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Abstract

While schizophrenia differs between males and females in age of onset, symptomatology and the
course of the disease, the molecular mechanisms underlying these differences remain
uncharacterized. In order to address questions about the sex-specific effects of schizophrenia,
we performed a large-scale transcriptome analysis of RNA-seq data from 437 controls and 341
cases from two distinct cohorts from the CommonMind Consortium. Analysis across the cohorts
identifies a reproducible gene expression signature of schizophrenia that is highly concordant with
previous work. Differential expression across sex is reproducible across cohorts and identifies X-
and Y-linked genes, as well as those involved in dosage compensation. Intriguingly, the sex
expression signature is also enriched for genes involved in neurexin family protein binding and
synaptic organization. Differential expression analysis testing a sex-by-diagnosis interaction
effect did not identify any genome-wide signature after multiple testing corrections. Gene co-
expression network analysis was performed to reduce dimensionality and elucidate interactions
among genes. We found enrichment of co-expression modules for sex-by-diagnosis differential
expression signatures, which were highly reproducible across the two cohorts and involve a
number of diverse pathways, including neural nucleus development, neuron projection
morphogenesis, and regulation of neural precursor cell proliferation. Overall, our results indicate
that the effect size of sex differences in schizophrenia gene expression signatures is small and
underscore the challenge of identifying robust sex-by-diagnosis signatures, which will require
future analyses in larger cohorts.
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Introduction

“The male sex appears in general to suffer somewhat more frequently and to be affected more
severely by the dementia praecox” -- Emil Kraepelin, 1919

Significant sex differences in schizophrenia (called dementia praecox at that time) were noted
more than 100 years ago by Emil Kraepelin. Since then, multiple epidemiological and clinical
studies have described sex differences in age of onset, symptomatology and the course of the
disease. First, there is a well established difference in disease incidence among males and
females (1). For males, disease onset most commonly occurs in the early twenties. Whereas for
females age of onset is bimodal, with an initial mode in the mid-to-late twenties, as well as a
second mode in middle age. Second, symptom expression systematically differs between males
and females (1). Females are more likely to experience high levels of depressive symptoms, while
males are more likely to experience negative symptoms at iliness onset. Third, longitudinal studies
across 20 years have described sex differences in the presence of psychosis and global outcome
(2). Females with schizophrenia are more likely to exhibit fewer psychotic symptoms, as well as
better cognitive and global functioning relative to males.

Sex differences in the age of onset, symptomatology and the course of the disease suggest
differences in the underlying molecular mechanisms between males and females. Schizophrenia
is a multi-factorial neurodevelopmental impairment of the brain that can be attributed to both
genetic and environmental factors. Gene expression is a consequence of both the genetic and
the environmental factors that contribute to the pathophysiology of the disease. Therefore,
transcriptome analysis of the human brain in postmortem studies is a powerful approach for the
identification of molecular pathways and signatures associated with schizophrenia. Previous
large-scale transcriptome analysis described significant and highly reproducible gene expression
changes in schizophrenia (3-5). However, none of these studies explored sex differences that
contribute to schizophrenia gene expression dysregulation.

A number of previous studies have performed genome-wide exploration of gene expression in
schizophrenia examining sex differences. Qin et al (6) meta-analyzed six microarray datasets
from a total from 179 males and 67 females. Gene expression profiling was performed in the
dorsolateral or frontopolar prefrontal cortex. They identified significant schizophrenia signatures
only in males, while in females, similar analysis did not reveal significant genes after multiple
testing corrections. Collado-Torres et al. (7) explored schizophrenia signatures in two brain
regions (dorsolateral prefrontal cortex and hippocampus) across 222-238 controls and 132-152
cases (depending on brain region). They found non-significant overlaps between sex and
schizophrenia effects for nearly all features. Lack of significant findings might be due to limited
power, indicating the need to examine sex differences in larger cohorts.

To address this knowledge gap and increase statistical power, in this study we performed a large-
scale transcriptome analysis of sex differences in schizophrenia using 437 controls and 341 cases
from the CommonMind Consortium RNA-seq collection (3, 8). We specifically address the
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following questions: What are the sex differences in gene expression in the brain? Are there
schizophrenia genes that are affected differently in males compared to females? And, if so, do
those differences affect specific molecular pathways and co-expression modules?

Methods and Materials

Description of cohorts

Experimental methods for generating the CommonMind Consortium RNA-seq dataset from the
dorsolateral prefrontal cortex are described in release v2 (8). The collection involves two cohorts
derived from four brain banks: (A) The initial cohort comprised of samples from the Mount Sinai
School of Medicine Brain Bank, University of Pennsylvania Brain Bank and University of
Pittsburgh Brain Bank (MSSM-Penn-Pitt); and (B) the cohort ascertained from the National
Institute of Mental Health's Human Brain Collection Core (NIMH-HBCC). See
https://www.synapse.org//#!Synapse:syn2759792/wiki/194729 for further details. In this study, we
overall included 281 females and 497 males samples (Supplementary Table 1).

Processing RNA-seq data

RNA-seq data were generated as previously described (8) and were processed as follows. The
raw reads were trimmed with Trimmomatic (v0.36) (9) and then mapped to human reference
genome GRCh38.v24
(ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode human/release 24/GRCh38.primary _asse
mbly.genome.fa.gz) using STAR (v2.7.2a) (10). The BAM files that were generated contain the
mapped paired-end reads, including those spanning splice junctions. Following read alignment,
expression quantification was performed at the gene level using featureCounts (v1.6.3) (11).
Gene quantifications correspond to GENCODE v30
(ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode human/release 30/gencode.v30.annotatio
n.gtf.gz). Quality control metrics were reported with Picard (v2.20.0). The full RNA-seq pipeline is
implemented in Nextflow (12) and is available at
https://github.com/CommonMindConsortium/RAPID-nf. Analysis used log> counts per million
(CPM) following TMM normalization (13) implemented in edgeR (v3.22.5) (14). Genes with over
0.5 CPM in at least 30% of the samples in both cohorts were retained.

Computational deconvolution

Dtangle (15) was used to estimate the cell type composition in the bulk RNA-seq data using a
reference panel composed of four cell components generated based on fluorescence activated
nuclear sorting (FANS). The reference panel included GABAergic neurons (GABA),
glutamatergic neurons (GLU), oligodendrocytes (Olig), and the remaining fraction consists of
mostly microglia and astrocytes (MgAs). Data were generated from the dorsolateral prefrontal
cortex of a subset of 32 MSSM samples. The raw reads were preprocessed using the pipeline
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described above. The mean log. CPM for each gene for each cell type was used as the reference
panel for deconvolution.

Generation of FANS reference panel

Individual, 50mg aliquots, of frozen brain tissue were homogenized in cold lysis buffer (0.32M
Sucrose, 5 mM CaCl,, 3 mM Magnesium acetate, 0.1 mM, EDTA, 10mM Tris-HCI, pH8, 1 mM
DTT, 0.1% Triton X-100). Samples were filtered through a 40um cell strainer and underlaid with
sucrose solution (1.8 M Sucrose, 3 mM Magnesium acetate, 1 mM DTT, 10 mM Tris-HCI, pH8)
prior to ultracentrifugation at 107,000 g for 1 hour at 4°C in a swing bucket rotor. Pellets were re-
suspended in 500ul DPBS (supplemented with 0.1% BSA) and incubated with anti-NeuN (1:1000,
PE conjugated, Millipore Cat FCMAB317PE), anti-SOX6 (16) and anti-SOX10 (17) antibodies for
1 hour at 4°C with end-over-end rotation, in the dark. Following incubation in primary antibodies,
samples were subjected to a second ultracentrifugation step prior to incubation in secondary
antibodies, as above (18).

Immediately prior to FANS sorting, DAPI (Thermoscientific) was added to a final concentration of
1ug/ml. GABAergic neurons (DAPI+ NeuN+ SOX6+), Glutamatergic neurons (DAPI+ NeuN+
SOX6-), oligodendrocytes (DAPI+ NeuN- SOX10+) and microglia/astrocytes (DAPI+ NeuN-
SOX10-) nuclei were sorted into individual tubes using a FACSAria flow cytometer (BD
Biosciences).

FANS sorted nuclei for RNA-seq were collected in PicoPure (Applied Biosystems) extraction
buffer and were incubated at 42°C for 30 min under shaking at 850 rpm, before storage at -80°C.
RNA extraction was performed using the PicoPure RNA Isolation kit (Applied Biosystems) and
RNA-seq libraries generated using the SMARTer cDNA synthesis kit (Takara), according to
manufacturer’s instructions. Libraries were sequenced at New York Genome Center on the
NovaSeq platform (lllumina) obtaining 100bp paired-end reads.

Covariate exploration

Observed gene expression measurements from RNA-seq can be affected by biological and
technical factors. To identify important covariates, we examined the correlation between multiple
variables and the gene expression data, as well as the correlation between multiple biological and
technical variables. While evaluating the correlation between two continuous variables is trivial,
evaluating the correlation between two categorical variables, or including a variable with multiple
dimensions (i.e. cell type fraction) is more complicated. We applied a generalization of the
standard correlation by using canonical correlation analysis and reporting Cramér’s V statistic
(19), which is the fraction of the maximum possible correlation. When comparing two continuous
variables, this gives the same value as the typical correlation.

The fraction of variance in cell type composition explained by other variables was evaluated with
the variancePartition package (20). All variables were modeled as fixed effects.
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Differential expression

Analysis was performed using dream (21) built on top of limma-voom (22). In addition to diagnosis
and sex, the following variables were included as covariates: RIN, intronic rate, intragenic rate,
intergenic rate, rRNA rate, Institution, age of death and cell type composition. These covariates
were identified empirically using the Bayesian Information Criterion (23) to identify important
variables in each cohort separately. The union of the variables identified in either cohort was then
used in the analysis.

Since age of death and cell type composition varied across institutions, interaction terms between
institution and age of death and intuition and cell type composition were used. While
computational deconvolution was used to estimate the fraction of four cell types, the constraint
that the four fractions sum to 1.0 for each sample means that the fractions really span only three
dimensions (i.e., knowing three determines the fourth). Including this set of low rank covariates
in a regression model is problematic. To address this issue, the four fractions were transformed
into three variables using the isometric log ratio (24) to create covariates cellFrac ilr 1,
cellFrac ilr 2, cellFrac ilr 3. This transformation is invariant to scaling and
reordering of the cell fraction variables; however, each resulting variable is a function of multiple
cell fractions so they can’t be interpreted individually.

The regression formula used for differential expression analysis was:
~ Diagnosis + Sex + RIN + IntronicRate + 1IntragenicRate +
IntergenicRate + rRNARate + Institution* (ageOfDeath +
cellFrac ilr 1 + cellFrac ilr 2 + cellFrac_ilr 3)

in which RIN is the RNA integrity number measured from the physical RNA, intronic rate is the
fraction of reads mapping to introns, intragenic rate is the fraction of reads mapping to exons or
introns, intergenic rate is the fraction of reads mapping to intergenic regions, rRNA rate is the
fraction of reads mapping to ribosomal RNA. With the exception of RIN, these other metrics were
computed from RNA-seq reads by Picard.

The sex-by-diagnosis interaction analysis used the terms Diagnosis + Sex +
Diagnosis:Sex and tested the Diagnosis:Sex while accounting for the covariates above.

Results from the MSSM-Penn-Pitt and NIMH-HBCC cohorts were combined with a fixed effects
meta-analysis using the regression coefficients from each cohort and their respective standard
errors with the metafor package (25). The fraction of replicated differentially expressed genes
was estimated using the 77 statistic from the qvalue package (26).

Gene set analysis

Testing gene sets for enrichment of differential expression signatures was performed with zenith
(https://github.com/GabrielHoffman/zenith), which is a slight modification of camera (27) to be
compatible with dream (21). It is a competitive gene set test that uses the full spectrum of t-
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statistics from the differential expression analysis without specifying a p-value or false discovery
rate (FDR) cutoff to call a gene differentially expressed. This approach explicitly models the
empirical correlation between genes in each gene set to control the false positive rate accurately
(27). When performing gene set analysis on the differential expression signature from the meta-
analysis of the two cohorts, modelling this correlation structure while controlling the false positive
rate is challenging due to the two datasets. Instead, gene set analysis was performed on each
cohort separately and results for each gene set were combined using a fixed effect meta-analysis
in the metafor package (25). Gene sets from Gene Ontology (28) were obtained using
EnrichmentBrowser (29).

Similarity between differential expression signatures

To evaluate the robustness of the schizophrenia differential expression signature, the signature
was compared to signatures from other datasets. Differential expression signatures measuring
differences between individuals with schizophrenia to controls from the current data and were
compared to (1) schizophrenia signatures from the CommonMind Consortium v1 release (3); (2)
schizophrenia, bipolar disorder and autism spectrum disorder from the PsychENCODE
Consortium (4); and (3) Alzheimer's disease signatures from the AD Knowledge Portal (30). The
Alzheimer's disease signature was included as a negative control because it is a disease of the
brain but acts via a very different molecular etiology. All differential expression signatures were
from RNA-seq data, except the NIMH-HBCC cohort from the CommonMind Consortium v1
release, which was from lllumina HumanHT-12_V4 Beadchip microarrays (3).

Similarity between a pair signatures was computed as the Spearman correlation between the t-
statistics. Hierarchical clustering was performed with the “ward.D2” method. Bootstrap
resampling using pvclust (31) was used to evaluate the stability of the clusters. All clusters had

approximately unbiased probability of = 0.85, indicating high stability.

Network analysis

Multiscale embedded-gene coexpression network analysis (MEGENA) (32) was performed on
expression residuals to identify modules of highly co-expressed genes in MSSM-Penn-Pitt and
NIMH-HBCC cohorts, respectively. Expression residuals were produced by regressing out
covariates using the formula described in the “Differential expression” section and adding back
terms corresponding to the intercept, diagnosis, sex and diagnosis-by-sex interaction. Gene-gene
similarities were measured by Pearson correlation. Then gene pairs were selected with significant
correlations based on a cutoff of 0.05 after FDR correction. These gene pairs were embedded
onto a topological sphere to construct a planar filtered network. Multiscale clustering analysis was
performed on the planar filtered network to determine the module compactness, contributing to a
hierarchy of parent and child modules. The key driver genes of each module were identified by
multiscale hub analysis using Fisher's inverse Chi-square approach in MEGENA.
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We explored the overlap of each module with multiple gene sets and external data as described
below. Significant associations were determined based on an FDR cutoff of 5% in each analysis.
For each module, the following analyses were performed:

e Overlap with differential expression signatures: The differential expression signatures
from sex, diagnosis, and sex-by-diagnosis interaction were tested for enrichment in each
module using cameraPR in the limma package (33).

e Overlap with module genes: Overlapping modules among the MSSM-Penn-Pitt and NIMH-
HBCC networks were determined based on Fisher's exact test.

e Gene set enrichment analysis: The modules were functionally annotated by gene set
enrichment of biological pathways from MSigDB (34) based on Fisher's exact test.

e Overlap with risk variation: MAGMA gene-set analysis (35) was performed for the PGC2
schizophrenia associations (36).

Results

Cell type composition and confounding

While the biological variables of interest are sex and diagnosis, identifying and accounting for
confounding variables is essential to reduce spurious correlations. Thus, it is important to
understand which experimental and biological variables are associated with sex in our dataset to
correct for them. Sex is correlated with multiple variables when combining individuals across the
MSSM-Penn-Pitt and NIMH-HBCC cohorts (Figure 1A). Females tend to be older, are
underrepresented in Pitt and NIMB-HBCC brain banks (at 26.5% and 28.1% respectively) and
have a lower estimated fraction of GABAergic neurons (Supplementary Figures 1,2). Diagnosis
shows lower correlation with these variables than sex.

Another way of examining the correlation between these variables is by evaluating the fraction of
variation in cell type composition explained by age of death, diagnosis, institution (i.e. brain bank)
and sex (Figure 1B). Across all 4 cell types in the reference panel (GABA, Glu, Olig and MgAs),
institution explained the most of the variation in cell type composition, followed by age of death
and sex. Each of these variables explained a significant fraction of the variation in cell type
composition even after Bonferroni correction (Figure 1C). Notably, diagnosis explained very little
variance in cell type composition, and its contribution was not statistically significant. Based on
this analysis, to evaluate sex differences in schizophrenia and to avoid spurious associations
driven by confounds, we included age of death, institution, and cell type composition as covariates
in the statistical model.

Figure 1. Association with estimated cell type composition. A) Network showing squared
correlation between each pair of variables. Color and thickness of the line corresponds to the
magnitude of the squared correlation. B) Variance partitioning analysis shows the fraction of
variance in each cell type component explained by age of death, diagnosis, institution and sex.
The remaining variation is the residual variance not explained by these variables. C) Hypothesis
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testing using ANOVA identified variables explaining a significant fraction of variance in each cell
type component. Stars indicate tests passing the 5% Bonferroni cutoff for 16 tests.
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Transcriptomic signature of schizophrenia

Differential expression analysis between schizophrenia and controls identified 217 genes in the
MSSM-Penn-Pitt cohort and 1,706 genes in the NIMH-HBCC cohort at FDR 5%. Despite the
substantial difference in the number of genome-wide significant differentially expressed genes
(DEGS), the disease signatures were remarkably concordant (Figure 2A). The t-statistics from
the two cohorts had a large Spearman correlation of 0.343 (p < 1 x 10°%). Moreover, considering
MSSM-Penn-Pitt as the discovery cohort, the replication rate in NIMH-HBCC estimated using the
m; statistic was 89.7%. Considering NIMH-HBCC as the discovery cohort, the replication rate in
MSSM-Penn-Pitt was estimated to be 46.1%. Combining results from the two cohorts using a
fixed effects meta-analysis identified 2,209 significant differentially expressed genes at FDR 5%
(Figure 2B).

The schizophrenia signatures from the two cohorts and the combined meta-analysis were
concordant with existing schizophrenia signatures from the CommonMind Consortium (3) and
PsychENCODE (4), and to a lesser degree with bipolar disorder and autism spectrum disorder
signatures from PsychENCODE (4) (Figure 2C, Supplementary Figure 3). Importantly, there
was little concordance with 3 disease signatures from Alzheimers’ disease (Figure 2C) which,
despite being a disease of the brain, is known to have a distinct molecular etiology.

Figure 2. Differential expression between schizophrenia and controls. A) Concordance
analysis showing t-statistics for each gene from MSSM-Penn-Pitt and NIMH-HBCC cohorts.
Orange line indicates best fit from linear regression. Color of points indicates the density in the
local region. B) Volcano plot of meta-analysis combining both cohorts. Red points indicate FDR
< 0.05. C) Clustering of differential expression signatures from the current work compared to
previously published disease signatures from post mortem brain including schizophrenia (SCZ),
bipolar disorder (BD), Alzheimer's disease (AD) and autism spectrum disorder (ASD).
Alzheimer’s’ signatures are from the cerebrum (CBE), superior temporal gyrus (STG) and
dorsolateral prefrontal cortex (DLPFC). All other signatures are from the DLPFC.
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Differential expression between males and females

Differential expression analysis between males and females identified 482 genes, including 418
autosomal genes, in the MSSM-Penn-Pitt cohort and 148 genes, including 98 autosomal genes,
in the NIMH-HBCC cohort at FDR 5%. Similar to the disease analysis, the sex signatures were
notably concordant and had a Spearman correlation between t-statistics of 0.15 (p < 1.23 x 10%)
for all genes and 0.14 (p < 1.6 x 10®°) for autosomal genes (Figure 3A). Considering MSSM-
Penn-Pitt as the discovery cohort, the estimated replication rate in NIMH-HBCC was 47.5%
(39.5% for autosomal genes). Considering NIMH-HBCC as the discovery cohort, the replication
rate in MSSM-Penn-Pitt is estimated to be 52.8% (28.4% for autosomal genes). Notably,
differential expression identified on sex chromosomes (chromosomes X and Y) in one cohort was
more likely to replicate. Combining results from the two cohorts using a fixed effects meta-analysis
identified 686 significant DEGs at FDR 5% (Figure 3B), including 606 autosomal genes (Figure
3C).

As expected, the effect sizes were substantially larger for DEGs on the sex chromosomes
compared to autosomes (Figure 3D). The top autosomal DEGs identified by meta-analysis
showed very consistent effects sizes across cohorts (Figure 3E). Unsurprisingly, gene set
enrichment analysis identified molecular pathways involved in dosage compensation and
androgen signaling (Figure 3F). Intriguingly, sex differences in the brain transcriptome identified
genes that affect neurexin family protein binding and synaptic organization.

Figure 3. Differential expression between males and females. A) Concordance analysis
showing t-statistics for each gene from MSSM-Penn-Pitt and NIMH-HBCC cohorts. The orange
line indicates best fit from linear regression. Color of points indicates the density in the local
region. B) Volcano plot of meta-analysis combining both cohorts for all genes. Red points
indicate FDR < 0.05. C) Volcano plot showing only autosomal genes. D) Circos plot of log. fold
changes by chromosome position. Only genes with FDR < 5% are shown. Log: fold changes
are thresholded to be between -2 and 2, but this only affects genes on the sex chromosomes. E)
Examples of differentially expressed autosomal genes. Left panel shows log, fold changes in
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each cohort and meta-analysis with error bar indicator + 1 standard error unit and corresponding
-log1o p-value. Right panel shows violin plot of expression, after regressing out covariates,
stratified by cohort and sex. F) Gene set analysis identifies Gene Ontology annotations enriched
for genes differentially expressed between sexes.
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Effect of sex on disease differential expression signature

We then examined whether the effect of disease differs between males and females by
statistically testing an interaction term between sex and diagnosis. In each cohort, no genes
passed an FDR threshold of 10%. The t-statistics from the two cohorts showed a low, yet
significant, level of similarity (Spearman correlation = 0.054, p < 5.3 x 10™"*, Figure 4A). We also
performed differential expression analysis for diagnosis, separately by sex. The cross-cohort
meta-analysis shows high concordance between the schizophrenia signature in males and
females with a Spearman correlation of 0.453 (p < 1 x 10°%); no significant difference in effect
sizes was identified (Supplementary Figure 4). Combining results from the two cohorts in a
meta-analysis yielded no genes passing an FDR threshold of 5% (Figure 4B); only ALKBH3
passes a 10% FDR cutoff. The effect size of -0.179 for ALKBH3 indicated that the schizophrenia-
vs-control effect size in males was less than the effect size in females (Figure 4C). The low
concordance across cohorts and the lack of any significant finding at FDR 5% (and only one
significant gene at FDR 10%) indicates a limited power to identify sex differences in the
schizophrenia signature in the current data.
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Figure 4. Interaction analysis for effect of sex on schizophrenia signature. A) Concordance
analysis showing t-statistics for each gene from MSSM-Penn-Pitt and NIMH-HBCC cohorts.
Orange line indicates best fit from linear regression. Color of points indicates the density in the
local region. B) Volcano plot of meta-analysis combining both cohorts for all genes. C) Top panel
shows results for the top gene, ALKBH3, showing log: fold change and p-values for each cohort
and meta-analysis. Bottom panel shows violin plots of ALKBH3 expression residuals stratified by
sex, cohort and diagnosis.
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Network analysis identifies gene modules

To further understand how sex differences contribute to schizophrenia gene expression, we used
multiscale embedded-gene coexpression network analysis (MEGENA) to identify co-expressed
gene modules and then characterize their enrichment for differential expression signatures for
diagnosis, sex, and sex-by-diagnosis interaction. A total of 1,226 and 1,396 hierarchical (i.e.
parent-child) modules were identified from the MSSM-Penn-Pitt and NIMH-HBCC cohorts,
respectively. These modules were then ranked by their association with diagnosis, sex, and sex-
by-diagnosis signatures by performing the enrichment analysis with the respective differential
expression signature. A total of 253 significantly enriched modules were identified in the MSSM-
Penn-Pitt cohort at FDR 5% (212 for diagnosis, 7 for sex, and 208 for sex-by-diagnosis) (Figure
5A). Similar analysis in the NIMH-HBCC cohort identified 236 significantly enriched modules at
FDR 5% (184 for diagnosis, 8 for sex, and 201 for sex-by-diagnosis) (Figure 5B).

Sex-by-diagnosis interaction associated modules were more likely to be enriched for diagnosis
differential expression signatures for both MSSM-Penn-Pitt and NIMH-HBCC cohorts (Spearman
rho = 0.68 and 0.60 at P < 2.2 x 107'°, respectively) (Supplementary Figure 5). Only a small
number of modules were enriched for sex signatures (Figure 5A, B middle panel), which show
only partial overlap with the diagnosis effects. We checked the replication of sex-by-diagnosis
interaction associated modules across the two cohorts. Considering interaction enriched modules
of the MSSM-Penn-Pitt cohort as the reference, the replication rate in NIMH-HBCC (based on m;
statistic) was 39%. Considering interaction enriched modules of the NIMH-HBCC cohort as the
reference, the replication rate in MSSM-Penn-Pitt was estimated to be 41%. The top 5 sex-by-
diagnosis interaction associated modules in MSSM-Penn-Pitt and NIMH-HBCC cohorts showed
substantial overlap indicating reproducibility across cohorts (Figure 5C). Gene set enrichment
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analysis for the top 5 ranked modules identified 17 pathways that were common between MSSM-
Penn-Pitt and NIMH-HBCC cohorts, including neural nucleus development, neuron projection
morphogenesis, and regulation of neural precursor cell proliferation (Figure 5D).

Module H935 showed the most significant enrichment for sex-by-diagnosis differential expression
signatures in the NIMH-HBCC cohort and it was nominally significant for association with
schizophrenia common genetic risk variation (Supplementary Table 2). Moreover, its
corresponding modules in the MSSM-Penn-Pitt cohort (C563 and C1055) were also ranked as
the top enriched modules for sex-by-diagnosis differential expression signatures (Figure 5C).
Module C1055 was one of the child modules within the module C563 (Supplementary Table 2).
To better understand the sex-schizophrenia interaction network, we investigated the network
topological structure of H935, comprised of 208 genes, and its MSSM-Penn-Pitt counterpart,
C563, comprised of 105 genes (Figure 6). We identified 10 (CEP170B, PRR12, CASKIN1,
FBX041, DLGAP4, AGAP2, NRXN2, NACC1, PACSIN1 and PRRC2A) and 7 (TNRC18, LTBP3,
ADGRB1, CASKIN1, ZDHHC8, APC2 and PLEC) key regulators of H935 and C563, respectively,
using multiscale hub analysis in MEGENA. CASKINT1 is the key regulator in both H935 and C563
and is involved in signal transduction pathways as a synaptic scaffolding protein (37, 38).

Figure 5. Gene co-expression modules associated with sex and schizophrenia in A) MSSM-
Penn-Pitt and B) NIMH-HBCC. Enrichment of the differential expression signatures of diagnosis
(schizophrenia; left panel), sex (middle panel), and sex-by-diagnosis (interaction; right panel) in
all of the significantly enriched modules in MSSM-Penn-Pitt and NIMH-HBCC cohorts,
respectively. Sunburst plot showing the hierarchical structure of enriched modules. Each sector
represents module enriched with either diagnosis, sex, or sex-by-disease. The most inside sector
represents the root module. The inside sectors represent parent modules, and the outside sectors
represent child modules. Color intensity is proportional to -logioc FDR for enrichment of each
module with differential expression signatures. C) Sankey plot showing a high overlap among the
top 5 interaction enriched modules from the MSSM-Penn-Pitt and NIMH-HBCC cohorts. Color
intensity is proportional to -logio FDR from the interaction enrichment analysis (same as the color
scale from (A) at the right panel. The width of the ribbon represents the number of overlapping
genes between two correlated modules. D) Gene set enrichment analysis for the top 5 interaction
enriched modules for both cohorts (shown in (C)). Color intensity is proportional to -log1 p-value
and asterisk shows enrichments that are significant at nominal P < 0.05.
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Figure 6. Co-expression modules enriched for sex-by-diagnosis differential expression
signatures. The gene-gene interaction of the top-ranked modules H935 (left panel) and C563
(right panel) in two cohorts. Colors of nodes represent significantly up- and down-regulated genes
in diagnosis analysis. Shapes of nodes represent dysregulated genes in sex analysis. Sizes of
nodes represent the degrees of nodes (the number of connected nodes). Text labels in green
represent the overlapping genes between two modules.
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Discussion

Despite the well characterized differences in onset and clinical presentation of schizophrenia
between males and females, a mechanistic understanding of these differences has been lacking.
To address this knowledge gap, we analyzed RNA-seq data from 437 controls and 341 cases
from the CommonMind Consortium (3, 8) across four brain banks and two cohorts to determine
differential expression signatures for diagnosis, sex, and sex-by-diagnosis interaction. Compared
to the previous largest study that examined sex differences in schizophrenia (7), our cohort size
increased by almost two folds. We first determined differential expression signatures for
diagnosis. Meta-analysis across cohorts further improved the robustness of our findings. We
found high concordance with schizophrenia signatures from other analyses (although we note
that there is substantial overlap in samples between the two resources) and intermediate
concordance with signatures for bipolar disorder and autism spectrum disorder (3, 4). Importantly,
we find low similarity to signatures of Alzheimer’s’ disease, which affects similar brain regions, but
has a vastly different disease mechanism.

We used these data resources to understand gene expression differences between males and
females in the brain. Our analysis finds strong reproducibility across cohorts and meta-analysis
identified a signature of 686 DEGs, including differential expression of 606 autosomal genes,
which is widespread throughout the genome. In addition to dosage compensation and androgen
signaling pathways, which were expected to show differences by sex, we also see enrichment for
neurexin family protein binding and synaptic organization among sex differential expression.
Stereological and microscopy studies have demonstrated that males have a significantly higher
synaptic density than females in neocortex (39) and medial amygdala (40). Differences in the
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microanatomical and gene expression substrate of synaptic organization might contribute to the
functional sex differences in brain activity. It is important to note that a simpler model, which does
not include the cell-type composition, finds more significant DEGs (data not shown here).
However these signatures were not reproducible across cohorts, presumably because they were
affected by cell-type confounding. Thus, having two different cohorts provides a valuable resource
to ensure the validity of our findings, but requires robust exploration and consideration of
additional covariates (notably cell type composition) that might introduce artifactual cohort-
specific effects.

Recent work by the GTEx Consortium identified 1,943 genes that are differentially expressed
between males and females in the prefrontal cortex [BA9] after controlling for cell type
composition (41). Despite assaying only 48 females and 127 males in this tissue, Oliva et al (41)
used a sophisticated statistical method (42) to borrow information across 44 tissues from 838
individuals in the study, and identified significant genes using the local false sign rate (43) to
dramatically boost statistical power. Our sex-specific findings show high concordance with the
GTEx analysis (Supplementary Figure 6). Considering our combined results after meta-analysis
as the discovery cohort, the replication rate in GTEx is estimated to be 96.1% (95.5% for
autosomal genes). Considering GTEx BA9 as the discovery cohort, the replication rate in our
dataset is estimated to be 80.7% (79.6% for autosomal genes) (see Supplementary Methods).

Studies involving a large number of individuals can be challenging to characterize due to
complicated biological regulations underlying complex diseases. We did not find a genome-wide
significant sex-by-diagnosis signature after multiple testing corrections, indicating that the effect
size is small relative to the separate effect of diagnosis and sex. On the other hand, we provide
two outcomes that support that sex-by-diagnosis signatures affect human brain transcriptome.
First, there was a small, but significant correlation between interaction test statistics across the
two cohorts. Second, by performing a network analysis to reduce dimensionality and elucidate
interactions among genes, we found an enrichment for sex-by-diagnosis differential expression
signatures that was highly reproducible across the two cohorts. The gene modules that were most
associated with sex-by-diagnosis signatures involved a number of diverse pathways, including
neural nucleus development, neuron projection morphogenesis, and regulation of neural
precursor cell proliferation. For the top sex-by-diagnosis interaction enriched module, we
identified a significant enrichment for schizophrenia common genetic variation. CASKIN1 is a key
regulator of this module that is reproduced among both cohorts. CASKINT has a reduced
expression in the schizophrenia patients, and is also known as a synaptic scaffolding protein to
play a role in signal transduction.

Lack of genome-wide sex-specific findings should not be interpreted as the molecular etiology of
schizophrenia in males and females is identical. Rather, the results indicate that any sex
differences in disease signature are likely small and will require additional analyses in larger
sample sizes. This notion is further supported by recent work on large-scale genome-wide
association studies (GWAS) of schizophrenia (44—46). These studies did not identify genome-


https://doi.org/10.1101/2020.10.05.326405
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326405; this version posted October 7, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

wide significant effect size differences between males and females and the genetic correlation
between males and females is statistically not different from 1.0. More broadly, in analyses of
large-scale GWAS and biobank data, findings of sex-specific effects or differences in heritability
between males and females have been limited (44, 46, 47). These negative results from
otherwise well-powered datasets underscore the challenge of studying the molecular
mechanisms underlying clinical differences in schizophrenia between males and females.

The current analysis of bulk post mortem RNA-seq data from 497 males and 281 females has a
number of limitations. Chiefly, our analysis implies that a sex-by-diagnosis interaction effect
exists, but we are underpowered to detect it genome-wide with the current sample size.
Additionally, ascertainment bias in post mortem studies means that far more male than female
individuals are represented, which reduces the effective sample size and statistical power. Adding
further data from resources generated from the PsychENCODE Consortium and other large-scale
efforts, as well as specifically sampling more female samples, should be undertaken in the future
to improve the power to detect sex-specific effects of disease. Furthermore, analysis of bulk tissue
is necessarily limited to identifying effects that are either shared across cell types or large in a
common cell type. It may be that sex-specific effects are concentrated in specific cell types.
Ongoing work by PsychENCODE Consortium and others to generate large-scale single nucleus
RNA-seq data from post mortem brains will have more power to identify cell type specific effects.
Moreover, incorporating additional data types and analysis methods to integrate gene expression
with genetics to identify sex-specific regulatory effects (41) may help to better understand sex
differences in disease etiology.

In conclusion, the current study is the largest gene expression analysis in the human brain
exploring sex differences in schizophrenia. Our results indicate that the effect size of sex
differences in schizophrenia gene expression signatures is small. This further underscores the
challenge of identifying robust sex-by-diagnosis signatures, which will require future analyses in
larger cohorts.
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Supplementary Figures

Supplementary Figure 1. lllustration of confounding between sex, age of death and
institution. A) Boxplot showing age distribution of males and females across the four institutions.
Females tend to be older across most cohorts. B) Barplot showing the fraction of males and
females across the four institutions. Females are underrepresented, especially in Pitt and NIMB-
HBCC brain banks.
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Supplementary Figure 2. lllustration of confounding between sex, and estimated cell
fraction. Females have a lower estimated fraction of GABAergic neurons, especially in MSSM

and NIMH-HBCC brain banks.
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Supplementary Figure 3. Concordance of disease signatures from post mortem brains.
Correlation matrix and clustering of t-statistics from differential expression signatures from the
current work compared to previously published disease signatures from post mortem brains.
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Supplementary Figure 4. Concordance analysis between t-statistics from males and
females when analyzed separately. Orange line indicates best fit from linear regression. Color
of points indicates the density in the local region.
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Supplementary Figure 5. Concordance analysis showing FDR for each module enriched
with diagnosis and interaction differential expression signatures in A) MSSM-Penn-Pitt and
B) NIMH-HBCC cohorts. The top 5 enriched modules of diagnosis and interaction were labeled.
Colors indicate the significance of modules enriched with schizophrenia (SCZ) GWAS. Blue
represents modules not significantly enriched with SCZ; light pink represents modules enriched
with SCZ at nominal p-value < 5%; dark pink represents modules significantly enriched with SCZ
at FDR < 5%. The size of the nodes represents the number of genes within modules.
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Supplementary Figure 6. Concordance of differential expression between sexes between
current dataset and frontal cortex [BA9] (BRNCTXB) from GTEx. A) Concordance analysis
showing log fold change for each autosomal gene from CMC v4 and GTEx cohorts. We note
that log. fold changes from GTEXx are the posterior estimates using a sophisticated method that
borrowed information across 44 tissues. Orange line indicates best fit from linear regression.
Color of points indicates the density in the local region. The genome-wide Spearman correlation
between t-statistics is 0.223 (p < 2.35 x 10%°") and 0.218 (p < 1.59 x 10°'®") for autosomal genes.
B) Concordance analysis showing t-statistics for autosomal genes. For GTEXx t-statistics here
were generated using the posterior estimates of the log, fold change and standard error from a
joint analysis of all tissues.
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Supplementary Tables

Supplementary Table 1. Number of RNA-seq samples. Counts are shown for both cohorts per
institution and are stratified by case/control status and sex.

Cohort Institution Female Male
Controls SCz | Controls SCz |
MSSM- MSSM 77 46 84 97
Penn-Pit Penn 19 34 18 22
UPitt 23 13 59 41
NIMH-HBCC NIMH 40 29 117 59
Total 159 122 278 219

Supplementary Table 2. Modules associated with the differential expression signatures
and the schizophrenia GWAS.

https://docs.google.com/spreadsheets/d/1f SPRysprG5yZc9jirxRWNM7tDRFe67dKIF-
7Ny2hRQ/edit?usp=sharing
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Supplementary Methods

Estimating replication rate using GTEX results

The m; statistic is widely used to estimate the replication rate. The approach works by identifying
a set of tests where the null is rejected in the discovery dataset, and using frequentist p-values in
the replication cohort to estimate the fraction of tests where the null hypothesis is rejected. Thus
p-values are required in order to apply this method.

However, the GTEx analysis (41) used an empirical Bayes approach called MASH (42) to borrow
information across all 44 tissues. For every gene and tissue, MASH reports posterior estimates
of the log: fold change and its standard error. Significant genes are called using the local false
sign rate (Ifsr) which indicates the posterior probability that the sign of the estimated log. fold
change is wrong (42, 43). Since Ifsr values, rather than p-values, are used to evaluate each
hypothesis of differential expression, an alternative method must be used to evaluate the
replication rate.

Here we propose an approach very similar to the m; statistic, except that the fraction of tests
estimated to reject the null hypothesis is computed from the set of Ifsr values. Let Sbe the set of
tests called significant in the discovery cohort and let Ifsr; be the Ifsr value for test iin the
replication cohort. Since Ifsr values are posterior probabilities, );cs lfs7; is the total probability
mass over the k tests supporting the null hypothesis. Similarly, }};cs(1 — Ifsr;) is the total

t Zies(l_lfsri)
k

probability supporting the alternative hypothesis so tha can be interpreted as the

fraction of null hypotheses that are rejected.

In order to be consistent in our comparison of GTEx and CMC v4, we used the ashr package (43)
to generate Ifsr values for CMC v4 sex signatures.
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