

1 **Mechanical competition alters the cellular interpretation of an endogenous genetic
2 programme**

3

4

5 Sourabh Bhide^{1, 2}, Denisa Gombalova^{1, 2, #}, Gregor Mönke^{1, #}, Johannes Stegmaier³, Valentyna
6 Zinchenko^{2, 4}, Anna Kreshuk⁴, Julio M Belmonte^{5, 6}, Maria Leptin^{1, 7*}

7

8 ¹ Director's Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany

9 ² Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of
10 Biosciences, Heidelberg, Germany

11 ³ Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany

12 ⁴ Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany

13 ⁵ Department of Physics, North Carolina State University, USA

14 ⁶ Quantitative and Computational Developmental Biology Cluster, North Carolina State University,
15 USA

16 ⁷ European Molecular Biology Organization, Heidelberg, Germany

17

18

19

20 [#]These authors contributed equally

21 ^{*} Corresponding author

22

23 Drosophila gastrulation, epithelial folding, contractility, cytoskeleton, morphogenesis, actomyosin
24 pulses, tissue mechanics

25 **Abstract**

26 The intrinsic genetic programme of a cell is not sufficient to explain all of the cell's activities. External
27 mechanical stimuli are increasingly recognized as determinants of cell behaviour. In the epithelial
28 folding event that constitutes the beginning of gastrulation in *Drosophila*, the genetic programme of
29 the future mesoderm leads to the establishment of a contractile actomyosin network that triggers
30 apical constriction of cells, and thereby, tissue folding. However, some cells do not constrict but
31 instead stretch, even though they share the same genetic programme as their constricting
32 neighbours. We show here that tissue-wide interactions force these cells to expand even when an
33 otherwise sufficient amount of apical, active actomyosin is present. Models based on contractile
34 forces and linear stress-strain responses do not reproduce experimental observations, but
35 simulations in which cells behave as ductile materials with non-linear mechanical properties do. Our
36 models show that this behaviour is a general emergent property of actomyosin networks [in a
37 supracellular context, in accordance with our experimental observations of actin reorganisation
38 within stretching cells.

39 **Introduction**

40 Epithelial tissues are shaped during animal development by changes in the geometry, number or
41 relative positions of their constituent cells. Cells change their shape by actively generating
42 intracellular forces or by passively responding to external forces, from within the organism, such as
43 neighbouring cells, or by forces from outside the body¹⁻⁴. The actomyosin meshwork underlying the
44 plasma membrane is the major source of morphogenetic forces⁵⁻⁷ which can be transmitted over
45 larger, supracellular distances via cell junctions. The functioning of the cytoskeleton itself can be
46 influenced by external mechanical forces⁸. In some systems, we are beginning to understand how
47 forces act on a tissue scale⁹, but we know much less about the interplay of active forces and passive
48 deformation and their genetic and molecular basis. Understanding the actomyosin contraction
49 patterns in the individual cells that make up a tissue is unlikely to be sufficient to explain all the force
50 changes and deformations within the entire tissue.

51 One example of epithelial morphogenesis is the formation of the ventral furrow during
52 *Drosophila* gastrulation, an epithelial folding event that internalizes the future mesoderm, driven by
53 active forces generated in an autonomous manner in the central part of the mesoderm¹⁰. Many
54 studies have focused on these cells and their contractile actomyosin meshwork. We understand the
55 major mechanisms that act within each cell: the proteins that are specifically activated in these cells
56 change the location of the adherens junctions and recruit an active actomyosin meshwork to the
57 apical cell cortex, which undergoes a series of pulsatile contractions until the apical surface is fully
58 constricted¹¹⁻¹⁴.

59 To allow the furrow to internalize the mesoderm without causing disruptions elsewhere in the
60 embryo, other parts of the embryonic epithelium obviously must respond or contribute to the
61 movement. The cells outside the mesoderm appear not to contribute actively to furrow formation¹⁵,
62 but their compliance is later required for the furrow to invaginate fully¹⁶. The most important cells
63 that enable the furrow to form are the mesodermal cells adjacent to the initial indentation. While
64 central cells constrict, lateral cells expand their apical surfaces^{16,17}.

65 In spite of their distinct behaviours, the constricting and expanding cells of the mesoderm share
66 the same developmental program. They express the same genes, albeit with quantitative
67 differences, but no known genes are absolutely restricted to one or other population^{18,19}. There is a
68 graded expression of important gene products from the centre to the edges of the mesoderm (Fig.
69 1A), in particular for the genes necessary for myosin activation (*fog*, *t48* and *mist*) and junction
70 remodelling (*traf4*) which are deployed under the control of the dorsal-ventral patterning system²⁰⁻
71 ²⁷. While their quantitative differences have prompted the question whether the two populations
72 should be considered distinct 'subdomains', each relevant gene has a different expression boundary,
73 so they together cannot be seen as defining a genetic domain²⁷.

74 Current models for cell shape determination in the ventral furrow²⁸⁻³² assume that changes in
75 apical surface area correlate with the force generated by contractile actomyosin. In the first phase of
76 invagination, the degree of apical constriction mirrors the graded distribution of apical myosin, with
77 absence of myosin having been correlated with lack of constriction of lateral cells^{16,33,34}.

78 It is not clear by what mechanism the quantitative differences in gene expression can cause
79 dramatic qualitative differences in cell behaviour: any two immediately adjacent cells in the
80 mesoderm primordium have similar gene expression profiles. Thus, in the absence of any known
81 genetic correlations for the pronounced differences, there must be other explanations for how these

82 behaviours arise. Specifically, we need explanations for how the smooth and graded differences in
83 expression levels of effector molecules is converted into a step difference in cell behaviour.

84 We compare here in a quantitative manner the cellular activities in the mesoderm, contrast them
85 with existing models, and propose and test a new model that explains qualitative differences in cell
86 behaviour. Our results suggest that two distinct cell behaviours emerge not from strict differences in
87 genetic control, but from tissue-wide mechanical interactions.

88 Results

89 Cell shape evolution across mesoderm and neighbouring populations

90 Analyses of shape changes in the prospective mesoderm (hereafter simply called 'mesoderm') often
91 focus on the 10-cell-wide central band of cells that form the initial furrow. The lateral cells are less
92 well studied, partly because the forces for folding are generated in central cells, but also because
93 their rapid displacement and extreme shape changes make them difficult to image³⁵. We extracted
94 faithful two-dimensional views of the apical surface of the entire mesoderm (surface 'peels'³⁶ Suppl.
95 Fig. 1A-C) for quantitative analysis. The breadth of the mesoderm varies along the AP axis and
96 between embryos; we therefore define the cell rows operationally from row 1 at the midline to row
97 8 as the outer row adjacent to the mesectoderm; Suppl. Fig. 1).

98 Furrow formation starts with cells in rows 1 - 6 constricting in a stepwise and stochastic
99 manner^{12,37}. The last cells to constrict are those in row 6, while rows 7 and 8 expand their surfaces
100 anisotropically^{21-23,33,35}, stretching towards the midline. Mesectodermal cells also stretch slightly, but
101 beyond them the ectoderm remains inert. Thus, mesodermal cells can either constrict or stretch,
102 with initially indistinguishable neighbours in rows 6 and 7 taking on dramatically different
103 developmental paths. In addition, rows 7 and 8 do not respond equally to the force from the centre.
104 Row 7 expands first and most strongly, followed by row 8 and finally the mesectoderm (Fig. 1C-D).

105 Theoretical models and simulations based on bell-shaped contractility gradients create epithelial
106 shape changes with highly constricted cells in the centre and cell sizes increasing in a graded manner
107 with distance from the centre^{16,31-33,38}. Inverted patterns of stretching have so far been obtained in
108 computational models only for cells without contractility^{31,39,40}. To investigate this inconsistency, we
109 examined actomyosin in lateral cells.

110

111 Actomyosin gradient as a predictor for cell shape behaviour

112 F-actin is present in two distinct but interacting pools with different morphological functions in the
113 early embryonic epithelium: a fine meshwork underlying the apical cortex, and a large pool
114 associated with apical junctions and baso-lateral cell membranes^{12,31,41-45}. Junctional actin is reduced
115 in the mesoderm in unison with the relocation of adherens junctions before shape changes
116 begin^{44,46,47} (Suppl. Fig. 2). The apical meshwork changes along the entire dorso-ventral axis around
117 the time of gastrulation but remains present during furrow formation as a fibrous network both in
118 central and lateral mesodermal cells¹⁶ (Suppl. Fig. 2I-K).

119 We focused our further analyses on myosin, on which the contractile forces in the mesoderm
120 depend. The amount of myosin regulatory chain (encoded by the gene *sqh* in *Drosophila*) within the
121 apical cortex has been used as a proxy for the contractile actomyosin meshwork^{12,48-51}. When the
122 central cells begin to constrict, practically no apical myosin is seen in the lateral cells³³ (Fig. 1D-E).
123 Levels rise over the next few minutes, reaching values seen in central cells at earlier points, when
124 the cells constrict. For example, the level in row 7 at 525sec resembles that in rows 3 and 4 at 325
125 sec. We also calculated the concentrations, and still find that row 7 at 525 sec reaches similar
126 concentrations as rows 3 to 5 at 275 sec (Fig. 2F). Thus, apical myosin levels alone are not sufficient
127 to explain why lateral cells do not constrict.

128 Another possibility is that in spite of having sufficient myosin, lateral cells cannot assemble a
129 functional contractile meshwork. Epithelial apical actomyosin meshworks normally show a strong
130 dynamic behaviour characterised by fluctuations or 'pulses' of myosin foci that correlate with
131 periods of apical constriction^{12,48,52}. We see myosin foci forming, moving and disappearing in lateral

132 cells in a similar manner as in central cells (Fig. 2G). Myosin pulses in lateral cells have been
133 characterised as less persistent⁴⁷, but they are nevertheless able to pull on nearby plasma
134 membrane, thereby narrowing the cell (Suppl. Fig. 3), indicating an active, force-generating
135 actomyosin meshwork. Thus, in this regard lateral cells are not qualitatively different from central
136 cells.

137

138 **Visco-elastic model of the mesoderm**

139 Taking into account the myosin levels in lateral cells, we explored in a computational model whether
140 a simple contractility gradient could explain the bifurcation into constriction and expansion, the
141 inverted pattern of stretching and the apical size ratios. With a mathematical description of our
142 myosin measurements per cell row, we modelled the mesoderm and mesectoderm as a line of 19
143 visco-elastic “cells” with a given stress-strain response, bordered by three stiffer ‘ectodermal’ cells
144 on each side. Each “cell” changes size based on the forces acting on its boundaries, which in turn
145 depend on the difference of the myosin levels in the cells on either side of the boundary (Suppl Fig.
146 4). The simulation showed constriction in central cells and stretching in lateral cells, but not with the
147 pattern of size ratios observed in the embryo. This might be explained by inaccuracies in our myosin
148 measurements, but systematically varying the width and steepness of the myosin profile also did not
149 yield outputs corresponding to the *in vivo* data, nor did changes in the slope of the stress-strain
150 curves.

151 We therefore tested whether the assumption of a linear stress-strain response in the cells was
152 wrong, as also seems to be the case in other instances^{8,53, 66,67}. We considered four classes of non-
153 linear stress-strain responses: superelastic (like nickel–titanium alloys) with strain-softening beyond
154 the proportional limit followed by strain-hardening while remaining elastic; elastoplastic (like
155 aluminium), with a similar stress-strain relationship but permanent deformation (yielding);
156 elastomeric (like rubber or silicon), with a decrease in stiffness after the proportional limit, but no
157 strain-softening; and a stiffening model (like biopolymer networks), with increased stiffness after the
158 proportional limit (Suppl Fig. 5B). Unlike the linear models, non-linear models with strain-softening
159 (superelastic- and elastoplastic) reproduced the stretching pattern of lateral cells for a wide range of
160 myosin profiles (Fig. 2, Suppl Fig. 5). While inert materials and cultured cells can respond to strain by
161 stiffening⁶⁴⁻⁶⁷, simulations with strain-stiffening curves did not reproduce our *in vivo* observations.
162 These results led us to re-examine the actomyosin meshwork in lateral cells since a strain-softening
163 would most likely manifest as permanent or reversible reorganisations of the cytoskeletal network.
164

165 **Organisation of actomyosin networks in lateral cells**

166 We had noticed that local constrictions in lateral cells occurred primarily in the AP axis (Suppl Fig.
167 5), pointing to a possible role for overall actomyosin distribution. We analysed the distribution of
168 apical myosin and found preferential segregation towards the ventral side in each cell (Fig. 2F).
169 While the asymmetry is visible in all cell rows, there are larger areas without myosin and the
170 distance of displacement is greater in lateral cells (Fig. 2G-J). This uneven distribution may reflect the
171 strain-softening or yielding behaviour predicted necessary by the model. This resembles the
172 asymmetric distribution of Rho in expanded central cells in *concertina* mutants, which has been
173 proposed as an explanation for the cells’ inability to overcome the expansive forces acting on them
174 and constrict⁵⁴. The reason for the asymmetry may be the myosin gradient. For every cell along the
175 gradient the ventral neighbour constricts earlier than its dorsal neighbour. Recent simulations
176 showed that the ability of the cell cortex to yield to contractile forces feeds back on the orientation

177 of the contractile network, which becomes depleted near ‘softer’ and enriched near ‘stiffer’
178 membranes⁵⁵. In mesodermal cells, the least yielding should be the ventral side, which experiences
179 stronger forces from the ventral neighbour than the other side does from the dorsal neighbour. If
180 the extent to which a cell at any moment expands or shrinks is influenced by its neighbours, then the
181 differential concentration of myosin within the cell and its surrounding should correlate with the
182 cell’s size changes. We therefore compared these parameters and did indeed find such a correlation
183 (~0.75; Fig. 2K insert). The overall the concentration of myosin within a cell, unsurprisingly,
184 correlated highly with the concentration in its neighbours. Cells with high concentrations always
185 constricted, and all cells remained inert at low concentrations. But in the range between these
186 values, for any given cell-internal myosin concentration, the cells that expanded were always those
187 for which the neighbours had the highest myosin levels (Fig. 2L, K insert). This shows that forces
188 acting on each cell from its neighbours have an important role in determining the cell’s behaviour.
189

190 **Actomyosin model of the mesoderm**

191 We do not know whether the correlation between actomyosin distribution and cell stretching
192 reflects causality, or whether both are effects of external forces, i.e. pulling by neighbours. We used
193 a microscopic, filament-based model^{56,57} to test under what conditions cells containing contractile
194 actomyosin show the behaviours we observe in the embryo. We again used a chain of “membrane”-
195 separated elements with fixed outer boundaries (Fig 2M). Each “cell” contained a constant number
196 of actin filaments and crosslinkers, and membranes had attachment points for filaments. We varied
197 the number of active myosin motors according to the same distributions as in the visco-elastic
198 model.

199 A set of profiles was able to generate constriction of 6 and stretching of 3 cells, of which a subset
200 reproduced the qualitative behaviour seen *in vivo*, with an inverted pattern of stretching (red region
201 in Fig. 2Q). For such profiles, ‘cell 7’ stretches until its actomyosin network tears apart, disconnecting
202 the more lateral cells from the constricting cells (Fig. 2N-N’). In conclusion, without *a priori*
203 assumptions, this model gives an output consistent with our experimental observations and
204 indicative of non-linear (yielding) behaviour, showing that such behaviour can emerge directly from
205 the properties of the network components and the myosin concentrations. The striking similarity
206 between the parameters of the myosin profiles in the two unrelated models (microscopic and visco-
207 elastic) that yield the same results (though with an offset of 1 cell-width; Fig. 2Q,R) illustrates the
208 generality of the results and suggests that contractile meshworks *in vivo* can, in theory, do the same.
209 Rapid cell expansion due to strain-softening has also been observed in elegant tissue culture
210 experiments, where persistent intermediate filaments allowed re-establishment of connectivity and
211 the cell re-contracting⁸. Our results here are the first demonstration of an equivalent process
212 occurring in a physiological situation *in vivo*.
213

214 **Intrinsic versus externally imposed behaviours of mesodermal cells**

215 Our results so far show that cell-intrinsic genetic regulation or myosin levels alone cannot explain
216 the difference between constricting and stretching. We also compared the role of myosin levels
217 among cells at the same position in the gradient. Many central cells expand transiently before
218 constricting and some are internalized without constricting⁵⁸; Suppl. Fig. 6). We tested whether
219 myosin levels correlated with these behaviours by categorising cells from all rows as either
220 ‘transiently expanding’ or ‘contracting’. In rows 3 -5, transiently expanding cells started out with
221 slightly larger surfaces, but the same myosin concentrations as contracting cells. During the transient

222 expansion (150-250 seconds) neither myosin amounts nor concentration are pronouncedly different
223 from the contracting cells (175 sec; Suppl. Fig. 6). Myosin amounts in row 6 (Suppl. Fig. 6F-J) also
224 rose simultaneously in both populations during the expansion period, the slight divergence in
225 concentration therefore coinciding but not preceding expansion. Thus, myosin levels did not predict
226 constriction versus transient expansion. Finally, central cells that remain unconstricted often have
227 highly asymmetric myosin foci (Fig. 2G-H), much like lateral expanding cells, showing that skewed
228 myosin is not determined by the cell's position in the genetic gradient, nor by its myosin values.
229 Instead, it seems that myosin distribution in stretching cells is a consequence rather than a cause of
230 their apical size. Together these results suggest that whether a cell constricts does not depend
231 primarily on myosin levels, but at least in part on what its neighbours do, and in part by stochastic
232 variation in its actomyosin organization.

233 We therefore propose a model where all mesodermal cells have the capacity to constrict in
234 principle, but cells that accumulate active actomyosin earlier or at higher levels than neighbouring
235 cells have a greater chance of sustaining their contraction. This hypothesis makes two testable
236 predictions: (a) preventing central cells from constricting early should allow lateral cells to constrict,
237 and (b), making lateral cells constrict early should affect the ability of central cells to constrict.

238 To test these predictions, we manipulated apical contractility by laser ablation and optogenetic
239 methods. We first inhibited constriction in central cells by laser-mediated severing of the actomyosin
240 meshwork (Fig. 3). This strongly reduced apical constriction in the illuminated area, and some cells in
241 rows 7 and 8 now constricted their apical sides (Fig. 3D-D'', 3G, Suppl. video 4). Optogenetically
242 inactivating the actomyosin meshwork⁵⁹ yielded the same results: constriction in the illuminated
243 cells was inhibited, several cells in rows 7 and 8 constricted (Fig. 3H-K''). Thus, when central cells are
244 prevented from constricting, lateral cells are able to constrict.

245 To test whether the central cells can be stretched, we optogenetically induced premature
246 constriction in lateral cells¹⁰. We activated regions either side of the central two rows but only in the
247 posterior half of the embryo, retaining the anterior half as control. In the control half, central cells
248 constricted and a gradient of apical areas developed (Fig. 4A'-D'). In the experimental half, ectopic
249 apical constriction occurred in the illuminated cells. At the same time, many of the cells near the
250 ventral midline now expanded their apical surfaces (Fig. 4A''-D'). Thus, central cells failed to undergo
251 their normal morphogenetic programme, even though they themselves had not been manipulated,
252 showing that external forces were able to override their genetic instruction to constrict.

253 **Discussion**

254 Following from the above, an explanation is needed why lateral cells normally do not constrict,
255 even though they reach sufficient myosin levels. The simplest explanation is that the external forces
256 acting on them are greater than those acting on the early-constricting central cells. While different
257 external forces are likely part of the explanation, in the absence of precise measurements at a
258 subcellular level (an extremely challenging task given the cells' small size and rapid movement) we
259 must also consider other possibilities.

260 According to our visco-elastic model, a non-linear stress-strain relation is necessary for the
261 inverted pattern of stretching of lateral cells, which could not be reproduced with previous
262 computational models. The strong stretching, also documented in epithelia *in vitro*⁸, was best
263 recapitulated by a superelastic response. The non-linearity emerging from the microscopic model,
264 however, resembles elastoplasticity (irreversible strain), but the simulations do not include actin
265 turnover which would facilitate recovery from yielding of the cytoskeletal network and thus reverse
266 the stretching, typical of superelastic materials. It is currently not feasible to determine
267 experimentally whether cells in the embryo behave like elastoplastic or superelastic materials (as
268 seen *in vitro*⁸ and simple organisms⁵³). Other possible explanations for the same output include
269 dissipation through viscosity^{38,63} or external friction^{3,4}, or a non-proportional causal relationship
270 between myosin concentration and constriction forces. The former cannot explain single cell
271 stretching in the central mesoderm, while the latter is unlikely given that myosin levels alone predict
272 a wide range of morphogenetic movements in *Drosophila*⁵¹

273 A source of this non-linearity may be the actomyosin not assembling in the proper structure. The
274 pulsatile apico-medial actin meshwork needs to be tightly connected to the junctional complexes to
275 function^{13,14,42,60,61} relying also on an underlying non-pulsatile actin meshwork⁶². Despite the
276 homogeneous actin meshwork in stretching cells, the areas that are free of active myosin occupy a
277 large proportion of the apical surface – similar to ectodermal or amnioserosa cells in which the
278 connection of pulsatile foci to the underlying actin meshwork is lost⁶². The observation that a
279 skewed myosin distribution is not restricted to cells with low myosin but can occur even in central
280 cells at the highest myosin concentrations underscores the conclusion that all aspects of this
281 phenotype are externally imposed rather than intrinsically determined by myosin levels.

282 Dilution of cortical myosin may compromise the cell's ability to make sufficient physical
283 connections, in particular along the dorso-ventral axis, so that even if sufficient force is generated, it
284 cannot shorten the cell in the long dimension. In other words, even though the cells have enough
285 myosin to create force, the system is not properly engaged and its force is not transmitted to the cell
286 boundary. In this model, the skewed myosin distribution is both a result of external forces and also
287 part of the cause of a cells' failure to constrict. By a feed-forward mechanism, an initial expansion
288 induced by constricting neighbours dilutes or distorts the apical actomyosin, giving these cells a
289 lower chance of generating or sustaining a contraction. This mechanism, which we propose
290 corresponds to the non-linear behaviour predicted by the models, would apply both to central and
291 to lateral cells, with a catastrophic 'flip' being stochastic and rare in central cells, but reproducible in
292 lateral cells because of the temporal and spatial gradient in which contractions occur.

293
294

295 **Acknowledgments**

296 We thank Mayank Kumar and Catarina Carmo for help with generating fly lines; Dimitri Kromm and
297 Lars Hufnagel for expert help for MuVi SPIM imaging; Marvin Albert for support on image
298 registration; Stefano De Renzis, Hernan Garcia, Thomas Lecuit for stocks and reagents; the EMBL
299 Advanced Light Microscopy Facility (ALMF) for continuous support; Alexandre Cunha and Thiago
300 Vallin-Spina for providing access to SEGMENT3D; Steffen Lemke, Karen Daniels, Justin Crocker,
301 Stefano de Renzis, Aissam Ikmi, Xavier Trepat, Pavel Tomancak and the Leptin lab for critical
302 comments and discussions. This work was supported by funding from EMBO and DFG grant
303 FOR1756.

304

305 **Author Contributions**

306 Conceptualization, S.B., M.L.; Methodology and investigation, S.B., J.S., D.G., G.M. V.Z. ; Formal
307 Analysis, S.B., D.G., G.M., V.Z.; Writing – Original Draft, S.B., J.M.B, M.L.; Writing – Review & Editing,
308 S.B., M.L.; Visualization, S.B., J.S., D.G., V.Z.; Simulations, J.M.B, G.M.; Supervision, A.K, J. M. B.; M.L.;
309 Funding Acquisition, M.L.

310

311 **References**

312

313 1 Halbleib, J. M. & Nelson, W. J. Cadherins in development: cell adhesion, sorting, and tissue
314 morphogenesis. *Genes Dev* **20**, 3199-3214, doi:10.1101/gad.1486806 (2006).

315 2 Leerberg, J. M. *et al.* Tension-sensitive actin assembly supports contractility at the epithelial
316 zonula adherens. *Curr Biol* **24**, 1689-1699, doi:10.1016/j.cub.2014.06.028 (2014).

317 3 Bailles, A. *et al.* Genetic induction and mechanochemical propagation of a morphogenetic
318 wave. *Nature* **572**, 467-473, doi:10.1038/s41586-019-1492-9 (2019).

319 4 Munster, S. *et al.* Attachment of the blastoderm to the vitelline envelope affects gastrulation
320 of insects. *Nature* **568**, 395-399, doi:10.1038/s41586-019-1044-3 (2019).

321 5 Lecuit, T. & Lenne, P. F. Cell surface mechanics and the control of cell shape, tissue patterns
322 and morphogenesis. *Nat Rev Mol Cell Biol* **8**, 633-644, doi:10.1038/nrm2222 (2007).

323 6 Roper, K. Supracellular actomyosin assemblies during development. *Bioarchitecture* **3**, 45-49,
324 doi:10.4161/bioa.25339 (2013).

325 7 Salbreux, G., Charras, G. & Paluch, E. Actin cortex mechanics and cellular morphogenesis.
326 *Trends Cell Biol* **22**, 536-545, doi:10.1016/j.tcb.2012.07.001 (2012).

327 8 Latorre, E. *et al.* Active superelasticity in three-dimensional epithelia of controlled shape.
328 *Nature* **563**, 203-208, doi:10.1038/s41586-018-0671-4 (2018).

329 9 Shyer, A. E. *et al.* Villification: how the gut gets its villi. *Science* **342**, 212-218,
330 doi:10.1126/science.1238842 (2013).

331 10 Izquierdo, E., Quinkler, T. & De Renzis, S. Guided morphogenesis through optogenetic
332 activation of Rho signalling during early *Drosophila* embryogenesis. *Nat Commun* **9**, 2366,
333 doi:10.1038/s41467-018-04754-z (2018).

334 11 Dawes-Hoang, R. E. *et al.* Folded gastrulation, cell shape change and the control of myosin
335 localization. *Development* **132**, 4165-4178, doi:10.1242/dev.01938 (2005).

336 12 Martin, A. C., Kaschube, M. & Wieschaus, E. F. Pulsed contractions of an actin-myosin
337 network drive apical constriction. *Nature* **457**, 495-499, doi:10.1038/nature07522 (2009).

338 13 Martin, A. C., Gelbart, M., Fernandez-Gonzalez, R., Kaschube, M. & Wieschaus, E. F.
339 Integration of contractile forces during tissue invagination. *J Cell Biol* **188**, 735-749,
340 doi:10.1083/jcb.200910099 (2010).

341 14 Kanesaki, T., Hirose, S., Grosshans, J. & Fuse, N. Heterotrimeric G protein signaling governs
342 the cortical stability during apical constriction in *Drosophila* gastrulation. *Mech Dev* **130**,
343 132-142, doi:10.1016/j.mod.2012.10.001 (2013).

344 15 Leptin, M. & Roth, S. Autonomy and non-autonomy in *Drosophila* mesoderm determination
345 and morphogenesis. *Development* (1994).

346 16 Rauzi, M. *et al.* Embryo-scale tissue mechanics during *Drosophila* gastrulation movements.
347 *Nat Commun* **6**, 8677, doi:10.1038/ncomms9677 (2015).

348 17 Oda, H. & Tsukita, S. Real-time imaging of cell-cell adherens junctions reveals that
349 *Drosophila* mesoderm invagination begins with two phases of apical constriction of cells. *J
350 Cell Sci* **114**, 493-501 (2001).

351 18 Karaïkos, N. *et al.* The *Drosophila* embryo at single-cell transcriptome resolution. *Science*
352 **358**, 194-199, doi:10.1126/science.aan3235 (2017).

353 19 Sandmann, T. *et al.* A core transcriptional network for early mesoderm development in
354 *Drosophila melanogaster*. *Genes Dev* **21**, 436-449, doi:10.1101/gad.1509007 (2007).

355 20 Turner, F. R. & Mahowald, A. P. Scanning electron microscopy of *Drosophila melanogaster*
356 embryogenesis. II. Gastrulation and segmentation. *Dev Biol* **57**, 403-416 (1977).

357 21 Leptin, M. & Grunewald, B. Cell shape changes during gastrulation in *Drosophila*.
358 *Development* (1990).

359 22 Sweeton, S. P., Costa, M., and Wieschaus E. Gastrulation in *Drosophila*- the formation of the
360 ventral furrow and posterior midgut invaginations. (1991).

361 23 Parks, S. & Wieschaus, E. The *Drosophila* gastrulation gene *concertina* encodes a G alpha-like
362 protein. *Cell* **64**, 447-458 (1991).

363 24 Costa, M., Wilson, E. T. & Wieschaus, E. A putative cell signal encoded by the folded
364 gastrulation gene coordinates cell shape changes during *Drosophila* gastrulation. *Cell* **76**,
365 1075-1089 (1994).

366 25 Kolsch, V., Seher, T., Fernandez-Ballester, G. J., Serrano, L. & Leptin, M. Control of *Drosophila*
367 gastrulation by apical localization of adherens junctions and RhoGEF2. *Science* **315**, 384-386,
368 doi:10.1126/science.1134833 (2007).

369 26 Mathew, S. J., Rembold, M. & Leptin, M. Role for Traf4 in polarizing adherens junctions as a
370 prerequisite for efficient cell shape changes. *Mol Cell Biol* **31**, 4978-4993,
371 doi:10.1128/MCB.05542-11 (2011).

372 27 Lim, B., Levine, M. & Yamazaki, Y. Transcriptional Pre-patterning of *Drosophila* Gastrulation.
373 *Curr Biol* **27**, 286-290, doi:10.1016/j.cub.2016.11.047 (2017).

374 28 Conte, V., Munoz, J. J. & Miodownik, M. A 3D finite element model of ventral furrow
375 invagination in the *Drosophila melanogaster* embryo. *J Mech Behav Biomed Mater* **1**, 188-
376 198, doi:10.1016/j.jmbbm.2007.10.002 (2008).

377 29 Conte, V., Munoz, J. J., Baum, B. & Miodownik, M. Robust mechanisms of ventral furrow
378 invagination require the combination of cellular shape changes. *Phys Biol* **6**, 016010,
379 doi:10.1088/1478-3975/6/1/016010 (2009).

380 30 Hocevar, B. A., Rauzi, M., Leptin, M. & Ziherl, P. A model of epithelial invagination driven by
381 collective mechanics of identical cells. *Biophys J* **103**, 1069-1077,
382 doi:10.1016/j.bpj.2012.07.018 (2012).

383 31 Spahn, P. & Reuter, R. A Vertex Model of *Drosophila* Ventral Furrow Formation. *PLoS ONE* **8**,
384 e75051, doi:10.1371/journal.pone.0075051 (2013).

385 32 Polyakov, O. *et al.* Passive mechanical forces control cell-shape change during *Drosophila*
386 ventral furrow formation. *Biophys J* **107**, 998-1010, doi:10.1016/j.bpj.2014.07.013 (2014).

387 33 Heer, N. C. *et al.* Actomyosin-based tissue folding requires a multicellular myosin gradient.
388 *Development* **144**, 1876-1886, doi:10.1242/dev.146761 (2017).

389 34 Perez-Mockus, G. *et al.* Spatial regulation of contractility by Neuralized and Bearded during
390 furrow invagination in *Drosophila*. *Nat Commun* **8**, 1594, doi:10.1038/s41467-017-01482-8
391 (2017).

392 35 Fuse, N., Yu, F. & Hirose, S. Gprk2 adjusts Fog signaling to organize cell movements in
393 *Drosophila* gastrulation. *Development* **140**, 4246-4255, doi:10.1242/dev.093625 (2013).

394 36 Bhide, S., Mikut, R., Leptin, M. & Stegmaier, J. Semi-Automatic Generation of Tight Binary
395 Masks and Non-Convex Isosurfaces for Quantitative Analysis of 3D Biological Samples.(IEEE
396 ICIP 2020) <<https://ui.adsabs.harvard.edu/abs/2020arXiv200111469B>>.

397 37 Kam, Z., Minden, J. S., Agard, D. A., Sedat, J. W. & Leptin, M. *Drosophila* gastrulation: analysis
398 of cell shape changes in living embryos by three-dimensional fluorescence microscopy.
399 *Development* **112**, 365-370 (1991).

400 38 Doubrovinski, K., Swan, M., Polyakov, O. & Wieschaus, E. F. Measurement of cortical
401 elasticity in *Drosophila melanogaster* embryos using ferrofluids. *Proc Natl Acad Sci U S A* **114**,
402 1051-1056, doi:10.1073/pnas.1616659114 (2017).

403 39 Odell, G. M., Oster, G., Alberch, P. & Burnside, B. The mechanical basis of morphogenesis. I.
404 Epithelial folding and invagination. *Dev Biol* **85**, 446-462 (1981).

405 40 Pouille, P. A. & Farge, E. Hydrodynamic simulation of multicellular embryo invagination. *Phys
406 Biol* **5**, 015005, doi:10.1088/1478-3975/5/1/015005 (2008).

407 41 Morize, P., Audrey, E. C. C., Mike. & Parks, P. a. E. W. Hyperactivation of the folded
408 gastrulation pathway induces specific cell shape changes. *Development* (1998).

409 42 Fox, D. T. & Peifer, M. Abelson kinase (Abl) and RhoGEF2 regulate actin organization during
410 cell constriction in *Drosophila*. *Development* **134**, 567-578, doi:10.1242/dev.02748 (2007).

411 43 Sawyer, J. K., Harris, N. J., Slep, K. C., Gaul, U. & Peifer, M. The *Drosophila* afadin homologue
412 Canoe regulates linkage of the actin cytoskeleton to adherens junctions during apical
413 constriction. *J Cell Biol* **186**, 57-73, doi:10.1083/jcb.200904001 (2009).

414 44 Mason, F. M., Tworoger, M. & Martin, A. C. Apical domain polarization localizes actin-myosin
415 activity to drive ratchet-like apical constriction. *Nat Cell Biol* **15**, 926-936,
416 doi:10.1038/ncb2796 (2013).

417 45 Jodoïn, J. N. *et al.* Stable Force Balance between Epithelial Cells Arises from F-Actin
418 Turnover. *Dev Cell* **35**, 685-697, doi:10.1016/j.devcel.2015.11.018 (2015).

419 46 Mason, F. M., Xie, S., Vasquez, C. G., Tworoger, M. & Martin, A. C. RhoA GTPase inhibition
420 organizes contraction during epithelial morphogenesis. *J Cell Biol* **214**, 603-617,
421 doi:10.1083/jcb.201603077 (2016).

422 47 Denk-Lobnig, M., Heer, N. C. & Martin, A. Combinatorial patterns of graded RhoA activation
423 and uniform F-actin depletion promote tissue curvature. *bioRxiv*
424 doi: <https://doi.org/10.1101/2020.04.15.043893> (2020).

425 48 Rauzi, M., Lenne, P. F. & Lecuit, T. Planar polarized actomyosin contractile flows control
426 epithelial junction remodelling. *Nature* **468**, 1110-1114, doi:10.1038/nature09566 (2010).

427 49 Vasquez, C. G., Tworoger, M. & Martin, A. C. Dynamic myosin phosphorylation regulates
428 contractile pulses and tissue integrity during epithelial morphogenesis. *J Cell Biol* **206**, 435-
429 450, doi:10.1083/jcb.201402004 (2014).

430 50 Kerridge, S. *et al.* Modular activation of Rho1 by GPCR signalling imparts polarized myosin II
431 activation during morphogenesis. *Nat Cell Biol* **18**, 261-270, doi:10.1038/ncb3302 (2016).

432 51 Streichan, S. J., Lefebvre, M. F., Noll, N., Wieschaus, E. F. & Shraiman, B. I. Global
433 morphogenetic flow is accurately predicted by the spatial distribution of myosin motors.
434 *Elife* **7**, doi:10.7554/elife.27454 (2018).

435 52 Blanchard, G. B., Murugesu, S., Adams, R. J., Martinez-Arias, A. & Gorfinkel, N. Cytoskeletal
436 dynamics and supracellular organisation of cell shape fluctuations during dorsal closure.
437 *Development* **137**, 2743-2752, doi:10.1242/dev.045872 (2010).

438 53 Jia, F., Ben Amar, M., Billoud, B. & Charrier, B. Morphoelasticity in the development of
439 brown alga *Ectocarpus siliculosus*: from cell rounding to branching. *J R Soc Interface* **14**,
440 doi:10.1098/rsif.2016.0596 (2017).

441 54 Xie Shicong, F. M. M., and Adam C. Martin. Loss of α 12/13 exacerbates apical area
442 dependence of actomyosin contractility. *Molecular Biology of Cell*, doi:10.1091/mbc.E16-05-
443 0305 (2016).

444 55 Chanet, S. *et al.* Actomyosin meshwork mechanosensing enables tissue shape to orient cell
445 force. *Nat Commun* **8**, 15014, doi:10.1038/ncomms15014 (2017).

446 56 Belmonte, J. M., Leptin, M. & Nedelec, F. A theory that predicts behaviors of disordered
447 cytoskeletal networks. *Mol Syst Biol* **13**, 941, doi:10.15252/msb.20177796 (2017).

448 57 Nedelec, F. & Foethke, D. Collective Langevin Dynamics of Flexible
449 Cytoskeletal Fibers. (2009). <arXiv:0903.5178>.

450 58 Yevick, H. G., Miller, P. W., Dunkel, J. & Martin, A. C. Structural Redundancy in Supracellular
451 Actomyosin Networks Enables Robust Tissue Folding. *Dev Cell* **50**, 586-598 e583,
452 doi:10.1016/j.devcel.2019.06.015 (2019).

453 59 Guglielmi, G., Barry, J. D., Huber, W. & De Renzis, S. An Optogenetic Method to Modulate
454 Cell Contractility during Tissue Morphogenesis. *Dev Cell* **35**, 646-660,
455 doi:10.1016/j.devcel.2015.10.020 (2015).

456 60 Spahn, P., Ott, A. & Reuter, R. The PDZ-GEF protein Dizzy regulates the establishment of
457 adherens junctions required for ventral furrow formation in *Drosophila*. *J Cell Sci* **125**, 3801-
458 3812, doi:10.1242/jcs.101196 (2012).

459 61 Krueger, D., Pallares Cartes, C., Makaske, T. & De Renzis, S. β -spectrin is required for
460 ratcheting apical pulsatile constrictions during tissue invagination. *EMBO Rep*, e49858,
461 doi:10.15252/embr.201949858 (2020).

462 62 Dehapiot, B. *et al.* Assembly of a persistent apical actin network by the formin Frl/Fmn1
463 tunes epithelial cell deformability. *Nat Cell Biol*, doi:10.1038/s41556-020-0524-x (2020).

464 63 D'Angelo, A., Dierkes, K., Carolis, C., Salbreux, G. & Solon, J. Probing tissue-scale deformation
465 by in vivo force application reveals a fast tissue softening during early embryogenesis.
466 doi:10.1101/167155 (2017).

467 64 Gardel, M. L. *et al.* Elastic behavior of cross-linked and bundled actin networks. *Science* **304**,
468 1301-1305, doi:10.1126/science.1095087 (2004).

469 65 Storm, C., Pastore, J. J., MacKintosh, F. C., Lubensky, T. C. & Janmey, P. A. Nonlinear elasticity
470 in biological gels. *Nature* **435**, 191-194, doi:10.1038/nature03521 (2005).

471 66 Fernandez, P., Pullarkat, P. A. & Ott, A. A master relation defines the nonlinear viscoelasticity
472 of single fibroblasts. *Biophys J* **90**, 3796-3805, doi:10.1529/biophysj.105.072215 (2006).

473 67 Hoffman, B. D., Massiera, G., Van Citters, K. M. & Crocker, J. C. The consensus mechanics of
474 cultured mammalian cells. *Proc Natl Acad Sci U S A* **103**, 10259-10264,
475 doi:10.1073/pnas.0510348103 (2006).

476 68 Krzic, U., Gunther, S., Saunders, T. E., Streichan, S. J. & Hufnagel, L. Multiview light-sheet
477 microscope for rapid in toto imaging. *Nat Methods* **9**, 730-733, doi:10.1038/nmeth.2064
478 (2012).

479 69 Viswanathan, R. *et al.* Optogenetic inhibition of Delta reveals digital Notch signalling output
480 during tissue differentiation. *EMBO Rep* **20**, e47999, doi:10.1525/embr.201947999 (2019).

481 70 Bothma, J. P. *et al.* Enhancer additivity and non-additivity are determined by enhancer
482 strength in the Drosophila embryo. *eLife* **4**, doi:10.7554/eLife.07956 (2015).

483 71 Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis. *Nat Methods*
484 **9**, 676-682, doi:10.1038/nmeth.2019 (2012).

485 72 Aigouy, B., Umetsu, D. & Eaton, S. Segmentation and Quantitative Analysis of Epithelial
486 Tissues. *Methods Mol Biol* **1478**, 227-239, doi:10.1007/978-1-4939-6371-3_13 (2016).

487 73 Pauli Virtanen, Ralf Gommers, Travis E. Oliphant *et al.* SciPy 1.0: Fundamental Algorithms for
488 Scientific Computing in Python. *Nature Methods*, 17(3), 261-272. (2020).

489 74 Johannes Stegmaier *et al.* Cell Segmentation in 3D Confocal images using Supervoxel Merge-
490 Forests with CNN-based Hypothesis selection. *arXiv* (2017).

491 75 Royou, A., Field, C., Sisson, J. C., Sullivan, W. & Karess, R. Reassessing the role and dynamics
492 of nonmuscle myosin II during furrow formation in early Drosophila embryos. *Mol Biol Cell*
493 **15**, 838-850, doi:10.1091/mbc.e03-06-0440 (2004).

494 76 Bothma, J. P., Norstad, M. R., Alamos, S. & Garcia, H. G. LlamaTags: A Versatile Tool to Image
495 Transcription Factor Dynamics in Live Embryos. *Cell* **173**, 1810-1822 e1816,
496 doi:10.1016/j.cell.2018.03.069 (2018).

497 77 Garcia, H. G., Tikhonov, M., Lin, A. & Gregor, T. Quantitative imaging of transcription in living
498 Drosophila embryos links polymerase activity to patterning. *Curr Biol* **23**, 2140-2145,
499 doi:10.1016/j.cub.2013.08.054 (2013).

500 78 John D. Hunter. Matplotlib: A 2D Graphics Environment, Computing in Science &
501 Engineering, 9, 90-95, DOI:10.1109/MCSE.2007.55 (2007)

502 79 Wes McKinney. Data Structures for Statistical Computing in Python, Proceedings of the 9th
503 Python in Science Conference, 51-56 (2010)

504 80 Stéfan van der Walt, Johannes L. Schönberger, *et al.* scikit-image: Image processing in
505 Python, *PeerJ* 2:e453 (2014)

506 81 Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, *et al.* Array programming with
507 NumPy, *Nature*, 585, 357–362, DOI:10.1038/s41586-020-2649-2 (2020)

508

509 **Supplementary information**

510

511 **Plasmid for membrane-associated mCardinal^[57]**

512 To generate the plasmid attb-tubulin_promoter-GAP43::mCardinal-K10 plasmid, the attb-UASp-K10
513 plasmid (provided by Anne Ephrussi, EMBL Heidelberg) was modified by replacing the UAS promoter
514 by a tubulin promoter sequence that was amplified from the plasmid pCasper4-tubulin (provided by
515 Stefano De Renzis, EMBL Heidelberg). The mCardinal coding sequence was amplified from
516 mCardinal-H2B-C-10 (Addgene plasmid #56162) using a forward primer with the sequence encoding
517 the first 20 amino acids of the GAP43 protein from Bos taurus (Table S6). The GAP43::mCardinal
518 fragment was inserted into the attb-tubulin-promoter-K10 plasmid using NotI and BamH enzymes.
519

520

521 **Generation of fly stocks**

522 To generate the fly transgenic lines p[mat tub>GAP43::mCardinal]/Cyo and p[mat tub>
523 GAP43::mCardinal]/TM6 Tb, the attb-tubulin_promoter-GAP43::mCardinal-K10 plasmid was inserted
524 into landing sites on the second and third chromosomes (landing sites VK18 (#BDSC-9736) and
525 VK33(#BDSC-9750)) by BestGene Inc. (California, USA). Only the insertion on the second
526 chromosome was used in this study because it was brighter than the insertion in VK33.
527

528

529 **Sample preparation**

530 Embryos were collected according to standard procedures on apple juice agar plates. Plates were
531 changed after a one-hour embryo collection and kept at 25°C for 2.5 hours. Individual mid-to-late
532 cellularization embryos were hand-selected under halocarbon 27 oil. The stage-selected embryos
533 were devitellinised with 50% bleach and washed thoroughly with distilled water. For confocal
534 microscopy, the embryos were then mounted on a glass-bottom microwell dish with the ventral or
535 ventral-lateral side facing the glass and covered with PBS. For MuVi-SPIM the embryos were
536 mounted in 1% Gelrite inside a glass capillary and multiple views registered and fused¹⁶.
537

538

539 **Confocal microscopy**

540 For visualising 3D cell shapes using 2-photon illumination, a femtosecond-pulsed infrared laser
541 (Chameleon Compact OPO Family, Coherent) tuned at 950 nm emission wavelength and coupled
542 with Zeiss LSM 780 confocal microscope was used. The region of interest was defined with the Zen
543 'Regions' interface and the embryos were illuminated with 20-25% laser power. A volume of 200 x
544 500 x 60 μm^3 was imaged, where the dimension of 200 μm is along the anterior-posterior axis of the
545 embryo, centred around the central region, 500 μm is along the left-right axis, and 60 μm is depth in
546 the z axis.

547 Two-colour imaging was performed at room temperature with a Zeiss 880 Airyscan microscope, a
548 40X/1.4 numerical aperture oil-immersion objective, an argon ion laser and a 561-nm diode laser.
549 Image stacks were acquired every 25 sec.

550

551 **Selective plane illumination microscopy**

552 Imaging was performed on a custom-built Multi-View SPIM set-up⁶⁸ with Nikon 10/0.3W objective
553 lenses for illumination and Nikon 20/1.0W objective lenses for detection. An additional 1.5X
554 magnification tube lens produced an effective image pixel size of 0.19 μm X 0.19 μm . Optical
555 sections were recorded with a typical spacing of 0.75-1 μm . For observing cell shape changes,
556

553 *GAP43::mCardinal* embryos were imaged from two opposing directions simultaneously and
554 successively from two directions with 90 degree apart. Registration of the four views was performed
555 as previously described¹⁶.

556

557 **Identification of mesodermal cells**

558 To identify unambiguously the lateral borders of the mesoderm we used two methods (Suppl Fig.
559 1D-J'): i) back-tracing mesectodermal cells from the point when they meet at the ventral midline after
560 the mesoderm is fully internalised; or ii) using the MS2 stem loop/MCP-GFP system to visualize the
561 expression of the genes *singleminded*⁶⁹ in mesectodermal cells or *snail* in the mesoderm⁷⁰.

562

563 **Laser ablation and illumination**

564 Laser-based actomyosin meshwork ablation was performed as previously described¹⁶ using a
565 femtosecond-pulsed infrared laser (Chameleon Compact OPO Family, Coherent) tuned at 950 nm
566 emission wavelength and coupled to an LSM Zeiss 780 confocal microscope. The Zen 'Bleaching'
567 interface was used to create the region of interest and was illuminated at 65-70% laser power. For
568 this experiment, C-Apochromat 63X magnification water immersion Zeiss Objective with 1.1 NA was
569 used (infrared corrected).

570

571 **Optogenetic manipulations**

572 Embryos were prepared in a room where the blue spectrum of visible light was filtered out¹⁰. The
573 Zen 'Regions' interface was used to create the region of interest and the embryos were illuminated
574 with 15-20% laser power with pixel dwell time between 0.8 and 1.27 ms. For this experiment, a C-
575 Apochromat 40X magnification water immersion Zeiss Objective with 1.2 NA was used (infrared
576 corrected) and an infrared laser (Chameleon Compact OPO Family, Coherent) tuned to 950 nm
577 emission were used.

578

579 **Image processing**

580

581 **Apical surface extraction from SPIM images**

582 The 30% of central part the embryos along the anterior-posterior axis was cropped in Fiji⁷¹. A custom
583 MATLAB software was then used to extract the apical surfaces³⁶. A binary mask around the embryo
584 was generated semi-automatically by defining the apical and basal surfaces. Using these masks,
585 distance transformation was used to define a 1 to 2-pixel 'peel' typically 2-3 pixels below the binary
586 mask. Along the anterior-posterior axis of the embryo, pixels along the surface were traced and
587 mapped onto a line. This process was performed on every stack to map the apical surface of the
588 embryo onto a 2D plane.

589

590 **Myosin measurements**

591 Images were deconvolved in the ZEN software using AiryProcessing. The Spider:GFP images
592 represent confocal slices 3 μ m below the apical cortex. Sqh:Cherry images represent sum Z-
593 projections of an apical section of the same depth upon background myosin subtraction. Background
594 myosin intensity was measured in single subapical confocal slices, mean + 2 standard deviations
595 were subtracted from each slice before Z-projecting to obtain apical myosin intensity. The cells were
596 segmented and tracked using TissueAnalyzer⁷². The segmentation output was used to extract cell

597 areas and pixel intensities. Myosin intensity within a cell was measured as a sum intensity of all
598 pixels in a cell. Myosin concentration was calculated as myosin intensity/cell area.
599 For Figures 2K and 2L, myosin concentration and cell size values for every cell were smoothed along
600 the time axis using a 1D gaussian filter with sigma=3 (reference⁷³). For every cell at each of 25 time
601 points three values were taken: its myosin concentration, the myosin concentration in the area of 70
602 pixels around the cell boundary and the relative size change, calculated as the cell size in the next
603 time frame divided by the cell size in the current one.

604

605 **A visco-elastic model for the mesoderm**

606 We modelled the mesoderm as one-dimensional series of points (cell boundaries) connected by
607 visco-elastic units (cells). Each cell behaves as a Kelvin-Voigt material made of a spring and dashpot
608 in parallel connecting two adjacent cell boundaries (at positions x_i and x_{i+1}). All cells have the same
609 viscosity (η) and stress-strain response ($S(\Delta x)$). We added 3 cells with a higher stiffness at each side
610 of the 19 mesodermal cells to simulate the rigid ectodermal cells. Each cell contains a defined
611 amount of “myosin” (M), which exerts a force at each cell membrane position x_i that is directly
612 proportional to the local gradient of “myosin” around that point ($\nabla M(x_i)$). The system evolves over
613 time according to the following deterministic equation:

614

615 **(Eq. 1)**
$$\frac{d^2}{dt^2} x_i = \sum_j k_{ij} S(x_i - x_j) - \eta \frac{d}{dt} x_i + \nabla M(x_i),$$

616

617 where the sum is over the two adjacent point coordinates, the function S is the stress-strain
618 response (defined below), and the myosin profile (M) is modelled as a symmetric sigmoidal function
619 around the midline, described by the equation:

620

621 **(Eq. 2)**
$$M(x_i) = \frac{1+e^{-sw}}{1+e^{s(|x_i|-w)}},$$

622

623 where w and s are parameters describing the width and steepness of the function, respectively, and
624 $x_i = 0$ corresponds to the midline (central) position of the mesoderm.

625 We considered 5 types of stress-strain responses models. The first corresponds to a simple
626 linear elastic-like model, where stress increases proportionally with the strain. The other four
627 models are non-linear, with the same stiffening response to compressive strains ($\Delta x < 0$), and 4
628 different types of responses to extensive strains: i) an elastomer-like model, corresponding to an
629 elastic response but with a decreased stiffness after the proportionality limit; ii) a stiffening model,
630 with an increased stiffness after the proportionality limit; iii) a superelastic model, corresponding to a
631 material that undergoes strain-softening after the proportionality limit, followed by strain-
632 hardening; and iv) an elastoplastic model, with a similar curve as before, but undergoing plastic
633 (permanent) deformation after a certain yielding stress. For simplicity, all stress-strain curves are
634 continuous functions, with a repulsive response for compressive strains ($\Delta x < 0$) to prevent cells
635 from having zero areas and made of connected linear segments with varying slopes (stiffness) for
636 different ranges of extensive strains ($\Delta x > 0$). Table S1 contains a mathematical description of each
637 curve, and Table S2 lists the parameters values used in our simulations.

638 We systematically explored the outcomes of the 5 models by varying the parameters controlling the
639 myosin profile (Eq. 2).

640

641 **Microscopic model for the mesoderm**

642 We modelled a line of cells from the ventral midline to the mesectodermal cell as a series of
643 sequentially connected actomyosin networks with varying amounts of myosin motors. Each network
644 is a 2D mesh of 800 actin filaments of 1.5 μm long, randomly distributed within a rectangular region
645 of $7 \times 8 \mu\text{m}$. The cells have periodic boundary conditions along the “antero-posterior” direction (top
646 to bottom in the graphic representation) and are separate by rigid but movable ‘membranes’. The
647 row is bounded by unmovable walls on each end to simulate the ectoderm and the ventral midline.
648 Each membrane has 800 connecting points for the filaments on each side. Actin filaments of
649 adjacent cells do not interact except through the membrane connectors. Each cell has 1,600
650 crosslinkers and between 1,600 to 16,000 myosin motors (with a minimum level that was sufficient
651 in principle to contract the network). Both connectors are modelled as point like objects with two
652 independent hands that can bind and bridge two nearby filaments pertaining to the same cell. Once
653 bound, motor hands move towards the plus-end of the filaments until they unbind or reach and
654 detach from their ends. We used as input the parameters for the crosslinkers, connectors, motors
655 and filaments the on-off rates, movement kinetics and stiffness/persistence lengths that have been
656 biochemically determined for alpha-actinin, myosin and F-actin (see Table S3).

657 All filament-based simulations were done with CytoSim⁵⁷, a cross-platform simulation engine
658 designed to handle large systems of flexible filaments and associated proteins. CytoSim uses a
659 Brownian dynamics approach to simulate the cytoskeleton, where each element is individually
660 represented in either 2D or 3D space. The number, spatial location and physical properties of each
661 element is determined at the start of the simulation and the system evolves according to the laws of
662 mechanics and stochastic reaction-kinetics.

663

664 **Data Analysis and plotting**

665 All graphs were plotted using either MATLAB (MATLAB_R2015a) or Python (version 3.6).
666 Matplotlib⁷⁸, Pandas⁷⁹, Scikit-image⁸⁰, NumPy⁸¹ packages were used. The figures were compiled using
667 Adobe Illustrator CS6 (Version 16.0.0).

668

669 **Data availability**

670 Apart from the third party software tool SEGMENT3D⁷⁴, all described algorithms were implemented
671 in MATLAB and are available from <https://github.com/stegmaieri/CellShapeAnalysis/> (Apache
672 License 2.0) and the code for myosin analysis from <https://github.com/sourabh-bhide/tissue2cells>
673

674

675 **Table S1: Description of equations used for the visco-elastic stress-strain responses**

Stress-strain type	Strain range			
	$\Delta x < 0$	$\Delta x < x_{pl}$	$\Delta x < x_{sh}$	$x_{sh} < \Delta x$
	function	slope	slope	slope
Linear	$\Delta x s_1$	s_1	s_1	s_1
Elastomeric	$k_c [x_c^{-n} - (\Delta x + x_c)^{-n}]$	s_1	s_{2em}	s_{2em}
Stiffening	$k_c [x_c^{-n} - (\Delta x + x_c)^{-n}]$	s_1	s_{2s}	s_{2s}
Superelastic	$k_c [x_c^{-n} - (\Delta x + x_c)^{-n}]$	s_1	s_{2se}	s_{3se}
Elastoplastic	$k_c [x_c^{-n} - (\Delta x + x_c)^{-n}]$	s_1	s_{2ep}	s_{3ep}

676

677

678 **Table S2: Parameters used in the visco-elastic models**

Parameter	Value
k_c	131.247
x_c	6
n	0.05
s_1	1.0
s_{2em}	0.2
s_{2s}	2.0
s_{2se}	-0.75
s_{3se}	0.2
s_{2ep}	-1.25
s_{3ep}	0.2

679

680

681 **Table S3: List of parameters used in the microscopic simulations**

Parameter	Symbol	Value (or range)	Units
Simulation time step	Δt	0.01	s
total time	T	20	s
viscosity	η	0.1	pN s/ μm^2
Geometry			
cell height	H	8	μm
cell width	W	7	μm
number of cells	N_c	9	-
Actin filaments			
length	L	1.5	μm
rigidity	k	0.0075	pN μm^2
segmentation	ΔL	0.1	μm
filaments per cell	N_f	800	-
Myosin motor			
binding rate	k_{mb}	10	s^{-1}
binding range	r_{mb}	0.1	μm
unbinding rate	k_{mu}	0.3	s^{-1}
unloaded speed	v_0	0.1	$\mu\text{m/s}$
stall force	f_0	6	pN
stiffness	s_m	500	pN/ μm

motors per cell	N_m	1600-16000	-
Crosslinker			
binding rate	k_{xb}	10	s^{-1}
binding range	r_{xb}	0.1	μm
unbinding rate	k_{xu}	0.3	s^{-1}
stiffness	S_x	500	$pN/\mu m$
crosslinkers per cell	N_x	1600	-
Membrane connectors			
binding rate	k_{cb}	2000	s^{-1}
binding range	r_{cb}	0.1	μm
unbinding rate	k_{cu}	0	s^{-1}
stiffness	S_c	500	pN
connectors per membrane	N_{cm}	400	-
connectors per wall	N_{cw}	800	-

682

683

684 **Table S4: List of Fly Stocks**

Stock	source	Reference
w[*]; p[UAS-sqh-Gap43::mCherry]/CyO; +	Thomas Lecuit	¹³
w[*]; p[sqh-MRLC::eGFP]/Cyo; p[UASp-Gap43::mCherry]/MKRS	Thomas Lecuit (sqh-GFP)	⁷⁵
sqh ^{AX3} ; p[sqh-UtrophinABD::GFP], p[sqh-MRLC::mCherry]	Thomas Lecuit (sqh-mCherry)	¹²
sqh ^{AX3} ; p[sqh-MRLC::mCherry]; p[Spider::GFP]	Stefano DeRenzi	¹³
w[*]; p[snail::MS2]; +	Jacques Bothma	⁷⁰
w[*]; p[MCP::mCherry]/CyO ; p[MCP::mCherry]/TM3,Ser	Jacques Bothma	⁷⁶
w[*]; + ; P[w+,UASp-mCherry::CRY2- OCRL]/Sb	Stefano DeRenzi	⁵⁹
w[*]; P[w+,UASp-CIBN::pmGFP]//Cyo ; sb/TM3,Sb	Stefano DeRenzi	⁵⁹
w[*]; p[MCP::GFP]	Stefano DeRenzi	⁷⁷
w[*]; p[Sim::MS2]	Stefano DeRenzi	⁶⁹
w[*]; p[UASp-RhoGEF2-CRY2]/TM3, Ser	Stefano DeRenzi	¹⁰
p[sqh::GFP];p[w+,matoTub-Gal4::VP16],p[UASp-Gap43::mCherry::mCherry]/TM3	Adam Martin	⁴⁹
w[*]; lf/Cyo; p[Oskp-Gal4::VP16]/TM3, Ser	Bloomington stock 23651	
p[sqh>Gap43::mCherry]; +; +	Stefano DeRenzi	¹⁰

685

686

687 **Table S5: Materials**

Product name	Product information
Glass bottom plates	Matek corporation (Part no.: P35G-1.5-10.C)
Microspheres	TetraSpeck™ Fluorescent Microspheres, ThermoFisher (Catalogue no.:T7284)
Gelrite	Merck (Catalogue no.:G1910)
Halocarbon Oil 27	Merck (Catalogue no.:H8773)

688

689

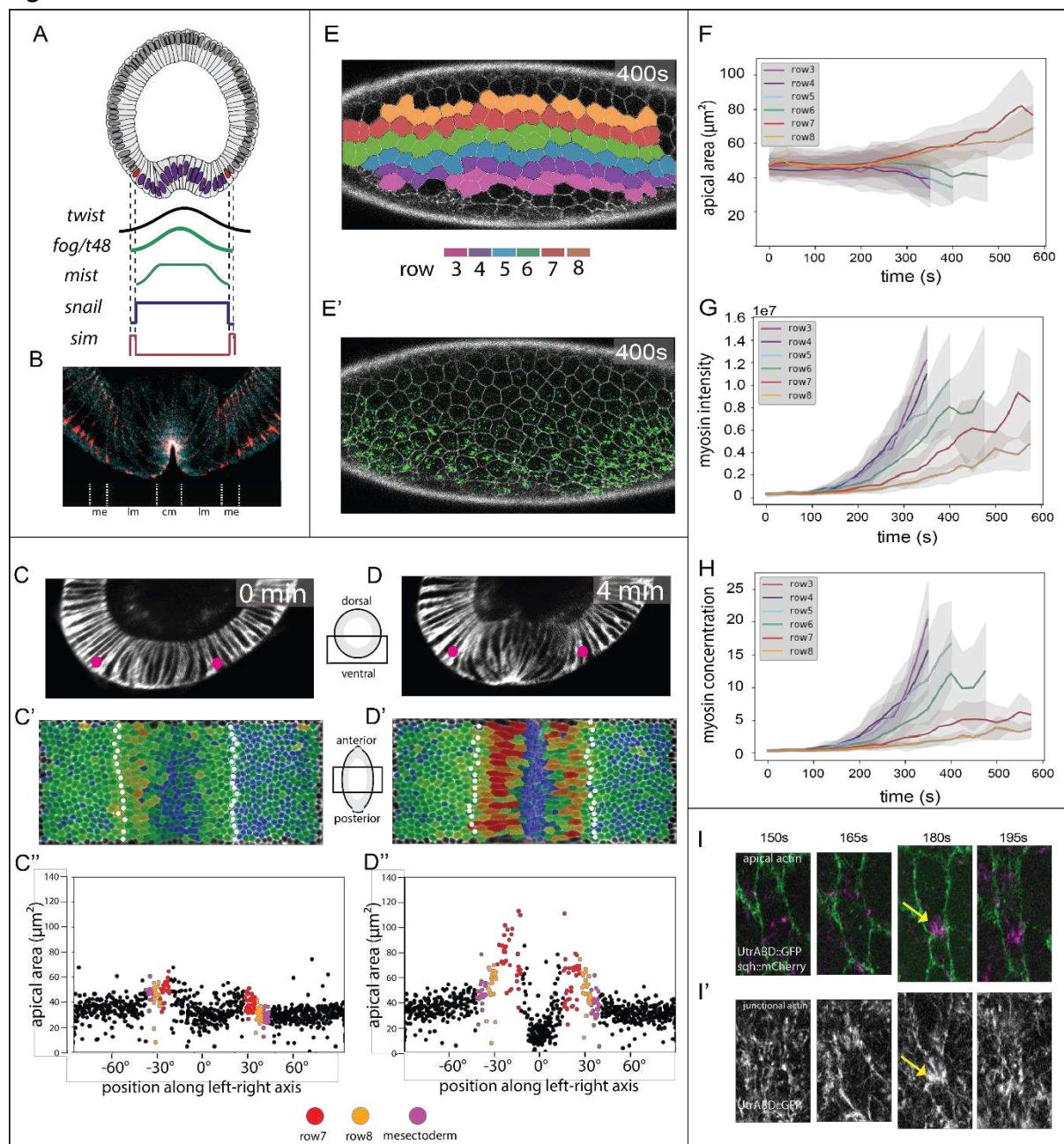
690 **Table S6: Primers**

Name	Sequence
Tubulin promoter Forward	5'-tcatct <u>aggcct</u> gaattcgatatcaagcttgac-3'
Tubulin promoter Reverse	5'-tcatctgcggccgcgtacccacgtcgctgtgg-3'
GAP43mCardinal Forward	5'-aaatat <u>cgccgc</u> ccaccatgctgttatgcgaagaaccaaac agggtgaaaaaaaaatgatgaggacaaaagattatggtagcaagggcgag-3'
GAP43mCardinal Reverse	5'-tcacgc <u>ggatc</u> ttacttgtacagctcgccatg-3'

691

692

693 **Table S7: List of genotypes used in experiments**


Figure no.	Fly stock/ Cross	Microscopy
1 C-C'',D-D''; S1 A-C	p[mat tub >GAP43::mCardinal]/CyO	MuVi SPIM
1 E,E'; 2 E-G	sqh ^{AX3} ; p[sqh-MRLC::mCherry]; p[Spider::GFP]	LSM 880
1 I,I'; S2; S3	sqh ^{AX3} ; p[sqh-UtrophinABD::GFP], p[sqh-MRLC::mCherry]	LSM 880 NLO
3 A-B , C-D, S1 D-I	sqh-MRLC::eGFP/MCP::mCherry; UASp-Gap43::mCherry/MCP::mCherry X Snail MS2/SnailMS2	LSM 780 NLO
3 H-K	CIBNpm::GFP/MCP::GFP; OCRLCRY2::mCherry/osk Gal4 X Sim-MS2/Sim-MS2	LSM 780 NLO
4	sqhp-Gap43::mCherry/+; UASp>CIBN::pmGFP ; UASp>RhoGEF2-CRY2 / Osk>Gal4::VP16	LSM 780 NLO
S2 A-D	sqh ^{AX3} ; p[sqh-UtrophinABD::GFP], p[sqh-MRLC::mCherry]	MuVi SPIM
S6	sqh ^{AX3} ; p[sqh-MRLC::mCherry]; p[Spider::GFP]	LSM 880

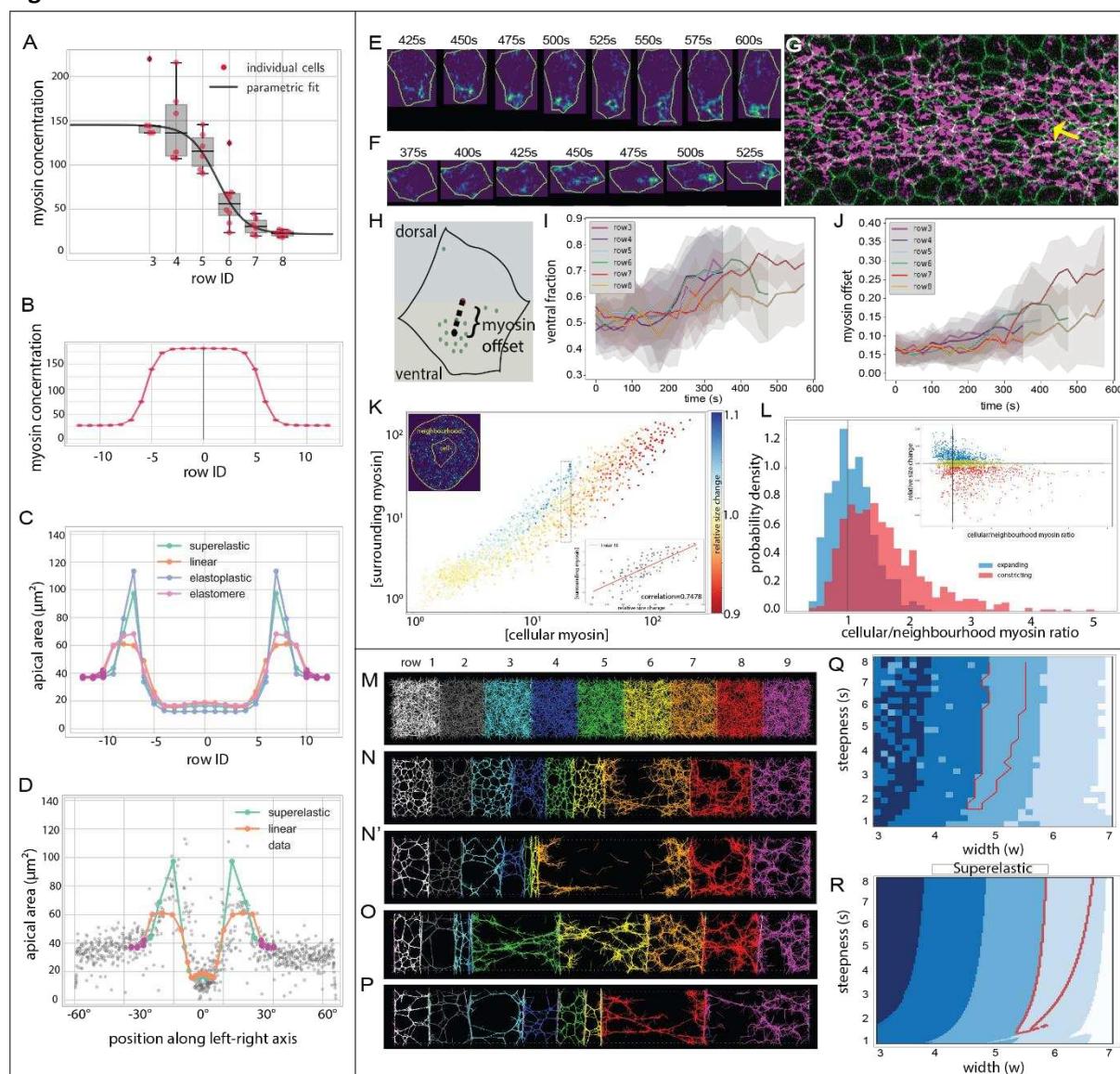
694

695 **Main figures**

696
697

Figure 1

698
699


Fig. 1 Cell activities during ventral furrow formation.

700 (A) Genes expressed ventrally at the onset of gastrulation.
701 Top: Diagram of a cross-section through an embryo at the beginning of gastrulation. Mesodermal
702 nuclei expressing Snail: blue, mesectodermal nuclei with single-minded: red.
703 Bottom: Schematic of gene expression levels. Twist (black) and Snail (blue) regulate the genes that
704 control shape changes (*fog*, *T48*, *mist*).
705 (B) Section of an embryo stained for beta-catenin/armadillo to visualize adherens junctions (pink)
706 and myosin (blue). Junctions in the central (cm) and lateral (lm) mesoderm are apical, the

708 mesectodermal (me) cell has one on apical and one subapical junction, ectodermal junctions are
709 subapical²⁵.
710 (C, -D) Cross-sectional views at two time points from a MuVi-SPIM recording of an embryo expressing
711 GAP43::mCardinal (membrane). Pink dots: mesectoderm. timeseries in Suppl. Fig.1
712 (C', D') Apical surface 'peels' with colour-coded apical cell areas. Mesectoderm: white dots.
713 (C'', D'') Apical area from C' and D' plotted against cell position (0° is the ventral midline). Each dot
714 represents one cell. Colour-code for rows 7, 8 as in E, mesectoderm magenta.
715 (E) Ventro-lateral views of a confocal recording of an embryo expressing Spider::GFP (white) and
716 sqh::mCherry (green) at a confocal Z-plane 3µm below the surface (Suppl. Movie 2).
717 (E') Cells were segmented using Spider::GFP and assigned to colour-coded rows.
718 (F-H) Apical areas, total myosin intensity and myosin concentration plotted per row against time
719 (mean and standard deviation). Tracks for ventral rows stop early because the cells are lost from the
720 imaging plane .
721 (I-I') Example of a lateral mesodermal cell at four time-points in an embryo expressing utrABD::GFP
722 (subapical for cell outlines in I, green; apical in I'; white) and sqh::mCherry (magenta) during
723 formation of a myosin focus. Arrow: local cortical deformation.

724

Figure 2

725

Fig. 2. Computational models and myosin distribution.

726 (A-D) Viscoelastic model of a line of cells.

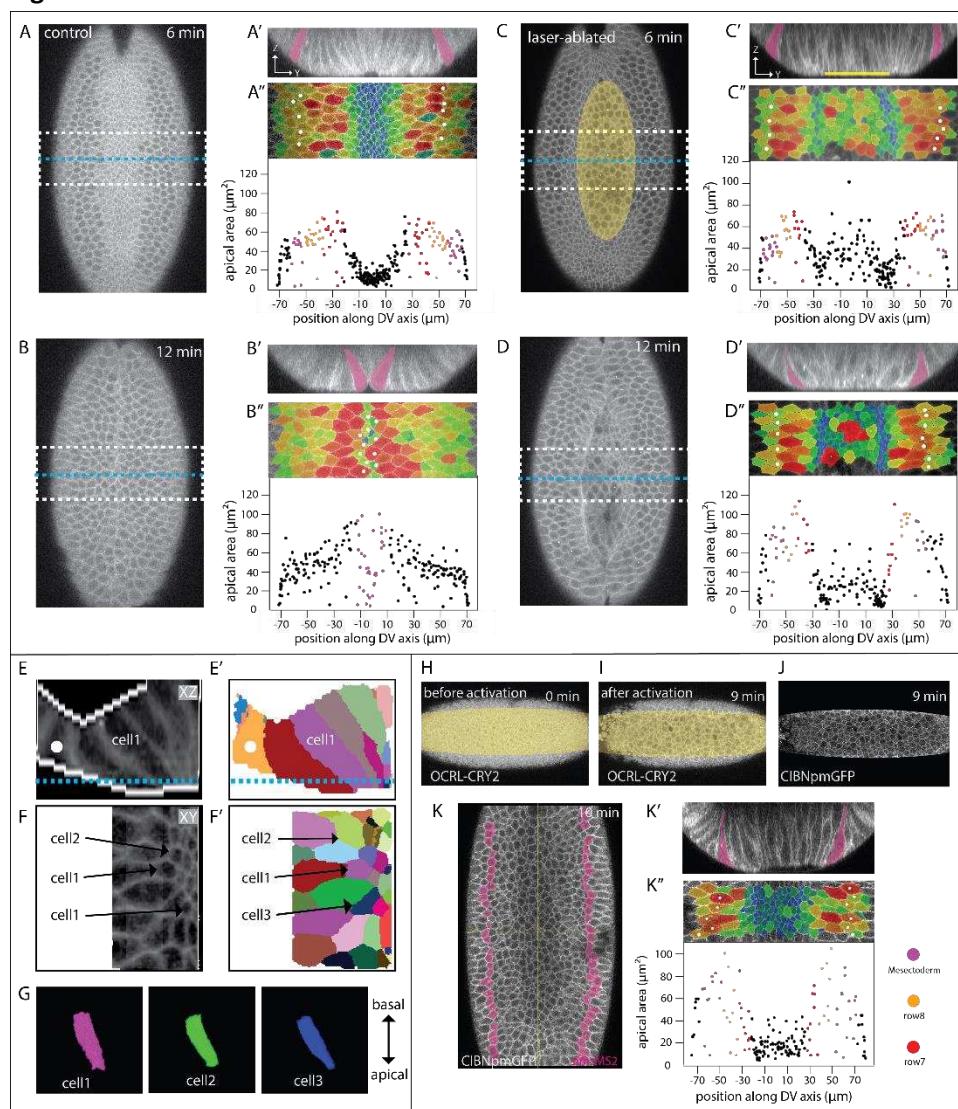
727 (A) Polynomial fit to the myosin concentration per row, measurements from embryo 1.

728 (B) The model is driven by an explicit contractility value for each cell.

729 (C) Final cell lengths for linear elastic, elastomeric and elastoplastic spring constants. Magenta dots
730 represent the stiffer ectoderm.

731 (D) Values for two curves from (C) superimposed on measured cell sizes. The point for each value is
732 shifted along the x-axis from the starting point represented in (C) to the position where each cell row
733 has moved at this time point.

734 (E) Example of myosin dynamics in a single cell from row 8. Cell contours and myosin signal pixels
735 were isolated using individual cell segmentation masks. Myosin intensity values increase from blue to
736 yellow.


737 (F) Example of an incompletely constricted central mesodermal cell (arrow in G).

738 (G) Embryo 2, ventral view. Green: membranes; magenta: myosin.

740 (H) Representation of myosin spatial distribution in a cell. 'Offset' is the Euclidean distance between
741 the cell centroid and the intensity-weighted centroid of the myosin signal; 'DV asymmetry' is the
742 ratio of myosin pixels in the ventral half of the cell to the total number of myosin pixels in the cell.
743 (I) Average proportion of myosin in the ventral half of the cell, plotted over time for each row.
744 (J) Offset of myosin centroid from cell centroid, average per row.
745 (K) Myosin concentration within a cell plotted versus surrounding myosin concentration in a ring
746 around the cell (radius of 70 pixels (~8.5 μm) from each point of the cell periphery; top left inset),
747 with the change in cell size over two consecutive frames indicated in colour. All segmented cells at 25
748 time points from movie 5 are represented. The bottom right inset shows the cells with internal
749 concentrations at values between 18 and 22 (boxed in the main plot) with surrounding concentration
750 plotted against size change.
751 (L) Change in cell size compared to the ratio of cell-intrinsic over surrounding myosin concentration.
752 The top right insert shows a plot of all individual cells, with colour illustrating the bins used for the
753 main density histogram (blue: expanding; red: contracting; yellow: no significant change, not
754 represented in the histogram). All cells with concentrations above 45 constrict, regardless of the
755 levels in surrounding cells. The proportion of expanding cells is greater at low intrinsic-to-
756 surrounding levels, and is highest when this ratio drops below one (i.e. surrounding cells have more
757 myosin).
758 (M-Q) Microscopic model of a line of cells with a contractile actomyosin meshwork.
759 (M) Initial condition of the system with randomly distributed actin, crosslinkers and myosin motors
760 within each cell (shown with different colors).
761 (N-N') Example of a simulation with myosin profile that qualitatively reproduces experimental
762 results.
763 (O-P) Examples of simulations where the myosin profile was wider (M) or shorter (N).
764 (Q-R) Parameter map for myosin concentration curves with varying peak widths and steepnesses for
765 microscopic (Q) and visco-elastic (R) with super-elastic models. Blue shades: number of expanding
766 cells. Red outline: conditions where the three right cells expand with an inverted pattern of
767 stretching that qualitatively matches experiments.
768

769

Figure 3

770

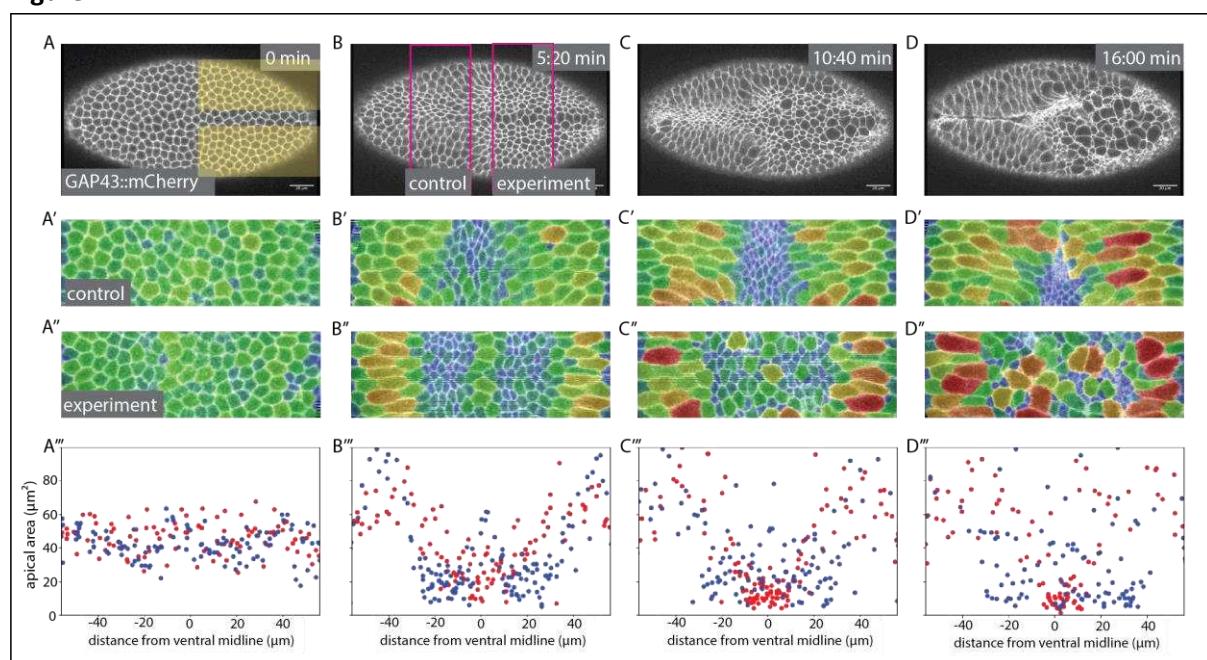
771

Fig 3. Effects of restricting apical constriction in central cells.

(A – D) Two time-points from confocal recordings of control (A, B) and laser-manipulated (C, D) embryos expressing GAP43::mCherry (cell outlines). SnailMS2 and MCP::mCherry (not shown) were used to determine the extent of the mesoderm; mesectoderm is marked by magenta fill in A' – D" and white spots in A'' – D''. 0 sec is the point when the apical-basal length of the central rows is 35 μm. The region marked in yellow in (C) was repeatedly illuminated with an infrared laser. See also Suppl. video 3.

(A-D) Confocal Z-planes 15 μm below the ventral surface. Positions of Z-sections in A'-D' are marked by yellow lines and the region of the apical surface peels in A''-D'' by white boxes.

(A'-D') Z-sections at the positions indicated in A – D.


(A'' – D'') Apical surface peels of regions marked in A – D. Same markings as in figure 1, with quantification of the apical areas of the cells plotted against their position. Same representation of cell size as in Fig. 1. Note data points at the sides include artefactually small values because cells at the edge are not full size.

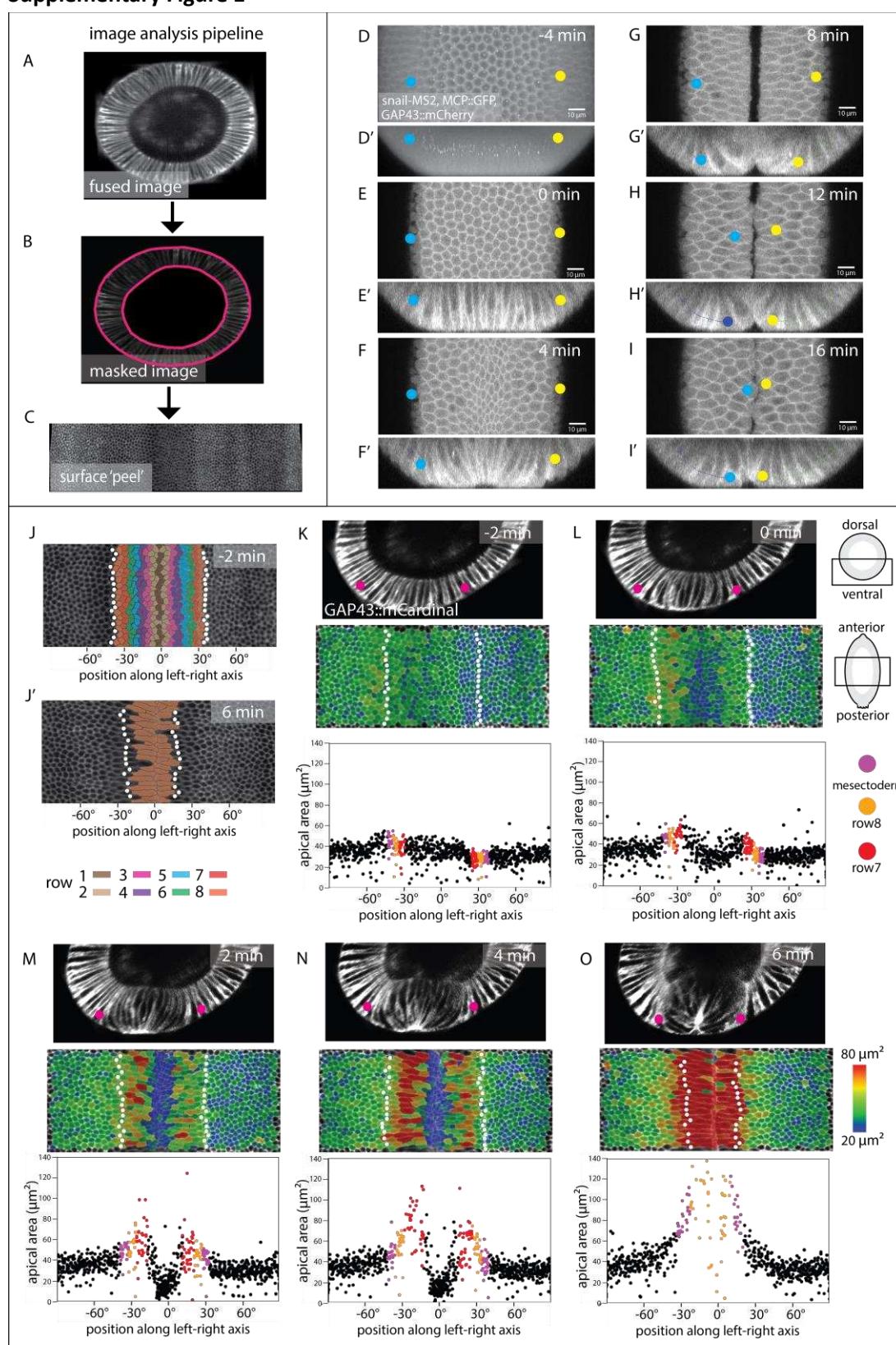
(E – G) 3D segmentation of I cells from the embryos in (D).

787 (E) Z-section showing cell outlines and the binary mask used for segmentation (white edges). Blue
788 line indicates position of Z-section shown in F. Mesectoderm: white spot. (E') segmentation result.
789 (F) Z-plane and (F') segmentation result. The numbers indicate the cells shown in 3D below.
790 (G) 3D renderings of the three cells marked above (F, F'). For 3D viewing see Supplementary movies.
791 See also Suppl. video 4.
792 (H - K) Optogenetic inactivation of cortical actomyosin in a ventrally mounted embryo co-expressing
793 OCRL-CRY2::mCherry, CIBN::pmGFP and simMS2 and MCP::GFP to mark the mesectoderm
794 (H – J) Confocal Z-planes 5 μ m below the surface before and after laser-illumination to release
795 actomyosin from the apical cortex. Illumination leads to recruitment of OCRL-CRY2 to the plasma
796 membrane (compare H and I) via membrane-associated CIBN::pmGFP.
797 (K) Z-plane 25 μ m below the ventral surface 10 min after laser treatment to show the position of the
798 edge of the mesoderm. Mesectoderm in magenta. This level does not show the apical surface.
799 (K') Cross-section showing non-stretched cells adjacent to the mesectoderm (magenta).
800 (K'') Apical surface peel and quantification of apical cell areas. Same markings as above.

801

Figure 4

802

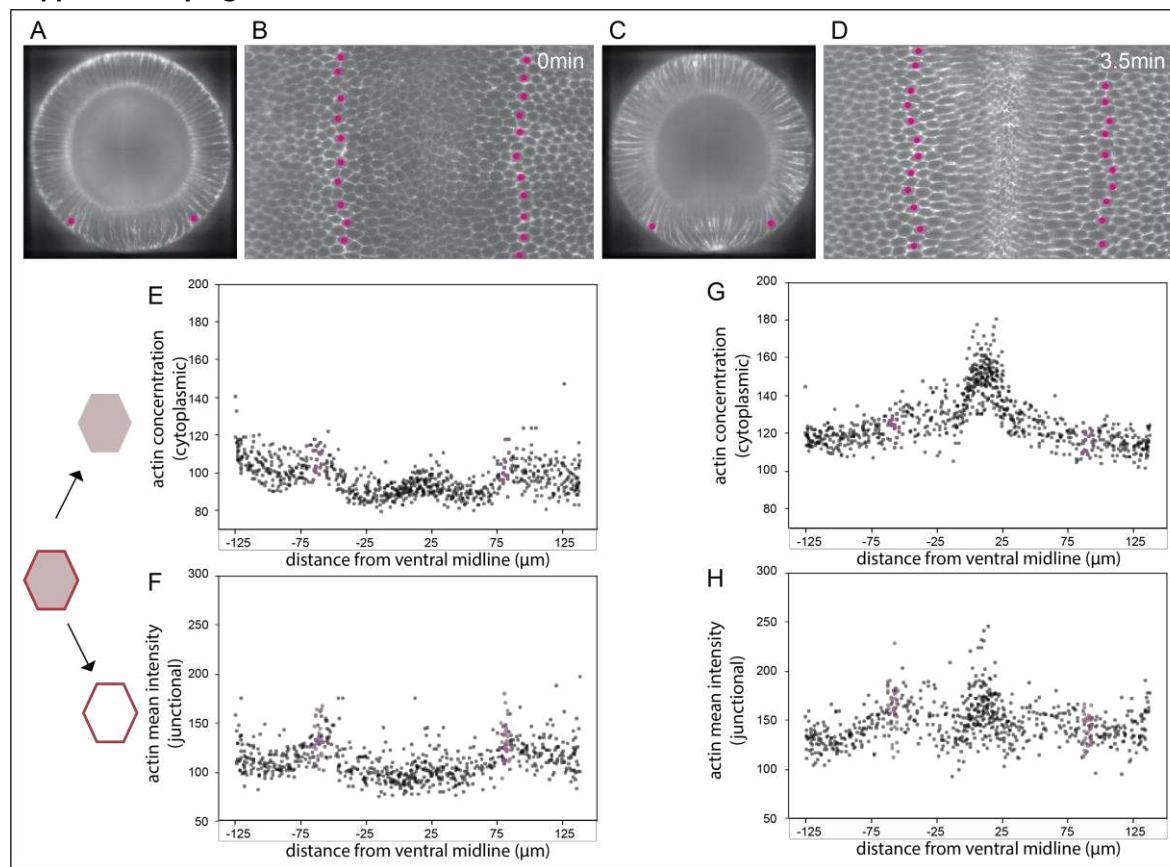

803

804 **Fig 4. Effect of ectopic myosin recruitment.**

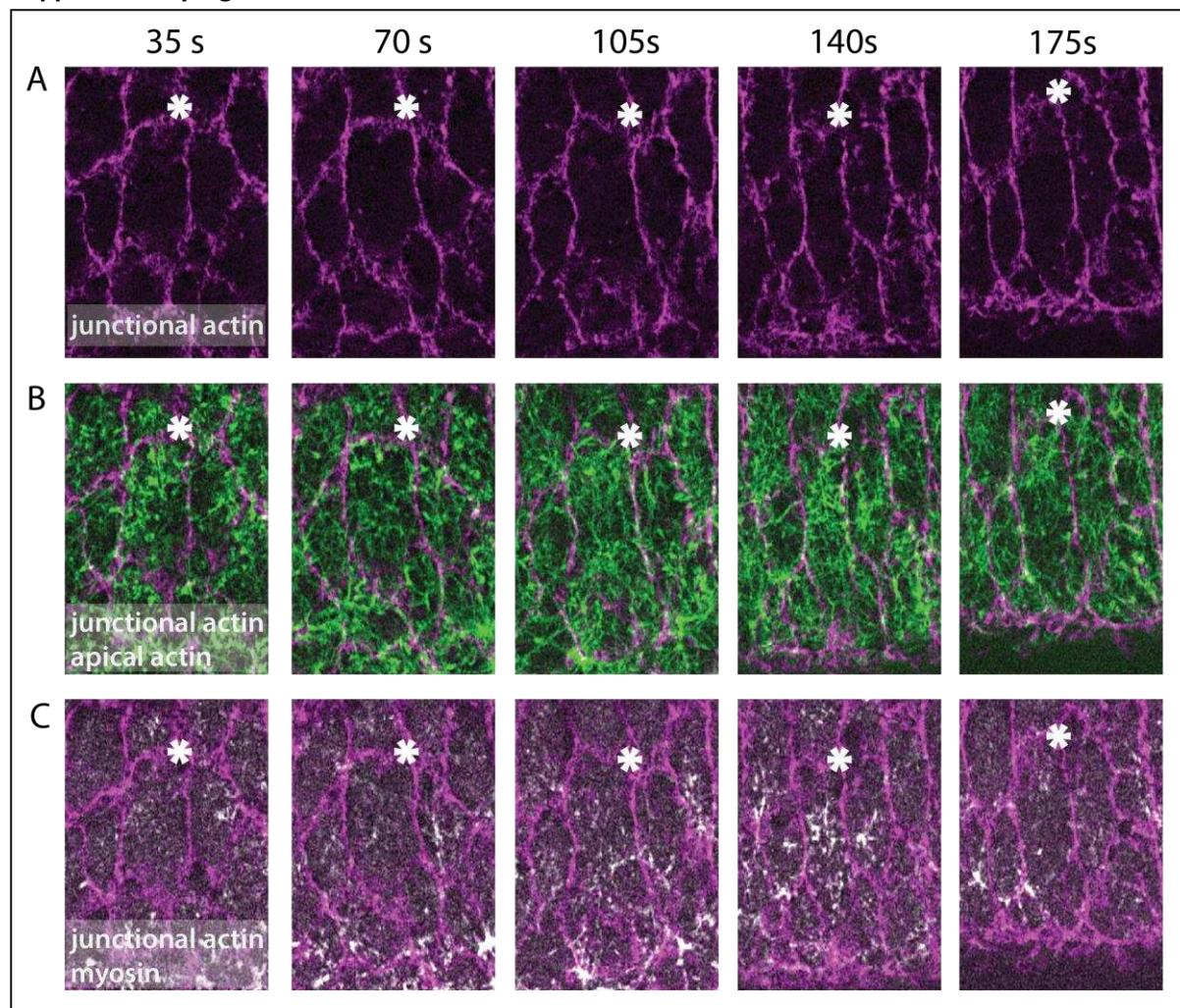
805 (A-D) Confocal Z-plans 5 μm below the surface of an embryo co-expressing GAP43mCherry,
806 CIBN::pmGFP and RhoGEF2-CRY2. Photoactivation in the yellow areas in (A) induces membrane-
807 recruitment of RhoGEF2-CRY2. Magenta lines in (B) show control and experimental areas analysed.
808 (A'-D', A''-D'') Apical surface peels of the regions marked in (B) overlaid with colour-code
809 representing relative apical areas.
810 (A'''-D''') Apical areas of the cells in the control (red dots) and experimental (blue dots) parts of the
811 embryo plotted against their positions.

812 **Supplementary figures**

813 **Supplementary Figure 1**


814

815


816 **Suppl. Fig. 1. Image analysis and identification of the edge of the mesoderm**

817 (A) Embryos were imaged using Multi-View SPIM. The resulting data sets were fused into a single 3D
818 stack for each timepoint. Ventral side top left.
819 (B, C) Apical (outside) and basal surface masks were defined semi-automatically. These masks were
820 then used to extract the apical surface of the embryo³⁶.
821 (D, D') Maximum intensity projections along the apical-basal (D) and anterior-posterior (D') direction
822 of an embryo co-expressing GAP43::mCherry, Snail::MS2 and MCP::mCherry 4 min before the
823 initiation of ventral furrow formation. The white spots represent sites of *snail*::MS2 RNA in the nuclei
824 of mesodermal cells. Yellow and blue dots mark the positions of the adjacent mesectodermal cell
825 rows.
826 (E-I) Confocal Z-plane 2µm from the surface and Z-sections (E'-I') over the course of furrow
827 invagination. The mesectodermal cell rows meet at the midline. Back-tracing from this time point can
828 be used to determine the edge of the mesoderm in unmarked embryos.
829 (J, J') Surface peels extracted from MuVi SPIM images at -2 and 6 min from initiation of ventral
830 furrow formation. White dots indicate the mesectodermal cells as determined by backtracing. Cell
831 rows are colour-coded with numbering coordinated operationally around row 6, which is the last
832 non-stretching row and easily identifiable in all movies, regardless of imaging angle. The width of the
833 mesoderm varies along the anterior-posterior axis, with a width of less than 18 cells in some areas.
834 (K-O) Each panel is from one time-point from a MuVi SPIM recording of an embryo expressing
835 GAP43::mCardinal, with three of the three images showing first, cross-sectional views; secondly,
836 apical surface 'peels' extracted from the ventral half of the central one third of the embryo, And
837 finally and third, the apical areas plotted against cell position along the left-right axis (the centre, 0°,
838 is the ventral midline of the embryo). Each dot represents one cell. Apical cell areas measured from
839 segmented images were colour-coded and overlayed on the original image. Mesectodermal cells are
840 marked as white dots in the surface peels and as magenta dots in the plots. For the description in
841 this figure, we define t= 0 min as the time when cells in the central four rows have constricted on
842 average by at least 20%.
843

844 **Supplementary Figure 2**

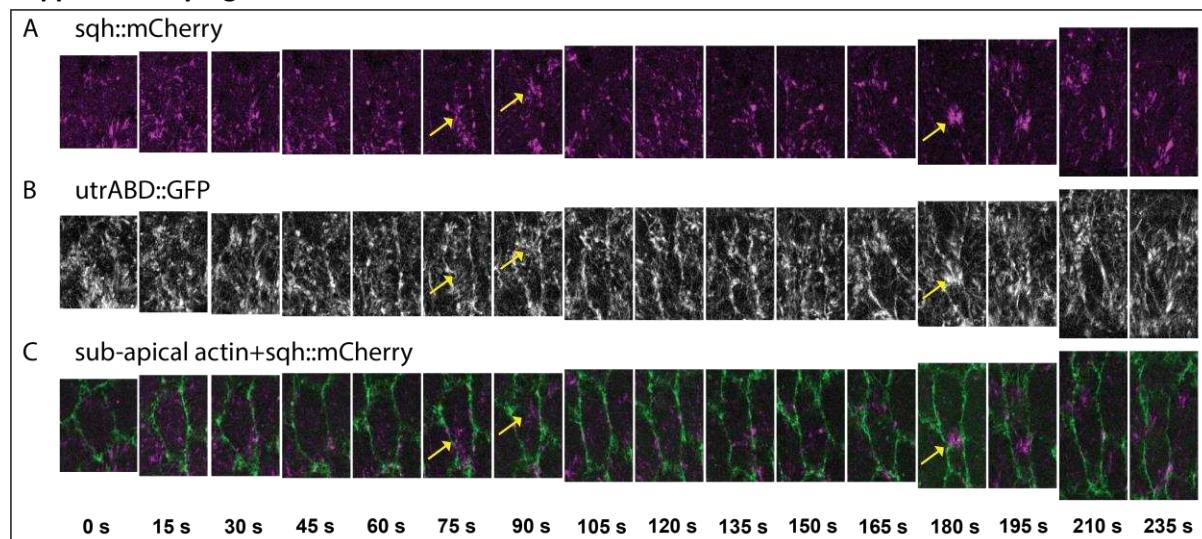
856 **Supplementary Figure 3**

857

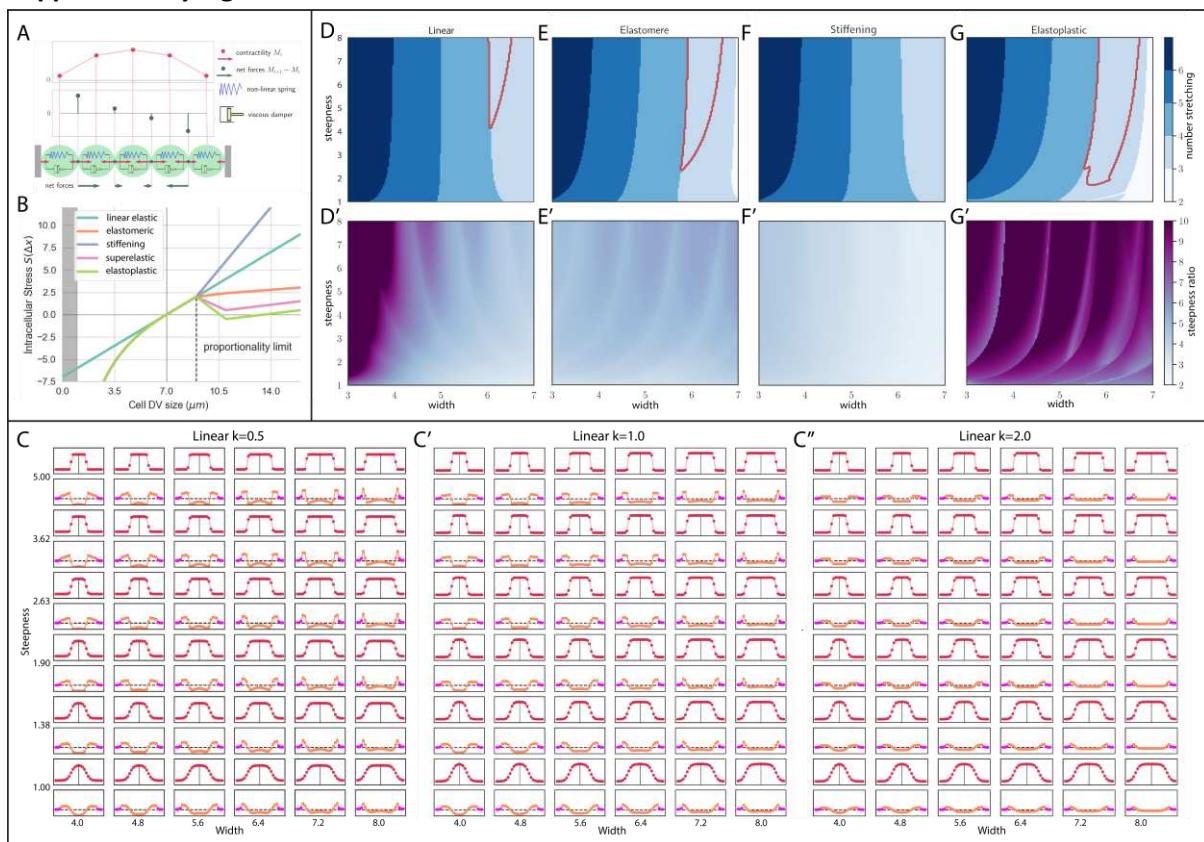
858

859 **Suppl. Fig. 3. Apical actomyosin meshwork in an expanding lateral cell.**

860 Ventro-laterally mounted embryo (same as shown in Fig. 1I-I') expressing utrABD::GFP and
861 sqh::mCherry to visualise F-actin and myosin.


862 (A) junctional actin in a confocal section 3 μ m from the surface.

863 (B) apical cortical actin meshwork (green; sum intensity Z-projection of confocal sections within 1 μ m
864 from surface) and subapical junctional actin (magenta) to visualize cell boundaries.


865 (C) sum intensity Z-projections of confocal sections within 1 μ m from surface for apical myosin (red)
866 junctional subapical junctional actin (magenta) to visualize cell boundaries.

867 The white asterisk is a reference point.

868 **Supplementary Figure 4**

878 **Supplementary Figure 5**

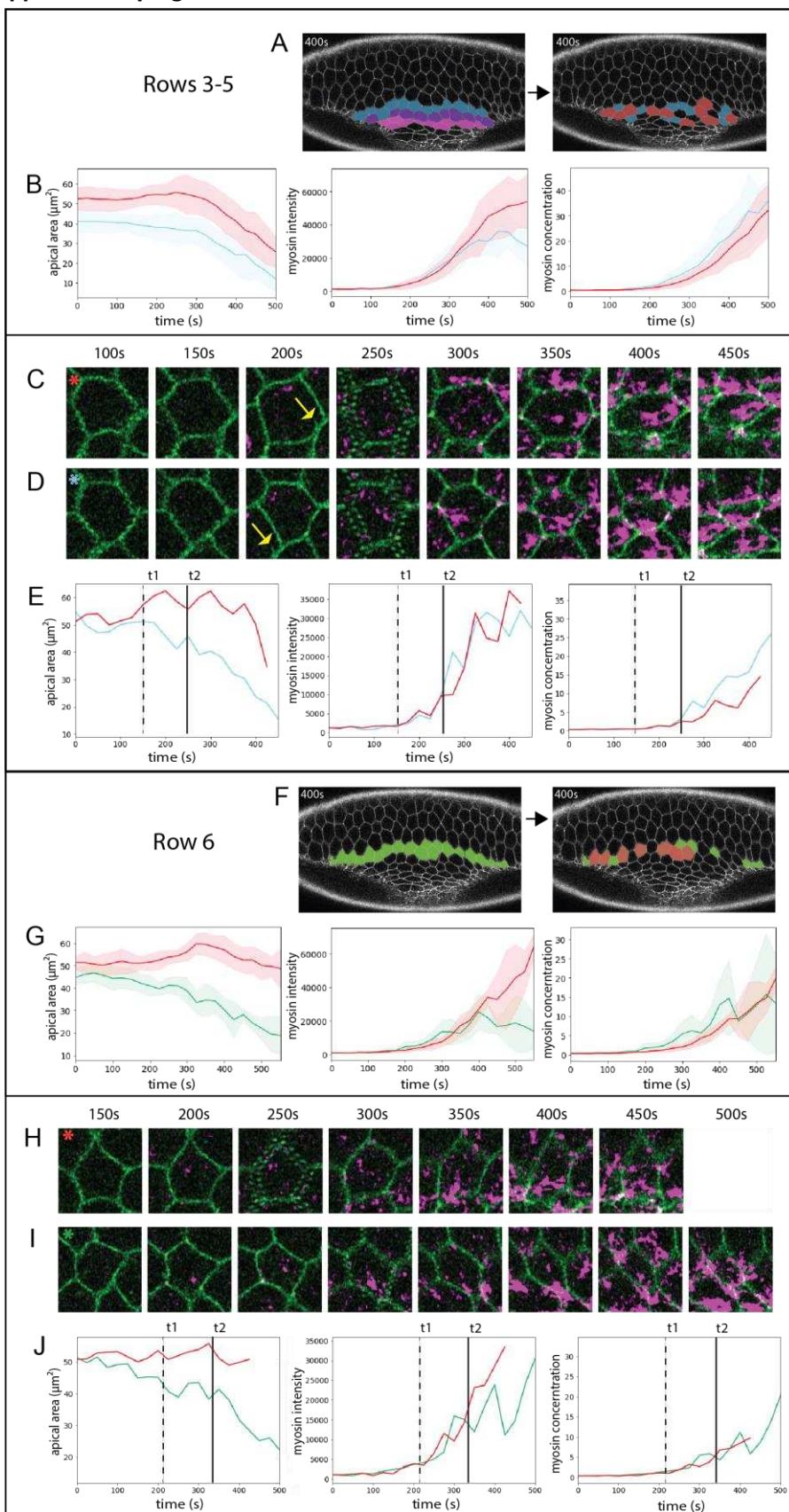
879

880

881 **Suppl. Fig. 5. Model of a line of visco-elastic elements representing on line of cells across the**
 882 **mesoderm.**

883 (A) Cells are modeled as a series of Kelvin-Voigt viscoelastic elements with viscosity (η) and spring
 884 constant (k). Cell size changes depend on the contractile forces within cells (red arrows ‘pulling’ on
 885 connection points) and movement of the connecting points which is determined by the differential
 886 forces (grey arrows) acting on them.

887 (B) Graphs for four stress-strain relationships (linear elastic, elastomeric, superelastic and
 888 elastoplastic) that are imposed on the spring constants in the model. The resting length of the cell is
 889 set to $L=7\mu\text{m}$. Deviation from the resting length causes either expansion (positive stress) or
 890 constriction (negative stress).


891 (C-C'') Parameter scan of the myosin profile with varying steepnesses and peak widths. The myosin
 892 profiles ($M(x)$) are shown in red, and the resulting final cell sizes below in orange. The stiffer
 893 ‘ectodermal’ cells are marked in pink. The visco-elastic elements have linear elasticity with constant
 894 (k).

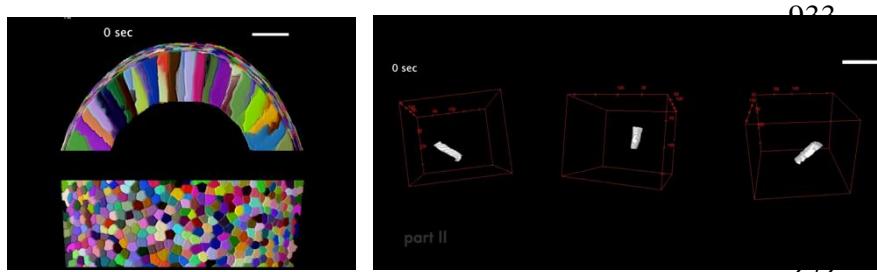
895 (D – F, D’ – F’) Same marking as Fig. 2O. Parameter map for myosin concentration curves with varying
 896 peak widths and steepnesses for linear elastic, elastomeric and elastoplastic materials. Blue shades:
 897 number of expanding cells. Red outline: conditions where the three right cells expand with an
 898 inverted pattern of stretching that qualitatively matches experiments. Shading in D’ - F’: ratio of the
 899 most constricted to the most expanded cell; magenta: largest size differences, light blue: minimal size
 900 differences.

901

902

903 **Supplementary Figure 6**

904


905

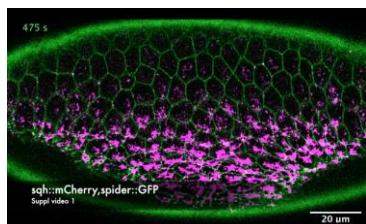
906 **Suppl. Fig. 6. Myosin concentration in constricting and transiently expanding cells.**

907 Analysis of Embryo 1 expressing Spider::GFP (green) and Sqh::mCherry (magenta)(same as shown in
908 Fig. 1E). Cells in the indicated rows were sorted into bins, defining cells as ‘transiently expanding’
909 (red) if they increased their apical areas by >10% of their initial area for at least 3 consecutive time
910 points, and as contracting (blue for rows 3 to 5, green for row 6) if they decreased their apical areas
911 over 10% of their initial area for at least 10 time points.
912 (A – E) Constricting rows 3 – 5
913 (F – J) Transition row 6
914 (A, F) Image at t= 400s; left: colouring shows rows; right: colouring indicates the individual cells that
915 were analysed (red, transiently expanding, blue or green, constricting).
916 (B, G) Cell apical area, total myosin intensity and myosin concentration of constricting and transiently
917 expanding cells plotted against time, shown as mean (solid line) and standard deviation (shaded
918 area).
919 (C – E) Analysis of a transiently expanding (C) and a constricting (D) cell from the constricting rows.
920 (C, D) Snap shots of the two cells at the indicated time points. The two cells are adjacent to each
921 other: the arrow at 200 sec points at a feature of the expanding cell that is also seen in the panel
922 below.
923 (E) Apical cell area, total myosin intensity and myosin concentration of the cells in C (red) and D
924 (blue) plotted against time. t1 (dashed line) marks the divergence of the cells in apical area, t2 (solid
925 line) the divergence in myosin concentration.
926 (H - J) Analysis of a transiently expanding (H) and a constricting (I) cells.
927 (H, I) Snap shots of the two cells at the indicated time points
928 (J) Apical cell area, total myosin intensity and myosin concentration of the cells in H (red) and I
929 (green) plotted against time. t1 (dashed line) marks the divergence of the cells in apical area, t2 (solid
930 line) marks the divergence in myosin concentration.

931 **Supplementary videos**

932

940


941 **Suppl. video 1.**

942 Part I. Cross sectional (top) and ventral (bottom) view of 3D segmented ventral half of an embryo
943 expressing GAP43::mCherry and imaged with SPIM. Each colour marks a unique cell that is tracked in
944 time.
945 Part II. 3D volume rendering shown over time for 3 cells: one central and two (left and right) lateral
946 mesodermal cells. The video illustrates the volume transited by the cells during ventral furrow
947 formation. The tip of the left cell moved out of the imaging volume during the period. Apical is up.
948 (scale bar = 20 μ m)

949

950

951

952

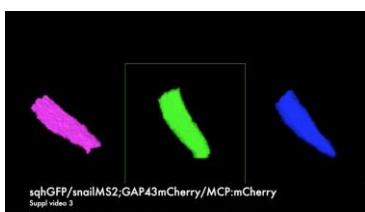
953 **Suppl. video 2.**

954 Ventro –lateral view of 2 embryos (parts I and II) expressing shq::mCherry (magenta; myosin) and
955 Spider::GFP (green; membrane) showing the dynamics of apical area and myosin during ventral
956 furrow formation and lateral cell expansion. t=0 in both movies is defined as 100 sec before first
957 appearance of myosin in central mesodermal cells. 25 sec time steps. (Figs. 1 and 2)

958

959

960



961

962 **Suppl. video 3.**

963 Ventral view of an embryo expressing GAP43mCherry (magenta; membrane), sqh::GFP (green;
964 myosin). MCP::mCherry and Snail::MS2 (not shown) were used to mark the mesoderm boundary.

965 The embryo is illuminated repeatedly in the area marked by red ellipse in frame 1. During the laser
966 illumination experiment, images were captured every 2 sec. The last three frames are single confocal
967 sections from a 3D stack taken at intervals of 38sec. (Fig. 3)
968
969
970

971
972 **Suppl. video 4.**
973 3D reconstructions of lateral mesodermal cells from row 7 in an embryo where apical constriction of
974 the central mesodermal cells was inhibited by laser ablation. Apical is down, basal is up. Cells 1 and 2
975 fail to expand, cell 3 constricts apically. See main Fig. 3E-F for location of cells in the embryo.
976
977
978

979
980 **Suppl. video 5.**
981 Ventral view of embryo expressing GAP43::mCherry (membrane, top), CIBN::pmGFP (membrane;
982 bottom) and RhoGEF2-CRY2. Myosin is ectopically activated by illuminating the area in the yellow
983 boxes in frame 1. (Fig. 4)