analysis of eQTLs: Fine 

Mapping and Functional Annotation. PLOS Genetics 11, e1005176 (2015). 

25. Agarwal, V. & Shendure, J. Predicting mRNA Abundance Directly from Genomic 

Sequence Using Deep Convolutional Neural Networks. Cell Reports 31, 107663 (2020). 

26. Zhou, J. & Troyanskaya, O. G. Predicting effects of noncoding variants with deep 

learning3based sequence model. Nature Methods 12, 9313934 (2015). 

27. Zhou, J. et al. Deep learning sequence-based ab initio prediction of variant effects on 

expression and disease risk. Nat Genet 50, 117131179 (2018). 

28. Kelley, D. R. et al. Sequential regulatory activity prediction across chromosomes with 

convolutional neural networks. Genome Res. gr.227819.117 (2018) 

doi:10.1101/gr.227819.117. 

29. Kelley, D. R. Cross-species regulatory sequence activity prediction. PLOS Computational 

Biology 16, e1008050 (2020). 

30. Kopp, W., Monti, R., Tamburrini, A., Ohler, U. & Akalin, A. Deep learning for genomics 

using Janggu. Nature Communications 11, 3488 (2020). 

31. Ulirsch, J. et al. in prep 

32. Kichaev, G. et al. Integrating Functional Data to Prioritize Causal Variants in Statistical 

Fine-Mapping Studies. PLOS Genetics 10, e1004722 (2014). 

33. Jiang, J. et al. Functional annotation and Bayesian fine-mapping reveals candidate genes 

for important agronomic traits in Holstein bulls. Communications Biology 2, 1312 (2019). 

34. Weissbrod, O. et al. Functionally informed fine-mapping and polygenic localization of 

complex trait heritability. Nature Genetics 139 (2020) doi:10.1038/s41588-020-00735-5. 

35. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. 

Nature 562, 203 (2018). 

36. Chen, W., McDonnell, S. K., Thibodeau, S. N., Tillmans, L. S. & Schaid, D. J. Incorporating 

Functional Annotations for Fine-Mapping Causal Variants in a Bayesian Framework Using 

Summary Statistics. Genetics 204, 9333958 (2016). 

37. Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M. CADD: predicting the 

deleteriousness of variants throughout the human genome. Nucleic Acids Res 47, D8863

D894 (2019). 

38. Shihab, H. A. et al. Predicting the Functional, Molecular, and Phenotypic Consequences 

of Amino Acid Substitutions using Hidden Markov Models. Human Mutation 34, 57365 

(2013). 

39. Cooper, G. M. et al. Distribution and intensity of constraint in mammalian genomic 

sequence. Genome Res. 15, 9013913 (2005). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.10.20.347294doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.20.347294
http://creativecommons.org/licenses/by/4.0/


19 

40. Wells, A. et al. Ranking of non-coding pathogenic variants and putative essential regions 

of the human genome. Nat Commun 10, (2019). 

41. van Arensbergen, J. et al. High-throughput identification of human SNPs affecting 

regulatory element activity. Nature Genetics 51, 116031169 (2019). 

42. Yao, D. W., O9Connor, L. J., Price, A. L. & Gusev, A. Quantifying genetic effects on disease 

mediated by assayed gene expression levels. Nature Genetics 52, 6263633 (2020). 

43. Kanai, M. et al. Genetic analysis of quantitative traits in the Japanese population links cell 

types to complex human diseases. Nature Genetics 50, 3903400 (2018). 

44. Weeks, E. M. et al. Leveraging polygenic enrichments of gene features to predict genes 

underlying complex traits and diseases. medRxiv 2020.09.08.20190561 (2020) 

doi:10.1101/2020.09.08.20190561. 

45. Chen, H. et al. PU.1 (Spi-1) autoregulates its expression in myeloid cells. Oncogene 11, 

154931560 (1995). 

46. Burda, P., Laslo, P. & Stopka, T. The role of PU.1 and GATA-1 transcription factors during 

normal and leukemogenic hematopoiesis. Leukemia 24, 124931257 (2010). 

47. Takahashi, H., Kato, S., Murata, M. & Carninci, P. CAGE- Cap Analysis Gene Expression: 

a protocol for the detection of promoter and transcriptional networks. Methods Mol Biol 

786, 1813200 (2012). 

48. Inoue, F. et al. A systematic comparison reveals substantial differences in chromosomal 

versus episomal encoding of enhancer activity. Genome Res 27, 38352 (2017). 

49. LaPierre, N. et al. Identifying Causal Variants by Fine Mapping Across Multiple Studies. 

bioRxiv 2020.01.15.908517 (2020) doi:10.1101/2020.01.15.908517. 

50. Hutchinson, A., Watson, H. & Wallace, C. Improving the coverage of credible sets in 

Bayesian genetic fine-mapping. PLOS Computational Biology 16, e1007829 (2020). 

51. Kempfer, R. & Pombo, A. Methods for mapping 3D chromosome architecture. Nature 

Reviews Genetics 21, 2073226 (2020). 

52. Fudenberg, G., Kelley, D. R. & Pollard, K. S. Predicting 3D genome folding from DNA 

sequence with Akita. Nature Methods 17, 111131117 (2020). 

53. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 

2853291 (2016). 

54. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 

141,456 humans. Nature 581, 4343443 (2020). 

55. Iulio, J. di et al. The human noncoding genome defined by genetic diversity. Nature 

Genetics 50, 333 (2018). 

56. Schoech, A. P. et al. Negative short-range genomic autocorrelation of causal effects on 

human complex traits. bioRxiv 2020.09.23.310748 (2020) 

doi:10.1101/2020.09.23.310748. 

57. Hail Team. Hail 0.2. https://github.com/hail-is/hail 

58. McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biology 17, 122 (2016). 

59. Louppe, G. Understanding Random Forests: From Theory to Practice. arXiv:1407.7502 

[stat] (2015). 

60. Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: a sequence logo 

generator. Genome Res. 14, 118831190 (2004). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.10.20.347294doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.20.347294
http://creativecommons.org/licenses/by/4.0/


20 

61. Fornes, O. et al. JASPAR 2020: update of the open-access database of transcription 

factor binding profiles. Nucleic Acids Res 48, D873D92 (2020). 

 

 

Data availability  

EMS for 49 tissues are available at https://www.finucanelab.org/data.  

 

 

Code availability 

Code used in this manuscript is available at https://github.com/FinucaneLab/Expression_ 

Modifier_Score/ . 

 

 

Acknowledgements 

We thank Yakir Reshef, Jesse Engreitz, Elle Weeks, and all the members of Finucane lab for 

useful conversations. H.K.F. was funded by NIH grant DP5 OD024582 and by Eric and Wendy 

Schmidt. Q.S.W. and M.K. were supported by the Nakajima Foundation Scholarship. 

 

 

Contributions 

Q.S.W., D.M., and H.K.F. designed the study. Q.S.W., D.R.K., J.U., S.S. analyzed the data. 

Q.S.W. and H.K.F. wrote the manuscript with input from all authors. 

 

 

Competing interests  

D.G.M. is a founder with equity in Goldfinch Bio, and has received research support from 

AbbVie, Astellas, Biogen, BioMarin, Eisai, Merck, Pfizer, and Sanofi-Genzyme.  

 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.10.20.347294doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.20.347294
http://creativecommons.org/licenses/by/4.0/

