

Diversity and asynchrony in soil microbial communities stabilizes ecosystem functioning

Cameron Wagg^{1,2,3}†*, Yann Hautier⁴†, Sarah Pellkofer^{1,2}†, Samiran Banerjee^{2,5}, Bernhard Schmid^{1,6}, Marcel G.A. van der Heijden^{1,2,7}

1. Department of Evolutionary Biology and Environmental Studies, University of Zürich,
Winterthurerstrasse 190, CH – 8057 Zürich, Switzerland.

2. Plant-Soil Interactions, Research Division Agroecology and Environment, Agroscope, Reckenholz 191, CH – 8046, Zürich, Switzerland.

3. Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, E3B 4Z7, Canada.

4. Ecology and Biodiversity Group, Department of Biology, Utrecht University,

Padualaan 8, 3584 CH Utrecht, Netherlands.

5. Department of Microbiological Sciences, North Dakota State University, USA

6. Department of Geography, Biology and Environmental Studies, University of Zürich,
Winterthurerstrasse 190, CH – 8057 Zürich, Switzerland.

7. Plant-Microbe Interactions, Institute of Environmental Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands.

†These authors contributed to this paper equally

*** Corresponding Author:**

Email: cameron.wagg@canada.ca

Phone: +1 506 460 44 74

Word count: Abstract 146, Introduction: 496, Main Text 3394, 76 References

Display items: 5 Figures, 0 Tables

28 **Abstract**

29 Theoretical and empirical advances have revealed the importance of biodiversity
30 for stabilizing ecosystem functions through time. Yet despite the global degradation of
31 soils, how the loss of soil microbial diversity can de-stabilizes ecosystem functioning is
32 unknown. Here we experimentally quantified the contribution diversity and the temporal
33 dynamics in the composition of soil microbial communities to the temporal stability of
34 four key ecosystem functions related to nutrient and carbon cycling. Soil microbial
35 diversity loss reduced the temporal stability of all ecosystem functions and was
36 particularly strong when over 50% of microbial taxa were lost. The stabilizing effect of
37 soil biodiversity was linked to asynchrony among microbial taxa whereby different soil
38 fungi and bacteria were associated with different ecosystem functions at different times.
39 Our results emphasize the need to conserve soil biodiversity in order to ensure the reliable
40 provisioning of multiple ecosystems functions that soils provide to society.

41

42 **Introduction**

43 Declines in biodiversity worldwide compromise the functions and services that
44 ecosystems a provide to humanity (Tilman and Downing, 1994; Hector and Bagchi, 2007;
45 Cardinale et al., 2012; Hooper et al., 2012). For example, evidence is mounting that the
46 reduction in species diversity negatively affects multiple ecosystem functions (Zavaleta et
47 al., 2010; Maestre et al., 2012; Hautier et al., 2018) and can impair their stability over
48 time making biodiversity a cornerstone for long-term sustainability (Tilman et al., 2006;
49 Hector et al., 2010; Isbell et al., 2011; Hautier et al., 2015). Species diversity can jointly
50 support multiple ecosystem functions simultaneously because species that do not
51 contribute to that function at a particular time may contribute to the function at another
52 time, or to another function at the same time, thereby contributing to a greater overall

53 ecosystem functioning over time (Hautier et al., 2018; Isbell et al., 2011, Yachi and
54 Loreau, 1999).

55 While the reduction of plant diversity is well known to destabilize ecosystem
56 functioning, effects of soil biodiversity loss on stabilizing ecosystem functioning are still
57 poorly understood. A number of studies have shown that soil biodiversity is rapidly
58 declining in intensively managed soils (Helgason et al., 1998; Birkhofer et al., 2008;
59 Verbruggen et al., 2010; Tsiafouli et al. 2015) and one quarter of soils worldwide are now
60 degraded (Stavi and Lal, 2015). Thus, understanding the consequences of soil biodiversity
61 loss is crucial, as there is a growing consensus that soil biota play key roles in ecosystems
62 (Bardgett and van der Putten, 2014; van der Heijden et al., 2008; Delgado-Baquerizo et
63 al., 2016) and support a number of ecosystem services, including food production and
64 nutrient cycling (Brussaard et al., 2008; Bender et al., 2016). Several studies have
65 demonstrated that the composition and richness of soil microbiota can predict multiple
66 ecosystem functions, such as plant diversity and productivity, soil carbon assimilation and
67 nutrient cycling (Bradford et al., 2014; Wagg et al., 2014; Jing et al., 2015; Delgado-
68 Baquerizo et al., 2020; Mori et al., 2016; Wagg et al., 2019), but very few have linked soil
69 microbiota to the temporal stability of ecosystem functioning (Eisenhauer et al., 2012;
70 Yang et al., 2014; Pellkofer et al., 2016). While the provision of soil ecosystem services
71 by soil biota is likely temporally dynamic no previous studies have assessed how
72 microbial diversity and temporal changes in composition contribute to stabilizing soil
73 functioning.

74 The composition of soil communities is highly dynamic over short time scales,
75 such as months and growing seasons, and temporal changes in composition are further
76 altered by land management practices (Lauber et al., 2013; Coudrain et al., 2016; Wagg et
77 al., 2018). Whether these temporal dynamics lead to temporal fluctuations in ecosystem

78 functions in particular, or if microbial community dynamics are more synchronized due to
79 biodiversity loss, has not been assessed (Bardgett and van der Putten, 2014). Past studies
80 have shown that some soil functions do not track soil microbial loss, or they recover
81 rapidly after perturbations of soil microbial communities, suggesting that they may either
82 be highly resilient or contain many functionally redundant taxa (Griffiths et al., 2000;
83 Fitter et al., 2005 ; Allison and Martiny, 2008). Nevertheless, considering that soil
84 biodiversity has been shown to support numerous ecosystem functions, we hypothesize
85 that greater soil biodiversity should also support stability in multiple ecosystem functions.
86 Specifically, different microbial taxa may support different functions at different times,
87 providing insurance that some of these microbial taxa will be present at any given time to
88 stabilize the functioning of the ecosystem (Isbell et al., 2011; Yachi and Loreau 1999;
89 Mori et al., 2016). Therefore, we predict that temporal asynchrony among taxa in diverse
90 soil microbial communities should relate to greater temporal stability in multiple
91 ecosystem functions (Loreau and de Mazancourt, 2008; Thibaut and Connolly, 2013;
92 Gross et al., 2014). We further predict that the importance of asynchrony among taxa
93 should fade as fewer functions and time points are being considered (Isbell et al., 2011).
94 Using a highly replicated experiment, in which we manipulated soil microbial diversity
95 and assessed soil microbial communities and four ecosystem functions at five time points
96 over more than a year, we were able to confirm these hypothesis and predictions.

97 **Results**

98 Using soil sieving gradient (5000 μ m, 100 μ m, 25 μ m and Sterile) we created a
99 monotonically declining gradient in fungal and bacterial richness among replicated soil-
100 plant ecosystems established in self-contained mesocosms ($F_{1,46} = 172.0, P < 0.001$ and
101 $F_{1,45.7} = 753.9, P < 0.001$, respectively, for fungal and bacterial richness decline; Figure 1
102 – figure supplement 1, Supplementary file 1- table 1). The decline in diversity over our

103 experimental gradient was maintained throughout the experimental duration (Time
104 (factor) by sieve gradient (log-linear) interaction: $F_{4, 170.1} = 0.75$, $P = 0.561$ and $F_{4, 177.1} =$
105 1.60, $P = 0.174$, respectively, for fungi and bacteria; Figure 1 – figure supplement 1,
106 Supplementary file 1- table 1). This decline in bacterial richness along the four-step
107 gradient was steepest for the final step from smallest grid size to the sterile soil
108 treatment), which resulted in a 60% loss of bacterial and 55% loss of fungal richness,
109 compared to the highest soil biodiversity treatment. Community composition differed
110 among the soil diversity treatments and the different time points, for both fungal and
111 bacterial communities (Figure 1 – figure supplement 1 and 2, Supplementary file 1 – table
112 2). All four ecosystem functions (plant biomass production, plant diversity, litter
113 decomposition and soil carbon assimilation) changed significantly over our soil
114 biodiversity treatment gradient and varied significantly through time depending on the
115 soil biodiversity level (Figure 1a-d, Supplementary file 1 – tables 3 and 4). Bacterial and
116 fungal richness and community composition were significantly related to all four
117 ecosystem functions, depending on the time, and differences in microbial community
118 composition were all correlated with differences in ecosystem functions at all time points
119 (Figure 1 – figure supplement 3-5). These results demonstrate that we successfully
120 established a broad gradient of soil microbial diversity, composition, and ecosystem
121 functioning. This enabled us to assess effects of the soil microbial community on the
122 temporal stability of ecosystem functioning.

123 We found that greater bacterial and fungal richness supported a higher stability of the
124 two aboveground ecosystem functions, plant productivity and plant diversity (Figure 1e).
125 Plant biomass production was particularly strongly destabilized in our sterile treatment
126 with the lowest soil microbial diversity, exhibiting a ‘boom and bust’ temporal response,
127 where plant biomass was the lowest of all treatments after 11 weeks, then the highest at

128 22 weeks and steadily declined afterwards to substantially lower values than in all other
129 treatments by 55 weeks (Figure 1a). The effects of microbial diversity on the stability of
130 plant biomass production was also significant when the sterile treatment was not
131 considered, showing that microbial diversity is also important for plant community
132 stability even at higher levels of microbial diversity. All mesocosms were initially planted
133 with the same plant community and plant diversity increased steadily over time as
134 communities developed. This occurred in all but the sterile soil treatment, which remained
135 low throughout the experiment resulting in the positive effect of microbial diversity on
136 promoting a more stable plant diversity because (Figure 1b).

137 The effect of soil microbial diversity on stabilizing plant biomass and diversity results
138 from its influence on the changes in plant community composition. In the sterile and low
139 soil biodiversity treatments, plant communities were dominated by the grass *Lolium*
140 *perenne* (Figure 1 – figure supplement 6) which drove the ‘boom and bust’ trend in
141 biomass production (Figure 1a). In contrast, the biomass production by the legume
142 *Trifolium pratense* increased steadily over time and was highest in the highest soil
143 biodiversity treatment, contributing to the greater stability in plant diversity and
144 productivity. The sterile treatment could account for the effect of microbial diversity on
145 supporting more stable plant diversity, as well as the bacterial richness–biomass stability
146 relationship, but not the stabilizing effect that fungal richness had on plant biomass
147 production (Supplementary file 1 – table 5).

148 Fungal richness was significantly related to greater stability in litter decomposition
149 (Figure 1e), and soil carbon assimilation was positively related to greater bacterial
150 richness (Figure 1e). Using an averaging multifunctionality approach (Maestre et al.,
151 2012; Byrnes et al., 2014), we found that greater microbial diversity (richness of bacteria,

152 fungi and their scaled average) all showed strong positive relationships with the ability to
153 maintain greater and more stable ecosystem functioning (Figure 1f).

154 Using a multiple threshold approach (Byrnes et al., 2014), we found that soil microbial
155 diversity had a significant stabilizing effect on multiple functions at thresholds above 30%
156 of the maximum stability value for each function (Figure 2a). At this threshold, more than
157 three functions had high level of temporal stability (Figure 2b), showing that high soil
158 biodiversity can promote the stability of multiple functions simultaneously. This
159 stabilizing effect increased to become strongest at a threshold of 72%. Soil bacterial
160 richness had a significant stabilizing effect on multiple functions at low threshold values
161 of 29% and was strongest at 68% (Figure 2c). Similarly, soil fungal richness had a
162 positive effect on the stability of multiple functions at 30% and had the strongest effect on
163 supporting stability in multiple functions at 82% of the maximum observed stability
164 (Figure 2d).

165 Since greater plant diversity is often associated with greater plant biomass production
166 (Tilman and Downing, 1994; Hector and Bagchi, 2007; Cardinale et al., 2012; Hooper et
167 al., 2012), and biomass production with soil carbon assimilation (Lang et al., 2015; Yang
168 et al., 2019), we assessed how soil microbial diversity may have indirectly influenced the
169 temporal stability of plant biomass production through its strong relationship with plant
170 diversity using multi-model comparisons and structural equation modelling (SEM). We
171 found that soil microbial diversity alone was the most parsimonious explanatory variable
172 of plant biomass stability compared with models that included plant diversity
173 (Supplementary file 1 – table 6). Further, using SEM we found that soil microbial
174 diversity reduced the temporal variation and increased the temporal mean in biomass
175 production, while plant diversity had no detectable effect (Figure 3a). We also found that
176 the temporal variation had a much stronger influence compared with the temporal mean

177 on the stability of biomass production (Figure 3b). Comparing multiple models using soil
178 microbial diversity, plant diversity, plant biomass, and the stability in plant biomass to
179 predict the stability in soil carbon assimilation, we found that stability in soil carbon
180 assimilation was best explained by the stability in plant biomass production alone
181 (Supplementary file 1 – table 7). Therefore, the effect of soil microbial diversity on
182 stabilized soil carbon assimilation was likely indirect through its stabilizing effect on
183 biomass production (Figure 3a). Specifically, microbial diversity reduced the temporal
184 variation in biomass production, thus increasing its stability. In turn, greater stability in
185 biomass production reduced the temporal variation in soil carbon assimilation, thus
186 stabilizing soil carbon assimilation (Figure 3b).

187 To identify microbial taxa that may influence an ecosystem function at a given time,
188 we used a randomization approach (Mori et al., 2016; Gotelli et al., 2011) to calculate the
189 standardized effect size (SES) of each fungal and bacterial taxon on each ecosystem
190 function at that time point and considered the influence to be of significance when the
191 $|SES| > 1.96$. As we considered more time points, we detected a greater proportion of
192 microbial taxa that were found to positively, or negatively, relate to supporting an
193 ecosystem function when more time points were considered (Figure 4a, see
194 Supplementary file 2 for a summary for their taxonomic assignment). In addition, we
195 found that the proportion of soil taxa with positive or negative associations with
196 ecosystem functioning increased as more functions, as well as more time points were
197 independently considered (Figure 4). This demonstrates that different microbial taxa are
198 important for supporting different ecosystem functions at different times. Therefore, as
199 more timepoints and functions are considered, functional redundancy within the microbial
200 community fades. These relationships were found for bacterial and fungal taxa combined
201 (Figure 4a,b), as well as for bacterial taxa (Figure 4c,e) and fungal taxa (Figure 4d,f)

202 considered separately. Moreover, we found a larger cumulative proportion of soil taxa
203 with positive than negative effects on ecosystem functioning with increasing number of
204 functions and times considered (black versus grey lines in Figure 4). Overall, these results
205 illustrate the importance of microbial diversity for ecosystem functioning through time.

206 Of the microbes that were found to have a significant positive association with a
207 function at any given time, we found that the temporal stability in the abundance of these
208 fungi and bacteria (species stability $CV_{species}^{-1}$) was positively related to the temporal
209 stability of that function, with the exception of soil carbon assimilation (Figure 5). In
210 other words, the more stable the abundance of the taxa that support an ecosystem function
211 at any time, the greater the stability of that ecosystem function (see Supplementary tables
212 9 and 10 for the taxonomic assignment of the taxa that were significantly related to
213 functions at more than one time point). These species stability–ecosystem function
214 stability relationships could be explained by the most extreme soil biodiversity level (the
215 ‘sterile treatment’, Supplementary file 1 – table 8). We also found that for all four
216 ecosystem functions a lower temporal synchrony among those taxa that had a positive
217 association with a given function at any given time point also significantly related to a
218 greater stability of that ecosystem function (Figure 5). This implies that greater
219 asynchronous dynamics among microbial taxa through time result in the greater stability
220 of ecosystem functions with which they are associated. Thus, different can microbes
221 complement each other by functioning at different times to provide a stable support for
222 ecosystem functions. These species asynchrony–ecosystem function stability relationships
223 were largely independent of the most extreme sterile soil biodiversity level. After first
224 accounting for the sterile soil biodiversity level the residual effect of microbial
225 asynchrony on plant diversity and litter decomposition stability remained significant ($P =$

226 0.036 and $P = 0.048$, respectively) and the effect on litter decomposition stability was
227 marginally non-significant ($P = 0.058$, Supplementary file 1 – table 9).

228

229 **Discussion**

230 There is a growing number of studies demonstrating that the diversity and
231 composition of various groups of soil biota play an important role for the provisioning of
232 ecosystem functioning (Delgado-Baquerizo et al., 2016; Wagg et al., 2014; Jing et al.,
233 2015; Delgado-Baquerizo et al., 2020; Mori et al., 2016 ; Wagg et al., 2019). Here we
234 demonstrate that that the maintenance of greater soil microbial diversity, not only
235 supports ecosystem functions, but also stabilizes multiple ecosystem functions
236 simultaneously. This is supported by our analysis of individual functions, the average
237 response in stability of all four functions (Maestre et al., 2012) and the multiple threshold
238 approach (Byrnes et al., 2014). Our results show that both fungal and bacterial richness
239 support greater stability in multiple functions simultaneously with the strongest effect of
240 microbial richness on stability occurring when functions need to achieve at least 70% of
241 their maximum observed stability. The effect of soil biodiversity loss on multifunctional
242 stability was strongest in our most extreme ‘sterile’ treatment suggesting a loss of
243 microbial richness over 50% as a potential tipping point over which the stabilizing effect
244 of soil microbial diversity might drop abruptly.

245 We found that the stabilizing effect of maintaining a diverse soil microbial
246 community could be attributed to the asynchronous temporal dynamics in the soil
247 microbial community composition. Further, despite the strong contribution of the sterile
248 soil treatment to the results, we still found the effects of the composition and temporal
249 asynchrony to be important for stabilizing ecosystem functions even after accounting for
250 our most extreme treatment. While concepts regarding how soil biodiversity in stabilizes

251 ecosystem functioning have emerged (Bardgett and van der Putten, 2014; Yang et al.,
252 2018), few studies have empirically demonstrated that greater soil biodiversity maintains
253 a more stable functioning. Further to our knowledge, our results demonstrate for the first
254 time that the maintaince of a more diverse soil microbial community allows for greater
255 asynchronous temporal dynamics in the microbial communities to result in the
256 maintenance of higher nutrient and carbon cycling processes through time (reflected here
257 by four key ecosystem functions).

258 Past studies assessing soil microbial diversity–ecosystem functioning relationships
259 have shown that the suppression of soil microbial diversity and abundance can have little
260 impact on particular functions measured at a single time-point, possibly due to high
261 redundancy among taxa (Griffiths et al., 2000; Fitter et al., 2005 ; Allison and Martiny,
262 2008; Louca et al., 2018). However, here we show that as more functions and time points
263 are considered, a greater proportion of the microbial community is required to support
264 these functions and redundancy fades away. This is supported by the consistent trend that
265 a greater number of taxa were found to positively support ecosystem functions when more
266 functions and time points were considered, highlighting that increasing the number of taxa
267 ensures the maintenance of the functioning of the overall ecosystem over time (Isbell et
268 al., 2011; Hautier et al., 2015; Yachi et al., 1999). This suggests that whereas a large
269 number of soil microbial taxa may overlap in supporting a single function at a single time
270 point, fewer and fewer taxa may overlap in supporting multiple functions over multiple
271 time points. Similar to studies assessing the functional redundancy of plant communities
272 (Hautier et al., 2018; Isbell et al., 2011), as more ecosystem functions and times were
273 considered in the present study, more soil taxa were found to affect the overall
274 functioning of the ecosystem. While high soil microbial diversity may appear functionally
275 redundant for a given broad function, such as microbial respiration and decomposition

276 (Schimel and Schaeffer, 2012), there are studies demonstrating low functional redundancy
277 in soils in both broad functions (soil respiration) and specialized functions (degradation of
278 specific organic compounds such as cellulose and microbial toxins)(Wohl et al., 2004;
279 Delgado-Baquerizo et al., 2016). Here we found, for instance, that the mycorrhizal fungi
280 *Diversispora* was frequently associated with positive effects on biomass production, but
281 not other functions, while the plant pathogen *Fusarium* was frequently found to positively
282 influence plant diversity and no other functions (see Supplementary file 2 – table 2).

283 It is important to note that the composition and diversity of other key groups of
284 soil biota, including protozoa and nematodes not assessed in our study were likely also
285 affected by the sieving treatments and may also have contributed to the observed effect of
286 our soil biodiversity measures on ecosystem functioning and stability either directly or
287 through trophic interactions with soil microbes (de Vries, F.T. & Shade, 2013; Bradford et
288 al., 2002; Trap et al., 2016; Thakur and Geisen, 2019). Assuming this was the case, this
289 would suggest that the broader spectrum of soil biodiversity beyond the soil microbiome
290 may also hold a key role in promoting multiple ecosystem functions (Delgado-Baquerizo
291 et al., 2016; Bradford et al., 2014; Wagg et al., 2014; Jing et al., 2015; Delgado-Baquerizo
292 et al., 2020; Mori et al., 2016 ; Wagg et al., 2019), their temporal stability and by
293 extension possibly their resistance and resilience to environmental perturbation (Griffiths
294 et al., 2000; Delgado-Baquerizo et al., 2017; Griffiths et al., 2013). Nevertheless, the
295 effects of soil biodiversity loss and the role of functional redundancy in the soil
296 microbiome for stabilizing soil functions have yet to be fully elucidated in the context of
297 the complexity of interactions among the various trophic levels of soil organisms
298 (Soliveres et al., 2016).

299 Studies focussing on plant communities have demonstrated the importance of
300 plant diversity for promoting biomass production (Cardinale et al., 2012; Hooper et al.,

301 2012) and the temporal stability in biomass production (Tilman and Downing, 1994;
302 Hector and Bagchi, 2007; Hautier et al., 2018), as well as building soil carbon pools
303 (Lang et al., 2015; Yang et al., 2019). In our model system we were able to reveal that soil
304 microbial diversity had a direct positive effect on the stability of biomass production that
305 in turn stabilized soil carbon assimilation. Specifically, soil microbial diversity supported
306 a higher stability in biomass production due to its strong effect on lowering the temporal
307 variation in plant biomass production, which was independent of plant diversity. While
308 experimental manipulations of plant diversity is well known to enhance plant productivity
309 (Tilman and Downing, 1994; Cardinale et al., 2012; Hooper et al., 2012; Tilman et al.,
310 2006; Hector et al., 2010; Isbell et al., 2011; Hautier et al., 2015), the lack of a direct
311 effect of plant diversity on the stability of biomass production and carbon in our
312 experiment may be not surprising, because all our treatments started off with the same
313 plant diversity while soil communities were experimentally manipulated. At the lowest
314 levels of soil biodiversity, we found that plant productivity initially increased over time
315 and was the most productive. This was driven by the rapid growth of *L. perenne* grass,
316 which is a highly competitive for soil nitrogen and is a plant species that is hardly affected
317 by changes in arbuscular mycorrhizal diversity when grown alone (Wagg et al., 2011a,b).
318 Its initial high productivity may be due to initial release from pathogens and plant
319 competition at low levels of soil biodiversity. As time progressed the productivity of this
320 highly productive grass was unsustainable, and the productivity crashed compared with
321 our more diverse treatments resulting in the ‘boom and bust’ temporal trend. We attribute
322 this decline in productivity at the lowest level of soil biodiversity to the inability of the
323 soil community to maintain the presence and growth of legumes and nutrient cycling
324 processes that are needed to maintain higher plant community productivity (Wagg et al.,
325 2019; Roscher et al. 2013; Marquard et al., 2009; Schmidtke et al., 2010).

326 In contrast to the stability in biomass production, we found that the effect of soil
327 microbial diversity on stabilizing soil carbon assimilation was indirect through its effect
328 on promoting the stability in plant biomass production. This is logical since the primary
329 path for atmospheric carbon to become assimilated into soils is through photosynthesis,
330 upon which plant biomass production is based, that is then transferred to soil microbes
331 symbiotically or through the microbial accumulation of plant-derived carbon through
332 decomposition processes (De Deyn et al., 2008; De Deyn et al., 2011). Together with our
333 findings, these results provide support for the concept that there is a tight link between the
334 diversity and composition of the soil microbiome belowground and the biomass
335 production of plants aboveground that together promote and stabilize soil carbon
336 assimilation.

337 It has been shown that the disruption of the soil microbiome through
338 anthropogenic land management can alter the composition in soil bacterial and fungal
339 communities and the stability in composition of the soil microbiome through time (Labuer
340 et al., 2013; Coudrain et al., 2016; Wagg et al., 2018). Yet it had not been shown
341 previously whether altered temporal variations in community composition and
342 biodiversity in the soil microbiome impairs the stability of soil functions. Our study
343 provides a first proof of concept that severe degradation of belowground biological
344 communities reduces multiple ecosystem functions and their stability over time with a
345 likely tipping point (> 50% microbial biodiversity loss). Moreover, our work highlights
346 that asynchrony of different microbes can improve the stability of ecosystem functioning
347 over time. This may be concerning as soil biodiversity is being lost in many parts of the
348 world in response to anthropogenic disturbances and increasing land-use intensification
349 compounded by effects of climate change (Helgason et al., 1998; Birkhofer et al., 2008;
350 Vergruggen et al., 2010; Tsiafouli et al., 2015; Stavi and Lal, 2015). Therefore,

351 understating how soil biodiversity loss, beyond microbial communities, will impair the
352 ability of the soil to function consistently to provide society with various ecosystem
353 services is a current research need (Bardgett and van der Putten, 2014; Wall et al., 2015)
354 and our study illustrates that the conservation of soil biological diversity is likely
355 necessary for maintaining the functioning of ecosystems into the future.

356

357 **Methods**

358 **Experimental design.** Experimental grassland communities were established in self-
359 contained mesocosms described in detail elsewhere (Wagg et al., 2014; van der Heijden et
360 al., 2016). Briefly, microcosms were 23 cm in diameter and 34 cm in height with
361 incoming air and water passing through hydrophobic (0.2 μm pore size) and hydrophilic
362 (0.22 μm pore size) sterilizing filters (all Millex®-FG₅₀; Millipore Corporation, Billerica,
363 USA) to prevent microbial contamination. All microcosm components were sterilized by
364 autoclaving at 120°C for a minimum of 20 minutes, with the exception of the Plexiglas
365 tops and the PVC bottoms, which were sterilized by a 20-minute submersion in 0.5%
366 hypochlorite followed by a 20-minute submersion in 70% Ethanol with Tween 20TM and
367 placed in the laminar-flow hood, under which all soil and plant communities were
368 assembled and harvested as described below. The bottom of each microcosm was covered
369 with a 1cm layer of quartz stones (roughly 1 cm^3 in size) and topped with a propyltex
370 screen (0.5 mm mesh size, Sefar AG, Heiden, Switzerland). Microcosms were then filled
371 with 5.5 kg (dry mass) of a 50/50 field soil to quartz sand mix that was previously sieved
372 through a 5 mm mesh sterilized by autoclaving (120°C for 90 minutes). The soil for this
373 substrate came from a grassland field in Zürich, Switzerland (47° 25' 38.71'' N, 8° 31'
374 3.91'' E).

375 **Soil inoculum.** Soils were collected from three different fields, having different soil
376 histories. Two of the fields were located in Therwil, Switzerland ($47^{\circ} 30' 8.9964''$ N, 7°
377 $32' 21.8292''$ E, one managed with organic fertilizer (soil attributes: pH = 7.9, P = 50.3
378 mg/kg, N = 41.8 mg/kg and K = 1.9 mg/kg) and the other with mineral fertilizer (soil
379 attributes: pH = 7.4, P = 47.5 mg/kg, N = 44.4 mg/kg and K = 2.0 mg/kg). A third field as
380 used to collect soil from a site in Freiburg, Germany ($47^{\circ} 58' 26.058''$ N, $7^{\circ} 46' 31.5336''$
381 E, soil attributes: pH = 7.4, P = 41.1 mg/kg, N = 44.8 mg/kg and K = 1.7 mg/kg). At each
382 site soil cores (size 10 cm deep) were collected every meter along four transects that were
383 four meters apart and homogenised per site by sieving through a 5 mm sieve. Different
384 soil origins were used to block for potential site-specific effects so that general
385 conclusions on the soil biodiversity and community compositional treatments can be
386 inferred. The soil biodiversity gradient then was generated by sieving the soils to different
387 sizes (Bradford et al., 2002; Wagg et al., 2014). Here we used four sieving treatments,
388 5000 μ m (5 mm), 100 μ m, 25 μ m and 0 μ m (sterilized soil inoculum). The exclusion of
389 organisms based on size can lead to a functional simplification of soil communities
390 because body size is directly associated with trophic guilds, metabolic rates, population
391 density and generational turnover (Coudrain et al., 2016; Bradford et al., 2002; Yodzis
392 and Innes 1992; Wall and Moore, 1999; Woodward et al., 2005). Furthermore, the size-
393 based reduction of soil organisms parallels the impact of land management practices, such
394 as soil tillage, that physically damage soil organisms depending on their size and thus,
395 also disrupting the community structure of soil biota (Wagg et al., 2018; Jansa et al.,
396 2003; Köhl et al., 2014; Postma-Blaauw et al., 2010). Soil material not passing through
397 the sieves was autoclaved and included with the unsterilized sieved portion that was used
398 to inoculate the mesocosm substrate. Each mesocosm received inoculum of one of the
399 four sieved soil inoculum treatments. The inoculum, which consisted of $\approx 4.5\%$ of the

400 total substrate volume, was then thoroughly mixed with the mesocosm substrate. Each of
401 the four soil inoculum treatments was replicated five times using soil from each of the
402 three soil histories for a total of 60 mesocosms (4 inoculum treatments by 3 inoculum
403 origins by 5 replicates). The microcosms were set up over eight days and all subsequent
404 data collection methods followed the order in which the microcosms were setup. The day
405 on which each was set up was used as a blocking factor in the subsequent analysis.
406 Microcosms were planted with a plant community of 34 individuals: 14 grasses (12
407 *Lolium perenne* and 2 *Festuca pratensis*), 14 legumes (12 *Trifolium pratense* and 2 *Lotus*
408 *corniculatus*) and 6 forbs (2 *Achillea millefolium*, 2 *Plantago lanceolata* and 2 *Prunella*
409 *vulgaris*). Seeds of each species were surface sterilized in 2.5% hyposodium chlorate for
410 five minutes and rinsing in sterile H₂O. Seeds were germinated on 1% Agar in Petri
411 dishes and the timing was staggered so that each species exhibited the presence of
412 cotyledon(s) or radicle when planted. Microcosms were established in a glasshouse with
413 natural light subsidized by 400-W high-pressure sodium lamps in order to maintain an
414 environment of 16 h/25°C days and 8 h/16°C nights with a light level above 300 W/m².
415 Soil moisture in the microcosms was maintained by watering twice weekly with dH₂O
416 that first passed through a sterilizing filter before entering the microcosm. Since
417 greenhouse conditions maintain a constant environment, which may not reflect natural
418 temporal environmental variations, we varied the watering regime to simulate an extended
419 period without rain. The variation in precipitation was applied to all of the experimental
420 communities at the same time by withholding watering for 10 days beginning five and a
421 half weeks before each harvest.

422 **Ecosystem functions.** Plant diversity (Shannon *H'*), plant productivity (aboveground
423 biomass produced between harvests), litter decomposition, and carbon assimilation were
424 measured every 11 weeks over 55-weeks (five harvest dates). Plant diversity and plant

425 productivity were measured by harvesting plants 5 cm above the soil surface and dried at
426 65°C for a minimum of 72 hours. Note that this harvesting treatment mimics typical
427 cutting regimes in real grassland. Litter decomposition was measured in 0.5 mm propyltex
428 mesh litterbags (6 x 6 cm) filled with 1 g of dried *Lolium multiflorum* shoots that were
429 sterilized by autoclaving. Litterbags were buried just below the surface of the soil
430 substrate in each mesocosm. At each harvest the litterbag was removed, washed clean of
431 soil, dried at 65°C and the remaining litter mass was weighed. The amount of the initial 1
432 g of litter lost (in mg lost per 11 weeks) was calculated as decomposition. A new litterbag
433 was inserted every harvest. Carbon assimilation was quantified by injecting each
434 mesocosm with 40 ml of ¹³C-labelled CO₂ (99%) gas at 36 and 18 hours before each
435 harvest. At each harvest six soil cores (1.7 mm diameter) were taken to the depth of the
436 mesocosm (~20 g of fresh soil). Soil cores were homogenized and a 0.5 g subsample was
437 frozen at -20°C for DNA extraction. The remaining soil sample was lyophilized and
438 analysed for ¹³C content using a Delta Plus XP isotope ratio mass spectrometer (Thermo
439 Finnigan). The ¹³C ratio was calculated in relation to the international standard VPDB
440 (Vienna Pee Dee Belemnite). The more negative the ¹³C ratio, the less carbon was fixed.
441 **Soil community quantification.** Here we focused on soil bacterial and fungal
442 communities as they are the most conspicuous and diverse components of the soil
443 microbiome and they play a major role in the functional organization of ecosystems.
444 Following each harvest, DNA was extracted from 500 mg of the homogenized soil
445 samples taken from each microcosm mentioned above. Extraction was done using the
446 FastDNA® SPIN Kits for Soil (MP Biomedicals, Switzerland). Using a Quant-iT™
447 PicoGreen® (Molecular Probes, Eugene, OR) on a luminescence spectrometer (Perkin
448 Elmer, LS 30, Rotkreuz Switzerland) the extracted DNA was quantified. DNA
449 concentrations were determined a Qubit fluorometer (Life Technologies, Paisley, UK). A

450 barcoded high-throughput sequencing approach was employed to assess the diversity and
451 composition of bacterial and fungal communities. Bacterial communities were examined
452 by amplifying the V3-V4 region of the bacterial 16S rRNA gene using the primers 341F
453 (CCTACGGGNGGCWGCAG) and 805R (GACTACHVGGGTATCTAATCC)
454 (Herlemann et al., 2011). Fungal communities were examined by amplifying the ITS
455 region using the primers ITS1F (CTTGGTCATTAGAGGAAGTAA)(Gardes and
456 Bruns, 1993) and ITS2 (GCTGCGTTCTTCATCGATGC)(White et al., 1990) targeting
457 the ITS1 region. Each primer was tagged with a 5-nucleotide-long padding sequence and
458 an 8-nucleotide-long barcode. PCR was conducted on a Biorad PCR Instrument (Biorad,
459 Hamburg, Germany) using the 5PRIME HotMaster Taq DNA Polymerase (Quantabio,
460 Beverly, MA, USA) in 20 μ l of reaction mixture. To alleviate stochastic PCR effects of
461 individual reactions, PCR reactions were performed in triplicate for each DNA sample.
462 Thermal cycling conditions for bacterial 16S rRNA were 2 min initial denaturation at
463 94°C followed by 30 cycles of 30 s denaturation at 94°C, 30 s annealing at 53°C and 30 s
464 elongation at 65°C, and finally a elongation of 10 min at 65°C. Thermal cycling
465 conditions for fungal ITS comprised a 2 min of initial denaturation at 94°C followed by
466 30 cycles of 45s denaturation at 94°C, 1 min annealing at 50°C and 90s elongation at
467 72°C, and a final elongation of 10 min at 72°C. Amplicons were loaded on a 1%
468 agarose gel to examine PCR efficiency and the lack of PCR amplicons in non-template
469 control reactions. After PCR, replicates were pooled for each sample and the
470 concentration of amplicon DNA was determined using PicoGreen (Molecular Probes Inc.,
471 Eugene, Oregon, USA) on the Varian Turbo GTI fluorescence plate reader (Varian Inc.,
472 Poalo, CA, USA). Two amplicon libraries (\sim 2 μ g each) were assembled by combining
473 barcoded DNA samples and purifying twice with the Agencourt AMPure XP PCR

474 Purification system (Beckman Coulter, IN, USA). For each library, a final volume of 100
475 µl was obtained by eluting in sterile miliQ water.

476 For all amplicons, Illumina 300 bp paired-end sequencing was performed at the
477 Functional Genomics Centre of Zürich (www.fgcz.ch). For bacterial and archaeal 16S
478 rRNA genes, the quality of R1 and R2 reads was determined using FastQC (Andrews,
479 2010). Reads were trimmed to remove base pairs from the end of reads after read quality
480 per sample declined (25 and 50 bp for read1 and read2, respectively). Reads were then
481 merged allowing a minimum overlap of 15 bp using FLASH v1.2.11 (Magoč and
482 Salzberg, 2011). FASTA format sequences were extracted from FASTQ files quality
483 filtered using the PRINSEQ-lite v0.20.4 (Schmieder and Edwards, 2011). Filtering
484 parameters were: GC range 30-70, minimum mean quality score of 20, no ambiguous
485 nucleotides, low sequence complexity filter with a threshold of 30 in the DUST algorithm.
486 In a next step, the reads were demultiplexed using an in-silico PCR approach as part of
487 usearch (v11) allowing max 1 mismatch in the barcode-primer sequence but not at the 3-
488 prime ends. Sequences were then clustered into operational taxonomic units (OTUs),
489 based on 97% similarity, using the UPARSE pipeline (Edgar, 2013). Taxonomical
490 information was predicted to bacterial and fungal OTUs based on the SILVA v128
491 (Pruesse, 2007) and UNITE (V7.2) (Kõljalg et al., 2005), respectively. For fungi, the
492 taxonomic prediction were verified using ITSx (Bengtsson-Palme et al., 2013) and non-
493 fungal OTUs were excluded.

494 **Microbial richness–multifunctional stability relationships.** All statistical analyses and
495 data manipulations were done using R software (version 3.0.0), including the packages
496 ‘vegan’ and ‘nlme’. Mixed-effect models assessing the effects of our soil biodiversity
497 treatment gradient and sampling time points on microbial richness and each ecosystem
498 function were fitted using the packages ‘asreml’ (VSN International Ltd.) and ‘pascal’

499 (available at: <https://github.com/pascal-niklaus/pascal>) and included the identity of the
500 mesocosm and soil inoculum origin within blocks as random terms as well as the
501 autocorrelation of residuals across sequential harvests. The treatment gradient and
502 sampling time were both fit as continuous variables to trends along our gradient and
503 through time and were followed by fitting the treatment gradient and time as factors to
504 assess non-linearity in the relationships with our experimental gradient and time. Where
505 ecosystem functions were found to follow non-linear temporal trends polynomial
506 regression (from cubic to fourth order) were used to fit non-linear relationships and the
507 best fit was assessed using the marginal R^2 of the model and AICc.

508 The temporal stability for each ecosystem function (plant productivity, plant diversity,
509 litter decomposition and carbon assimilation) within mesocosms was calculated as the
510 inverse of the coefficient of variation: the ratio of the temporal mean of a function to its
511 temporal standard deviation over the five time points (Tillmann et al., 2006; Pimm, 1984;
512 Tillman, 1999). The stability of each ecosystem function was assessed separately for its
513 relationship with microbial richness (the average richness of fungi and bacteria per
514 mesocosm over all time points) using a mixed effect regression model with soil inoculum
515 origin within experimental blocks as a random term. We also included a contrast term to
516 test whether our microbial diversity-stability relationships were due to the most extreme
517 (sterile) soil biodiversity treatment. In the same way we assessed the relationship between
518 the average stability of multiple functions after first scaling each function between 0 and 1
519 (multifunctional stability) with fungal and bacterial richness and a soil microbial diversity
520 index, which we calculated by averaging the fungal and bacterial richness after first
521 scaling them between 0 and 1 for each time point.

522 We also used the multifunctional threshold method (Byrnes et al., 2014) to quantify the
523 number of functions with temporal stability exceeding a given threshold, where thresholds

524 are varied along a gradient from 5% to 95% of the maximum observed stability of the
525 function. This method allows us to determine whether our measures of soil microbial
526 diversity support multiple functions at high levels (Byrnes et al., 2014; Pasari et al.,
527 2013). Here, we explored threshold values between 5 and 95% at 1% intervals. We
528 examined the relationships of soil bacterial and fungal richness as well as their microbial
529 diversity index with the number of functions above a threshold by fitting generalized
530 linear mixed effects models (GLMMs) with a negative binomial distribution with a logit
531 link function and soil inoculum origin and block as random effects. Separate models were
532 fitted for each of the threshold levels and the slope and associated 95% confidence
533 intervals were recorded.

534 To elucidate direct vs indirect effects of soil microbial diversity on the stability of plant
535 biomass production and soil carbon assimilation we used a multi-model comparison and
536 structural equation modelling (SEM) approach. First we assessed all possible
537 combinations of soil microbial diversity and plant diversity as predictors of the stability of
538 plant biomass production as well as all possible combinations of soil microbial diversity,
539 plant diversity, plant biomass production and the stability in plant biomass production as
540 predictors of the stability in soil carbon assimilation using linear regression with soil
541 inoculum origin and block as random effects. Models were compared based on AICc and
542 marginal R^2 values. We then used the results of these models to construct SEM models to
543 assess direct versus indirect effects of soil microbial diversity on the stability of biomass
544 production and soil C assimilation. Since assessing direct and indirect paths of microbial
545 diversity on the stability of biomass production and carbon assimilation is a fully
546 saturated model and since stability is the ratio of the temporal mean to variance (SD) we
547 decomposed the effects of soil microbial diversity on stability via their effects on the
548 temporal mean and SD of biomass production and soil C assimilation. This also allows to

549 assess the relative effects of whether stability is driven more by a higher overall value
550 (temporal mean) or smaller temporal variation or both relatively equally.
551
552 **Effects of microbial taxa on different functions at particular times.** We tested whether
553 the accumulation of taxa affected ecosystem functioning across functions and times. In
554 order to do so, we sampled all combinations of the four functions at each time and all
555 combinations of times for each function considered and quantified the proportion of
556 unique taxa that promoted or reduced ecosystem functioning at least once. The effect of
557 each operational taxonomic unit (taxon) on a given ecosystem function was generated by
558 randomly reassigning the ecosystem function and calculating the difference in the mean
559 ecosystem function when the taxon was absent or present over 999 iterations. This
560 generated simulated means and standard deviations. The taxon-specific standardized
561 effect size (SES) was then determined as the difference in the observed and simulated
562 effects divided by the simulated standard deviation (Mori et al., 2016; Gotelli et al.,
563 2011). Taxa were considered to have a significant impact on an ecosystem function if
564 their $|SES| > 1.96$, corresponding to a 5% error probability that the difference was not
565 zero. We then examined how the composition of soil bacterial and fungal taxa that were
566 significantly associated to greater or reduced ecosystem functioning changed with the
567 number of functions or times considered using GLMMs with beta-binomial distribution
568 and soil inoculum origin as random effect. If completely unique sets of taxa affect
569 different functions at any particular time or any particular function at different times, then
570 the relationship between the proportion of taxa affecting ecosystem functioning and the
571 number of functions or times considered, respectively, would be positive linear
572 relationships with slope 1. On the other hand, if completely identical sets of taxa were

573 involved, then the relationships would be horizontal with slope 0 (Hector and Bagchi
574 2007; Isbell et al., 2011).

575 Using the taxa that were found to be significantly positively related to an
576 ecosystem function at any given time we then assessed calculated their stability (here
577 termed species stability) and synchrony in their abundance. Species stability is the
578 average coefficient of variation in the abundance of each fungal and bacterial taxon.
579 Synchrony was calculated as the average of the covariance among all pairs of fungal and
580 bacterial taxa after first standardizing their abundance (mean=0, SE=1). We then assessed
581 the relationships between the stability and synchrony of microbial taxa that positively
582 supported a function at any given time with the temporal stability of that function
583 using separate regression models and contrasts assessing the influence of the sterile soil
584 treatment on the relationship as was done for the richness-stability relationships
585 mentioned above.

586

587 **Code availability.** R code will be made publicly available upon acceptance.

588

589 **Data availability.** All data will be made publicly available upon acceptance.

590

591 **Acknowledgments**

592 We are grateful to Klaus Schitterer, Ernst Brack, Jochen Mayer and Paul Mäder at the
593 DOK Trial for soil collection and access to the field site, and Jan-Hendrik Dudenhöffer,
594 Christoph Sax, and Alain Held for greenhouse support. This project was supported by a
595 grant from the Swiss National Science Foundation (SNF grant 137136) awarded to MvdH
596 and BS. CW was supported by the German Research Foundation grant FOR 456 / FOR
597 1451 as part of the Jena Biodiversity Experiment.

598

599 **Author contributions:** SP, CW, YH, BS and MH designed research; SP performed
600 research; SB generated all microbial community data; CW, YH and SP analysed data; all
601 authors contributed to writing the final version of the paper.

602

603 **Competing interests.** The authors declare no competing interests.

604

605 **References**

606 Andrews, S. FastQC: A quality control tool for high throughput sequence data. (2010).
607 Available online at: <http://www.bioinformatics.babraham.ac.uk/projects/fastqc>

608

609 Allison, S.D. & Martiny, J.B.H. Resistance, resilience, and redundancy in microbial
610 communities. *Proc. Natl. Acad. Sci.* **105**, 11512–11519 (2008).

611

612 Bardgett, R.D. & van der Putten, W.H. Belowground biodiversity and ecosystem
613 functioning. *Nature* **515**, 505–511 (2014).

614

615 Bender, S.F., Wagg, C. & van der Heijden, M.G.A. An underground revolution:
616 biodiversity and soil ecological engineering for agricultural sustainability. *Trends
617 Ecol. Evol.* **31**, 440–52 (2016).

618

619 Bengtsson-Palme, J. et al. Improved software detection and extraction of ITS1 and ITS 2
620 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of
621 environmental sequencing data. *Methods Ecol. Evol.* **4**, 914-919 (2013).

622

623 Birkhofer, K et al. Long-term organic farming fosters below and aboveground biota:
624 Implications for soil quality, biological control and productivity. *Soil Biol. Biochem.*
625 **40**, 2297–2308 (2008).

626

627 Bradford, M.A. et al. Impacts of soil faunal community composition on model grassland
628 ecosystems. *Science* **298**, 615–618 (2002).

629

630 Bradford, M.A. et al. Discontinuity in the responses of ecosystem processes and
631 multifunctionality to altered soil community composition. *Proc. Natl. Acad. Sci. USA*
632 **111**, 14478–14483 (2014).

633

634 Bradford, M.A. et al. Impacts of soil faunal community composition on model grassland
635 ecosystems. *Science* **298**, 615–618 (2002).

636

637 Brussaard, L., de Ruiter, P.C. & Brown, G.G. Soil biodiversity for agricultural
638 sustainability. *Agric. Ecosyst. Environ.* **121**, 233–244 (2008).

639

640 Byrnes, J.E.K. et al. Investigating the relationship between biodiversity and ecosystem
641 multifunctionality: challenges and solutions. *Methods Ecol. Evol.* **5**, 111-124 (2014).

642

643 Cardinale, B.J. et al. Biodiversity loss and its impact on humanity. *Nature* **486**, 59–67
644 (2012).

645

646 Coudrain, V. et al. Temporal differentiation of soil communities in response to arable
647 crop management strategies. *Agric. Ecosyst. Environ.* **225**, 12-21 (2016).

648

649 De Deyn, G.B., Cornelissen, J.H.C. & Bardgett, R.D. Plant functional traits and soil
650 carbon sequestration in contrasting biomes. *Ecol. Lett.* **11**, 516-531 (2008).

651

652 De Deyn, G.B., Quirk, H., Oakley, S., Ostle, N. & Bardgett, R.D. Rapid transfer of
653 photosynthetic carbon through the plant-soil system in differently managed species –
654 rich grasslands. *Biogeosciences* **8**, 1131-1139 (2011).

655

656 de Vries, F.T. & Shade, A. Controls on soil microbial community stability under climate
657 change. *Front. Microbiol.* **4**, 265 (2013).

658

659 Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial
660 ecosystems. *Nat. Commun.* **7**, 10541 (2016).

661

662 Delgado-Baquerizo, M., Eldridge, D.J., Ochoa, V., Gozalo, B., Singh, B.K. & Maestre,
663 F.T. Soil microbial communities drive the resistance of ecosystem multifunctionality
664 to global change in drylands across the globe. *Ecol. Lett.* **20**, 1295-1305 (2017).

665

666 Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem
667 functions across biomes. *Nat. Ecol. Evol.* **4**, 210-220 (2020).

668

669 Delgado-Baquerizo, M. et al. Lack of functional redundancy in the relationship between
670 microbial diversity and ecosystem functioning. *J. Ecol.* **104**, 946-946 (2016).

671

672 Edgar, R.C. UPARSE: highly accurate OUT sequences from microbial amplicon reads.
673 *Nature Methods* **10**, 996-998 (2013).

674

675 Eisenhauer, N., Scheu, S. & Jousset, A. Bacterial diversity stabilizes community
676 productivity. *PLoS One* **7**, e34517 (2012).

677

678 Fitter, A. H. et al. Biodiversity and ecosystem function in soil. *Func. Ecol* **19**, 369-377
679 (2005).

680

681 Gardes, M. & Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes –
682 application to the identification of mycorrhizae and rusts. *Molecular Ecology* **2**, 113-
683 118. (1993).

684

685 Gotelli, N.J., Ulrich, W. & Maestre, F.T. Randomization tests for quantifying species
686 importance to ecosystem function. *Methods Ecol. Evol.* **2**, 634–642 (2011).

687

688 Griffiths, B.S. & Philippot, L. Insights into the resistance and resilience of the soil
689 microbial community. *FEMS Microbiol. Rev.* **37**, 112-129 (2013).

690
691 Griffiths, B.S. et al. Ecosystem response of pasture soil communities to fumigation-
692 induced microbial diversity reductions: an examination of the biodiversity–ecosystem
693 function relationship. *Oikos* **90**, 279–294 (2000).

694
695 Gross, K. et al. Species richness and the temporal stability of biomass production: a new
696 analysis of recent biodiversity experiments. *Am. Nat.* **183**, 1–12 (2014).

697
698 Hautier, Y. et al. Anthropogenic environmental changes affect ecosystem stability via
699 biodiversity. *Science* **348**, 336–340 (2015).

700
701 Hautier, Y. et al. Local loss and spatial homogenization of plant diversity reduce
702 ecosystem multifunctionality. *Nat. Ecol. Evol.* **2**, 50–56 (2018).

703
704 Hector, A. & Bagchi, R. Biodiversity and ecosystem multifunctionality. *Nature* **448**, 188–
705 190 (2007).

706
707 Hector, A. et al. General stabilizing effects of plant diversity on grassland productivity
708 through population asynchrony and overyielding. *Ecology* **91**, 2213–2220 (2010).

709
710 Helgason, T., Daniell, T.J., Husband, R., Fitter, A.H. & Young, J.P.W. Ploughing up the
711 wood-wide web? *Nature* **394**, 431 (1998).

712
713 Hooper, D.U. et al. A global synthesis reveals biodiversity loss as a major driver of
714 ecosystem change. *Nature* **486**, 105–108 (2012).

715
716 Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. *Nature* **477**,
717 199–202 (2011).

718
719 Jansa, J. et al. Soil tillage affects the community structure of mycorrhizal fungi in maize
720 roots. *Ecol. Appl.* **13**, 1164–1176 (2003).

721
722 Jing, X. et al. The links between ecosystem multifunctionality and above- and
723 belowground biodiversity are mediated by climate. *Nat. Commun.* **6**, 8159 (2015).

724
725 Köhl, L., Oehl, F. & van der Heijden, M.G.A. Agricultural practices indirectly influence
726 plant productivity and ecosystem services through effects on soil biota. *Ecol. Appl.*
727 **24**, 1842–1853 (2014).

728
729 Kõljalg, U et al. UNITE: a database providing web-based methods for the molecular
730 identification of ectomycorrhizal fungi. *New Phyt.* **166**, 1063–1068 (2005).

731
732 Lange, M. et al. Plant diversity increases soil microbial activity and soil carbon
733 storage. *Nat. Commun.* **6**, 6707 (2015).

734
735 Lauber, C.L., Remírez, K.S., Aanderund, Z., Lennon, J. & Fierer, N. Temporal variability
736 in soil microbial communities across land-use types. *ISME* **7**, 1641–1650 (2013).

737

738 Loreau, M. & de Mazancourt, C. Species synchrony and its drivers: neutral and
739 nonneutral community dynamics in fluctuating environments. *Am. Nat.* **172**, E48-E66
740 (2008).

741

742 Louca, S. et al. Function and functional redundancy in microbial systems. *Nat. Ecol. Evol.*
743 **2**, 936-943 (2018).

744

745 Maestre, F.T. et al. Plant species richness and ecosystem multifunctionality in global
746 drylands. *Science* **335**, 214–218 (2012).

747

748 Magoč T. & Salzberg, S.L. FLASH: fast length adjustment of short reads to improve
749 genome assemblies. *Bioinformatics* **27**, 2957-2963 (2011).

750

751 Marquard, E. et al. Plant species richness and functional composition drive overyielding
752 in a six-year grassland experiment. *Ecology* **90**, 3290-3302 (2009).

753

754 Merino, C., Nannipieri, P. & Matus, F. Soil carbon controlled by plant, microorganism
755 and mineralogy interactions. *J. Soil Sci. Plant Nutr.* **15**, 321-322 (2015).

756

757 Mori, A.S. et al. Low multifunctional redundancy of soil fungal diversity at multiple
758 scales. *Ecol. Lett.* **19**, 249–259 (2016).

759

760 Pasari, J.R., Levi, T., Zavaleta, E.S. & Tilman, G.D. Several scales of biodiversity affect
761 ecosystem multifunctionality. *Proc. Natl. Acad. Sci. USA* **110**, 10219–10222 (2013).

762

763 Pellkofer, S., Schmid, B., van der Heijden, M.G.A. & Wagg, C. Soil communities
764 promote temporal stability and species asynchrony in experimental grassland
765 communities. *PLoS One* **11**, e0148015 (2016).

766

767 Pimm, S.L. The complexity and stability of ecosystems. *Nature* **307**, 321–326 (1984).

768

769 Postma-Blaauw, M.B., de Goede, R.G.M., Bloem, J., Faber, J.H. & Brussaard, L. Soil
770 biota community structure and abundance under agricultural intensification and
771 extensification. *Ecology* **91**, 460–473 (2010).

772

773 Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and
774 aligned ribosomal RNA sequence data compatible with ARB. *Nucleic Acids Res.* **35**,
775 7188-7196 (2007).

776

777 Roscher, C., et al. A functional trait-based approach to understand community assembly
778 and diversity-productivity relationships over 7 years in experimental grasslands. **15**,
779 139-149 (2013).

780

781 Schimel, J.P. & Schaeffer, S.M. Microbial control over carbon cycling in soil. *Front.*
782 *Microbiol.* **3**, 348 (2012).

783

784 Schmidtke, A., Rottstock, T., Gaedke, U. et al. Plant community diversity and
785 composition affect individual plant performance. *Oecologia* **164**, 665–677 (2010).

786

787 Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets.
788 *Bioinformatics* **27**, 863-864 (2011).

789

790 Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem
791 multifunctionality. *Nature* **536**, 456-459 (2016).

792

793 Stavi, I. & Lal, R. Achieving zero net land degradation: challenges and opportunities. *J.*
794 *Arid. Environ.* **112**, 44–51 (2015).

795

796 Thakur, M.P. & Geisen, S. Trophic regulations on the soil microbiome. *Trends Microbiol.*
797 **27**, 771-780 (2019).

798

799 Thibaut, L.M., & Connolly, S.R. Understanding diversity-stability relationships: toward a
800 unified model of portfolio effects. *Ecol. Lett.* **16**, 140-150 (2013).

801

802 Tilman, G.D. & Downing, J.A. Biodiversity and stability in grasslands. *Nature* **367**, 363–
803 365 (1994).

804

805 Tilman, G.D. The ecological consequences of changes in biodiversity: a search for
806 general principles. *Ecology* **80**, 1455-1474 (1999).

807

808 Tilman, G.D., Reich, P.B. & Knops, J.M.H. Biodiversity and ecosystem stability in a
809 decade-long grassland experiment. *Nature* **441**, 629–632 (2006).

810

811 Trap, J., Bonkowski, M., Plassard, C., Villenave, C. & Blanchart, E. Ecological
812 importance of soil bacterivores for ecosystem function. *Plant Soil* **398**, 1-24 (2016).

813

814 Tsiafouli, M.A. et al. Intensive agriculture reduces soil biodiversity across Europe. *Glob.*
815 *Chang. Biol.* **21**, 973–985 (2015).

816

817 van der Heijden, M.G.A., Bardgett, R.D. & van Straalen, N.M. The unseen majority: soil
818 microbes as drivers of plant diversity and productivity in terrestrial ecosystems. *Ecol.*
819 *Lett.* **11**, 296-310 (2008).

820

821 van der Heijden, M.G.A., de Bruin, S., Luckerhoff, L., van Logtestijn, R.S. & Schlaepi,
822 K. A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant
823 nutrition and seedling recruitment. *ISME* **10**, 389-399 (2016).

824

825 Verbruggen, E. et al. Positive effects of organic farming on below-ground mutualists:
826 large-scale comparison of mycorrhizal fungal communities in agricultural soils. *New*
827 *Phytol.* **186**, 968–979 (2010).

828

829 Wagg, C., Bender, S.F., Widmer, F. & van der Heijden, M.G.A. Soil biodiversity and soil
830 community composition determine ecosystem multifunctionality. *Proc. Natl. Acad.*
831 *Sci. USA* **111**, 5266–5270 (2014).

832

833 Wagg, C., Dudenhöffer, J.H., Widmer, F. & van der Heijden, M.G.A. Linking diversity,
834 synchrony and stability in soil microbial communities. *Func. Ecol.* **32**, 1280-1292
835 (2018).

836

837 Wagg, C., Jansa, J., Schmid, B. & van der Heijden, M.G.A. Belowground biodiversity
838 effects of plant symbionts support aboveground productivity. *Ecol. Lett.* **14**, 1001-
839 1009 (2011a).

840

841 Wagg, C., Jansa, J., Stadler, M., Schmid, B. & van der Heijden, M.G.A. Mycorrhizal
842 identity and diversity relax plant-plant competition. *Ecology* **92**, 1303-1313 (2011b).

843

844 Wagg, C., Schlaepi, K., Bangerjee, S., Kuramae, E.E. & van der Heijden, M.G.A.
845 Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning.
846 *Nat. Comm.* **10**, 4841 (2019).

847

848 Wall, D.H. & Moore, J.C. Interactions underground: soil biodiversity, mutualism and
849 ecosystem processes. *BioScience* **49**, 109-117 (1999).

850

851 Wall, D.H., Nielsen, U.N. & Six, J. Soil biodiversity and human health. *Nature* **528**, 69-
852 76 (2015).

853

854 White, T.J., Bruns, T., Lee, S. & Talyor, J. Amplification and direct sequencing of fungal
855 ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and
856 applications. pp 315-322 (1990).

857

858 Wohl, D.L., Arora, S. & Gladstone, J.R. Functional redundancy supports biodiversity and
859 ecosystem function in a closed and constant environment. *Ecology* **85**, 1534-1540
860 (2004).

861

862 Woodward, G. et al. Body size in ecological networks. *Trends Ecol. Evol.* **20**, 402-409
863 (2005).

864

865 Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating
866 environment: the insurance hypothesis. *Proc. Natl. Acad. Sci.* **96**, 1463-1468 (1999).

867

868 Yang, G. et al. The interaction between arbuscular mycorrhizal fungi and soil phosphorus
869 availability influences plant community productivity and ecosystem stability. *J. Ecol.*
870 **102**, 1072-1082 (2014).

871

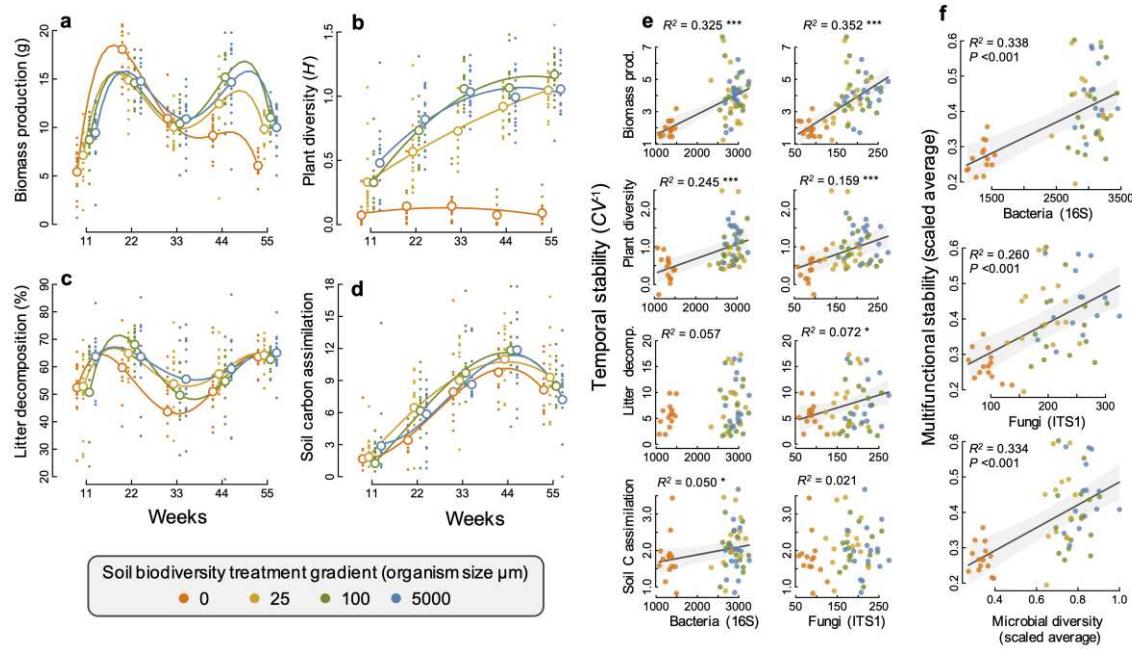
872 Yang, G., Wagg, C., Veresoglou, S.D., Hempel, S. & Rillig, M.C. How soil biota drive
873 ecosystem stability. *Trends Plant Sci.* **23**, 1057-1067 (2018).

874

875 Yang, Y. et al. Soil carbon sequestration accelerated by restoration of grassland
876 biodiversity. *Nat. Commun.* **10**, 718 (2019).

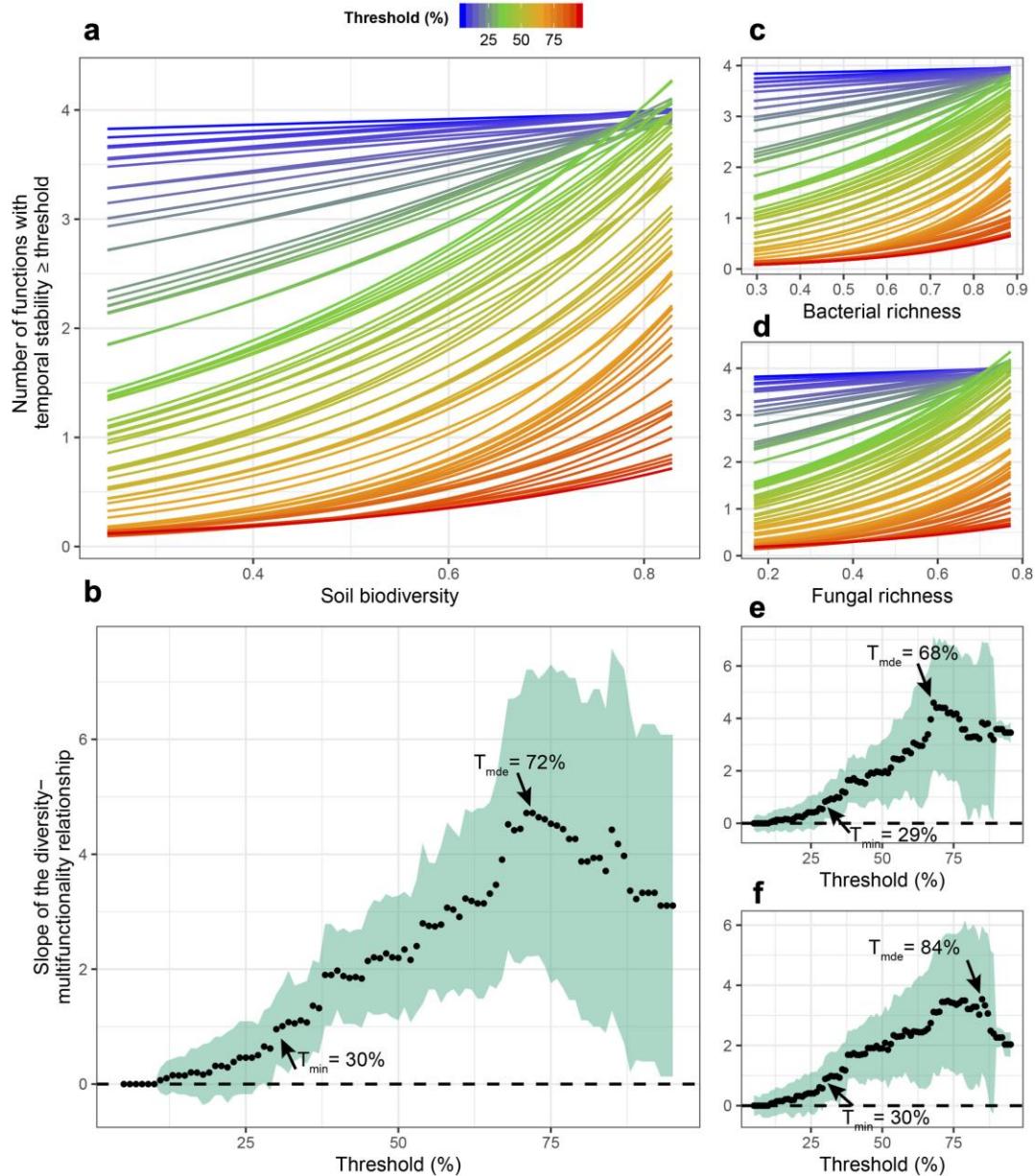
877

878 Yodzis, P. & Innes, S. Body size and consumer-resource dynamics. *Am. Nat.* **139**, 1151-
879 1175 (1992).


880

881 Zavaleta, E.S., Pasari, J.R., Hulvey, K.B. & Tilman, G.D. Sustaining multiple ecosystem
882 functions in grassland communities requires higher biodiversity. *Proc. Natl. Acad.*
883 *Sci. USA* **107**, 1443-1446 (2010).

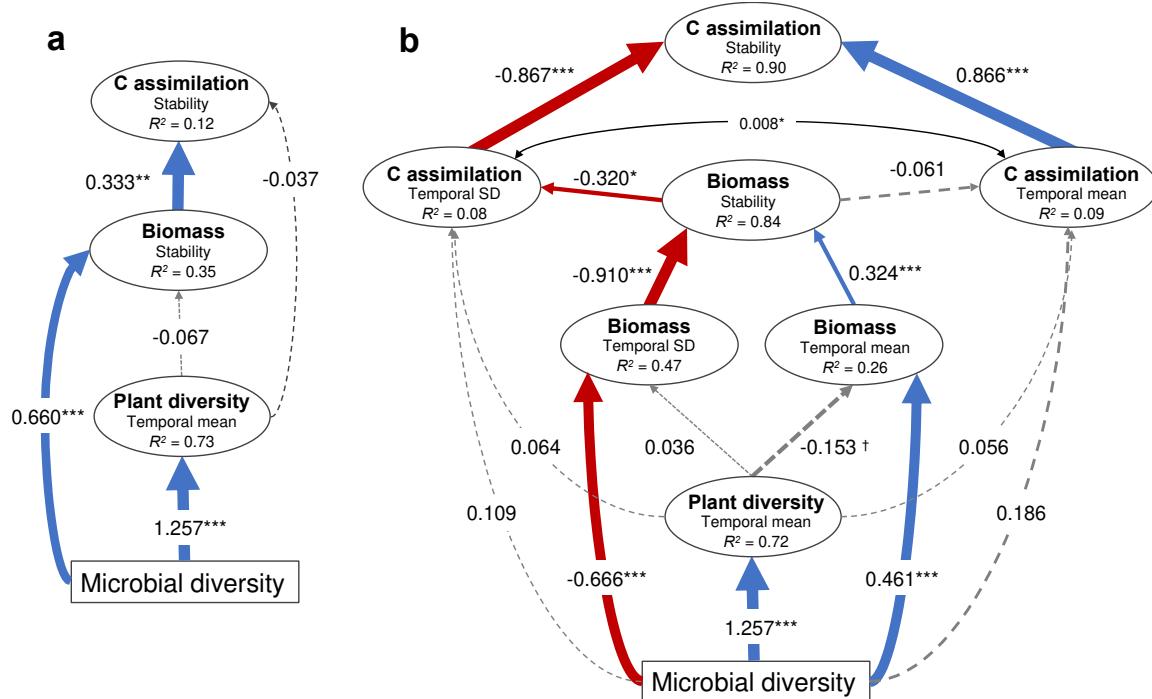
884


885

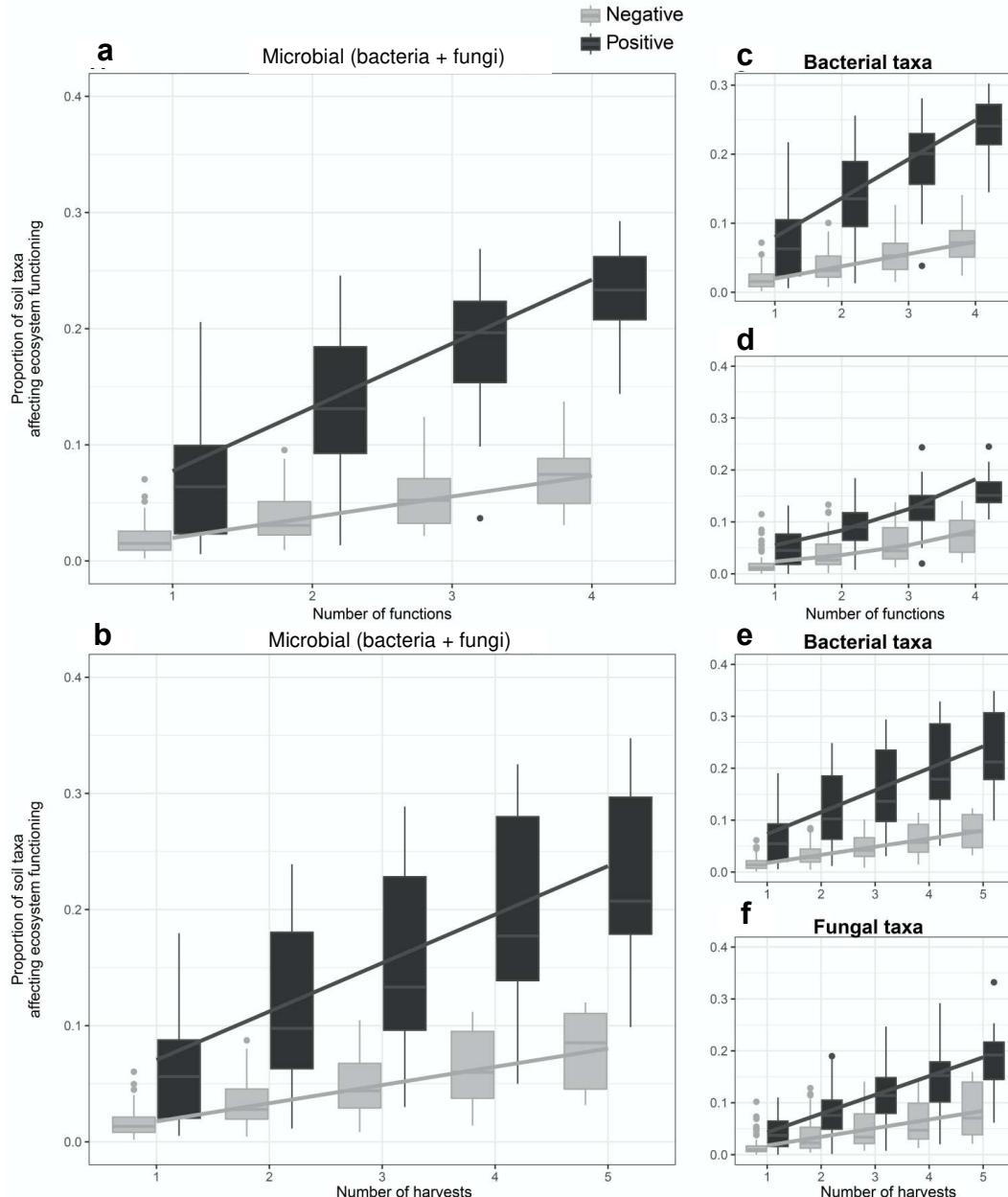
Figures

886

887 **Figure 1. Changes in ecosystem functions through time and relationships between**
888 **soil microbial diversity and multifunctional stability. (a)** plant biomass production, **(b)**
889 plant diversity, **(c)** litter decomposition and **(d)** soil carbon assimilation; measured as the
890 $\delta^{13}\text{C}$ in the soil and scaled by the minimum value such that larger positive values indicate
891 a greater amount of $\delta^{13}\text{C}$ detected in the soil. Individual points are data from individual
892 microcosms and larger open points are the means for each time point and soil biodiversity
893 treatment level. Polynomial regression lines are shown to highlight the temporal trends.
894 **(e)** The relationship between the temporal stability (the inverse coefficient of variation,
895 CV^1) of each of the four functions and the richness of bacteria and fungi. **(f)** The
896 multifunctional stability is the scaled average of the stability of each of the four
897 ecosystem functions its relationship with the richness of bacteria, fungi and microbial
898 diversity (the scaled average of fungal and bacterial richness) are all highly significant.
899 Regression lines and 95% confidence bands are shown for significant relationships ($P <$
900 0.05).

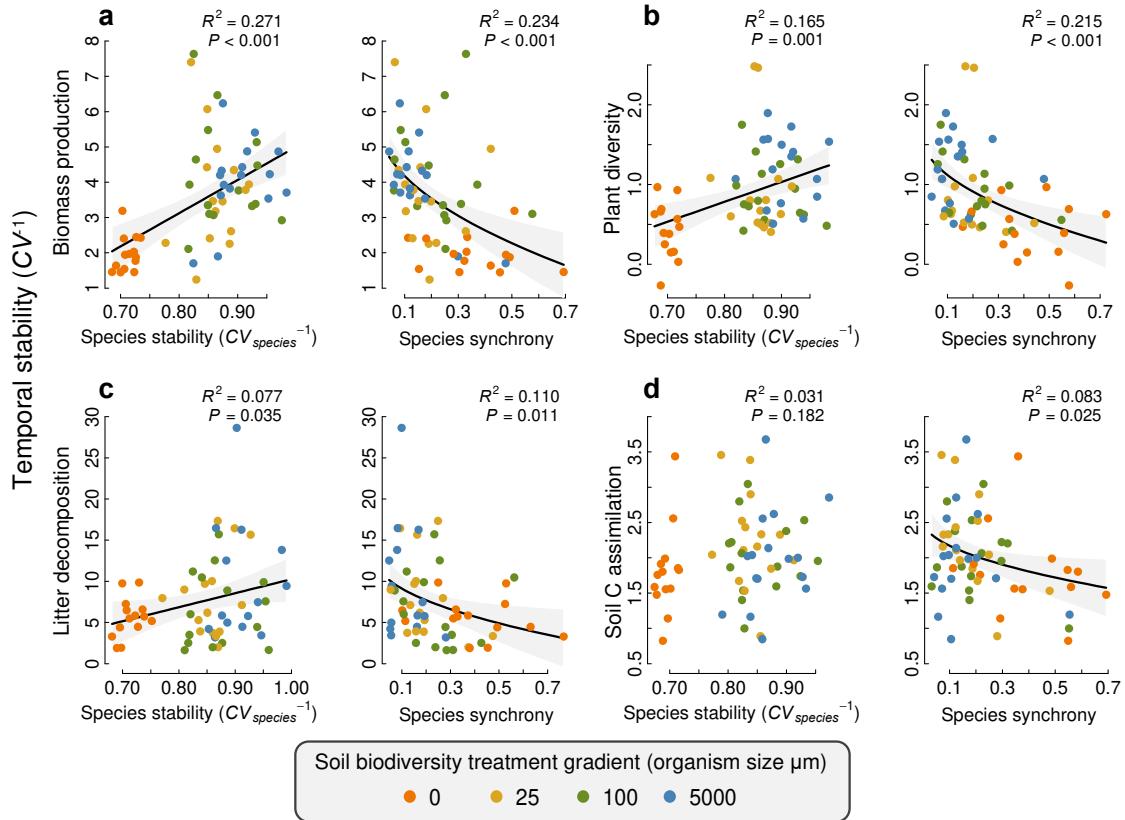

901

902 **Figure 2. Soil microbial diversity effects on the temporal stability of ecosystem**
903 **multifunctionality over a range of multifunctionality thresholds. (a)** Slopes of soil
904 microbial diversity (average of scaled bacterial and fungal richness) relationship with
905 ecosystem multifunctional stability are shown over a range of thresholds. Points are the
906 slopes of the relationships and the shaded green area represents the 95% confidence
907 intervals around the slope such that diversity effect on the stability of multifunctionality is
908 significant when the intervals do not overlap the zero dashed line. **(b)** The relationships
909 between soil microbial diversity on stabilizing the number ecosystem functions. Bold
910 lines represent the minimum threshold above which (T_{min}) and maximum threshold below
911 which (T_{max}) stability of multifunctionality is associated with diversity, and the realized
912 maximum diversity effect (R_{mde}) where the slope of the diversity-stability of


913 multifunctionality relationship is steepest. **(c)** The slopes of the richness-mutifunctional
914 stability relationships and the number of ecosystem functions supported for each threshold
915 are shown for bacterial richness. **(d)** The slopes of the richness-mutifunctional stability
916 relationships and the number of ecosystem functions supported for each threshold are
917 shown for fungal richness.

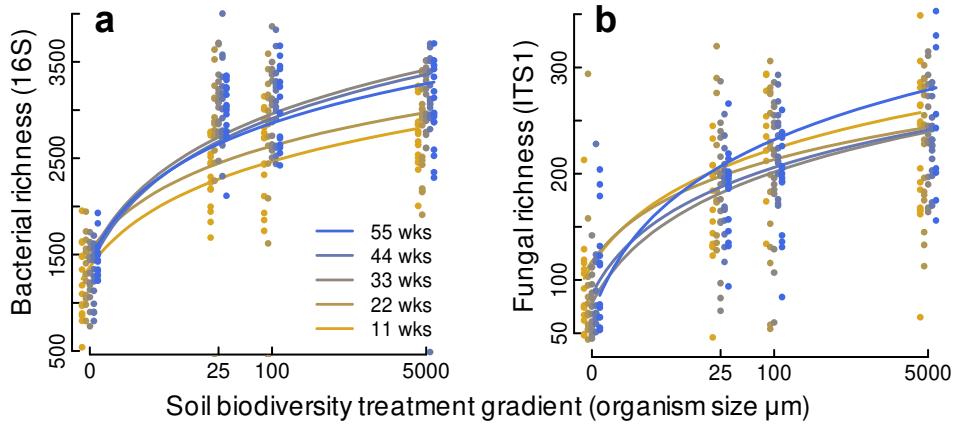
918

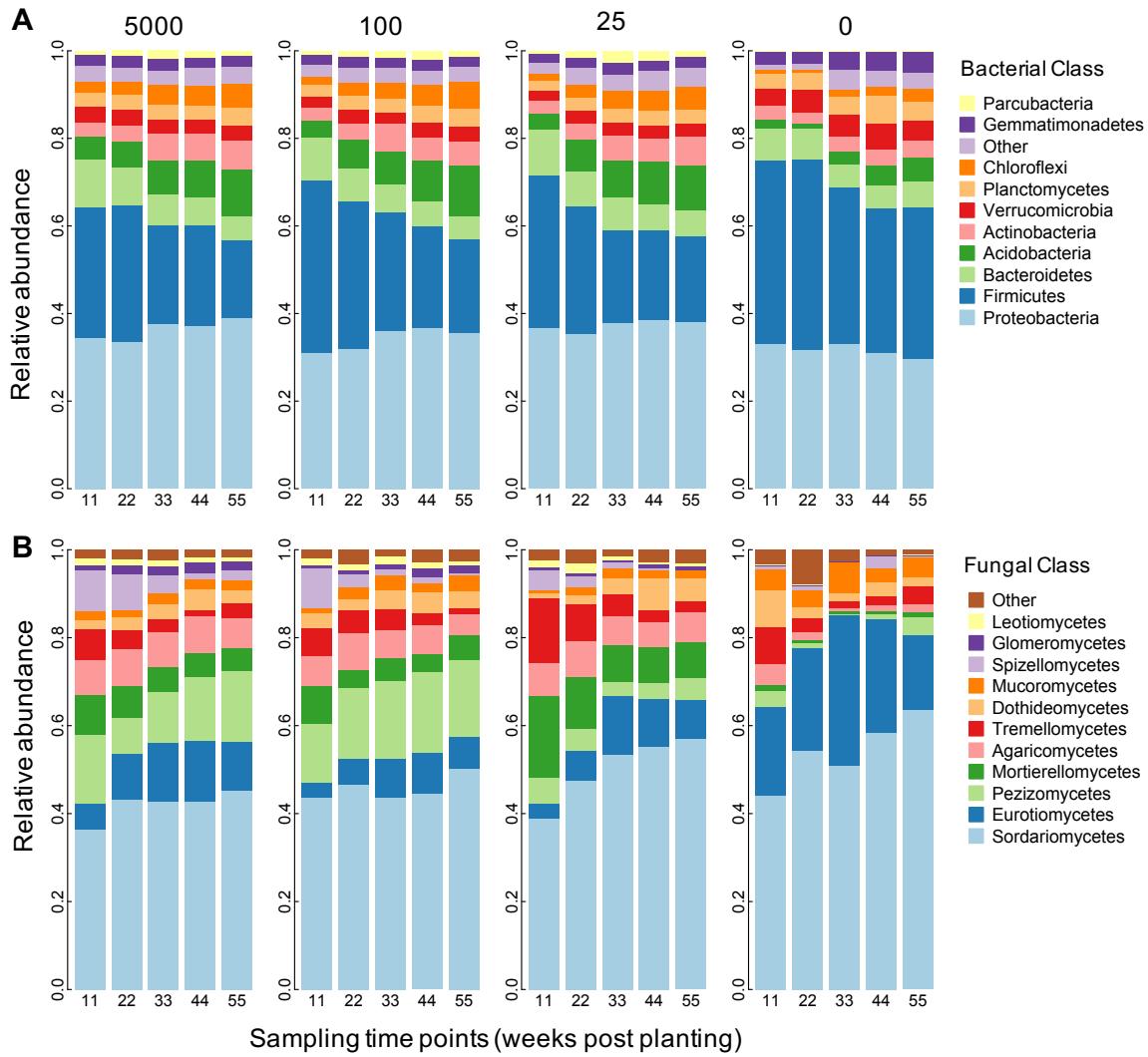
919



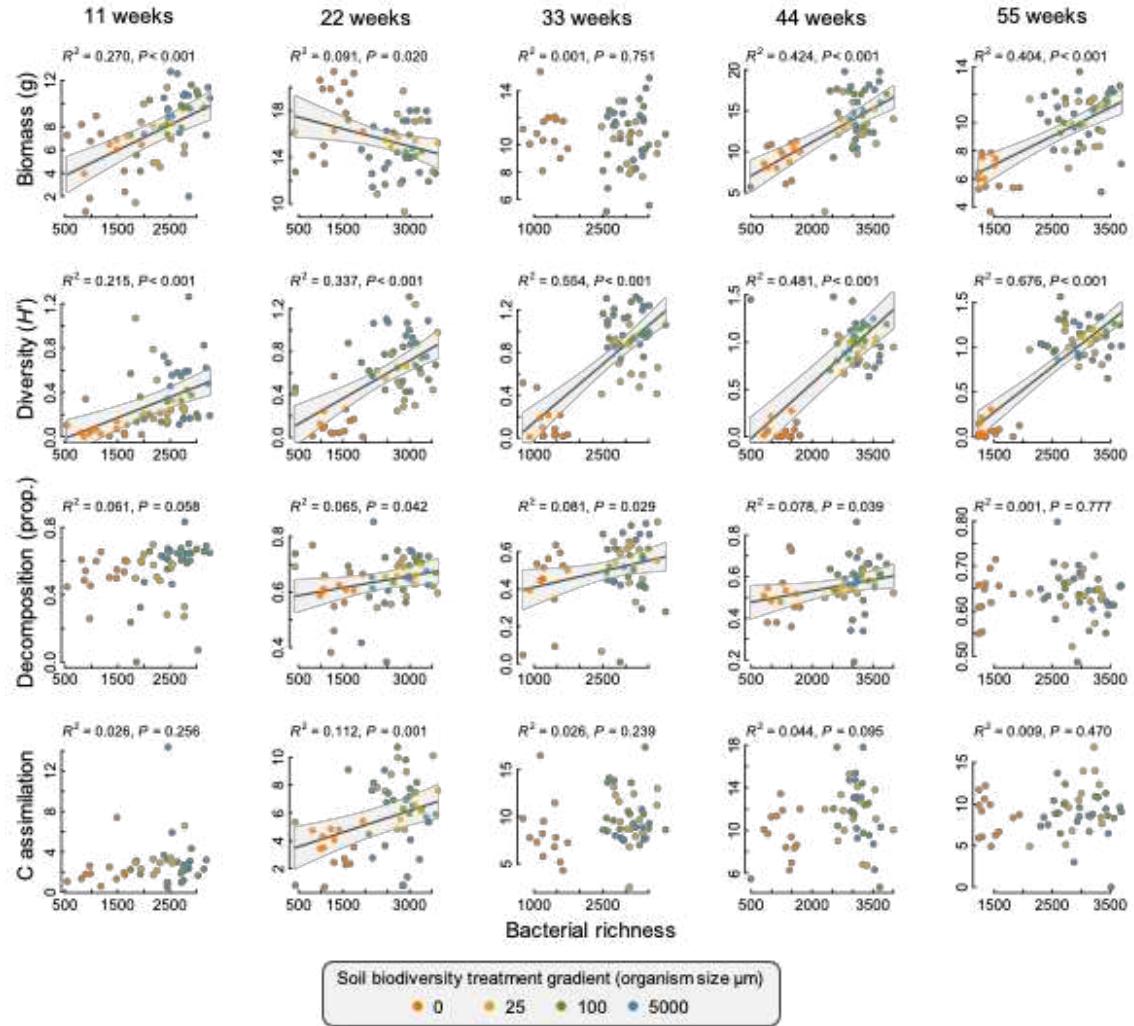
920
921 **Figure 3. Structural equation models illustrating the indirect effects of soil microbial**
922 **diversity on the stability of plant biomass production and soil carbon assimilation.**
923 (a) Model illustrating that microbial diversity provides greater stability in biomass
924 production that in turn stabilizes soil carbon assimilation. The microbial diversity to
925 carbon assimilation was the least significant path and was removed so that the model was
926 not fully saturated. Model fit: Chi-square = 0.003, $P = 0.954$; RSEMA = 0, $P = 0.957$;
927 SRMR = 0.001, BIC = -122.2. (b) Since stability is the ratio of the temporal mean and
928 variation (SD), the effects of microbial diversity on stability through affecting the
929 temporal mean and SD are shown. The model indicates that microbial diversity promotes
930 biomass stability both by increasing biomass and reducing the variation in biomass
931 production. The mean and SD of soil carbon assimilation were allowed to covary
932 (indicated by the double arrow). Model fit: Chi-square = 15.9, $P = 0.144$; RSEMA =
933 0.086, $P = 0.241$; SRMR = 0.033, BIC = -568.7. See figure supplement 1 for the effects of
934 the temporal mean and variation of plant biomass production on the temporal mean and
935 variation in soil carbon assimilation respectively that produced similar results. Red and
936 blue arrows indicate negative and positive effects respectively and the standardized
937 coefficients for each are shown adjacent. Non-significant effects are indicated by grey
938 dashed lines. Significance is indicated by † $P < 0.1$, * $P < 0.05$, ** $P < 0.01$, *** $P <$
939 0.001. The marginal R^2 for each endogenous variable are provided (within ellipses).
940

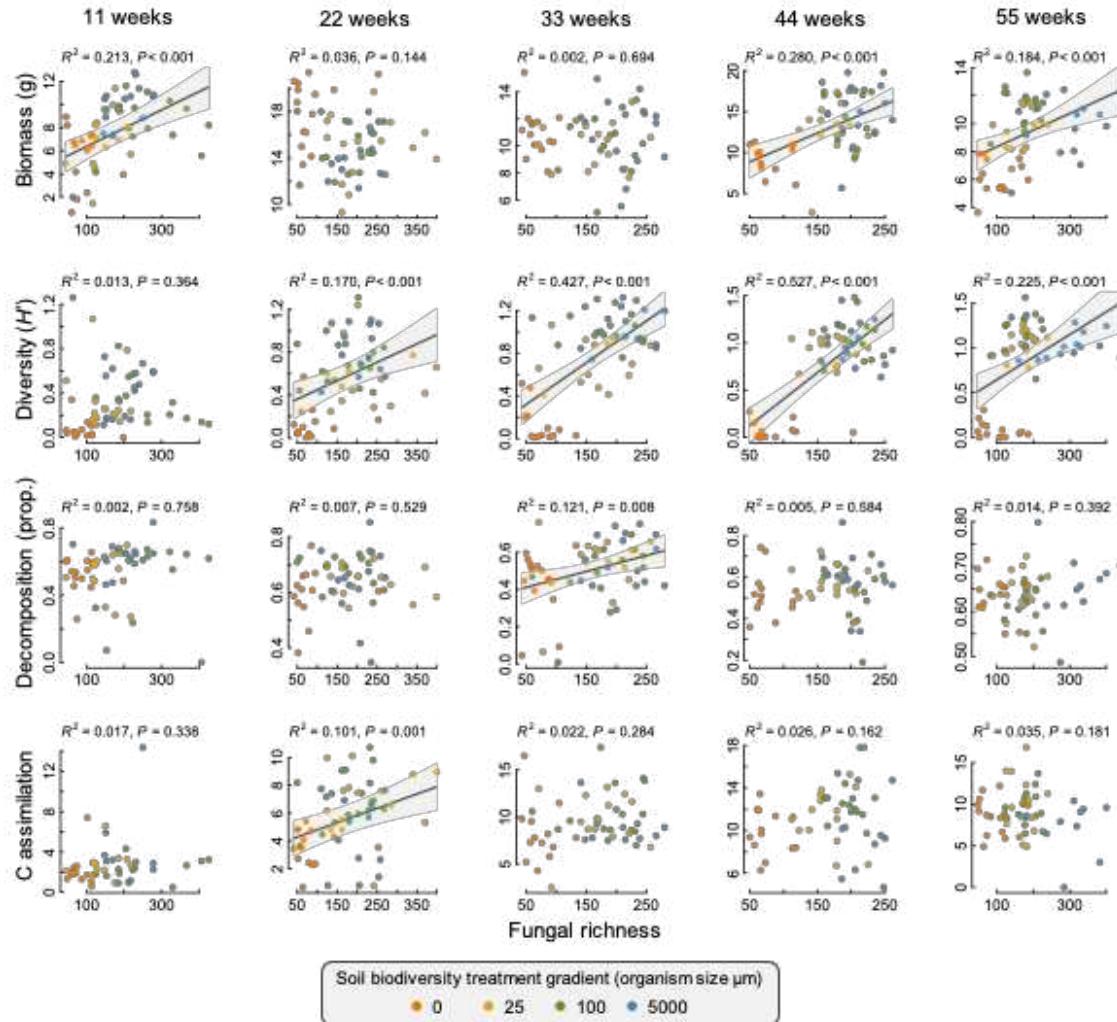
941
942
943
944
945
946
947
948

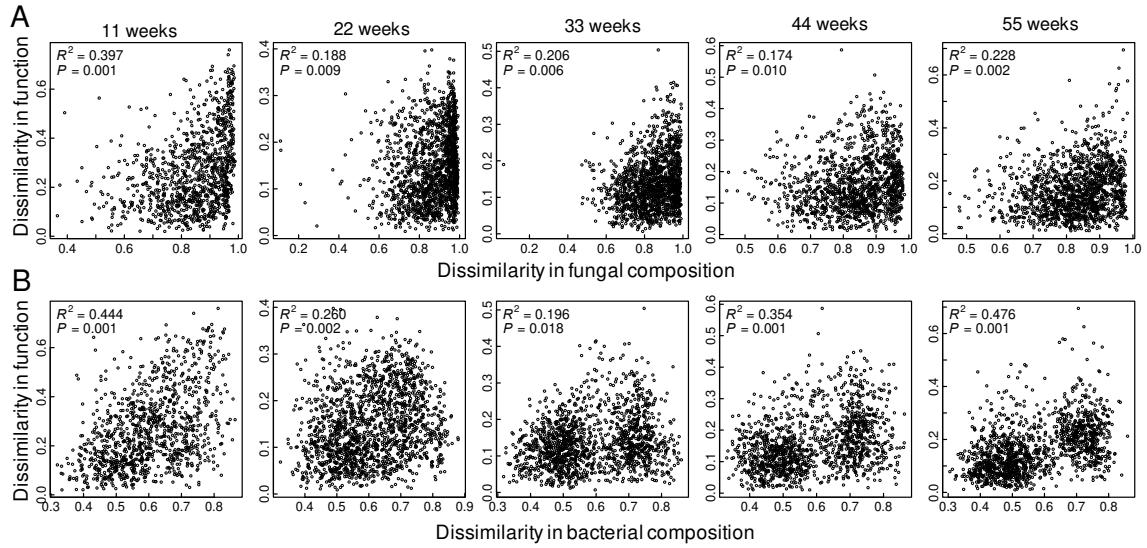

Figure 4. The proportion of soil microbes that support ecosystem functions increases with the number of functions and time points considered. A higher proportion of soil taxa affected ecosystem functioning, both positively (black bars) and negatively (grey bars), when more ecosystem functions (a, c, d) and number of time points (b, e, f) were independently considered. This result was found for the scaled average of fungal and bacterial taxa (a, b), the soil bacterial (c, e) and soil fungal taxa (d, f). Regression lines indicate generalized linear model fits and box plots summarize observed data.

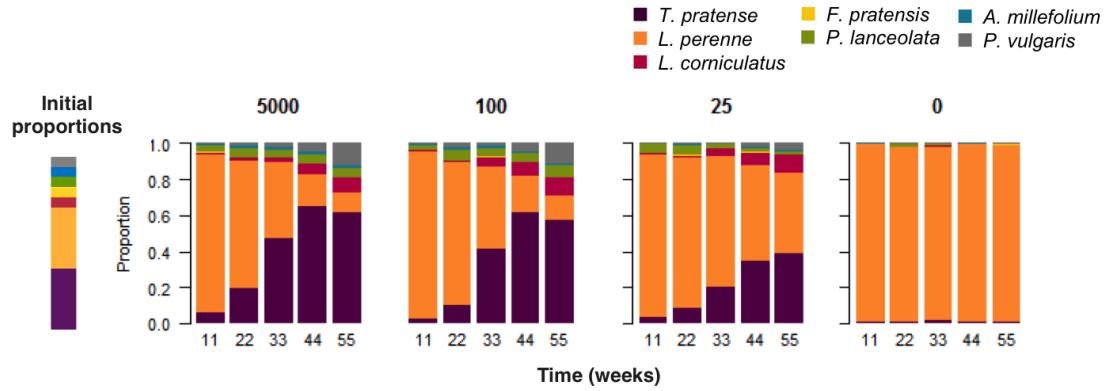

949

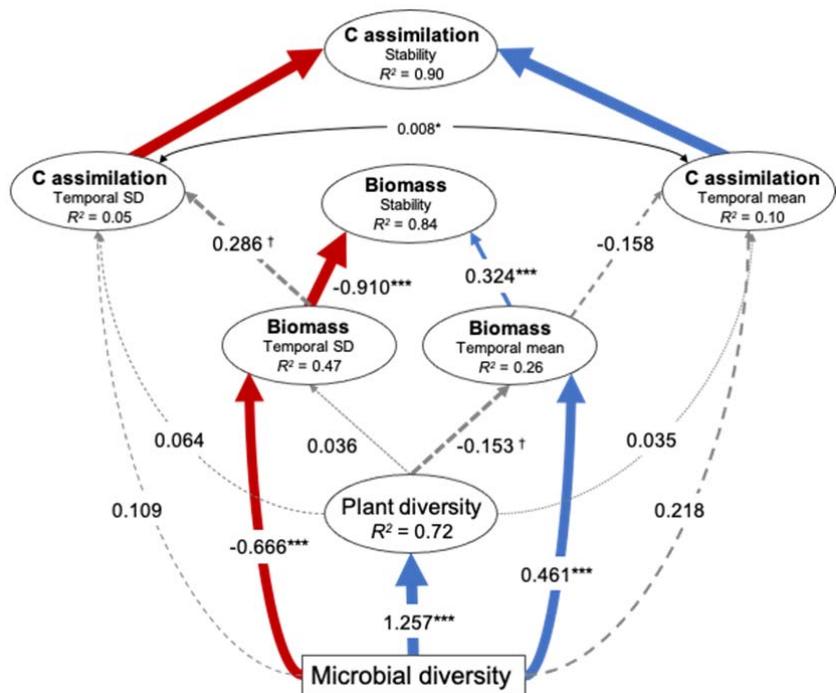
950 **Figure 5. Relationships between the temporal stability of each ecosystem function**
951 **with species temporal stability and synchrony.** (a) temporal stability of plant biomass
952 production, (b) temporal stability of plant diversity, (c) temporal stability of litter
953 decomposition and (d) temporal stability of soil carbon assimilation are shown in relation
954 to the average stability in the abundance of the fungi and bacterial taxa (Species stability)
955 and the temporal synchrony among fungi and bacteria that were found to support each
956 function. The relationships for fungi and bacteria are shown separately in figure 1.
957 Regression lines and 95% confidence bands are shown for significant relationships ($P <$
958 0.05).


959


Figure 1 – figure supplement 1. Changes in soil microbial diversity for each treatment along our diversity gradient where different colours indicate the different time point measurements in weeks (wks). **(a)** bacterial richness, **(b)** fungal richness. Both bacteria and fungal richness declined along the soil biodiversity treatment gradient. Bacterial richness varied among sampling time points **(a)**. However, the temporal change in bacterial richness was independent of soil biodiversity treatment gradient. Fungal richness did not vary through time and its relationship with the soil biodiversity treatment gradient did not change over time (time by biodiversity treatment gradient interaction). ANOVA model results are shown in Supplementary Table 2.


Figure 1 - Supplement figure 2. Proportional abundance of (A) fungal classes and (B) bacterial classes are shown for each harvest time (11, 22, 33, 44, and 55 weeks) and for the different inoculum treatments created by sieving soil through 5000, 100, 25 μm and sterile, corresponding to 0 μm (shown in subpanels from left to right).


Figure 1 – figure supplementary 3. Bacterial richness-ecosystem function relationships are shown for each sampling time point. Solid lines indicate a significant relationship ($P < 0.05$) and the grey shaded region is the 95% confidence band for the relationship. Fit statistics (R^2 and P -value) for each are also provided above each plot. Points are individual microcosms coloured by their soil biodiversity treatment.


Figure 1 – figure supplementary 4. Fungal richness-ecosystem function relationships are shown for each sampling time point. Solid lines indicate a significant relationship ($P < 0.05$) and the grey shaded region is the 95% confidence band for the relationship. Fit statistics (R^2 and P -value) for each are also provided above each plot. Points are individual microcosms coloured by their soil biodiversity treatment.

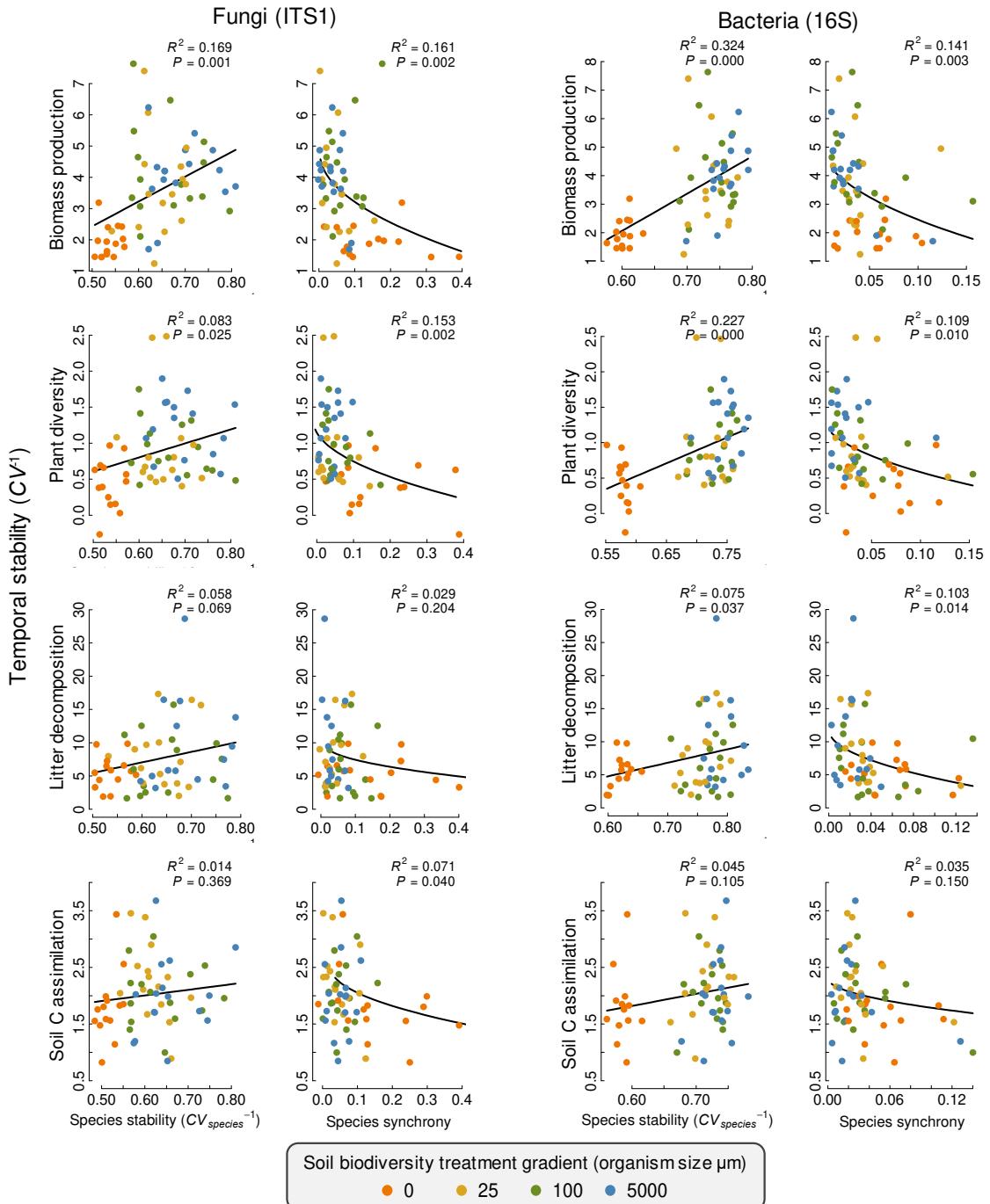

Figure 1 - figure supplement 5. Mantel correlation tests for the association between the dissimilarity in ecosystem functioning and the dissimilarity in (A) the fungal and (B) the bacterial community compositions for each of the five sampling times. Dissimilarity was calculated using Euclidean distance.

Figure 1 – figure supplement 6. Plant species proportional abundance (indicated by different colours) are shown for each harvest time (11, 22, 33, 44, and 55 weeks) and for the different inoculum treatments created by sieving soil through 5000, 100, 25 μm and sterile, corresponding to 0 μm .

Figure 3 – figure supplement 1. Summary of structural equation modelling (SEM) results illustrating the indirect effects of soil diversity (average bacterial and fungal richness) and the stability in plant biomass production on increasing stability in soil carbon assimilation. The model assesses the effects of the temporal mean and variation of plant biomass production on the temporal mean and variation in soil carbon assimilation respectively. Red and blue arrows indicate negative and positive effects respectively and the standardized coefficients for each are shown adjacent. Non-significant effects are indicated by grey dashed lines. Significance is indicated by $\dagger P < 0.1$, $*$ $P < 0.05$, $** P < 0.01$, $*** P < 0.001$. The temporal mean and variation in soil carbon assimilation were allowed to covary, indicated by the black double headed arrow. The marginal R^2 for each endogenous variable are provided (within ellipses). Model fit statistics: Chi-square = 18.3, $P = 0.107$; RSEMA = 0.094, $P = 0.194$; SRMR = 0.043, BIC = -570.4.

Figure 5 – figure supplementary 1. Relationship of the temporal stability in an ecosystem function with the average stability in the abundance of individual fungal and bacterial OTUs that were found to have an impact on the function, referred to here as species stability ($CV_{species}^{-1}$) and species synchrony. Solid lines highlight the relationship and the fit (R^2) and significance (P) statistics are provided for each panel.