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ABSTRACT (248 words)

Biomarker-assisted preclinical/early detection and intervention in Alzheimer’s disease (AD)
may be the key to therapeutic breakthroughs. One of the presymptomatic hallmarks of AD is
the accumulation of beta-amyloid (AB) plaques in the human brain. However, current methods
to detect AP pathology are either invasive (lumbar puncture) or quite costly and not widely
available (amyloid PET). Our prior studies show that MRI-based hippocampal multivariate
morphometry statistics (MMS) are an effective neurodegenerative biomarker for preclinical
AD. Here we attempt to use MRI-MMS to make inferences regarding brain AP burden at the
individual subject level. As MMS data has a larger dimension than the sample size, we propose
a sparse coding algorithm, Patch Analysis-based Surface Correntropy-induced Sparse coding
and max-pooling (PASCS-MP), to generate a low-dimensional representation of hippocampal
morphometry for each subject. Then we apply these individual representations and a binary
random forest classifier to predict brain AP positivity for each person. We test our method in
two independent cohorts, 841 subjects from the Alzheimer's Disease Neuroimaging Initiative
(ADNI) and 260 subjects from the Open Access Series of Imaging Studies (OASIS).
Experimental results suggest that our proposed PASCS-MP method and MMS can discriminate
AP positivity in people with mild cognitive impairment (MCI) (Accuracy (ACC)=0.89 (ADNI))
and in cognitively unimpaired (CU) individuals (ACC=0.79 (ADNI) and ACC=0.81 (OASIS)).
These results compare favorably relative to measures derived from traditional algorithms,
including hippocampal volume and surface area, shape measures based on spherical harmonics
(SPHARM), and our prior Patch Analysis-based Surface Sparse-coding and Max-Pooling

(PASS-MP) methods.

Keywords:
Alzheimer’s disease, Hippocampal Multivariate Morphometry Statistics (MMS), Dictionary

and Correntropy-induced Sparse Coding, Beta-amyloid (Af) burden.
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1. INTRODUCTION

Alzheimer's disease (AD) is a major public health concern with the number of affected
individuals expected to triple, reaching 13.8 million by the year 2050 in the U.S. alone
(Brookmeyer et al., 2007). Current therapeutic failures in patients with dementia due to AD
may be due to interventions that are too late, or targets that are secondary effects and less
relevant to disease initiation and early progression (Hyman, 2011). Preclinical AD is now
viewed as a gradual process that begins many years before the onset of clinical symptoms.
Measuring brain biomarkers and intervening at preclinical AD stages are believed to improve
the probability of therapeutic success (Brookmeyer et al., 2007; Jack et al., 2016; Sperling et
al.,2011). In the A/T/N system - a recently proposed research framework for understanding the
biology of AD - the presence of abnormal levels of A in the brain or cerebrospinal fluid (CSF)
is used to define the presence of biological Alzheimer’s disease (Jack et al., 2016). An
imbalance between production and clearance of AP occurs early in AD and is typically followed
by the accumulation of tau protein tangles (another key pathological hallmark of AD) and
neurodegeneration detectable on brain magnetic resonance imaging (MRI) scans (Hardy and
Selkoe, 2002; Jack et al., 2016; Sperling et al., 2011). Brain A} pathology can be measured
using positron emission tomography (PET) with AB-sensitive radiotracers, or in CSF. Even so,
these invasive and expensive measurements are less attractive to subjects in preclinical stage

and PET scanning is also not as widely available as MRI.

Blood-based biomarkers (BBBs) are somewhat effective for inferring A burden in the
brain and CSF, and are less expensive than imaging (Bateman et al., 2019; Janelidze et al.,
2020; Palmgqvist et al., 2020). Even so, structural MRI biomarkers are largely accessible, cost-
effective, and widely used in AD imaging research as well as for clinical diagnosis.
Consequently, there is great research interest in using MRI biomarkers to predict brain Af
burden (Pekkala et al., 2020; Reisa A. Sperling et al., 2011; Tosun et al., 2016, 2014). Tosun et
al. (2014) combine MRI-based measures of cortical shape and cerebral blood flow to predict
AP status for early-MCI individuals and achieve an 83% accuracy with the LASSO approach

(least absolute shrinkage and selection operator). Pekkala et al. (2020) use brain MRI measures
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90  (volumes of the cortical gray matter, hippocampus, accumbens, thalamus and putamen) to infer
91 AP positivity in cognitively unimpaired (CU) subjects; they achieve a 0.70 area under the
92 receiver operator curve (AUC) with their Disease State Index (DSI) algorithm. Although brain
93  structural volumes are perhaps the most commonly used neuroimaging measures in AD
94 research (Cacciaglia et al., 2018; Crivello et al., 2010; Reiter et al., 2017), surface-based
95  subregional structure measures can offer advantages over volume measures as they contain
96  more detailed and patient-specific shape information (Apostolova et al., 2010; Ching et al.,
97 2020; Costafreda et al., 2011; Dong et al., 2020b, 2019; Morra et al., 2009; Qiu et al., 2009;

98 Shen et al., 2009; Styner et al., 2004; Paul M Thompson et al., 2004; Younes et al., 2014).

99 Our prior studies (Shi et al., 2014; Wang et al., 2011, 2010) propose novel multivariate
100 morphometry statistics (MMS) and apply them to analyze APOE4 dose effects on brain
101 structures of nondemented and CU groups from the ADNI cohort (Dong et al., 2019; Li et al.,
102 2016; Shi et al., 2014). Our proposed MMS approach uses multivariate tensor-based
103 morphometry (mTBM) to encode morphometry along the surface tangent direction and radial
104  distance (RD) to encode morphometry along the surface normal direction. This approach
105  performs better for detecting clinically-relevant group differences, relative to other TBM-based
106  methods including those using the Jacobian determinant, the largest and smallest eigenvalues
107  of the surface metric and the pair of eigenvalues of the Jacobian matrix (Wang et al., 2011,
108 2010). Our recent studies (Dong et al., 2020b, 2019) show that MMS outperforms volume
109  measures for detecting hippocampal and ventricular deformations in groups at high risk for AD
110  at the preclinical stage. Our other related work (Wu et al., 2018) has studied hippocampal
111 morphometry in cohorts consisting of AP positive AD patients (Ap+ AD) and AP negative
112 cognitively unimpaired subjects (Ap- CU) using the MMS measure. We find significant AR+
113 AD vs. AB- CU group differences, using Hotelling's 7° tests. As MMS have a high dimension,
114 itis not suitable for classification research directly. Therefore, we apply a Patch Analysis-based
115  Surface Sparse-coding and Max-Pooling (PASS-MP) system for a low-dimensional
116  representation of hippocampal MMS, and the binary group random forest classification of AR+

117  AD and AB- CU, achieving an accuracy rate of 90.48%. These studies show that MMS can
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118  distinguish clinical groups with different A status. We have also successfully applied PASS-
119  MP for MMS-based AD cognitive scores and autism spectrum disorder predictions (Dong et

120  al., 2020a; Fu et al., 2021).

121 In this work, we optimize the objective function of the PASS-MP system by introducing
122 correntropy measure (Gui et al., 2017) and propose an improved sparse coding, dubbed as the
123 Patch Analysis-based Surface Correntropy-induced Sparse-coding and max-pooling (PASCS-
124 MP) method. PASCS-MP does not only take the advantage of the computational efficiency of
125  PASS-MP in its new optimization strategy, but also effectively reduces the negative influence
126  of non-Gaussian noise in the data, which tremendously improves the prediction accuracy.
127  PASCS-MP is an unsupervised learning method to generate a low-dimensional representation
128  for each sample. We leverage the novel PASCS-MP method on MMS to further explore
129 hippocampal morphometry differences for the following contrasts at the individual subject level:
130 (1) AP positive individuals with mild cognitive impairment (Ap+ MCI) vs. AP negative
131  individuals with mild cognitive impairment (AB- MCI) from ADNI, and (2) AP positive
132 cognitively unimpaired subjects (Ap+ CU from ADNI and OASIS) versus AP negative
133 cognitively unimpaired subjects (Ap- CU from ADNI and OASIS). We apply the proposed
134 PASCS-MP and a binary random forest classifier to classify individuals with different A status.
135  We hypothesize that our MMS-based PASCS-MP may provide stronger statistical power
136  relative to traditional hippocampal volume, surface area and spherical harmonics (SPHARM)
137  based hippocampal shape measurements, in predicting subjects’ AP status. We expect that the
138  knowledge gained from this type of research will enrich our understanding of the relationship
139  between hippocampal atrophy and AD pathology, and thus help in assessing disease burden,

140  progression, and treatment effects.

141 2. SUBJECTS and METHODS
142 2.1 Subjects

143 Data for testing the performance of our proposed framework and comparable methods are

144 obtained from the ADNI database (Mueller et al., 2005, adni.loni.usc.edu) and the OASIS
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145  database (Marcus et al., 2010). ADNI is the result of efforts of many co-investigators from a
146 broad range of academic institutions and private corporations. Subjects are recruited from over
147 50 sites across the U.S. and Canada. The primary goal of ADNI is to test whether biological
148  markers, such as serial MRI and positron emission tomography (PET), combined with clinical
149 and neuropsychological assessments, can measure the progression of MCI and early AD.
150  Subjects originally recruited for ADNI-1 and ADNI-GO have the option to be followed in

151 ADNI-2. For up-to-date information, see www.adniinfo.org.

152 From the ADNI cohort, we analyze 841 age and sex-matched subjects with florbetapir PET
153  data and T1-weighted MR images, including 151 AD patients, 342 MCI and 348 asymptomatic
154  CU individuals. Among them, all the 151 AD patients, 171 people with MCI and 116 CU
155  individuals were AP positive. The remaining 171 MCI and 232 CU individuals were A
156  negative. From OASIS database, we analyze age-and-sex-matched 260 subjects with florbetapir

157  PET data and T1-weighted MR images, including 52 A positive CU and 208 AP negative CU.

158 Table 1. Demographic information for the subjects we study from the ADNI and OASIS cohorts.
Database Group Sex (M/F) Age MMSE Centiloid
AB+ AD (n=151) 79/72 74.6+7.8 22.6+3.1 86.3+27.4
ADNI AP+ MCI (n=171) 92/79 74.1+£7.4 277417 76.8+26.4
Coh AB- MCI (n=171) 92/79 74.0+£7.4 28.3£1.6 8.9+14.9
ohort
AB+ CU (n=116) 45/71 75.946.1 28.9+1.1 71.1£26.4
AB- CU (n=232) 90/142 75.746.3 29.0+1.3 7.5£14.5
OASIS AB+ CU (n=52) 22/30 70.5£7.5 29.0£1.3  71.4+209
Cohort AB- CU (n=208) 88/120 68.5+6.8 29.0+1.3 8.549.5
159 Values are mean + standard deviation where applicable.
160 In addition to each MRI scan, we also analyze the corresponding Mini-Mental State Exam

161 (MMSE) scores (Folstein et al., 1975) and centiloid measures (Navitsky et al., 2018).
162  Operationally, the positivity of AP biomarkers is defined using standard cut-offs, with some
163  efforts to reconcile differences among different AP radiotracers using a norming approach
164 called the centiloid scale (Klunk et al., 2015; Rowe et al., 2017). ADNI florbetapir PET data
165  are processed using AVID pipeline (Navitsky et al., 2018), and OASIS florbetapir PET data are

166  processed using PUP (Lee et al., 2013; Su et al., 2015). Both are converted to the centiloid
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167  scales according to their respective conversion equations (Navitsky et al., 2018; Su et al., 2019).
168 A centiloid cutoff of 37.1 is used to determine AP positivity, this threshold corresponds to
169  pathologically determined moderate to frequent plaques (Fleisher et al., 2011). Table 1 shows

170  demographic information we analyze from the ADNI and OASIS cohorts.

171 2.2 Proposed pipeline

172 This work develops the PASCS-MP framework to predict individual Ap burden (see Fig.
173 1 for the processing pipeline). In panel (1), hippocampal structures are segmented from
174 registered brain MR images with FIRST from the FMRIB Software Library (FSL) (Paquette et
175  al., 2017; Patenaude et al., 2011). Hippocampal surface meshes are constructed with the
176  marching cubes algorithm (Lorensen and Cline, 1987). In panel (2), hippocampal surfaces are
177  parameterized with the holomorphic flow segmentation method (Wang et al., 2007). After the
178  surface fluid registration algorithm, the hippocampal MMS features are calculated at each
179  surface point. We propose a PASCS-MP and classification system to refine and classify MMS
180  patches in individuals with different AP status. We randomly select patches on each
181  hippocampal surface and generate a sparse code for each patch with our novel PASCS. Next,
182  we adopt a max-pooling operation on the learned sparse codes of these patches to generate a
183  new representation (a vector) for each subject. Finally, we train binary random forest classifiers
184  on individual sparse codes in people with different AP status; we validate them with 10-fold

185  cross-validation. The whole system is publicly available'.

'http://gsl.lab.asu.edu/software/pass-mp/
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(1) Hippocampal structure extraction from MR images with FIRST
r 4

(a) MRl scans (b) Hippocampal Segmentation (c) Smoothed Surface

(2) Multivariate Morphometry Statistics and our proposed machine learning system
involving sparse coding and random forest methods to classify A8+ and A8- samples
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Fig. 1. System pipeline. Panel (1) shows hippocampal surfaces generated from brain MRI scans. In
panel (2), surface-based Multivariate Morphometry Statistics (MMS) are calculated after fluid
registration of surface coordinates across subjects. MMS is a 4 X 1 vector on each vertex, including
radial distance (scalar) and multivariate tensor-based morphometry (3 X 1 vector). We randomly
select patches on each hippocampal surface and generate a sparse code for each patch with our novel
Patch Analysis-based Surface Correntropy-induced Sparse-coding (PASCS) method. Next, we apply
the max pooling operation to the learned sparse codes to generate a new representation (a vector) for
each subject. Finally, we train binary random forest classifiers on these representations and validate

them with 10-fold cross-validation.

186
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187  2.2.1 Image Processing

188 Firstly, we use FIRST (FMRIB’s Integrated Registration and Segmentation Tool)
189  (Patenaude et al., 2011) to segment the original MRI data and map the hippocampus
190  substructure. After obtaining a binary segmentation of the hippocampus, we use a topology-
191  preserving level set method (Han et al., 2003) to build surface models. Based on that, the
192 marching cubes algorithm (Lorensen and Cline, 1987) is applied to construct triangular surface
193 meshes. Then, to reduce the noise from MR image scanning and to overcome partial volume
194 effects, surface smoothing is applied consistently to all surfaces. Our surface smoothing process
195  consists of mesh simplification using progressive meshes (Hoppe, 1996) and mesh refinement
196 by the Loop subdivision surface method (Loop, 1987). Similar procedures adopted in a number
197  of our prior studies (Colom et al., 2013; Luders et al., 2013; Monje et al., 2013; Shi et al., 2015,
198  2013b, 2013a; Wang et al., 2012, 2010) have shown that the smoothed meshes are accurate

199  approximations to the original surfaces, with a higher signal-to-noise ratio (SNR).

200 To facilitate hippocampal shape analysis, we generate a conformal grid (150 X 100) on
201  each surface, which is used as a canonical space for surface registration. On each hippocampal
202 surface, we compute its conformal grid with a holomorphic 1-form basis (Wang et al., 2010;
203  Wang et al., 2007). We adopt surface conformal representation (Shi et al., 2015, 2013a) to
204  obtain surface geometric features for automatic surface registration. This consists of the
205  conformal factor and mean curvature, encoding both intrinsic surface structure and information
206  on its 3D embedding. After we compute these two local features at each surface point, we
207  compute their summation and then linearly scale the dynamic range of the summation into the
208  range 0-255, to obtain a feature image for the surface. We further register each hippocampal
209  surface to a common template surface. With surface conformal parameterization and conformal
210  representation, we generalize the well-studied image fluid registration algorithm (Bro-Nielsen
211 and Gramkow, 1996; Agostino et al., 2003) to general surfaces. Furthermore, most of the image
212 registration algorithms in the literature are not symmetric, i.e., the correspondences between
213 the two images depending on which image is assigned as the deforming image and which is the

214 non-deforming target image. An asymmetric algorithm can be problematic as it tends to
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215  penalize the expansion of image regions more than shrinkage (Rey et al., 2002). Thus, in our
216  system, we further extend the surface fluid registration method to an inverse-consistent
217  framework (Leow et al., 2005). The obtained surface registration is diffeomorphic. For details

218 of our inverse-consistent surface fluid registration method, we refer to (Shi et al., 2013a).

219  2.2.2 Surface-based Morphometry Feature Extraction

220 After parameterization and registration, we establish a one-to-one correspondence map
221  between hippocampal surfaces. This makes it effective for us to compare and analyze surface
222 data. Besides, each surface has the same number of vertices (150 X 100) as shown in panel 2
223 of Fig. 1. The intersection of the red curve and the blue curve is a surface vertex, and at each
224 vertex, we adopt two features, the radial distance (RD) and the surface metric tensor used in
225 multivariate tensor-based morphometry (mTBM). The RD (a scalar at each vertex) represents
226  the thickness of the shape at each vertex to the medical axis (Pizer et al., 1999; Thompson et
227  al., 2004), this reflects the surface differences along the surface normal directions. The medial
228  axis is determined by the geometric center of the isoparametric curve on the computed
229  conformal grid (Wang et al., 2011). The axis is perpendicular to the isoparametric curve, so the
230 thickness can be easily calculated as the Euclidean distance between the core and the vertex on
231  the curve. The mTBM statistics (a 3 X 1 vector at each vertex) have been frequently studied
232 inour prior work (Shi et al., 2015, 2013b; Wang et al., 2010, 2009). They measure local surface
233 deformation along the surface tangent plane and show improved signal detection sensitivity
234 relative to more standard tensor-based morphometry (TBM) measures computed as the
235  determinant of the Jacobian matrix (Wang et al., 2013). RD and mTBM jointly form a new
236  feature, known as the surface multivariate morphometry statistics (MMS). Therefore, MMS is
237 a4 X1 vector at each vertex. The surface of the hippocampus in each brain hemisphere has

238 15,000 vertices, so the feature dimensionality for each hippocampus in each subject is 60,000.

239  2.2.3 Surface Feature Dimensionality Reduction

240 The above mentioned vertex-wise surface morphometry feature, MMS, is a high-fidelity

241 measure to describe the local deformation of the surface and can provide detailed localization
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242 and visualization of regional atrophy or expansion (Yao et al., 2018) and development
243 (Thompson et al., 2000). However, the high dimensionality of such features is likely to cause
244 problems for classification. Feature reduction methods proposed by (Davatzikos et al., 2008;
245  Sun et al., 2009) may ignore the intrinsic properties of a structure’s regional morphometry.
246  Therefore, we introduce the following feature reduction method for the vertex-wise surface

247  morphometry features.

248 The surface MMS feature dimension is typically much larger than the number of subjects,
249  i.e., the so-called high dimension-small sample problem. To extract useful surface features and
250  reduce the dimension before making predictions, this work first randomly generates square
251  windows on each surface to obtain a collection of small image patches with different amounts
252 of overlap. In our prior AD studies (Wu et al., 2018; Zhang et al., 2016a, 2016b), we discuss
253  the most suitable patch size and number. Therefore, in this work, we adopt the same optimal
254  experimental settings, as 1,008 patches (patch size=10 X 10 vertices) for each subject (504
255  patches for each side of the hippocampal surface). As these patches are allowed to overlap, a
256  vertex may be contained in several patches. The zoomed-in window in subfigure (b) of panel
257  (2) in Fig.1 shows overlapping areas on selected patches. After that, we use the technique of
258  sparse coding and dictionary learning (Mairal et al., 2009) to learn meaningful features.
259  Dictionary learning has been successful in many image processing tasks as it can concisely
260  model natural image patches. In this work, we propose a novel sparse coding and dictionary
261  learning method with an /;,-regularized correntropy loss function named Correntropy-induced
262 Sparse-coding (CS), which is expected to improve the computational efficiency compared to
263  Stochastic Coordinate Coding (SCC) (Lin et al., 2014). Formally speaking, correntropy is a
264  generalized similarity measure between two scalar random variables U and V, which is defined
265 by V,(U,V)=EX,(U,V). Here, X, is a Gaussian kernel given by X, (U,V) =
266  exp {—(u — v)?/0?} with the scale parameter o > 0, (u-v) being a realization of (U, V)
267  (Fenget al., 2015; Gui et al., 2017). Utilizing the correntropy measure as a loss function will

268  reduce the negative influence of non-Gaussian noise in the data.

269 Classical dictionary learning techniques (Lee et al., 2007; Olshausen and Field, 1997)


https://doi.org/10.1101/2020.10.16.343137
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.16.343137; this version posted February 19, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

270  consider a finite training set of feature maps, X = (xq,x5, ..., xp) in RP*™ Inour study, X is
271  the set of MMS features from n surface patches of all the samples. All the MMS features on
272  each surface patch, x;,isreshapedtoa p-dimensional vector. And we desire to generate a new
273 set of sparse codes, Z = (24,23, ..., Z,) in R™™ for these features. Therefore, we aim to

274  optimize the empirical cost function as Eq. (1).
275 fD,z;) & ¥y Ux;, D, z) (1

276  where D € RP*™ is the dictionary and z; € R™ is the sparse code of each feature vector.
277  l(x;, D, z;) is the loss function that measures how well the dictionary D and the sparse code
278  z; can represent the feature vector x;. Then, x; can be approximated by x; = Dz;. In this
279  way, we convert the p-dimensional feature vector, x;, to a m-dimensional sparse code, z;,
280  where m is the dimensionality of the sparse code and the dimensionality could be arbitrary. In
281  this work, we introduce the correntropy measure (Gui et al., 2017) to the loss function and

282  define the [;-sparse coding optimization problem as Eq. (2)
1 1D z;—xll3
283 ming S7L exp (=) + A Nz, 2)

284  where A is the regularization parameter, o is the kernel size that controls all properties of
285  correntropy. ||-||, and ||-|| are the l,-norm and [;-norm and exp() represents the exponential
286  function. The first part of the loss function measures the degree of the image patches’ goodness
287  and the correntropy may help remove outliers. Meanwhile, the second part is well known as the
288 I penalty (Fu, 1998) that can yield a sparse solution for z; and select robust and informative
289  features. Specifically, there are m columns (atoms) in the dictionary D and each atom is d; €
290 RP,j=1,2,..,m.Toavoid D from being arbitrarily large and leading to arbitrary scaling of
291  the sparse codes, we constrain each [,-norm of each atom in the dictionary no larger than one.

292 We will let C become the convex set of matrices verifying the constraint as Eq. (3).
293 C2{DeRP™s.t.Vj=12,..,md d; <1} (3)

294 Note that, the empirical problem cost f(D, z;) is not convex when we jointly consider the

295  dictionary D and the coefficients Z. But the function is convex concerning each of the two
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296  variables, D, and Z, when the other one is fixed. Since it takes much time to solve D and Z
297  when dealing with large-scale data sets and a large-size dictionary, we adopt the framework in
298  the stochastic coordinate coding (SCC) algorithm (Lin et al., 2014), which can dramatically

299  reduce the computational cost of the sparse coding, while keeping a comparable performance.

300 To solve this optimization problem, we reformulate the first part of the equation by the
301  half-quadratic technique (Nikolova and Ng, 2006) and then the objective can be solved as the

302  minimization problem Eq.(4):

]2
303 ming ¥ hillDz; — 6113 + AR llzilly, by = exp (- 1222202) (4

D,z; o
304  Here the auxiliary variable, h;, will be updated in each update iteration. At each iteration, we
305 update D and Z alternately, which means we firstly fix D and update the sparse code Z
306  with coordinated descent (CD) and then fix Z to update the dictionary D via stochastic

307  gradient descent (SGD).

308 As our optimization method is stochastic, we only update the sparse code and dictionary
309  with only one signal for each iteration. In the following paragraphs, we will discuss the
310  optimization in one iteration with only one signal. If a signal, x = (x1,%y,...,X,) T € RP, is
311  given, we first update its corresponding sparse code, z = (z,2y,...,2y), via CD. Let z
312  denote the [-th entry of z and dj; represents the k-th item of d;. d; is the [-th
313 atom/column of the dictionary D. Then, we can calculate the partial derivative of z; in the

314  first part of the function, f (D, z;), as Eq. (5)

315 0 0.2y =L hipz— x|z = th d ( Zmd )
6zlc ) Z = 92,2 z—Xll2 = oy L Xk - krZr

p m
316 = —hz dkl (xk - Z dkTZT‘ - dklzl)
k=1 r+l
14 m 14
317 = —hz dkl (xk - z dkTZT> + th z (dkl)z
k=1 r#l k=1

318 =—-p+ thUl (5)

319 where p; = h¥h_, di (o — X% drzr), v; = Yh_;(d)? and h is the auxiliary variable

320 for the signal. Since we normalize the atom, d;, in each iteration, v; can be ignored. Then, we
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321  compute the subdifferential of the lasso loss function and equate it to zero to find the optimal

322 solution as follows:
323 2 £D,2) =2 c(D,7) + 2 Allzlly = —p; + hzv, + 2= Allzll, = 0 6
azlf 2) =5, ¢, 2) + - Allzlly = —pu+ hzu + - Allzll = (6)

324 Then, according to the derivative of the /;-norm, we can have the following equations.

—,Dl+thUl—A:0 lel<0
325 —pl—ASOS_pl‘Fﬂ.lel:O (7)
_pl+thUl+/‘{:0 lel>0

326  Finally, we can get the soft thresholding function as:

pit+a

"o, forp, <-4

327 z = 0 for —A<p <4 (8)
pi—A
hor forp, > A

328  After we update the sparse code, we propose the following strategy to accelerate the
329  convergence for updating the dictionary D. The atom, d; will stay unchanged if z; is zero
330  since V4 = h(Dz — x)z; = 0. Otherwise, as shown in Fig. 2, we can update the [-th atom of
331  the dictionary D as d; < d; —yh(Dz —x)z;. y; is the learning rate provided by an
332  approximation of the Hessian: R « R + zz” and y; is givenby 1/ry;, where 1 is the item
333 at the [-th row and [-th column of the Hessian matrix R. The pseudo-code of the model was

334 shown in Alg. 1, dubbed as PASCS.
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Alg. 1 Patch Analysis-based Surface Correntropy-induced Sparse-coding

Require: Data set X = (x4, X3, ..., X,) in RP*"
Ensure: Dictionary D € RP*™ and sparse codes Z = (24, Z3, ..., Z,) € R™"
Initialize: DY1,R=0,z) =0,h? =1,i=1,..,n

l:for t = 1 to T do

2: fori = 1 to n do
3: Get an image patch x; from X.
4: Update z} via coordinate descent:
z{ « CD(x;, D, z{™Y).
5: Update Hessian matrix and the learning rate:
R<R+z{(z) vy =1/ry.
6: Update the support of the dictionary via SGD for non-zero entry zf’l (and

normalize it):
i+1t it it t t
d;"" < dy” —yyhi(D""z; — x;)z;;.

7: Update auxiliary variable h;:
h; = exp (— | D¥*zt — x|, /0?).

8: If i = n, Then DVt+1 = pnt
9: end for
10: end for

Output: D = D™* and z; =z} for i=1,..,n

— (1) cp

. (1) co —_—

Non-zero entries|

(2) sGD
—

Dictionary D"t Dictionary p*1*

Fig. 2. Illustration of one iteration of the proposed Patch Analysis-based Surface Correntropy-
induced Sparse-coding (PASCS) algorithm. The input is many 10 x 10 patches on each surface based
on our multivariate morphometry statistics (MMS). With an image patch x;, PASCS performs one
step of coordinate descent (CD) to find the support and the sparse code. Meanwhile, PASCS performs
a few steps of CD on supports (non-zero entries) to obtain a new sparse code zF. Then, PASCS
updates the supports (green boxes in the figure) of the dictionary by stochastic gradient descent

(SGD) to obtain a new dictionary D'*t. Here, t represents the 7-th epoch; i represents the i-th patch.
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336  2.2.4 Pooling and Classification

337 After we get the sparse code (the dimension is m) for each patch, the dimensionality of
338  sparse codes for each subject is still too large for classification, which is m X 1008. Therefore,
339  we apply Max-pooling to reduce the feature dimensionality for each subject. Max-pooling
340  (Boureau et al., 2010) is a way of taking the most responsive node of a given region of interest
341 and serves as an important layer in the convolutional neural network architecture. In this work,
342 we compute the maximum value of a particular feature over all sparse codes of a subject and
343 generate a new representation for each subject, which is an m-dimensional vector. These
344  summary representations are much lower in dimension, compared to using all the extracted

345  surface patch features; this can improve results generalizability via less over-fitting.

346 With these dimension-reduced features, we choose the random forest algorithm (Liaw and
347  Wiener, 2002) for the binary classification. Random forests are a combination of tree predictors
348  such that each tree depends on the values of a random vector sampled independently and with
349  the same distribution for all trees in the forest. This algorithm adopts a learning process called
350  feature bagging. In this process, we select a random subset of the features several times and
351  then train a decision tree for each subset. If some features are strong predictors of the response,
352  they will be selected in many decision trees and this makes them correlated. In comparison with
353 decision trees, random forests have the same bias but lower variance, which means they can
354  overcome the drawback of overfitting caused by a small data set. For our sparse surface
355  features, when the size of the training set becomes small, diversification becomes more subtle,
356  and the method can better detect these subtle differences. In this project, we use the random
357  forest classifier in the scikit-learn package (https://scikit-learn.org/) with the default settings.
358  Besides, under the imbalanced-data condition (such as 116 Ap+ CU and 232 AB- CU in the
359  ADNI data set), the classifier tends to classify all the training data into the major class, as it
360  aims to maximize training accuracy. Therefore, we adopt random undersampling (Dubey et al.,
361  2014) to balance the numbers of training subjects in the two classes. All the experiments in this

362  work use the same setups for the random forest classifier and random undersampling.
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363 2.3 Performance Evaluation Protocol

364 Before using hippocampal MMS features for AP status classification, we need to apply
365 PASCS-MP to extract sparse codes from these high dimensional MMS features. The
366  performance of PASCS-MP has a close relationship to four key parameters: the patch size, the
367  dimensionality of the learned sparse coding, the regularization parameter for the [;-norm (1),
368 and the kernel size (o) in the exponential function (see Eq.(2)). Patch-based analysis has been
369  widely used for image segmentation and classification (Kao et al., 2020). Leveraging patches
370  in our MMS can preserve well the properties of the regional morphometry of the hippocampal
371  surface since the vertices that carry strong classification power are always clustered on the
372  surface and a set of such vertices typically has a stronger classification ability compared to
373  using just a single vertex. However, the size of the set of such vertices is unknown. Therefore,
374  we select the vertices by randomly selecting the same number of square patches with different
375  sizes and compared the performance of the final classification accuracy for the different patch
376  sizes. The dimensionality of the learned sparse coding (m) is also the dimensionality of the
377  representation for each subject. The model might miss some significant information if the
378  dimensionality is too low. Also, the representations will contain too much redundant
379  information when the dimensionality is too large. The regularization parameter for the /;-norm
380  (A) will control the sparsity of the learned sparse codes. A suitable regularization parameter will
381 select significant features meanwhile reducing noise. The kernel size in the exponential
382  function controls all properties of correntropy. Correntropy is directly related to the probability
383  of how similar two random variables are in a neighborhood of the joint space controlled by the
384  kernel bandwidth, i.e., the kernel bandwidth acts as a zoom lens, controlling the observation
385  window over which similarity is assessed. This adjustable window provides an effective

386  mechanism to eliminate the detrimental effect of outliers (Liu et al., 2007).

387 Thus, we adopt 10-fold cross-validation to evaluate the classification accuracy on another
388  dataset from ADNI 2 with a series of key parameter candidates and select the optimal parameter
389  setups. The detailed information about the dataset and the key parameter candidates will be

390  introduced in next section. For the 10-fold cross-validation, we randomly shuffle and split the
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391  dataset into ten groups. We take one group as the test data set and use the remaining groups to
392 train a model. Then, the candidate model is evaluated using the test data. In this way, we can
393  getapredicted class label for all the samples. Then, the output of each classification experiment
394 is compared to the ground truth, and the accuracy is computed to indicate how many class labels
395  are correctly identified. The key parameters with the highest classification accuracies are

396  selected.

397 Once we get an optimized PASCS-MP model, we can compare the performances of MMS,
398  volume, and surface area measurements for classifying individuals of different AP status. We
399  use the volume from the left and right hippocampi (i.e., hippocampi in each brain hemisphere)
400  as two features to train the classifier instead of adding them together. The same classification
401 strategy is applied to surface areas from both sides. Moreover, we will compare the
402  classification performances based on PASCS-MP, PASS-MP (Zhang et al., 2017b, 2016b) and
403  SPHARM (Chung et al., 2008, 2007; Shi et al., 2013a). We evaluate these classification
404  performances with the same 10-fold cross-validation method. Four performance measures: the
405  Accuracy (ACC), Balanced Accuracy (B-ACC), Specificity (SPE) and Sensitivity (SEN) are
406  computed (Bhagwat et al., 2018; Hinrichs et al., 2011; Ritter et al., 2015; Salvatore et al., 2018;
407  Zhang et al., 2017b). We also compute the area-under-the-curve (AUC) of the receiver
408  operating characteristic (ROC) (Bhagwat et al., 2018; Fan et al., 2008; La Joie et al., 2013;
409  Nakamura et al., 2018). By considering these performance measures, we expect the proposed
410  system integrating MMS, PASCS-MP and the binary random forest classifier to perform better

411  than similar classification strategies for identifying individuals with different A status.

412 3. RESULTS
413 3.1 Key Parameter Estimations for the PASCS-MP Method

414 To apply PASCS-MP method on hippocampal MMS, four parameters need to be
415  empirically assigned, namely: the patch size, the dimensionality of the learned sparse coding,
416  the regularization parameter for the [;-norm (X) and the kernel size (¢) in the exponential

417  function. Selecting suitable parameters will lead to superior performance in refining lower
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418  dimensional MMS representations related to AD pathology. With 10-fold cross-validation,
419  these key parameters are evaluated from PASCS-MP based classification performance on 109
420  AD patients and 180 CU subjects of ADNI-2 cohort. To avoid data leakage, these subjects are

421  not used in the following study of A burden classification.

422 In Fig. 3, we illustrate the classification accuracy for different values of each parameter.
423  When we evaluate one parameter, we fix the rest parameters. For example, in the first bar chart
424 in Fig. 3, we try different patch sizes including 5x5,10x10,15x15,20x20 and 30x30 while we
425  fix the sparse code dimensionality as to 1800, and set A to 0.22, and o to 3.6. By testing varied
426  sets of parameters, we find that the optimal patch size is 10x10, the optimal sparse code
427  dimensionality is 1800, the optimal A is 0.22 and the optimal ¢ is 3.6 and these optimal

428  parameters will be adopted in the study of A burden classification.

Patch size Sparse code dimensionality
30%30 mEE———— 0.327 2000 0.882
20*20 IS (.841 1900 SN (0.858
15%15 I (.865 1800 0.934
10*10 0.934 1700 0.907
5*5 I (.920 1500 0.893
0.780 0.830 0.880 0.930 0.980 0.780 0.830 0.880 0.930 0.980
Regularization parameter 4 Kernel size o
0.25 0.872 3.8 mEEEsssss——— (.858
0.22 0.934 36 0.934
0.19 T 0.893 3.4 I 0.907
0.16 0.917 24 0.890
013 0.893 1.8 meee——— 0.841
0.780 0.830 0.880 0.930 0.980 0.780 0.830 0.880 0.930 0.980
Fig. 3. The relationship of each parameter to classification accuracy. The y-axis represents the value
for each parameter. The orange bars represent the classification performances using the optimal
parameters.

429 3.2 Classification of Ap Burden

430 To explore whether there is a significant gain in classification power with our new system,
431  based on our surface MMS, we generate two different kinds of sparse codes with our previous
432  framework (PASS-MP) (Fu et al., 2021; Zhang et al., 2017; Zhang et al., 2016b) and the new
433 framework (PASCS-MP). The parameter settings for the two sparse coding methods are the

434  same. Additionally, we apply the popular SPHARM method (Chung et al., 2008; Shi et al.,
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435  2013a) to calculate hippocampal shape features. Based on these three kinds of feature sets, we
436  apply the random forest classifier to detect individuals with different AB status. Moreover, we
437  also examine the classification performances using hippocampal MMS, surface area and

438  volume measures. These classification performances are evaluated using ACC, B-ACC, SPE,

439 Table 2. Classification Results for four contrasts.
A AB+ AD vs. Ap+ MCI vs. AB+ CUvs. AB- CU AP+ CU vs. AB- CU
rea
Ap- CU Ap- MCI (ADNI) (OASIS)
ACC 0.68+0.01 0.55+0.02 0.54+0.01 0.47
B-ACC 0.69+0.02 0.55+0.02 0.54+0.02 0.43
SPE 0.66+0.02 0.54+0.02 0.55+0.02 0.49
SEN 0.71+0.03 0.56+0.03 0.53+0.04 0.37
Vol AP+ AD vs. Ap+ MCI vs. AP+ CUvs. AB- CU AP+ CU vs. Ap- CU
olume
Ap- CU Ap- MCI (ADNI) (OASIS)
ACC 0.71+0.01 0.53+0.02 0.50+0.03 0.51
B-ACC 0.72+0.01 0.53+0.01 0.50+0.03 0.52
SPE 0.68+0.01 0.52+0.01 0.51+0.02 0.54
SEN 0.75+0.01 0.54+0.02 0.49+0.04 0.50
AP+ AD vs. AP+ MCI vs. AP+ CUvs. AB- CU AP+ CU vs. Ap- CU
SPHARM
AB- CU Ap- MCI (ADNI) (OASIS)
ACC 0.71+0.02 0.56+0.02 0.52+0.02 0.60
B-ACC 0.71+0.02 0.56+0.03 0.51+0.04 0.60
SPE 0.74+0.02 0.61+0.03 0.56+0.03 0.61
SEN 0.68+0.04 0.51+0.03 0.46+0.05 0.60
APp+ADvs.  AP+MCIvs. AP+ CUvs. AB- CU A+ CU vs. Ap- CU
PASS-MP
Ap- CU Ap- MCI (ADNI) (OASIS)
ACC 0.79+0.01 0.73+0.02 0.71+0.02 0.74
B-ACC 0.79+0.01 0.73+0.02 0.70+0.03 0.73
SPE 0.78+0.02 0.75+0.02 0.73+0.03 0.74
SEN 0.79+0.01 0.72+0.03 0.67+0.03 0.73
APFADvs.  AP+MClvs. AP+ CUvs. Ap-CU  Ap+ CU vs. Ap- CU
PASCS-MP
Ap- CU AB- MCI (ADNI) (OASIS)
ACC 0.91+0.01 0.89+0.01 0.79+0.02 0.81
B-ACC 0.91+0.01 0.89+0.01 0.79+0.03 0.80
SPE 0.91+0.01 0.91+0.01 0.80+0.02 0.82
SEN 0.90+0.01 0.88+0.01 0.79+0.05 0.79

440  Values are mean + 95% confident interval where applicable.
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441  SEN. For each binary classification of ADNI cohort, we repeat the 10-fold cross-validation 5
442 times; the mean and 95% confident interval of the evaluation measures are calculated as
443  (Vanwinckelen and Blockeel, 2012) and shown in the middle three columns of Table 2. To
444  further evaluate the performance of our new framework, we firstly generate new representations
445  with our proposed PASCS-MP for all the CU subjects from ADNI and OASIS cohorts. Then,
446  we train a binary random forest model on the ADNI dataset and test it with the OASIS dataset.
447 Since there is no cross-validation here, there is no confident interval in the last column of Table
448 2. We also compute the area-under-the-curve (AUC) of the receiver operating characteristic
449  (ROC). The ROC curve and AUC for these classification tasks are illustrated in Fig. 4. This
450  comparison analysis classification performance shows that the combination of PASCS-MP and
451  hippocampal MMS measures have superior performance when detecting individuals with

452  different AP status, compared to other similar methods.

1 ROC curve of AB+ AD vs. AB- CU . ROC curve of AR+ MCI vs. Ag- MCI
0.9
0.8
0 07 o
o 06 °
> >
305 3
o o
o o
o 041 o
2 2
= =
03[ PASCS-MP (AUC =0.916) |
PASSMP (AUC =0.771) PASCS-MP (AUC = 0.900)
0.2 SPHARM (AUC=0.717) |1 0.2 PASS-MP (AUC=0.719) |+
Volume  (AUC =0.708) SPHARM  (AUC= 0.562)
0.1 Area (AUC = 0.664) |1 0.1} Volume  (AUC = 0.540)
Area (AUC = 0.535)
0 . . . . . . . . . 0 . . . . . " " " "
o 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
False Positive Rate False Positive Rate
] ROC curve of A3+ CU vs. AB- CU (ADNI) . ROC curve of AB+ CU vs. AB- CU (OASIS)
0.9 0.9
08| 0.8
8 07 8 07
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4 L o
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> >
051 B0
<] o
o o
© 041 o 04f
2 2
= [
03[ 0.3
PASCS-MP (AUC = 0.782) PASCS-MP (AUC = 0.891)
0.2 PASS-MP (AUC =0.652) |- 02| PASS-MP (AUC =0.820) |
SPHARM (AUC = 0.535) SPHARM  (AUC = 0.598)
0.1 Volume (AUC=0.518) 0.1 Volume  (AUC=0.515) |
Area (AUC = 0.571) Area (AUC = 0.459)
o . . . : : : : 0 . . . : : : :
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Fig. 4. ROC curves for the classification tasks, AB+ AD vs. AB- CU, Ap+ MCI vs. AB- MCI, A+ CU
vs. AB- CU (ADNI), and AB+ CU vs. Ap- CU (OASIS).
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453 4. DISCUSSION

454 In this paper, we propose a novel surface feature dimension reduction scheme, PASCS-MP,
455  to correlate the hippocampus MMS with different levels of AB burden in individual subjects.
456  We develop a hippocampal structure-based AB burden prediction system that involves
457  hippocampal MMS computing, sparse coding and classification modules. We apply the
458  proposed system on two independent datasets, ADNI and OASIS. We have two main findings.
459  Firstly, the hippocampal surface-based MMS measure practically encodes a great deal of
460  neighboring intrinsic geometry information that would otherwise be inaccessible or overlooked
461  inclassical hippocampal volume and surface area measures. Experimental results show that the
462  MMS measure provides better classification accuracy than hippocampal volume, surface area
463  measures and SPHARM for detecting the relationships between hippocampal deformations and
464 AP positivity. Secondly, we propose a novel sparse coding method, PASCS-MP. It has all the
465  advantages of our previous proposed PASS-MP (Zhang et al., 2016b, 2016a) and improves the

466  follow-up classification performance compared to PASS-MP.

467 4.1 Comparison Analysis of Hippocampal MMS, Volume and Surface Area

468 The hippocampus is a primary target region for studying early AD progression. Its structure
469  can be measured using the widely used overall hippocampal volume, surface area and our
470  proposed hippocampal MMS. Our prior studies (Dong et al., 2019; Li et al., 2016; Shi et al.,
471  2011; Wang et al., 2011) show that hippocampal MMS performs robustly in distinguishing
472  clinical groups at different AD risk levels. In particular, we previously found that hippocampal
473  MMS can detect APOE4 gene dose effects on the hippocampus during the preclinical stage,
474  while the hippocampal volume measure cannot (Dong et al., 2019). A study by Wu et al. (2018)
475  demonstrates that hippocampal MMS performs better than traditional hippocampal volume

476  measures in classifying 151 Ap+ AD and 271 AB- CU subjects.

477 This work evaluates the performance of the above three hippocampal measurements for
478  predicting AB status at the individual subject level. Classification results (see Table 2 and Fig.

479  4) show that hippocampal MMS has better performance as measured by ACC, SPE, SEN and
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480  AUC. These results validate our hypothesis that hippocampal MMS-based analysis methods
481  provide improved statistical accuracy than hippocampal volume and surface area measures in
482  predicting the subjects with different AP status in the AD continuum. Our prior work (Wang et
483  al., 2011) shows that MMS may offer a surrogate biomarker for PET/CSF AP biomarkers. This

484  work further shows it can be used to classify brain AB burden on an individual basis.

485 4.2 Comparative Analysis of PASCS-MP, PASS-MP and SPHARM

486 The MMS measure for brain structures performs well in clinical group comparisons (Dong
487 etal., 2020b, 2019; Li et al., 2016; Shi et al., 2015, 2014b; Wang et al., 2013; Yao et al., 2018),
488  and as we have shown, it has the potential to further be applied for individual AP classification.
489  To achieve this goal, we need to solve the challenge that the MMS dimension is usually much
490 larger than the number of subjects, i.e., the so-called high dimension, small sample size problem.
491 A reasonable solution is to reduce the feature dimension. Existing feature dimension reduction
492  approaches include feature selection (Fan et al., 2005; Jain and Zongker, 1997), feature
493  extraction (Guyon et al., 2008; Jolliffe, 2002; Mika et al., 1999) and sparse learning methods
494 (Donoho, 2006; Vounou et al., 2010; Wang et al., 2013). In most cases, information is lost when
495  mapping data into a lower-dimensional space. By defining a better lower-dimensional subspace,
496 this information loss can be limited. Sparse coding (Lee et al., 2007; Mairal et al., 2009) has
497  been previously proposed to learn an over-complete set of basis vectors (also called a dictionary)
498  to represent input vectors efficiently and concisely (Donoho and Elad, 2003). Sparse coding
499  has been shown to be effective for many tasks such as image imprinting (Moody et al., 2012),
500  image deblurring (Yin et al., 2008), super-resolution (Yang et al., 2008), classification (Mairal
501 et al., 2009), functional brain connectivity (Lv et al., 2017, 2015), and structural morphometry

502  analysis (Zhang et al., 2017).

503 Our previous studies (Zhang et al., 2017; Zhang et al., 2016b, 2016a) propose a patch
504  analysis-based surface sparse-coding and max-pooling (PASS-MP) method, consisting of
505  sparse coding (Lee et al., 2006; Mairal et al., 2009) and max-pooling (LeCun et al., 2015), for

506  surface feature dimension reduction. PASS-MP has excellent impressive performance for the
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507  sparse coding of our MMS features. Our prior studies successfully apply these sparse codes in
508  detecting individual brain structure abnormalities and obtain state-of-art performance (Dong et

509 al., 2020a; Fu et al., 2021; Wu et al., 2018).

510 Even so, there typically exists non-Gaussian and localized sources of noise in surface-based
511  morphometry features, this can dramatically influence the learned dictionary and further lead
512 to poor sparse coding based on the loss function of PASS-MP. The correntropy measure is a
513 very robust method for correcting such sources of noise (He et al., 2012; Liu et al., 2007;
514  Nikolova and Ng, 2006). In this paper, we improve upon the PASS-MP method by introducing
515  correntropy measures into the loss function (Gui et al., 2017). Therefore, our proposed sparse
516  coding method, PASCS-MP, incorporates all the advantages of PASS-MP and meanwhile
517  improves the classification performance. We also test SPHARM-based hippocampal shape
518  features as they have frequently been studied in prior AD research (e.g., (Cuingnet et al., 2011;
519  Gerardin et al., 2009; Gutman et al., 2013)). In such an approach, we use a series of spherical
520  harmonics to model the shapes of the hippocampus segmented by FSL. The SPHARM
521  coefficients are computed using SPHARM-PDM (Spherical Harmonics-Point Distribution
522 Model) software developed by the University of North Carolina and the National Alliance for
523  Medical Imaging Computing (Styner et al., 2006). The classification features are based on
524  these SPHARM coefficients, which are represented by two sets of three-dimensional SPHARM
525  coefficients for each subject (in fact, one set for the hippocampus in each brain hemisphere). In
526  Gerardin et al. (2009), they use a feature selection step because the subject groups are much
527  smaller (fewer than 30 subjects in each group). When the number of subjects is small, the
528  classifier can be more sensitive to uninformative features. In the current study, the number of
529  subjects is relatively large, so a feature selection step is less necessary and may increase the
530  risk of overfitting. We adopt the same approach in Cuingnet et al. (2011), who chose to avoid
531  this selection step. The classification results (see Table 2 and Fig. 4) based on PASCS-MP,
532 PASS-MP and SPHARM meet our expectation that the classification performances based on

533  PASCS-MP have an apparent improvement measured by ACC, B-ACC, SPE, SEN and AUC.
534
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535 4.3 AP Burden Prediction using MRI Biomarkers

536 AP accumulation is a major feature of AD neuropathology (Brier et al., 2016; Cummings,
537  2019). Detecting it early and accurately provides a potential opportunity for effective
538  therapeutic interventions before the advanced stages of AD (Tosun et al., 2014). Compared to
539  PET and CSF A measurement techniques, MRI is less expensive (than PET) and less invasive
540  (than both PET and lumbar puncture). AD-related biomarker studies (Jack et al., 2018; Jack
541 and Holtzman, 2013; Sperling et al., 2011b) have shown that abnormal brain A accumulation
542 typically precedes detectable structural brain abnormalities. There is emerging literature using
543  MRI biomarkers to predict brain Ap burden, and hippocampal structural measurement is one
544 of the major predictors (Ansart et al., 2020; Pekkala et al., 2020; Tosun et al., 2016, 2014).
545  Tosun et al. (2014) applied LASSO penalized logistic regression classifier to MRI-based voxel-
546  wise anatomical shape variation measures and cerebral blood flow measures to predict Ap
547  positivity in 67 people with early MCI (34 AB+); the classification accuracy was 83%. Ansart
548 et al. (2020) applied LASSO feature selection and a random forest classifier to MRI- based
549  cortical thickness and hippocampal volume measures to classify 596 people with MCI scanned
550  as part of ADNI MCI (375 AB+); the AUC was 0.80. Our proposed classification framework
551 has a higher ACC=89% or AUC=0.90 than each of these two studies (Ansart et al., 2020; Tosun
552 etal., 2014) for predicting AP status in people with MCI. Of the studies predicting AP positivity
553  in CUs, Ansart et al. (2020) applied LASSO feature selection and random forest classifier to
554  MRI-derived cortical thickness and hippocampal volume measures to classify 431 ADNI CUs
555 (162 AB+) and 318 INSIGHT CUs (88 AP+); the AUCs were 0.59 and 0.62, respectively.
556  Pekkala et al. (2020) used the Disease State Index machine learning algorithm and MRI-based
557  biomarkers (total cortical and gray matter volumes, hippocampus, accumbens, thalamus and
558  putament volumes) to predict AP burden in 48 CUs (20 AB+); the AUC was 0.78. Our proposed
559  classification framework has AUC=0.78 on 348 ADNI CUs (116 AB+) and AUC=0.89 on 260
560  OASIS CUs (52 AB+). Table 3 and Fig. 4 present the AUC or ACC values from this work and
561  from similar studies predicting AP positivity using brain MRI biomarkers. Compared to these

562  similar studies, our proposed classification system only uses hippocampal structural features
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563  but still consistently outperforms other recently published methods for predicting AP positivity

564  in people with MCI and CUs.

565 Table 3. Studies to impute AP status from MRI biomarkers in key clinical groups in AD research.
Method Subjects (AB+/-) MRI Biomarkers ACC AUC
PASCS-MP-Random 342 ADNI MCI Hippocampal 0.89+0.01 0.90
forest classifier (171/171) multivariate
(This work) 348 ADNI CU morphometry statistics ~ 0.79+£0.02 0.78
(116/232) (MMS)
260 OASIS CU 0.81 0. 89
(52/208)
LASSO penalized 67 Early MCI Voxel-wise anatomical  0.83+0.03
logistic regression (34/33) shape variation
classifier measures and cerebral
(Tosun et al., 2014) blood flow (including
frontoparietal cortical,
hippocampal regions,
among others)
LASSO feature 596 ADNI MCI Cortical thickness and 0.80
selection and (375/221) hippocampal volume
Random Forest 431 ADNI CU 0.59
classifier (162/269)
(Ansart et al., 2020) 318 INSIGHT CU 0.62
(88/230)
Disease State Index 48 CU (20/28) Total cortical and gray 0.78
machine learning matter volumes,
algorithm hippocampus,
(Pekkala et al., 2020) accumbens, thalamus
and putamen volumes
566 4.4 Limitations and Future Work
567 Despite the promising results are obtained by applying our proposed AP positivity

568  classification framework, there are two important caveats. First, when applying the PASCS-

569  MP method to refine MMS, we generally cannot visualize the selected features. To some extent,

570  this decreases the interpretability of the effects, although it is still possible to visualize

571 statistically significant regions as in our prior group difference studies (Shi et al., 2013b; Wang

572 et al., 2013). However, in our recent work (Zhang et al., 2018), instead of randomly selecting
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573  patches to build the initial dictionary, we use group lasso screening to select the most significant
574  features first. Therefore, the features used in sparse coding may be visualized on the surface
575  map. In the future, we will incorporate this idea into the PASCS-MP framework to make it
576  more interpretable. Second, this work only applies hippocampal MMS to predict A positivity.
577  1In future work, we plan to introduce more AD risk factors (such as demographic information,
578 genetic information and clinical assessments) (Ansart et al., 2020; Pekkala et al., 2020; Tosun
579 etal., 2014), and more AD regions of interest (ROIs, e.g., ventricles, entorhinal cortex, temporal
580 lobes) (Brier et al., 2016; Dong et al., 2020b; Foley et al., 2017) into our proposed framework;

581  these additional features are expected to improve the AP positivity prediction.

582 5. CONCLUSION

583 In this paper, we explore the association between hippocampal structures and AP positivity
584  ontwo independent databases using our hippocampal MMS, PASCS-MP method and a random
585  forest classifier. Compared to traditional hippocampal shape measures, MMS have superior
586  performance for predicting AP positivity in the AD continuum. Besides, the proposed PASCS-
587  MP outperforms our previous sparse coding method (PASS-MP) on refining MMS features.
588  Compared to similar studies, this work achieves state-of-the-art performance when predicting
589 AP positivity based on MRI biomarkers. In future, we plan to apply this proposed framework
590  to other AD ROIs and further improve the comprehensibility of the framework by visualizing

591  morphometry features selected in the classification.
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