

SARS-CoV-2 elicits robust adaptive immune responses regardless of disease severity

3

4 Stine SF Nielsen^{1*}, Line K Vibholm^{1*}, Ida Monrad¹, Rikke Olesen¹, Giacomo S Frattari¹, Marie H Pahus²,
5 Jesper F Højen¹, Jesper D Gunst^{1,2}, Christian Erikstrup⁴, Andreas Holleufer³, Rune Hartmann³, Lars
6 Østergaard^{1,2}, Ole S Søgaard^{1,2}, Mariane H Schleimann¹, Martin Tolstrup^{1,2}

7

8 Affiliations: 1 Department of Infectious Diseases, Aarhus University Hospital, Denmark; 2 Department of
9 Clinical Medicine, Aarhus University, Denmark; 3 Department of Molecular Biology and Genetics, Aarhus
10 University, Denmark. 4 Department of Clinical Immunology, Aarhus University Hospital, Denmark

11 * These authors contributed equally to this manuscript

¹² Correspondence to Martin Tolstrup: marttols@rm.dk or Stine SF Nielsen: stsoni@rm.dk

13

14

15

16

17

18

19

20

21

22 **Abstract**

23 The SARS-CoV-2 pandemic currently prevails worldwide. To understand the immunological signature of
24 SARS-CoV-2 infections and aid the search for treatments and vaccines, comprehensive characterization of
25 adaptive immune responses towards SARS-CoV-2 is needed. We investigated the breadth and potency of
26 antibody-, and T-cell immune responses, in 203 recovered SARS-CoV-2 infected patients who presented with
27 asymptomatic to severe infections. We report very broad serological profiles with cross-reactivity to other
28 human coronaviruses. Further, >99% had SARS-CoV-2 epitope specific antibodies, with SARS-CoV-2
29 neutralization and spike-ACE2 receptor interaction blocking observed in 95% of individuals. A significant
30 positive correlation between spike-ACE2 blocking antibody titers and neutralization potency was observed.
31 SARS-CoV-2 specific CD8⁺ T-cell responses were clear and quantifiable in 90% of HLA-A2⁺ individuals.
32 The viral surface spike protein was identified as the dominant target for both neutralizing antibodies and CD8⁺
33 T cell responses. Overall, the majority of patients had robust adaptive immune responses, regardless of disease
34 severity.

35 **Author summary**

36 SARS-CoV-2 can cause severe and deadly infections. However, the immunological understanding of this viral
37 infection is limited. Currently, several vaccines are being developed to help limit transmission and prevent the
38 current pandemic. However, basic understanding of the adaptive immune response developed during SARS-
39 CoV-2 infections is needed to inform further vaccine development and to understand the protective properties
40 of the developed immune response. We investigated, the adaptive immune response developed during SARS-
41 CoV-2 infections in recovered patients experiencing a full spectrum of disease severity, from asymptomatic
42 infections to severe cases requiring hospitalization. We used a novel multiplex serological platform, cell-based
43 neutralization assays and dextramer flow cytometry assays to characterize a broad and robust humoral and
44 cellular immune response towards SARS-CoV-2. We found that the vast majority of recovered individuals
45 have clear detectable and functional SARS-CoV-2 spike specific adaptive immune responses, despite diverse
46 disease severities. The detection of both a humoral and cellular functional spike specific immune response in
47 the vast majority of the individuals, irrespective of asymptomatic manifestations, supports vaccine designs

48 currently underway, and encourages further exploration of whether primary infections provide protection to
49 reinfection.

50 **Introduction**

51 The year of 2020 has been thoroughly marked by the outbreak of severe acute respiratory syndrome
52 Coronavirus 2 (SARS-CoV-2)[1]. Originating in China December 2019, the outbreak was formally declared a
53 pandemic by the WHO in March 2020 [2]. With millions of cases confirmed across 200 countries, the virus
54 has claimed more than 1.4 million lives as of early December 2020 [3]. The SARS-CoV-2 epidemic is an
55 ongoing health crisis, which is extensively affecting almost all aspects of the global human society. An
56 important aspect of SARS-CoV-2 replication is binding and infection of the host cell. The viral spike protein
57 receptor binding domain (RBD) interacts with angiotensin-converting enzyme 2 (ACE2), found on the cell
58 surface, thereby mediating viral infection [4, 5]. Coronavirus Disease 2019 (COVID-19) symptoms manifest
59 primarily as a respiratory disease, with emergent complications of several organs in cases of severe disease
60 [6]. While efforts are converging globally to develop an effective vaccine[7], our broader basic understanding
61 of the adaptive immune response towards SARS-CoV-2 is still limited.

62 Several studies have described the general adaptive immune responses towards SARS-CoV-2, showing that
63 SARS-CoV-2 specific B and T cells are generated during infections. First immunoglobulin (Ig) M and later
64 IgG SARS-CoV-2 spike specific antibodies are readily detected in COVID-19 patients [8-12]. Evaluations by
65 neutralization assays have confirmed the ability of the generated antibodies to prevent viral infections *in vitro*
66 [13-15]. The limited number of confirmed cases suffering reinfections post recovery [16-19], and high degree
67 of protective immunity against viral re-challenge shown *in vivo* in macaque challenge studies [20], suggest
68 that the immunological response developed during primary infections provide at least some protection against
69 reinfection. Additionally, SARS-CoV-2 specific T-cell activation has also been documented in a range of
70 studies [21-23]. However, most studies have been limited to specific disease severity populations, and small
71 or none RT-PCR verified cohorts.

72 Currently, in depth characterization of the adaptive immune response to SARS-CoV-2 in a large cohort
73 representing the full disease spectrum, as well as the development of functional, and easily scalable, serological
74 assays, are needed to guide and support rapid further vaccine development. Here, we have delineated the
75 humoral and cellular immune responses in 203, RT-PCR verified, recovered SARS-CoV-2 patients. We
76 evaluated the quantity and potency of antibodies in each individual towards several different coronaviruses
77 and antigens, using both a SARS-CoV-2 spike pseudovirus neutralization assay and a novel Mesoscale
78 Diagnostics (MSD) multiplex platform [24]. We further quantified the breadth and magnitude of single-epitope
79 SARS-CoV-2 specific CD8⁺ T cells, using dextramer flow cytometry. Thus, we report an extensive panel of
80 adaptive immune parameters in the context of disease severity, to provide an outline of the general broad and
81 functional SARS-CoV-2 specific adaptive immune response observed across the full COVID-19 disease
82 spectrum.

83 **Results**

84 **Patient enrollment**

85 We studied the adaptive immune response towards SARS-CoV-2 among 203 patients who had recovered from
86 COVID-19. We have recently described the cohorts clinical characteristics thoroughly [25] a basic overview
87 of which is shown in table 1. The median age of individuals was 47 years (range: 21 – 79), and 45% were
88 female. The cohort was divided into three COVID-19 disease severity groups. 1: Home/outpatients with no
89 limitation of daily activities (8%), 2: Home/outpatients with a limitation of daily activities (75%), and 3:
90 Hospitalized patients (17%). The median duration of COVID-19 symptoms was 13 days (range: 0 – 68).
91 Enrollment occurred at least 14 days after the end of COVID-19 related symptoms, with a median of 31 (range:
92 14 – 61) days from time of recovery to study enrollment. To allow comparison of immunological outcomes
93 from SARS-CoV-2 infection recovered patients, samples from 10 healthy individuals enrolled in a study
94 conducted prior to the current COVID-19 pandemic were included as controls [26].

95

96

97

Table 1: Demographics and Clinical Characteristics at Baseline	
Characteristics	n=203
Age, years, median (range)	47 (21-79)
Female sex, no (%)	92 (45)
HLA-A2 ⁺ , no (%)	113 (56)
COVID-19 disease severity, no (%)	
1. Home/outpatient, no limitation of daily activities (asymptomatic/mild)	17 (8)
2. Home/outpatient, limitation of daily activities (moderate)	152 (75)
3. Hospitalized (severe)	34 (17)
Duration of COVID-19 symptoms, days, median (range)	13 (0-68)
Time from recovery to inclusion, day, median (range)	31 (14-61)

98

99 **Table 1: Cohort characteristics.**

100 All individuals were assigned a COVID-19 severity group depending on their course of disease. Group 1
101 consisted of asymptomatic individuals with no limitations in their daily activities. Group 2 of moderately sick,
102 able to recover at home. Finally, group 3 comprises all hospitalized individuals, including those with/without
103 oxygen requirement and/or ICU admission.

104 **Human coronavirus serology**

105 First, we analyzed the presence of IgG antibodies towards multiple human coronaviruses in serum, using the
106 multiplex MSD platform. Compared to controls, we found significantly elevated levels of IgG antibodies in
107 spike RBD, spike N-terminal domain (NTD), and the nucleocapsid ($p<0.0001$, Fig 1A). Furthermore, IgG
108 antibodies from SARS-CoV-2 infected individuals exhibited strongly increased reactivity towards spike
109 protein from other human beta coronaviruses: SARS-CoV-1 and Middle East respiratory syndrome (MERS),
110 as compared to the controls. Further, increased IgG levels towards the seasonal beta coronavirus strains: HKU1
111 and OC43, compared to IgG from the control group were also observed ($p<0.0001$, Fig 1B). No difference was

112 detected in IgG levels to the negative bovine serum albumin (BSA) control between SARS-CoV-2 patients
113 and controls. Importantly, 202 out of the 203 individuals analyzed here, developed detectable antibodies,
114 otherwise absent in the historical controls, against both full-length SARS-CoV-2 Spike and RBD antigens,
115 during SARS-CoV-2 infections. Likewise, robust production of IgA antibodies was also observed for nearly
116 all infected individuals, with SARS-CoV-2 spike specific IgA levels being significantly elevated compared to
117 controls in 201 of the 203 individuals (Fig 1C). Additionally, SARS-CoV-2 IgG levels towards both spike and
118 nucleocapsid antigens, correlated positively with the disease severity. (Fig 1D+E). Overall, we conclude that
119 more than 99% of the SARS-CoV-2 infected individuals in this cohort had readily detectable antibodies to
120 SARS-CoV-2 spike antigen, and that broad IgG immunological recognition of SARS-CoV-2 with cross-
121 reactivity to several different coronavirus develops during COVID-19. Additionally, the magnitude of spike-
122 targeting antibodies increases with disease severity.

123 **SARS-CoV-2 pseudovirus neutralization**

124 Next, we investigated the functional neutralization capacity of total plasma antibodies *in vitro*, using VSV
125 pseudotyped virus expressing SARS-CoV-2 spike protein. Antibody neutralizing potency was evaluated by
126 serial dilutions of plasma, yielding infectivity titration curves for each of the SARS-CoV-2 infected individuals
127 and the controls (Fig 2A). We found that 95.5% of the individuals (193 of 202) were able to neutralize SARS-
128 CoV-2 spike pseudoviruses and provided 100% inhibition at the lowest (1:25) plasma dilution. IC50 values
129 were extrapolated from the neutralization curves, and assigned to each individual as a measure of antibody
130 neutralization potency. Serum from the remaining nine individuals (4.5%) were unable to fully neutralize viral
131 infection, producing neutralization curves comparable to that of the uninfected controls. No legitimate IC50
132 value could be calculated for these individual, and consequently they were excluded from further analyses
133 using this parameter. Collectively, the IC50 values of all 193 neutralizing individuals span evenly across four
134 orders of magnitude (Fig 2B). In concurrence with the analysis in Fig 1D+E, we observed lower IC50 values
135 among individuals experiencing mild symptoms compared to those with moderate ($p<0.001$) or severe
136 COVID-19 ($p<0.0001$) (Fig 2C). We conclude that in this large cohort, with considerable diversity in disease

137 severity, the vast majority (>95 %) of SARS-CoV-2 infections lead to the production of effective neutralizing
138 antibodies, and that neutralization potency increases with disease severity.

139 **Antibodies efficiently block ACE2 receptor binding**

140 We continued the characterization of SARS-CoV-2 antibody functionality, using an MSD SARS-CoV Spike
141 – ACE2 competition assay (Fig 3A). This allowed us to measure the quantity of antibodies able to block the
142 interaction between the ACE2 receptor and SARS-CoV-2 full-length spike protein, SARS-CoV-2 RBD, and
143 SARS-CoV-1 spike protein. Many of the recovered individuals reached the assay's upper limit of
144 quantification, and a clear increase in the quantities of serum ACE2 blocking antibodies was observed for all
145 three antigens compared to historic controls ($p \leq 0.0001$) (Fig 3B). The levels of antibodies blocking SARS-
146 CoV-2 Spike – ACE2 receptor interaction was increased in >99% of the individuals (202 of 203) compared to
147 uninfected controls. The individual antibody concentrations also correlated to the time from disease recovery
148 to inclusion (S1 Fig 1). Nevertheless, we found that those experiencing severe COVID-19 had significantly
149 greater levels of SARS-CoV-2 spike specific ACE2 blocking antibodies, compared to individuals with mild to
150 moderate disease ($p < 0.0001$, Fig 3C). Both the pseudovirus cell-based neutralization assay and the SARS-
151 CoV Spike – ACE2 competition assay investigate the presence of functional antibodies towards SARS-CoV-
152 2. We identified a highly significant correlation between the IC₅₀ values from the pseudovirus neutralization
153 assay and the concentration of SARS-CoV-2 spike specific antibodies capable of blocking ACE2 receptor
154 interaction ($p > 0.0001$ Fig 3D). In conclusion, we observed that nearly all individuals produce antibodies that
155 target the spike protein-ACE2-receptor interaction and that the level of these antibodies was increased with
156 severe disease. Further, the virus neutralization capacity increased in conjunction with the amount of functional
157 ACE2 blocking antibody present in serum.

158 **Collected serological analysis**

159 Next, we constructed a heatmap compiling all humoral immunological data, to gain a cohort wide perspective
160 of the overall antibody response developed during SARS-CoV-2 infection. We ranked individuals according
161 to their antibody response potency from the pseudovirus neutralization assay (IC₅₀ value), displaying their

162 respective immunological variables underneath (Fig 4). We observed, that the neutralization capacity was
163 clearly linked to the overall antibody levels present in the patients. Interestingly, it was further evident, that
164 the best (top 10%) neutralizers of the cohort displayed a corresponding increase in the overall breadth of their
165 antibody response, towards all the investigated coronavirus antigens. Importantly, strong pseudovirus
166 neutralization profiles were almost exclusively seen in individuals with antibodies that potently block spike-
167 ACE2 receptor interaction. We therefore conclude that the best neutralizers exhibit a broader variety of cross-
168 reactive antibodies and have greater levels of spike binding and receptor-blocking antibodies.

169 **Epitope specific CD8+ T cell-responses**

170 We then went on to explore the epitope specific T-cell responses in SARS-CoV-2 recovered individuals. We
171 analyzed the reactivity of CD8⁺ T cells from 106 HLA-A2⁺ individuals in the cohort for their specificity to
172 nine different SARS-CoV-2 epitopes using dextramer staining flow cytometry (Fig 5A). Overall, Membrane₆₁₋
173 ₇₀ (M) (epitope 1), Nucleocapsid₂₂₂₋₂₃₀ (N) (epitope 3), and Spike₂₆₉₋₂₇₇ (S) (epitope 6) were the most commonly
174 recognized epitopes with positive responses detected in 17%, 25% and 81% of individuals, respectively (Fig
175 5B). Interestingly, these three epitopes originate from three separate SARS-CoV-2 proteins (Fig 5A). The
176 frequency of SARS-CoV-2 specific CD8⁺ T-cells was similar across all nine HLA-A2⁺ epitopes tested, with
177 the highest individual responses observed for N₂₂₂₋₂₃₀ and S₂₆₉₋₂₇₇ (epitopes 3 and 6) (Fig 5C). Only 10% of the
178 HLA-A2⁺ individuals (11 of 106) had no detectable response to any of the epitopes tested, while the remaining
179 90% responded to at least one, and up to seven, of the analyzed epitopes. (Fig 5D). We compared the
180 cumulative frequency of SARS-CoV-2 specific CD8⁺ T cells across the disease severity groups and observed
181 no significant difference (Fig 5E). However, we did observe significant albeit weak correlations between the
182 cumulative frequency of SARS-CoV-2 specific CD8⁺ T-cells and the majority of the serological
183 immunological parameters analyzed, including pseudovirus neutralization IC50 values as well as SARS-CoV-
184 2 specific antibody production and ACE2 blocking ability, as outlined with correlation coefficients in table 2.
185 The 11 individuals with no detectable CD8⁺ T-cell responses were evenly distributed among the disease
186 severity groups and displayed varying antibody neutralization capacity (S1 Fig 3). Based on this we were only
187 able to identify two individuals with both no detectable neutralizing antibodies and no detectable CD8⁺ T-cell

188 responses. Thus, we conclude that 90% of SARS-CoV-2 infected individuals mount a detectable CD8⁺ T cell
189 response, towards the nine epitopes tested, irrespectively of disease severity. We further conclude that the
190 broadest targeted epitope in this cohort is located in the spike protein. Lastly, there is an overall weak
191 but statistically significant correlation of antibody responses and CD8⁺ T-cell responses.

192

Table 2: Correlations to cumulative epitope specific CD8+ T-cell responses		
Immunological parameter	r-value	p-value
IC50 values	0.2542	0.0107 194
SARS-CoV-2 Spike ACE2 Blocking antibodies ng/mL	0.2906	0.0147
SARS-CoV-2 RBD ACE2 Blocking antibodies ng/mL	0.3057	0.0101
SARS-CoV-2 Spike IgG	0.2659	0.0261 196
SARS-CoV-2 RBD IgG	0.2704	0.0236
SARS-CoV-2 N-Terminal Domain IgG	0.2918	0.0143
SARS-CoV-2 Nucleocapsid IgG	0.2102	0.0807 198

199 **Table 2: Cumulative CD8⁺ T-cell responses in correlation to serology.**

200 Spearman's rank coefficient correlations displaying the relationship between the overall magnitude of CD8⁺
201 T-cell responses to SARS-CoV-2 epitopes, and antibody neutralization, quantity and ACE2 blocking capacity,
202 for all SARS-CoV-2 antigens investigated.

203 **Discussion**

204 We aimed to characterize the cellular and humoral adaptive immune response in a large cohort of RT-PCR
205 verified SARS-CoV-2 recovered patients, spanning a full spectrum of COVID-19 severity. Overall, our results
206 show that the majority of patients developed a robust and broad both humoral and cellular immune response
207 to SARS-CoV-2. However, our data may also help explain that some rare individuals have no detectable
208 immunological memory to SARS-CoV-2, and will therefore be at risk of re-infection as it has been reported
209 in a few case reports[16-19].

210 We were able to detect SARS-CoV-2 specific antibodies in all but one of the 203 individuals investigated,
211 irrespectively of their disease severity and duration of symptoms. Antibody specificity was distributed across
212 several SARS-CoV-2 antigens, and with cross coronavirus serological activity observed against SARS-CoV-
213 1, MERS, HKU1, and OC43 human coronaviruses. We assume this reflects cross-reactivity of the antibodies
214 generated against SARS-CoV-2 for two reasons: First, due to the clear significant difference to the pre-
215 pandemic controls, and secondly because no cases of SARS-CoV-1 or MERS have been documented in
216 Denmark. We interpret this as an indication of extensive and broad immune recognition development in
217 COVID-19 patients. Similar to previous studies [14, 27], we confirmed the functionally neutralizing and ACE2
218 blocking capabilities of the SARS-CoV-2 spike and RBD specific antibodies. Noticeably, this infers the
219 development of a robust humoral immune response within the vast majority of the COVID-19 recovered
220 population. Furthermore, nearly all individuals also have SARS-CoV-2 specific IgA responses, clearly
221 indicating a functional rigorous class switching and maturation. This presence of IgA is crucial for the
222 immunological protection at mucosal barriers, and hence protection against future SARS-CoV-2 exposures.

223 All serological and functional data collected show that both antibody levels and neutralization potency
224 correlate significantly with the disease severity. This indicates that severe disease manifestation is not caused
225 by a lack of adaptive immunity, which is in line with previous reports [28, 29]. Hence, we suggest that the
226 prolonged disease course, and consequent larger exposure to virus experienced in hospitalized patients, may
227 provide a timeframe in which enhanced antibody affinity maturation takes place, compared to shorter course
228 mild infections.

229 Studies are conflicted on the degree to which cross-reactive immunity between different coronavirus develop
230 during SARS-CoV-2 infections [11, 13, 14, 28, 30-33]. The considerable diversity of antigen recognition
231 independent of COVID-19 severity shown here, demonstrates that at least some immunological cross-
232 recognition of several different coronavirus is developed during SARS-CoV-2 infections. This is in line with
233 data on cross-reactivity in CD4⁺ T-cell epitopes between seasonal coronaviruses and SARS-CoV-2 [34]. The
234 cross-reactivity observed between SARS-CoV-2, SARS-CoV-1 and MERS, may be due to conserved epitopes
235 between these viruses, as prior infections with SARS-CoV-1 or MERS within our cohort are highly unlikely.

236 Such potential cross-reactivity could arise through either newly generated SARS-CoV-2 specific antibodies
237 reacting with conserved epitopes, or by reactivation of memory cells originally generated against seasonal
238 coronaviruses, followed by affinity maturation. Importantly, the multiplex serological analyses we performed
239 do not provide insight into the SARS-CoV-2 antibody response on a monoclonal antibody level. Here, further
240 studies are needed to determine possible protective and cross-reactive properties of single-antibody
241 specificities.

242 We functionally verified the antibody responses in all individuals, using two separate assays. The cell-based
243 pseudovirus neutralization assays are at present the standard method for determining SARS-CoV-2
244 neutralizing antibody potency. We additionally used the MSD novel coronavirus multiplex assay, recently
245 reported by Johnson *et al* [24] to determine the ACE2 blocking capability of individual serum antibodies. The
246 significant correlation between the two assay readouts identifies the plate format ACE2 competition assay as
247 a powerful, high-throughput, screening tool, with applications in both SARS-CoV-2 therapeutic neutralizing
248 antibody development, and assessments of functional protective antibody induction in vaccine studies. An
249 immense global effort is currently undertaken to develop effective vaccines against SARS-CoV-2, the majority
250 of which are centered on inducing spike or RBD antigen specific immunity [35]. Here we demonstrate that
251 SARS-CoV-2 spike specific, ACE2 blocking antibodies are found in the majority of infected individuals. Their
252 extensive induction, even in short-term, asymptomatic infections, align with current vaccines designs inducing
253 protective immunity based on spike antigens [36, 37]. Nevertheless, the protective effect of antibodies elicited
254 during natural infections, remains to be determined.

255 We further report, with single-epitope resolution, a SARS-CoV-2 specific CD8⁺ T-cell response in 90% of the
256 HLA-A2⁺ individuals analyzed. This corresponds well with other studies reporting CD8⁺ T cell activation in
257 70%–100% of recovered patients using full protein overlapping peptide stimulation [21, 38]. The location of
258 the top three immunogenic epitopes within separate proteins in the viral proteome additionally reinforces our
259 conclusion that a broad immune response is generated towards SARS-CoV-2 in the general infected
260 population. T-cell immunity to SARS-CoV-1 is known to persist for up to six years, in contrast to B-cell
261 immunity [39, 40], underlining the importance of developing protective cell based immunity to SARS-CoV-2

262 if long term viral protection is to be reached. As an important point, the most broadly recognized CD8⁺ T-cell
263 epitope (S₂₆₉₋₂₇₇) within our cohort (responses detected in 81% of HLA-A2⁺ individuals) is located in the spike
264 antigen. Thus, such epitope specificity can clearly be used to evaluate CD8⁺ T-cell immunity in spike focused
265 vaccine developments currently underway.

266 Surprisingly, we found that the cumulative CD8⁺ T-cell response, across all epitopes, did not vary by disease
267 severity in contrast to what we, and others [41], observed with antibody levels. While the limited coverage of
268 epitopes investigated here may influence this observation, recent evidence suggests that persistent viral
269 replication in otherwise recovered patients may be linked to CD8⁺ T-cell response magnitude [25]. Despite the
270 different observations with regard to immune responses and disease severity, we found overall significant
271 relationships between humoral and T-cell based immunity, but all of modest strength. A possible explanation
272 could be a synchronized waning of the magnitude of response for both immune parameters during the time
273 from recovery to study enrollment.

274 Of note, the use of dextramer staining is limited by inclusion of selected epitopes only, and conclusions are
275 consequently limited to the relative low epitope coverage. However, the advantages of the dextramer
276 technology are superior sensitivity and a high degree of specificity. In the light of the relative low proteome
277 coverage, the fact that only 10% of the investigated individuals did not have a detectable CD8⁺ T-cell response
278 clearly indicate a strong cytotoxic T-cell component in the immune response towards SARS-CoV-2.
279 Furthermore, as our observations of breadth and magnitude in relation to the distribution of distinct SARS-
280 CoV-2 antigens are similar to others [38, 41] we conclude that the panel of dextramers applied here provide a
281 new and sensitive representation of the general CD8⁺ T-cell response to SARS-CoV-2 that will be an important
282 tool in assessing long-term immunity following primary infection or vaccination.

283 In conclusion, we observed that disease severity is closely related to the potency and breadth of the antibody
284 response towards SARS-CoV-2. Furthermore, we identified the SARS-CoV-2 spike protein as a target of
285 adaptive immunity in >99% of the cohort, irrespective of COVID-19 symptom manifestation. Only two
286 individuals (<2%) had neither antibodies with virus neutralization capacity, nor detectable CD8⁺ T-cell

287 responses. Hence, we conclude that regardless of COVID-19 severity, a robust adaptive immune response
288 towards SARS-CoV-2 is elicited during primary infections.

289 **Materials and Methods**

290 **Study design and sample collection**

291 Samples were collected from a cohort of 203 individuals who had recovered from COVID-19. Participants
292 were enrolled at Department of Infectious Diseases at Aarhus University Hospital, Denmark from April 3rd to
293 May 29th 2020. Inclusion criteria were as follows; 1) Age above 18 years; 2) PCR verified SARS-CoV-2 within
294 the preceding 12 weeks; 3) Full recovery from acute COVID-19 illness; 4) Able to give informed consent.
295 Exclusion criteria were; 1) Ongoing febrile illness; 2) Immunosuppressive treatment and/or known
296 immunodeficiency; 3) Pregnancy. Samples were collected at least 14 days after recovery and a maximum of
297 12 weeks after SARS-CoV-2 PCR-verified diagnosis. One patient ID116 only had serum collected, and thus
298 is absent from IC50 and T-cell analyses.

299 Individuals were allocated to three groups according to the severity of COVID-19 illness, based on the criteria:
300 1) Home/outpatient, not experiencing any limitations in daily activities; 2) Home/outpatient, certain limitations
301 in daily activity level (fever, bedridden during illness); 3) All hospitalized patients, regardless of need for
302 supplemental oxygen treatment, or ICU admission with/without mechanical ventilation. Additional data
303 regarding demographic and clinical characteristics of this cohort has been reported elsewhere [25].

304 **Serology**

305 IgG antibodies were measured in serum samples using the MSD Coronavirus Plate 1 Cat. No. N05357A-1,
306 MesoScale Discovery, Rockville, Maryland), a solid phase multiplex immunoassay, with 10 pre-coated antigen
307 spots in a 96-well format, with an electro-chemiluminescence based detection system. The SARS-CoV-2
308 related antigens spotted were CoV-2 Spike, CoV-2 RBD, CoV-2 NTD, and CoV-2 nucleocapsid. The
309 remaining spots comprised antigens from other respiratory pathogens: Spike protein from SARS-CoV-1,
310 MERS coronavirus, and two seasonal coronaviruses OC43, HKU1. BSA served as negative control, as
311 previously described [24]. Unspecific antibody binding was blocked using MSD Blocker A (Cat. No. R93AA-

312 1). COVID-19 patient serum samples and control samples were diluted 1:4630 in MSD Diluent 100 (Cat. No.
313 R50AA-3). After sample incubation, bound IgG was detected by incubation with MSD SULFO-TAG Anti-
314 Human IgG Antibody and subsequently measured on a MESO QuickPlex SQ 120 Reader (Cat. No. AI0AA-
315 0) after addition of GOLD Read Buffer B (Cat. No. R60AM-2).

316 **ACE2 Competition Assay**

317 Spike and RBD targeting antibodies with the ability to compete with ACE2 binding were measured using the
318 MSD Coronavirus Plate 1. COVID-19 blocking antibody calibrator and 1:10 diluted patient and control serum
319 samples were incubated after plate blocking. SULFO-Tag conjugated ACE2 was added before washing,
320 allowing ACE2 to compete with antibody binding to spike and RBD antigens immobilized on the plate. Bound
321 ACE2 was detected as described for the serology assay above, and antibody concentrations were subsequently
322 calculated using the MSD Discovery Workbench software.

323 **ELISA**

324 IgA antibodies were measured using the Anti-SARS-CoV-2 IgA ELISA from Euroimmun (Euroimmun
325 Medizinische Labordiagnostika AG, Lübeck, Germany, Cat. No. El 2606-9601 A), according to
326 manufacturer's instructions. In brief, antibodies in serum samples diluted 1:200 were captured by recombinant
327 S1 domain of SARS-CoV-2 spike protein immobilized in microplate wells. IgA type antibodies were detected
328 by incubation with peroxidase labelled anti-human IgA followed by a chromogen solution, resulting in color
329 development in positive wells. Signal was read at 450 nm with reference measurements at 650 nm, which were
330 used for background signal corrections. Results were analyzed relative to the ELISA kit calibrator, as a ratio
331 between sample absorbance and calibrator absorbance.

332 **Cells and plasmids**

333 All cell lines were incubated at 37 °C and 5 % CO₂ in a humidified atmosphere. BHK-G43, previously
334 described [42, 43], were cultured in Dulbecco's modified eagle's medium (DMEM), containing 5 % Fetal
335 Bovine Serum (FBS) and 50 U/mL Penicillin G/Streptomycin (P/S), where Zeocin (100µg/ml) and
336 Hygromycin (50µg/ml) were added at every fourth passage. Induction of VSV-G glycoprotein was performed

337 with 10^{-8} M mifepristone. HEK293T cells were cultured in DMEM, containing 10% FBS and 50 U/mL P/S.
338 Vero76 cmyc hTMPRSS2 [4] cells were cultured in DMEM supplemented with 10% FBS, 50 U/mL P/S, and
339 10 μ g/mL Blasticidin.

340 The construction of pCG1-SARS-2-Spike has been previously described [4, 44]. Briefly, SARS-2-S (NCBI
341 Ref.Seq: YP_009724390.1) coding sequence was PCR-amplified and cloned into the pCG1 expression vector
342 via BamHI and XbaI restriction sites.

343 **Virus production**

344 For generation of VSV* Δ G(luc)-G particles BHK-G43 cells were seeded day 1 to reach a confluence of 70-
345 80% at day 2, where Mifepristone (10^{-8} M) was added to induce transcription of glycoprotein G. After 6 hours
346 the medium was replaced with fresh DMEM containing 5% FBS, 50 U/mL P/S, and VSV* Δ G(luc) at MOI =
347 0.3. After 1 hour of incubation at 37°C BHK-G43 cells were washed three times in PBS and fresh media was
348 added. Cells were incubated for 24 hours, after which the supernatant was centrifuged at 2000 xg for 10 min
349 at room temperature to pellet cellular debris, and stored at -80 °C.

350 VSV* Δ G(luc)-SARS-2-S pseudovirus was produced by transfection with pCG1-SARS-2-S followed by
351 transduction with VSV* Δ G(luc)-G. HEK293T cells were seeded in DMEM containing 10% FBS and 50 U/mL
352 P/S to reach 70-80% confluence the next day. 2 μ g plasmid was used per 1×10^6 cells and incubated with PEI
353 (3:1) for 30 min at room temperature. The transfection mixture was added to the cells, and incubated for 18
354 hours at 37 °C. Cells were washed twice with PBS, transduced with VSV*(luc)+G at MOI = 2, and incubated
355 for 2 hours. The virus was removed by gently washing with PBS twice, and fresh DMEM containing 10% FBS
356 and 50 U/mL P/S was added. Cell supernatant was harvested after 24 hours, centrifuged at 2000 xg for 10 min
357 to eliminate cellular debris, and stored at -80 °C immediately. A VSV* Δ G(luc)-mock was generated
358 simultaneously to allow subtraction of any remaining background from VSV* Δ G(luc)-G signals.

359 **Neutralization Assay**

360 The SARS-CoV-2 neutralization capacity of plasma was assessed through infection of Vero76 cmyc
361 hTMPRSS2 cells, with VSV* Δ G(luc)-SARS-2-S pseudovirus particles. Neutralization was conducted as

362 follows: Plasma samples were thawed and heat-inactivated at 56 °C for 45 min. Subsequently, five-fold serial
363 dilution in DMEM containing 10% FBS and 50 U/mL P/S were made. 25 µL of each plasma dilution was
364 incubated with 50 µL VSV*ΔG(luc)-SARS-2-S at MOI = 0.01 in duplicates, for 1 hour at 37 °C, in a flat
365 bottomed 96-well plate. Successively, 20,000 Vero76 cmyc hTMPRSS2 cells, in 50 µL DMEM containing
366 10% FBS and 50 U/mL P/S were added to each well, and incubated at 37 °C for 20 hours. Cells were prepared
367 for flow cytometry by gently removing the culture media, and washing once with PBS. Cell suspensions were
368 made by incubating each well with 75 µL Trypsin + 0.02% EDTA for 15 min at 37 °C, followed by
369 centrifugation at 500 g for 5 min at room temperature, and re-suspension in DMEM containing 10% FBS and
370 50 U/mL P/S. Cells were fixed in 1% PFA for at least 15 min at 4 °C, before eGFP expression was analyzed
371 using a Miltenyi Biotec MACSquant16 flow cytometer. The VSV*ΔG(luc)-mock eGFP background signal
372 was subtracted from all samples.

373 **HLA-A2 typing and dextramer staining by flow cytometry**

374 For HLA-A2 typing cryopreserved PBMCs were thawed, stained at room temperature for 20 min with HLA-
375 A2 (clone BB7.2, Biolegend Cat. No. 343328) or matching isotype control (Biolegend Cat. No. 400356) and
376 acquired on a five-laser Fortessa flow cytometer. The dextramer stains were then performed on the HLA-A2
377 positive samples as follows. PBMCs were incubated at room temperature for 30 min with the following SARS-
378 CoV-2 dextramers (all from Immundex): A*0201/TLACFVLAAT-PE (Cat. No. WB3848-PE),
379 A*0201/GMSRIGMEV-FITC (Cat. No. WB5751-FITC), A*0201/LLLDRLNQL-APC (Cat. No. WB5762-
380 APC), A*0201/ILLNKHIDA-PE (Cat. No. WB5848-PE), A*0201/RLNEVAKNL-FITC (Cat. No. WB5750-
381 FITC), A*0201/YLQPRTFLL-APC (Cat. No. WB5824-APC), A*0201/VLNDILSRL-PE (Cat. No. WB5823-
382 PE), A*0201/NLNESLIDL-FITC (Cat. No. WB5850-FITC), A*0201/FIAGLIAIV-APC (Cat. No. WB5825-
383 APC), A*0201/LLLNCLWSV-PE (Cat. No. WB3513-PE), or positive/negative control dextramers:
384 A*0201/NLVPVMVATV-PE (Cat. No. WB2132-PE, Pos. Control, CMV), A*0201/NLVPVMVATV-FITC (Cat.
385 No. WB2132-FITC, Pos. Control, CMV), A*0201/NLVPVMVATV-APC (Cat. No. WB2132-APC, Pos.
386 Control, CMV), A*0201/Neg. Control-PE (Cat. No. WB2666-PE), A*0201/Neg. Control-FITC (Cat. No.
387 WB2666-FITC), A*0201/Neg. Control-APC (Cat. No. WB2666-APC). Cells were washed and stained with

388 viability dye (Zombie Violet, Biolegend, Cat. No. 423114) and CD8 (Clone RPA-T8, BD, Cat. No. 563795)
389 and acquired on a five-laser Fortessa flow cytometer.

390 **Data and Statistical analyses**

391 Flow cytometry data was analyzed using FlowJo (Version 10.7.1). All data was processed and graphed in
392 GraphPad Prism version 8.4.3. Mann-Whitney U t-test was used to compare between different groups.
393 Spearman's rank correlation analysis was used to access the correlation between variables as specified.
394 Neutralization curves were plotted with three parameter non-linear fits, from which IC50 values were
395 calculated. $p \leq 0.05$ was interpreted as statistically significant. P-values are indicated as follows: n.s. = not
396 significant, * = $p \leq 0.05$, ** = $p < 0.01$, *** = $p < 0.001$, **** = $p < 0.0001$.

397 **Acknowledgements**

398 We would like to thank all the individuals in the study for the kind donation of both their time and biological
399 material. Thank you to MesoScale Discovery, for providing the reagents and materials to enable this study.
400 Thank you to Markus Hoffmann and Stefan Pöhlmann for the kind gift of BHK-G43 and Vero76 cmyc
401 hTMPRSS2 cells and the pCGI-SARS-2-spike plasmid. Figure 5A was created with the help of
402 BioRender.com. We thank Lene Svinth Jønke for her immense assistance in the laboratory during patient
403 material collection. Thank you, to the entire staff of the Department of Infectious Diseases, for their feedback
404 and scientific discussions.

405 **Author contributions**

406 SFN, LKV, MT, MHS, OSS, LØ contributed to study design, data collection, data analysis, data interpretation,
407 literature search, and the writing of this report. IMJ, RO, GSF, MHP, CE, AH, and RH contributed to
408 experiments, data analysis, and data interpretation. JFH, JDG and LKV contributed to individual recruitment,
409 data collection and clinical management. The final version of this paper was reviewed and approved by all
410 authors.

411

412 **References**

413 1. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new
414 coronavirus of probable bat origin. *Nature*. 2020;579(7798):270-3. doi: 10.1038/s41586-020-2012-7.

415 2. WHO. Coronavirus Disease 2019 (COVID-19) Situation Report 51. Who.int. 2020 March 11 [Cited 2020
416 Dec 2]. Available from: https://www.who.int/docs/default-source/coronavirus/situation-reports/20200311-sitrep-51-covid-19.pdf?sfvrsn=1ba62e57_10.

417 3. WHO. Coronavirus disease (COVID-19) situation reports, Weekly Epidemiological Update - 1 December
418 2020. Who.int. 2020 Dec 1 [Cited 2020 Dec 2]. Available from:
419 <https://www.who.int/publications/m/item/weekly-epidemiological-update---1-december-2020>.

420 4. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry
421 Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. *Cell*.
422 2020;181(2):271-80.e8. Epub 2020/03/05. doi: 10.1016/j.cell.2020.02.052. PubMed PMID: 32142651.

423 5. Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of
424 the SARS-CoV-2 Spike Glycoprotein. *Cell*. 2020;181(2):281-92.e6. doi: 10.1016/j.cell.2020.02.058.

425 6. Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, Evaluation, and Treatment of
426 Coronavirus (COVID-19). StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2020,
427 StatPearls Publishing LLC.; 2020.

428 7. WHO. Newsroom - 172 countries and multiple candidate vaccines engaged in COVID-19 vaccine Global
429 Access Facility. Who.int. 2020 August 24. [Cited 2020 December 2]. Available from:
430 <https://www.who.int/news-room/detail/24-08-2020-172-countries-and-multiple-candidate-vaccines-engaged-in-covid-19-vaccine-global-access-facility>.

431 8. Burbelo PD, Riedo FX, Morishima C, Rawlings S, Smith D, Das S, et al. Sensitivity in Detection of
432 Antibodies to Nucleocapsid and Spike Proteins of Severe Acute Respiratory Syndrome Coronavirus 2 in
433 Patients With Coronavirus Disease 2019. *The Journal of Infectious Diseases*. 2020;222(2):206-13. doi:
434 10.1093/infdis/jiaa273 %J The Journal of Infectious Diseases.

437 9. Gudbjartsson DF, Norddahl GL, Melsted P, Gunnarsdottir K, Holm H, Eythorsson E, et al. Humoral
438 Immune Response to SARS-CoV-2 in Iceland. 2020. doi: 10.1056/NEJMoa2026116.

439 10. Dingens AS, Crawford KHD, Adler A, Steele SL, Lacombe K, Eguia R, et al. Serological identification of
440 SARS-CoV-2 infections among children visiting a hospital during the initial Seattle outbreak. *Nature*
441 *communications*. 2020;11(1):4378. doi: 10.1038/s41467-020-18178-1.

442 11. Iyer AS, Jones FK, Nodoushani A, Kelly M, Becker M, Slater D, et al. Dynamics and significance of the
443 antibody response to SARS-CoV-2 infection. *medRxiv*. 2020:2020.07.18.20155374. doi:
444 10.1101/2020.07.18.20155374. PubMed PMID: 32743600.

445 12. Qu J, Wu C, Li X, Zhang G, Jiang Z, Li X, et al. Profile of Immunoglobulin G and IgM Antibodies Against
446 Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). *Clinical Infectious Diseases*. 2020. doi:
447 10.1093/cid/ciaa489.

448 13. Pinto D, Park Y-J, Beltramello M, Walls AC, Tortorici MA, Bianchi S, et al. Cross-neutralization of SARS-
449 CoV-2 by a human monoclonal SARS-CoV antibody. *Nature*. 2020;583(7815):290-5. doi: 10.1038/s41586-
450 020-2349-y.

451 14. Wu F, Wang A, Liu M, Wang Q, Chen J, Xia S, et al. Neutralizing antibody responses to SARS-CoV-2 in a
452 COVID-19 recovered patient cohort and their implications. 2020:2020.03.30.20047365. doi:
453 10.1101/2020.03.30.20047365 %J *medRxiv*.

454 15. Rogers TF, Zhao F, Huang D, Beutler N, Burns A, He W-t, et al. Isolation of potent SARS-CoV-2
455 neutralizing antibodies and protection from disease in a small animal model. 2020:eabc7520. doi:
456 10.1126/science.abc7520 %J *Science*.

457 16. To KK-W, Hung IF-N, Ip JD, Chu AW-H, Chan W-M, Tam AR, et al. Coronavirus Disease 2019 (COVID-19)
458 Re-infection by a Phylogenetically Distinct Severe Acute Respiratory Syndrome Coronavirus 2 Strain
459 Confirmed by Whole Genome Sequencing. *Clinical Infectious Diseases*. 2020. doi: 10.1093/cid/ciaa1275.

460 17. Van Elslande J, Vermeersch P, Vandervoort K, Wawina-Bokalanga T, Vanmechelen B, Wollants E, et al.
461 Symptomatic SARS-CoV-2 reinfection by a phylogenetically distinct strain. *Clinical Infectious Diseases*. 2020.
462 doi: 10.1093/cid/ciaa1330.

463 18. Tillett RL, Sevinsky JR, Hartley PD, Kerwin H, Crawford N, Gorzalski A, et al. Genomic evidence for
464 reinfection with SARS-CoV-2: a case study. *The Lancet Infectious Diseases*. doi: 10.1016/S1473-
465 3099(20)30764-7.

466 19. Iwasaki A. What reinfections mean for COVID-19. *The Lancet Infectious Diseases*. doi: 10.1016/S1473-
467 3099(20)30783-0.

468 20. Chandrashekhar A, Liu J, Martinot AJ, McMahan K, Mercado NB, Peter L, et al. SARS-CoV-2 infection
469 protects against rechallenge in rhesus macaques. 2020;369(6505):812-7. doi: 10.1126/science.abc4776 %J
470 *Science*.

471 21. Sekine T, Perez-Potti A, Rivera-Ballesteros O, Strålin K, Gorin J-B, Olsson A, et al. Robust T cell immunity
472 in convalescent individuals with asymptomatic or mild COVID-19. *Cell*. 2020. doi:
473 <https://doi.org/10.1016/j.cell.2020.08.017>.

474 22. Le Bert N, Tan AT, Kunasegaran K, Tham CYL, Hafezi M, Chia A, et al. SARS-CoV-2-specific T cell immunity
475 in cases of COVID-19 and SARS, and uninfected controls. *Nature*. 2020;584(7821):457-62. doi:
476 10.1038/s41586-020-2550-z.

477 23. Zhang F, Gan R, Zhen Z, Hu X, Li X, Zhou F, et al. Adaptive immune responses to SARS-CoV-2 infection in
478 severe versus mild individuals. *Signal Transduction and Targeted Therapy*. 2020;5(1):156. doi:
479 10.1038/s41392-020-00263-y.

480 24. Johnson M, Wagstaffe HR, Gilmour KC, Mai AL, Lewis J, Hunt A, et al. Evaluation of a novel multiplexed
481 assay for determining IgG levels and functional activity to SARS-CoV-2. *bioRxiv*. 2020:2020.07.20.213249.
482 doi: 10.1101/2020.07.20.213249.

483 25. Vibholm LK, Nielsen SSF, Pahus MH, Frattari G, Andersen R, Monrad I, et al. SARS-CoV-2 persistence is
484 associated with antigen specific CD8 T-cell responses. *EBioMedicine*. In revision 02 Dec. 2020.

485 26. Højen JF, Rasmussen TA, Andersen KL, Winckelmann AA, Laursen RR, Gunst JD, et al. Interleukin-37
486 Expression Is Increased in Chronic HIV-1-Infected Individuals and Is Associated with Inflammation and the
487 Size of the Total Viral Reservoir. *Molecular medicine (Cambridge, Mass)*. 2015;21(1):337-45. Epub
488 2015/04/17. doi: 10.2119/molmed.2015.00031. PubMed PMID: 25879630; PubMed Central PMCID:
489 PMCPMC4534469.

490 27. Robbiani DF, Gaebler C, Muecksch F, Lorenzi JCC, Wang Z, Cho A, et al. Convergent antibody responses
491 to SARS-CoV-2 in convalescent individuals. *Nature*. 2020;584(7821):437-42. doi: 10.1038/s41586-020-2456-
492 9.

493 28. Long Q-X, Liu B-Z, Deng H-J, Wu G-C, Deng K, Chen Y-K, et al. Antibody responses to SARS-CoV-2 in
494 patients with COVID-19. *Nature medicine*. 2020;26(6):845-8. doi: 10.1038/s41591-020-0897-1.

495 29. Long Q-X, Tang X-J, Shi Q-L, Li Q, Deng H-J, Yuan J, et al. Clinical and immunological assessment of
496 asymptomatic SARS-CoV-2 infections. *Nature medicine*. 2020;26(8):1200-4. doi: 10.1038/s41591-020-0965-
497 6.

498 30. Ju B, Zhang Q, Ge J, Wang R, Sun J, Ge X, et al. Human neutralizing antibodies elicited by SARS-CoV-2
499 infection. *Nature*. 2020;584(7819):115-9. doi: 10.1038/s41586-020-2380-z.

500 31. Lv H, Wu NC, Tsang OT-Y, Yuan M, Perera RAPM, Leung WS, et al. Cross-reactive antibody response
501 between SARS-CoV-2 and SARS-CoV infections. *bioRxiv : the preprint server for biology*.
502 2020:2020.03.15.993097. doi: 10.1101/2020.03.15.993097. PubMed PMID: 32511317.

503 32. van der Heide V. SARS-CoV-2 cross-reactivity in healthy donors. *Nature Reviews Immunology*.
504 2020;20(7):408-. doi: 10.1038/s41577-020-0362-x.

505 33. Iyer AS, Jones FK, Nodoushani A, Kelly M, Becker M, Slater D, et al. Persistence and decay of human
506 antibody responses to the receptor binding domain of SARS-CoV-2 spike protein in COVID-19 patients.
507 2020;5(52):eabe0367. doi: 10.1126/sciimmunol.abe0367 %J Science Immunology.

508 34. Mateus J, Grifoni A, Tarke A, Sidney J, Ramirez SI, Dan JM, et al. Selective and cross-reactive SARS-CoV-2
509 T cell epitopes in unexposed humans. *Science (New York, NY)*. 2020:eabd3871. doi:
510 10.1126/science.abd3871.

511 35. Alturki SO, Alturki SO, Connors J, Cusimano G, Kutzler MA, Izmirly AM, et al. The 2020 Pandemic:
512 Current SARS-CoV-2 Vaccine Development. *2020;11(1880)*. doi: 10.3389/fimmu.2020.01880.

513 36. Jackson LA, Anderson EJ, Roushphael NG, Roberts PC, Makhene M, Coler RN, et al. An mRNA Vaccine
514 against SARS-CoV-2 - Preliminary Report. *N Engl J Med*. 2020;383(20):1920-31. Epub 2020/07/14. doi:
515 10.1056/NEJMoa2022483. PubMed PMID: 32663912.

516 37. Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Phase I/II study of COVID-19
517 RNA vaccine BNT162b1 in adults. *Nature*. 2020;586(7830):589-93. doi: 10.1038/s41586-020-2639-4.

518 38. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, et al. Targets of T Cell Responses
519 to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. *Cell*.
520 2020;181(7):1489-501.e15. doi: <https://doi.org/10.1016/j.cell.2020.05.015>.

521 39. Yang L-T, Peng H, Zhu Z-L, Li G, Huang Z-T, Zhao Z-X, et al. Long-lived effector/central memory T-cell
522 responses to severe acute respiratory syndrome coronavirus (SARS-CoV) S antigen in recovered SARS
523 patients. *Clinical immunology (Orlando, Fla)*. 2006;120(2):171-8. Epub 2006/06/16. doi:
524 10.1016/j.clim.2006.05.002. PubMed PMID: 16781892.

525 40. Tang F, Quan Y, Xin Z-T, Wrammert J, Ma M-J, Lv H, et al. Lack of Peripheral Memory B Cell Responses in
526 Recovered Patients with Severe Acute Respiratory Syndrome: A Six-Year Follow-Up Study.
527 2011;186(12):7264-8. doi: 10.4049/jimmunol.0903490 %J The Journal of Immunology.

528 41. Peng Y, Mentzer AJ, Liu G, Yao X, Yin Z, Dong D, et al. Broad and strong memory CD4+ and CD8+ T cells
529 induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. *Nature immunology*. 2020. doi:
530 10.1038/s41590-020-0782-6.

531 42. Hanika A, Larisch B, Steinmann E, Schwegmann-Weßels C, Herrler G, Zimmer G. Use of influenza C virus
532 glycoprotein HEF for generation of vesicular stomatitis virus pseudotypes. *J Gen Virol.* 2005;86(Pt 5):1455-
533 65. doi: 10.1099/vir.0.80788-0. PubMed PMID: 15831958.

534 43. Berger Rentsch M, Zimmer G. A Vesicular Stomatitis Virus Replicon-Based Bioassay for the Rapid and
535 Sensitive Determination of Multi-Species Type I Interferon. *PLoS one.* 2011;6(10):e25858. doi:
536 10.1371/journal.pone.0025858.

537 44. Hoffmann M, Müller MA, Drexler JF, Glende J, Erdt M, Gützkow T, et al. Differential Sensitivity of Bat
538 Cells to Infection by Enveloped RNA Viruses: Coronaviruses, Paramyxoviruses, Filoviruses, and Influenza
539 Viruses. *PLoS one.* 2013;8(8):e72942. doi: 10.1371/journal.pone.0072942.

540

541 **Figure titles and legends**

542 **Figure 1: Extensive IgG and IgA presence with multiple SARS-CoV-2 antigens.**

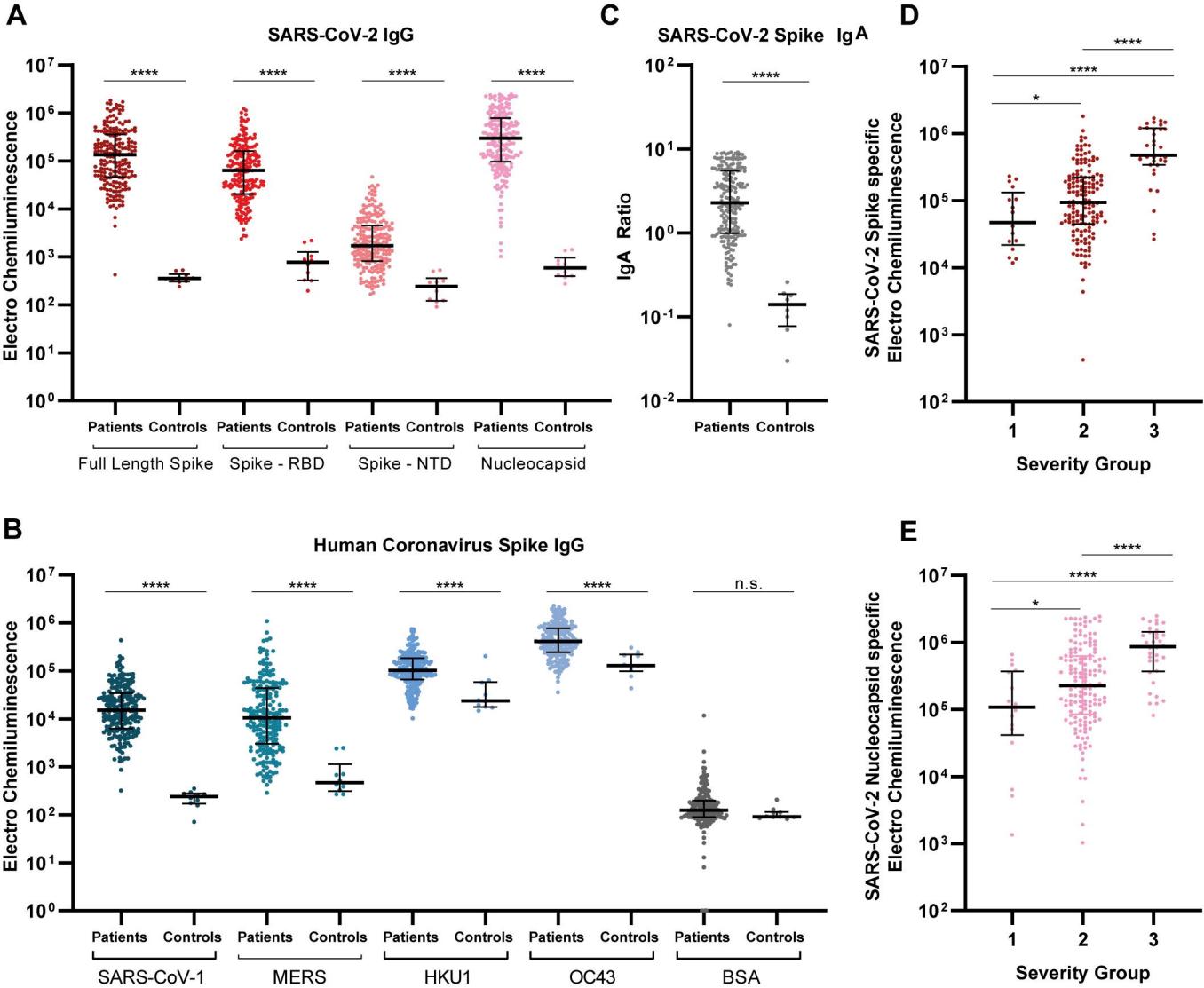
543 **A+B)** Serum IgG levels for all individuals and 10 pre-pandemic healthy controls. IgG was detected against
544 SARS-CoV-2 Spike, RBD (receptor binding domain), NTD (N-terminal domain), nucleocapsid and non-
545 SARS-CoV-2 spike proteins of other corona virus. Data are blank-corrected electro chemiluminescent signal
546 measured by MSD multiplex serology assays. **C)** Serum IgA levels for all individuals and eight pre-pandemic
547 healthy controls, measured by ELISA. IgA is shown as a ratio against a standard calibrator. **D+E)** Distribution
548 of IgG volumes between each disease severity group, for both SARS-CoV-2 spike (D) and nucleocapsid (E).
549 Data are blank-corrected electro chemiluminescent signal measured by MSD multiplex serology assays.
550 Scatter plots with individual data points are shown with median (wide line) and interquartile range (narrow
551 lines). Statistical comparison between groups were done by Mann-Whitney U test. n.s = not significant, *
552 =p<0.05, **** = p<0.0001, n = 203.

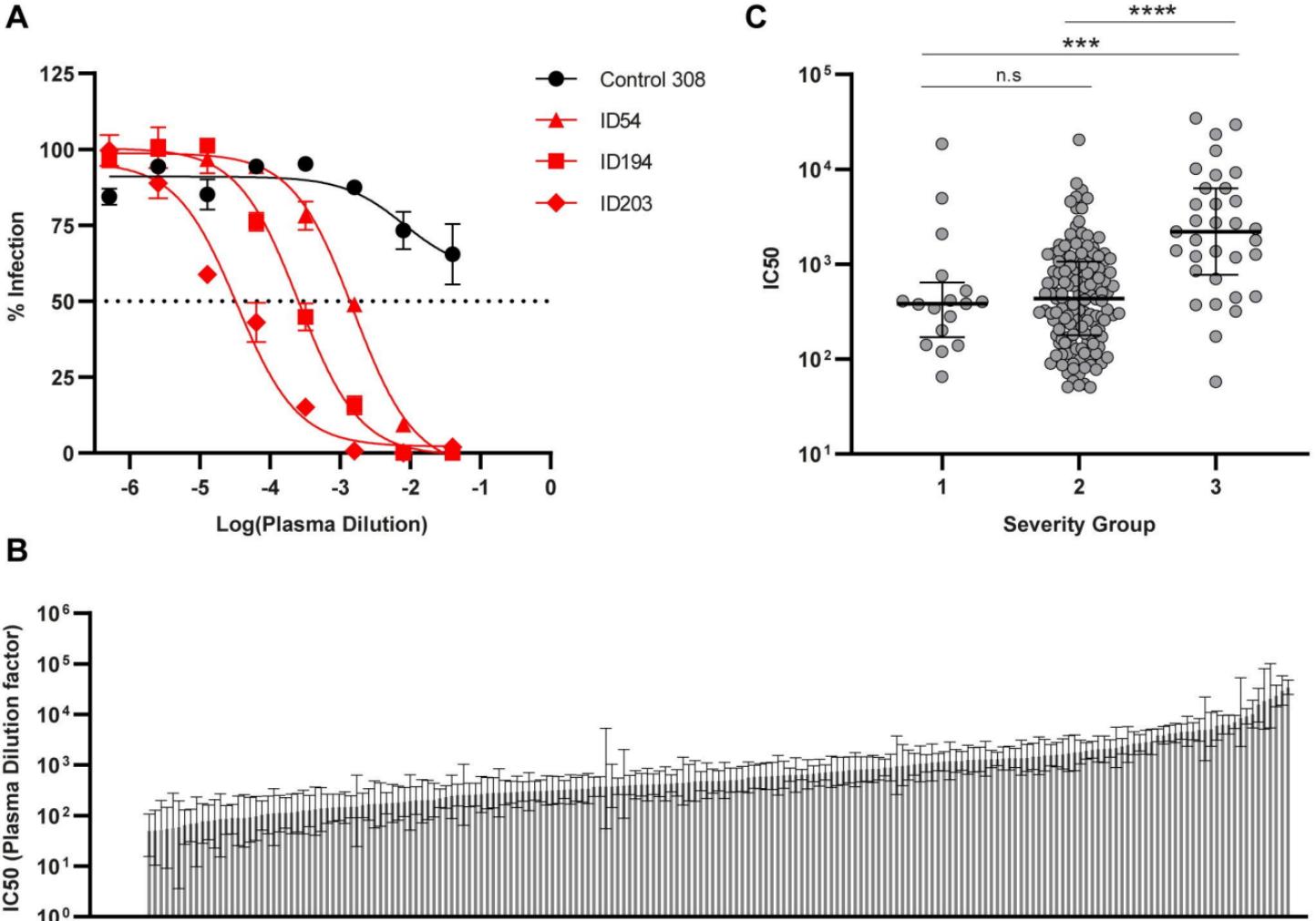
553 **Figure 2: SARS-CoV-2 neutralization capacity correlates with disease severity.**

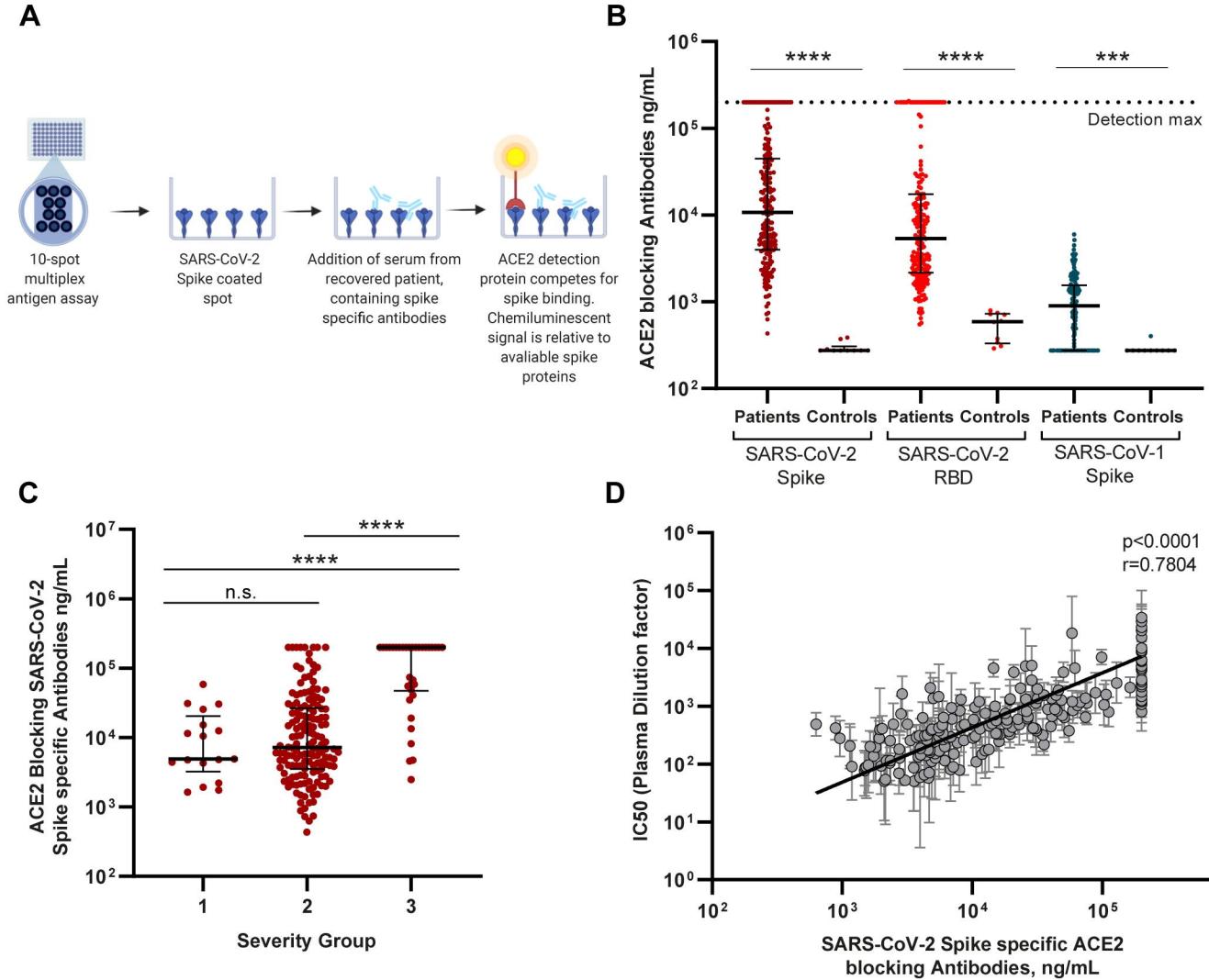
554 **A)** Representative neutralization curves for control ID308, and individuals ID54, ID194, and ID203,
555 quantified as eGFP⁺ cells by flow cytometry. Control plasma was unable to neutralize below a 50% infection

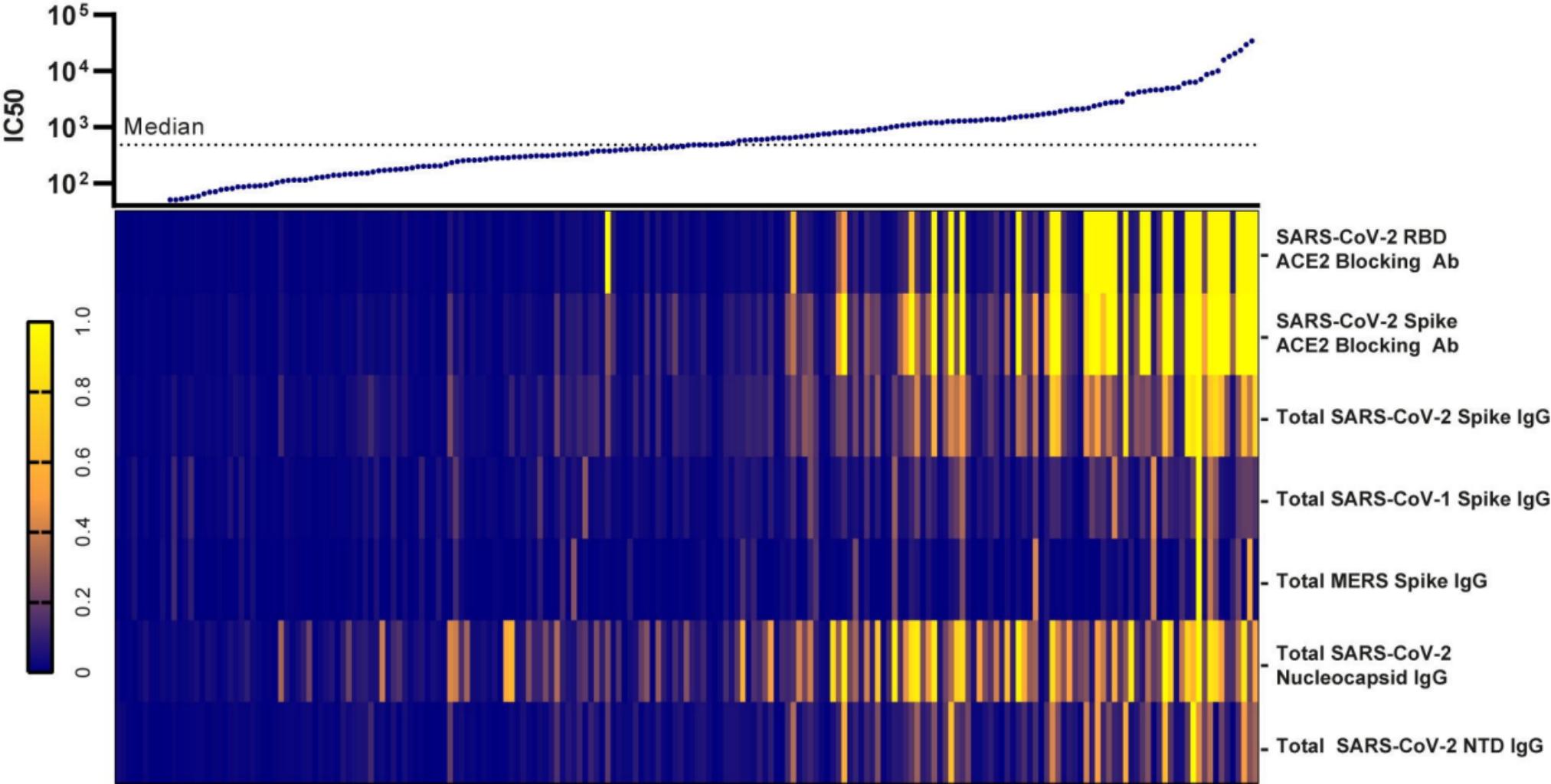
556 rate, where SARS-CoV-2 recovered patients accomplish 100% neutralization at the lowest plasma dilution. X-
557 axis shows the log10 transformed patient plasma dilution, from 1:25 – 1:1,953,125. Error bars represent mean
558 and s.e.m. of duplicate determinations. Three-parameter non-linear fit is plotted. **B)** IC50 values calculated
559 from neutralization curves, graphed from lowest (left) – highest (right) within the cohort. Error bars show 95%
560 confidence interval. Nine individuals unable to neutralize 100% are represented with the value zero on the y-
561 axis far left, n = 202. **C)** Distribution of IC50 values between disease severities. Scatter plot with individual
562 data points shown with median (wide line) and interquartile range (narrow lines). Statistical comparison were
563 by Mann-Whitney U test. *** = p < 0.001, **** = p < 0.0001, n = 193.

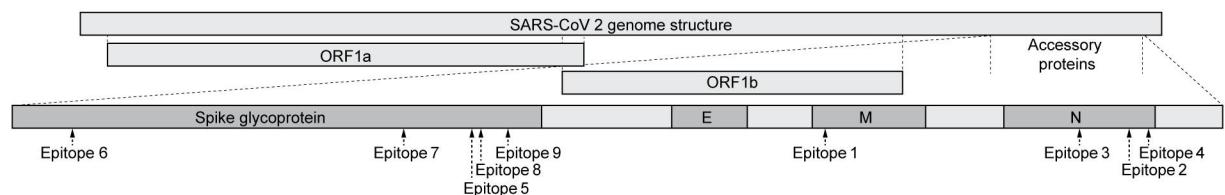
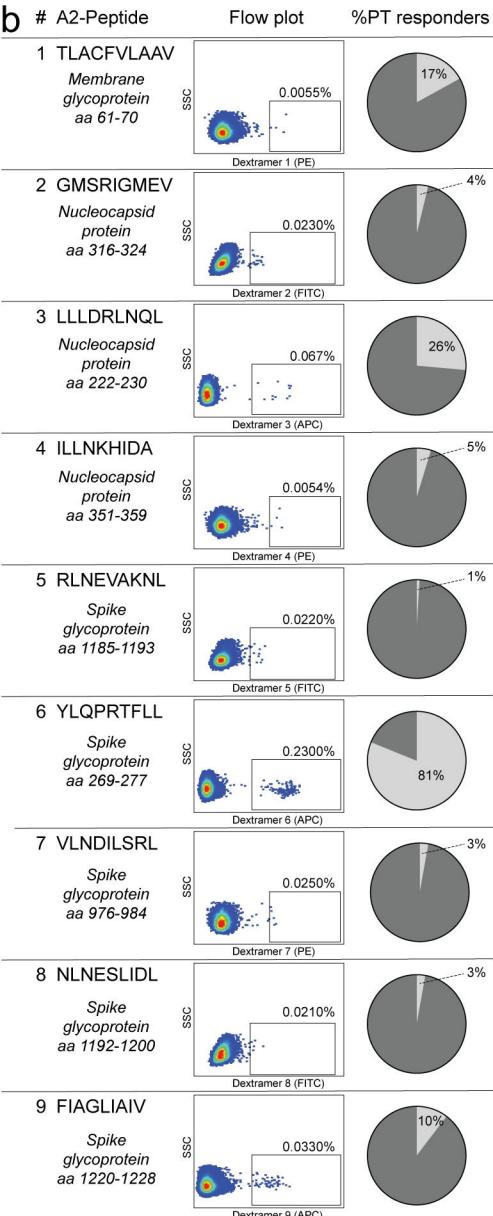
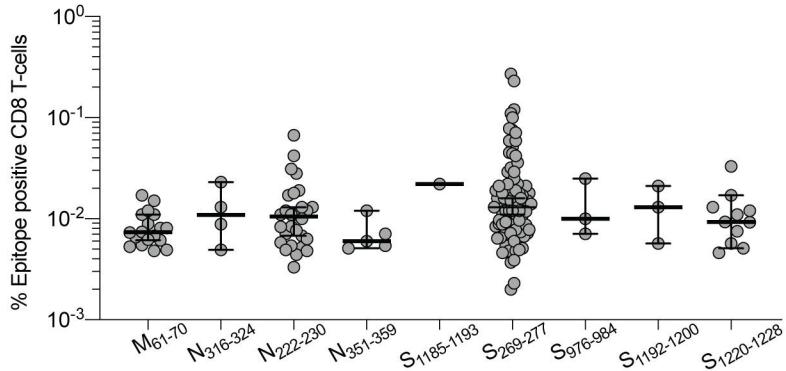
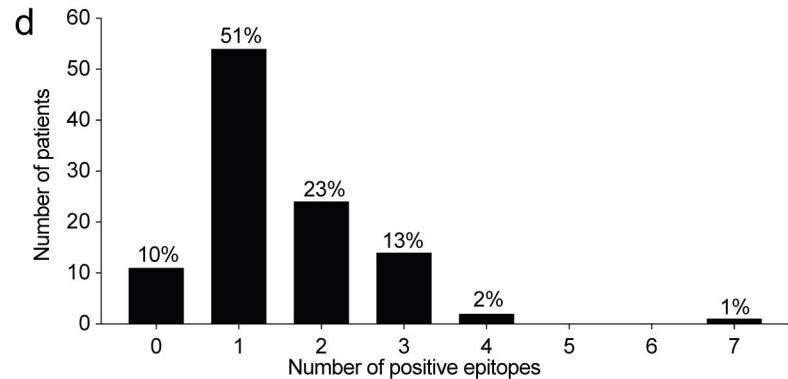
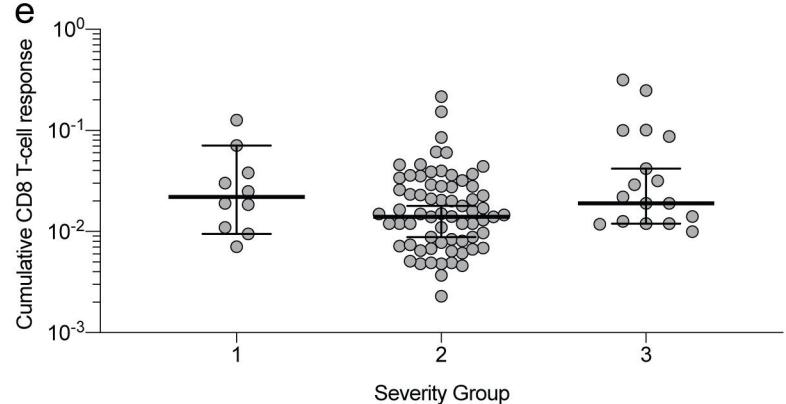
564 **Figure 3: SARS-CoV-2 antibody quantification by ACE2 competition assay.**


565 **A)** Schematic drawing of the MSD ACE2 competition assay. Spike-specific serum antibodies bind to their
566 respective epitopes, blocking SULFO-Tag conjugated ACE2. Antibody concentration in ng/ml is calculated
567 based on internal standard antibody blocking ACE2 binding. **B)** Serum ACE2 blocking antibody levels
568 detected against SARS-CoV-2 Spike and RBD, and SARS-CoV-1 spike proteins. Scatter plot with individual
569 data points shown with median (wide line) and interquartile range (narrow lines). Statistical comparison by
570 Mann-Whitney U test. *** = p < 0.001, **** = p < 0.0001, n = 203. **C)** Distribution of SARS-CoV-2 spike
571 specific ACE2 blocking antibodies between disease severity groups. Scatter plot with individual data points
572 shown with median (wide line) and interquartile range (narrow lines). Statistical comparison by Mann-Whitney
573 U test. *** = p < 0.001, **** = p < 0.0001, n = 203. **D)** Correlation analysis of pseudotype virus neutralization
574 IC50 values and the quantity of SARS-CoV-2 spike specific ACE2 blocking antibodies. Correlation by
575 Spearman's rank coefficient, p < 0.0001. n = 193.


576 **Figure 4: The breadth of immunological response shifts in conjunction with neutralization capacity.**


577 Presentation of all IC50 values listed from lowest (left) to highest (right) with a heatmap representing the
578 individuals corresponding relative IgG levels and ACE2 blocking antibody quantities collected through MSD
579 analysis. The normalization of variables within each measured immunological parameter was performed by
580 assigning the highest values to one (bright yellow) and the lowest value to zero (dark blue). n=202.


581 **Figure 5: Characterization of CD8⁺ T-cell responses towards SARS-CoV-2 in HLA-A2⁺ individuals.**






582 **A)** Overview of HLA-A2⁺ epitope location within the SARS-CoV-2 proteins. **B)**. Epitope sequence and
583 individual dextramer signal gating strategy on CD8⁺ T cells, with the percentage of recognition within the
584 cohort shown for each. Full gating strategy is displayed in S1 Fig 2. **C)** The frequency of SARS-CoV-2
585 responsive CD8⁺ T-cells for each epitope. Scatter plot with individual data points shown with median (wide
586 line) and interquartile range (narrow lines). n = 106 **D)** Breadth of CD8⁺ T-cell responses shown as the
587 cumulative number of CD8⁺ T-cell epitopes targeted by patients. Percentage equivalents of patient numbers
588 are indicated on top of the bars for each cumulative group. n = 106 **E)** Distribution of the cumulative CD8⁺ T-
589 cell responses in HLA-A2⁺ individuals, between the disease severity groups. Error bars show median (wide
590 line) and interquartile range (narrow lines). n=106. 10% of individuals had no detectable CD8⁺ T-cell epitope
591 response, and are not shown on the graph but were included in statistical tests. Statistical comparison by Mann-
592 Whitney U test. n.s. = p > 0.05.

a**b****c****d****e**