
PsychRNN: An Accessible and Flexible Python Package for

Training Recurrent Neural Network Models on Cognitive Tasks

Daniel B. Ehrlich1,∗, Jasmine T. Stone2,∗, David Brandfonbrener2,3, Alexander Atanasov4,5,

John D. Murray1,4,6,†

1 Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
2 Department of Computer Science, Yale University, New Haven, CT, USA
3 Department of Computer Science, New York University, New York, NY, USA
4 Department of Physics, Yale University, New Haven, CT, USA
5 Department of Physics, Harvard University, Cambridge, MA, USA
5 Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
∗ Equal contribution
† Correspondence: john.murray@yale.edu

1

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.30.321752doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.30.321752
http://creativecommons.org/licenses/by-nd/4.0/

Abstract

Task-trained artificial recurrent neural networks (RNNs) provide a computational modeling frame-

work of increasing interest and application in computational, systems, and cognitive neuroscience.

RNNs can be trained, using deep learning methods, to perform cognitive tasks used in animal

and human experiments, and can be studied to investigate potential neural representations and

circuit mechanisms underlying cognitive computations and behavior. Widespread application of

these approaches within neuroscience has been limited by technical barriers in use of deep learning

software packages to train network models. Here we introduce PsychRNN, an accessible, flexible,

and extensible Python package for training RNNs on cognitive tasks. Our package is designed for

accessibility, for researchers to define tasks and train RNN models using only Python and NumPy

without requiring knowledge of deep learning software. The training backend is based on Ten-

sorFlow and is readily extensible for researchers with TensorFlow knowledge to develop projects

with additional customization. PsychRNN implements a number of specialized features to support

applications in systems and cognitive neuroscience. Users can impose neurobiologically relevant

constraints on synaptic connectivity patterns. Furthermore, specification of cognitive tasks has a

modular structure, which facilitates parametric variation of task demands to examine their impact

on model solutions. PsychRNN also enables task shaping during training, or curriculum learning, in

which tasks are adjusted in closed-loop based on performance. Shaping is ubiquitous in training of

animals in cognitive tasks, and PsychRNN allows investigation of how shaping trajectories impact

learning and model solutions. Overall, the PsychRNN framework facilitates application of trained

RNNs in neuroscience research.

2

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.30.321752doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.30.321752
http://creativecommons.org/licenses/by-nd/4.0/

Curriculum learning / task shapingDefine Task

M targetsN inputs

Train Network

Output
RNN

Input

Probe Network Output,

Structure, Dynamics

e.g. Perturbation

PC 1

PC 2

e.g. Analysis

Pre-synaptic

P
o
s
t-

s
y
n
a
p
ti
c

Connectivity matrix

 Supports TensorFlow backend

Modularity supports task flexibility

Visual Abstract: Example workflow for using PsychRNN. First, the task of interest is defined,
and a recurrent neural network model is trained to perform the task, optionally with neurobio-
logically informed constraints on the network. After the network is trained, the researchers can
investigate network properties including the synaptic connectivity patterns and the dynamics of
neural population activity during task execution, and other studies, e.g. those on perturbations, can
be explored. The dotted line shows the possible repetition of this cycle with one network, which al-
lows investigation of training effects of task shaping, or curriculum learning, for closed-loop training
of the network on a progression of tasks.

Significance Statement

Artificial recurrent neural network (RNN) modeling is of increasing interest within computational,

systems, and cognitive neuroscience, yet its proliferation as a computational tool within the field

has been limited due to technical barriers in use of specialized deep-learning software. PsychRNN

provides an accessible, flexible, and powerful framework for training RNN models on cognitive

tasks. Users can define tasks and train models using the Python-based interface which enables

RNN modeling studies without requiring user knowledge of deep learning software. PsychRNN’s

modular structure facilitates task specification and incorporation of neurobiological constraints,

and supports extensibility for users with deep learning expertise. PsychRNN’s framework for

RNN modeling will increase accessibility and reproducibility of this approach across neuroscience

subfields.

3

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.30.321752doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.30.321752
http://creativecommons.org/licenses/by-nd/4.0/

Introduction

Studying artificial neural networks (ANNs) as models of brain function is an approach of increasing

interest in computational, systems, and cognitive neuroscience (Kriegeskorte, 2015; Yamins and

DiCarlo, 2016; Richards et al., 2019). ANNs comprise many simple units, called neurons, whose

synaptic connectivity patterns are iteratively updated via deep learning methods to optimize an

objective. For application in neuroscience and psychology, ANNs can be trained to perform a

cognitive task of interest, and the trained networks can then be analyzed and compared to exper-

imental data in a number of ways, including their behavioral responses, neural activity patterns,

and synaptic connectivity. Recurrent neural networks (RNNs) form a class of ANN models which

are especially well-suited to perform cognitive tasks which unfold across time, common in psychol-

ogy and neuroscience, such as decision-making or working-memory tasks (Sussillo, 2014; Song et

al., 2016; Barak, 2017; Yang and Wang, 2020). In RNNs, highly recurrent synaptic connectivity is

optimized to generate target outputs through the network population dynamics. RNNs have been

applied to model the dynamics of neuronal populations in cortex during cognitive, perceptual, and

motor tasks and are able to capture associated neural response dynamics (e.g., Mante et al., 2013;

Sussillo et al., 2015; Carnevale et al., 2015; Rajan et al., 2016; Remington et al., 2018; Masse et al.,

2019).

Despite growing impact of RNN modeling in neuroscience, wider adoption by the field is cur-

rently hindered by the requisite knowledge of specialized deep learning platforms, such as Tensor-

Flow or PyTorch, to train RNN models. This creates accessibility barriers for researchers to apply

RNN modeling to their neuroscientific questions of interest. It can be especially challenging in

these platforms to implement neurobiologically motivated constraints, such as structured synaptic

connectivity or Dale’s principle defining excitatory and inhibitory neurons. There is also need for

modular frameworks to define the cognitive tasks on which RNNs are trained, which would facil-

itate investigation of how task demands shape network solutions. To better model experimental

paradigms for training animals on cognitive tasks, an RNN framework should enable investigation

of task shaping, in which training procedures are progressive adapted to the subject’s performance

during training.

To address these challenges, we developed the software package PsychRNN as an accessible,

flexible, and extensible computational framework for training RNNs on cognitive tasks. Users

define tasks and train RNN models using only Python and NumPy, without requiring knowledge of

deep learning software. The training backend is based on TensorFlow and is extensible for projects

with additional customization. PsychRNN implements a number of specialized features to support

applications in systems and cognitive neuroscience, including neurobiologically relevant constraints

on synaptic connectivity patterns. Specification of cognitive tasks has a modular structure, which

aids parametric variation of task demands to examine their impact on model solutions and promotes

code reuse and reproducibility. Modularity also enables implementation of curriculum learning, or

task shaping, in which tasks are adjusted in closed-loop based on performance. Our overall goal

for PsychRNN is to facilitate application of RNN modeling in neuroscience research.

4

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.30.321752doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.30.321752
http://creativecommons.org/licenses/by-nd/4.0/

Materials and Methods

Package structure

To serve our objectives of accessibility, extensibility, and reproducibility, we divided the PsychRNN

package into two main components: the Task object and the Backend (Fig. 1). We anticipate that

all PsychRNN users will want to be able to define novel tasks specific to their research domains

and questions. The Task object is therefore fully accessible to users without any TensorFlow or

deep learning background. Users familiar with Python and NumPy are able to fully customize

novel tasks, and they can customize network structure (e.g., number of units, form of nonlinearity,

connectivity) through preset options built into the Backend.

For users with greater need for flexibility in network design, the Backend is designed for acces-

sibility, customizability, and extensibility. Backend customization typically requires knowledge of

TensorFlow. For those with TensorFlow knowledge, PsychRNN’s modular design enables definition

of new models, regularizations, loss functions, and initializations. This modularity facilitates test-

ing hypotheses regarding the impact of specific potential structural constraints on RNN training

without having to expend time and resources designing a full RNN codebase.

Task object

The Task object is structured to allow users to define their own new task using Python and NumPy.

Specifically, generate trial params creates trial specific parameters for the task (e.g., stimulus

and correct response). trial function specifies the input, target output, and output mask at

a given time t, given the parameters generated by generate trial params. PsychRNN comes

set with three example tasks that are well researched by cognitive neuroscientists: perceptual dis-

crimination (Roitman and Shadlen, 2002), delayed discrimination (Romo et al., 1999), and delayed

match-to-category (Freedman and Assad, 2006). These tasks highlight possible schemas users can

apply to specifying their own tasks and provide tasks with which users can test the effect of different

structural network features.

Tasks can optionally include accuracy functions. Accuracy measures performance in a manner

more relevant to experiments than traditional machine learning measures such as loss. On a given

trial, accuracy is either one (success) or zero (failure). In contrast, loss on a given trial is a real-

numbered value. Accuracy is calculated over multiple trials to obtain a ratio of trials correct to

total trials. Accuracy is used as the default metric by the Curriculum class.

Backend

The Backend includes all of the neural network training and specification details (Fig. 1, Step 2).

The backend, while being accessible and customizable, was designed with pre-set defaults sufficient

to get started with PsychRNN. The TensorFlow details are abstracted away by the Backend so

that researchers are free to work with or without an understanding of TensorFlow. Additionally,

since the Backend is internally modular, different components of the Backend can be swapped in

and out interchangeably. In this section, modular components of the Backend are described so that

5

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.30.321752doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.30.321752
http://creativecommons.org/licenses/by-nd/4.0/

researchers who want to get more in-depth with PsychRNN know what tools are available to them.

Models

RNNs are a large class of ANNs that process input over time. In the PsychRNN release, we include

a basic RNN (which we refer to as an RNN throughout the rest of the paper), and an LSTM model

(Hochreiter and Schmidhuber, 1997). The basic RNN model is governed by the following equations:

τdx = (−x+Wrecr + brec +Winu)dt+ σrec
√

2τdξ

r = f(x)

z = Woutr + bout

where u, x and z are the input, recurrent state, and output vectors, respectively. Win, Wrec and

Wout are the input, recurrent, and output synaptic weight matrices. brec and bout are constant

biases into the recurrent and output units. dt is the simulation time-step and τ is the intrinsic

timescale of recurrent units. σrec is a constant to scale recurrent unit noise, and dξ is a gaussian

noise process with mean 0 and standard deviation 1. f(x) is a nonlinear transfer function, which by

default in PsychRNN is rectified linear (ReLU). This default can be replaced with any TensorFlow

transfer function.

PsychRNN also includes an implementation of LSTMs (Long Short Term Memory networks), a

special class of RNNs that enables longer-term memory than is easily attainable with basic RNNs

(Hochreiter and Schmidhuber, 1997). LSTMs use a separate “cell state” to store information gated

by sigmoidal units. Additional models can be user-defined but require knowledge of TensorFlow.

Initializations

The synaptic weights that define an ANN are typically initialized randomly. However, with RNNs,

large differences in performance, training time and total asymptotic loss, have been observed for

different initializations (V. Le et al., 2015). Since initializations can be crucial for training, we have

included several initializations currently used in the field (Glorot and Bengio, 2010). By default,

recurrent weights are initialized randomly from a gaussian distribution with spectral radius of 1.1

(Sussillo and Abbott, 2009). We also include an initialization called Alpha Identity that initializes

the recurrent weights as an identity matrix scaled by a parameter α (V. Le et al., 2015). Each of

these initializations can substantially improve the training process of RNNs. PsychRNN includes a

WeightInitialization class that initializes all network weights randomly, all biases as zero, and

connectivity masks as all-to-all. New initializations inherit this class and can override any variety

of initializations defined in the base class.

Loss Functions

During training an RNN is optimized to minimize the loss, so the choice of loss function can

be crucial for determining exactly what the network learns. By default, the loss function is

mean squared error. Our Backend also includes an option for using binary cross entropy as

6

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.30.321752doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.30.321752
http://creativecommons.org/licenses/by-nd/4.0/

the loss function. Other loss functions can be easily defined with some TensorFlow knowledge and

added to the LossFunction class. Loss functions take in the network output (predictions), the

target output (y) and the output mask, and return a float calculated using the TensorFlow graph.

Regularizers

Regularizers are penalties added to the loss function that may help prevent the network from

overfitting to the training data. We include options for L2-norm and L1-norm regularization for

the synaptic weights, which tend to reduce the magnitude of weights and sparsify the resulting

weight matrices. In addition we include L2-norm regularization on the post-nonlinearity recurrent

unit activity r. Other regularizations can be added to the Regularizer class through TensorFlow.

By default, no regularizations are used.

Optimizers

PsychRNN is built to take advantage of the many optimizers available in the TensorFlow package.

Instead of explicitly defining equations for back propagation through time (BPTT), PsychRNN

converts the user supplied Task and RNN into a ”graph” model interpretable by TensorFlow.

TensorFlow can then automatically generate gradients of the user supplied LossFunction with

respect to the weights of the network. These gradients can then be used by any TensorFlow

optimization algorithm such as stochastic gradient descent, Adam or RMSProp to update the

weights and improve task performance (Ruder, 2017).

Neurobiologically motivated connectivity constraints

PsychRNN is designed for investigation of neurobiologically motivated constraints on the input,

recurrent, and output synaptic connectivity patterns. The user can specify which synaptic connec-

tions are allowed and which are forbidden (set to zero) through optional user-defined masks at the

point of RNN model initialization. This feature enables modeling neural architectures including

sparse connectivity and multi-region networks (Rikhye et al., 2018). Optional user-defined masks

allow specification of which connections are fixed in their weight values, and which connections are

plastic for optimization during training (Rajan et al., 2016). By default, all weights are allowed to

be updated by training. PsychRNN also enables implementation of Dale’s principle, such that each

recurrent unit’s synaptic weights are all of the same sign (i.e., each neuron’s post-synaptic weights

are either all excitatory or all inhibitory) (Song et al., 2016). The optional parameter dales ratio

sets the proportion of excitatory units, making the balance inhibitory.

Curriculum learning

Curriculum learning refers to the presentation of training examples structured into successive dis-

crete blocks sorted by increasing difficulty (Bengio et al., 2009; Krueger and Dayan, 2009). Task

modularity in PsychRNN enables an intuitive framework for curriculum learning that does not

require TensorFlow knowledge. Curriculum learning is implemented by passing a Curriculum ob-

ject to the RNN model when training is executed. Although very flexible and customizable, the

7

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.30.321752doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.30.321752
http://creativecommons.org/licenses/by-nd/4.0/

simplest form of the Curriculum object can be instantiated solely with the list of tasks that one

wants to train on sequentially.

The Curriculum class included in PsychRNN is flexible and extensible. By default, accuracy,

as defined within a task, is used to measure the performance of the task. When the performance

surpasses a user-defined threshold, the network starts training with the next task. The Curriculum

object thus includes an optional input array, thresholds, for specifying the performance thresholds

required to advance to each successive task. Apart from accuracy one may wish to advance the

curriculum stage using an alternative measure such as loss or number of iterations. We include an

optional metric function that can be passed into the Curriculum class to define a custom measure

to govern task stage transitions.

Simulator

One limitation of specifying RNN networks in the TensorFlow language is that in order to run a

network the inputs, outputs, and computation need to take place within the TensorFlow framework,

which can impede users’ ability to design and implement experiments on their trained RNN models.

To mitigate this, we have included a NumPy-based simulator which takes in RNN and Task objects

and simulates the network in NumPy. This simulator allows the user to study various neuroscientific

topics such as robustness to perturbations.

Software availability

The PsychRNN open-source software described in the paper is available online for download in a

Git-based repository at https://github.com/murraylab/PsychRNN. Detailed documentation con-

taining tutorials and examples is also provided. The code and documentation are available as

Extended Data. All data and figures included were produced on a MacBook Pro (Retina, 13-inch,

Early 2015) with 8 GB of RAM and 2.7 GHz running macOS Catalina 10.15.5 in an Anaconda

environment with Python 3.6.9, NumPy 1.17.2, and TensorFlow 1.14.0.

Results

To facilitate accessibility, PsychRNN allows users to define tasks and define and train networks

using a Python- and NumPy-based interface. PsychRNN provides a machine-learning backend,

based on TensorFlow, which converts task and network specifications into the Tensorflow deep

learning framework to optimize network weights. This allows users to focus on the neuroscientific

questions rather than implementation details of deep learning software packages. As an example,

we demonstrate how PsychRNN can specify an RNN model, train it to perform a task of neurosci-

entific interest—here, a two-alternative forced-choice perceptual discrimination task (Roitman and

Shadlen, 2002)—and return behavioral readout from output units and internal activity patterns of

recurrent units (Fig. 2).

8

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.30.321752doi: bioRxiv preprint

https://github.com/murraylab/PsychRNN
https://doi.org/10.1101/2020.09.30.321752
http://creativecommons.org/licenses/by-nd/4.0/

Modularity

The PsychRNN Backend is complimented by the Task object which enables users to easily and

flexibly specify tasks of interest without any prerequisite knowledge of TensorFlow or machine

learning. The Task object allows flexible input and output structure, with tasks varying in not only

the task-specific features but also the number of input and output channels (Fig. 3). Furthermore,

the object-oriented structure of task definition in PsychRNN facilitates tasks that can be quickly

and easily varied along multiple dimensions. For example in an implementation of a delayed

discrimination task (Romo et al., 1999), we can vary stimuli and delay durations with a set of two

parameters (Fig. 3B). Importantly not only can we vary the inputs as they exist, but integration

between the Task object and Backend makes it possible to vary the structure of the network from

the Task object. In our implementation of a delayed match-to-category task (Freedman and Assad,

2006), we can freely change the number of inputs (input discretization) and the number of outputs

(categories) (Fig. 3D). This flexibility allows researchers to investigate how the network solution

of trained RNNs may depend on task or structural properties (Orhan and Ma, 2019).

Neurobiologically motivated connectivity constraints

While there are multiple general-purpose frameworks for training ANNs, neuroscientific model-

ing often requires neurobiologically motivated constraints and processes which are not common in

general-purpose ANN software. PsychRNN includes a variety of easily implemented forms of con-

straints on synaptic connectivity. The default RNN network has all-to-all connectivity, and allows

units to have both excitatory and inhibitory connections. Users can specify which potential synaptic

connections are forbidden or allowed, as well as which are fixed and which are plastic for updating

during training. Furthermore, PsychRNN can enforce Dale’s principle, so that each unit has either

all-excitatory or all-inhibitory synapses onto its targets. Fig. 4 demonstrates that networks can

be trained while subject to various constraints on recurrent connectivity. For example, units can

be prevented from making autapses (i.e., self-connections). Networks with block-like connectivity

matrices can be used to model multiple brain regions, with denser within-region connectivity and

sparser between-region connectivity.

Curriculum learning

One important feature included in PsychRNN is a native implementation of curriculum learning.

Curriculum learning, also referred to as task shaping in the psychological literature (Krueger and

Dayan, 2009), refers to structuring training examples such that the agent learns easier trials or

more basic subtasks first (Fig. 5A,B). Curriculum learning has been shown to improve artificial

neural network training both in training iterations to convergence and in the final loss (Bengio et

al., 2009). In neuroscience, researchers adopt a wide variety of different curricula to train animals to

perform full experimental tasks. By including curriculum learning, PsychRNN enables researchers

to investigate how training curricula may impact resulting behavioral and neural solutions to cog-

nitive tasks, as well as potentially identify new curricula that may accelerate training. Further,

curricula can be used more broadly to investigate how learning may be influenced and biased by

9

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.30.321752doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.30.321752
http://creativecommons.org/licenses/by-nd/4.0/

the sets of tasks an agent has previously encountered. Lastly, curriculum learning can be used to

train networks on tasks that may be too complex to be learned without it. As an example, we

trained RNNs on a version of the perceptual decision-making task (from Fig. 2), and examined

the effects of using curriculum learning in the training procedure (Fig. 5C,D). Here, curriculum

learning involved initially training the model at high stimulus coherences, and introducing pro-

gressively lower coherences when the model’s performance reached a threshold level. We found

that curriculum learning enabled faster training of models, as commonly observed in experiments

(Krueger and Dayan, 2009).

Comparison to other frameworks

PsychRNN compares favorably to alternative high-level frameworks available (Table ??). Most

similar to PsychRNN is PyCog (Song et al., 2016), another Python package for training RNNs de-

signed for neuroscientists. PsychRNN presents several key advantages over PyCog. First, PyCog’s

backend is Theano, which is no longer under active support and development. Second, PyCog has

no native implementation of curriculum learning. Third, task definitions in PyCog are not them-

selves modular, making experiments which are trivial to implement in PsychRNN more laborious

and cumbersome for the user. Lastly, PyCog utilizes a built-in “vanilla” stochastic gradient de-

scent algorithm, whereas PsychRNN allows users to select any optimizer available in the TensorFlow

package.

Alternatively research groups may use a general purpose high-level wrapper of TensorFlow,

such as Keras (Chollet and others, 2015), which is not specifically designed for neuroscientific

research. Importantly, these frameworks do not come with any substantial ability to implement

biological constraints. Users interested in testing the impact of such constraints would need to

modify the native Keras Layer objects themselves, which is nontrivial. In addition, Keras does

not provide a framework for modular task definition, which therefore requires the user to translate

inputs and outputs into a form compatible with the model. PsychRNN, by close integration with

the TensorFlow framework, manages to maintain much of the power and flexibility of traditional

machine learning frameworks while also providing custom-built utilities specifically designed for

addressing neuroscientific questions.

Discussion

PsychRNN provides a robust and modular package for training RNNs on cognitive tasks, and is

designed to be accessible to researchers with varying levels of deep learning experience. The sepa-

ration into a Python- and NumPy-based Task object and a primarily TensorFlow-based Backend

expands access to RNN model training without reducing flexibility and power for users who re-

quire more control over the precise setup of their networks. Further, the modularity of tasks and

network elements enables easy investigation of how task and structure affect learned solution in

RNNs. Lastly, the modular structure facilitates curriculum learning which makes optimization

more efficient and more directly comparable to animal learning.

PsychRNN’s modular design enables straightforward implementation of curriculum learning to

10

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.30.321752doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.30.321752
http://creativecommons.org/licenses/by-nd/4.0/

facilitate studies of how training trajectories shape network solutions and performance on cognitive

tasks. Task shaping is a relatively understudied topic in systems neuroscience, despite its ubiquity

in animal training. For instance, it is poorly understood whether differences in training trajecto-

ries result in different cognitive strategies or neural representations in a task (e.g., Latimer and

Freedman, 2019). Standardization and automation in animal training may aid experimental inves-

tigation of task shaping effects (Murphy et al., 2020; Berger et al., 2018). PsychRNN provides an

accessible framework to explore neuroscientific questions related to task shaping in RNN models.

Future extensions of the PsychRNN codebase can enable investigation into additional neurosci-

entific questions. Two potentially useful directions are the addition of units that exhibit firing rate

adaptation through an internal dynamical variables associated with each unit (Masse et al., 2019)

and the implementation of networks with short term associative plasticity (e.g., Miconi, 2017). An

interesting area for extending task training capability is to add trial-by-trial dependencies. In the

current version of PsychRNN, each task trial is trained independently from other trials in the same

block. PsychRNN could potentially be extended to support dependencies across trials by having

the loss function and trial specification depend on a series of trials.

The PsychRNN package provides an easy-to-use framework that can be applied and transferred

between research groups to accelerate collaboration and enhance reproducibility. Where in the

current environment research groups need to transfer their entire codebase in order to run an RNN

model, in the PsychRNN framework they are able to transfer just a task or model file for researchers

to investigate and build upon. The ability to test identically specified models across tasks in different

groups, and identically specified tasks across models improves reliability of research. Furthermore,

the many choices in defining and training RNNs can make precise replication of prior published

research difficult. The specification of PsychRNN task files and parameter dictionaries can make

reproduction of RNN studies more open and straightforward.

PsychRNN was designed to lower barriers to entry for researchers in neuroscience who are

interested in RNN modeling. In service of this goal we have created a highly user-friendly, clear,

and modular framework for task specification, while abstracting away much of the deep learning

background necessary to train and run networks. This modularity also provides access to new

research directions and a reproducible framework that will aid RNN modeling in neuroscientific

research.

11

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.30.321752doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.30.321752
http://creativecommons.org/licenses/by-nd/4.0/

PsychRNN

Task Object

Task

Input-Output

Description

Trial

Parameters

Accuracy

Function

(optional)

Step 1: Define New Task

Step 2: Define Network

Basic RNN

PsychRNN

Network Object

(initialized)

User Defined

Network

Step 3: Train Network

LSTM

PsychRNN

Network Object

(initialized)

PsychRNN

Task Object

PsychRNN

Network Object

(trained)

Loss

Accuracy

Synaptic

Weights

State

Variables

Output

(readout units)

Training

Curriculum

Training

Parameters

- Learning Rate

- Training Iterations

- Optimizer

- Fixed Weights

 Constraints

Network

Parameters

- Number of Units

- Regularizer

- Initialization

- Loss Function

- Connectivity

 Constraints

- Dale’s Ratio

All three components customizable with NumPy

Select

one

Select one

Train

Function

Customizable

with TensorFlow

Figure 1: PsychRNN package structure. (Step 1) Defining a new task requires
two NumPy-based components: trial function describes the task inputs and outputs, and
generate trial params defines parameters for a given trial (Extended Data, Figure 1-1).
Optionally, one can define an accuracy function describing how to calculate whether performance
on a trial was successful. (Step 2) The Backend defines the network. First, the model, or net-
work architecture, is selected. A basic RNN and LSTM (Hochreiter and Schmidhuber, 1997) are
implemented, and more models or architectures can be defined using TensorFlow. That model is
then instantiated with a dictionary of parameters, which includes the number of recurrent units
and may also include specifications of loss functions, initializations, regularizations, or constraints.
If any parameter is not set, a default is used. (Step 3) Training specifications, such as the opti-
mizer or curriculum, can be specified. During network training, measures of performance (loss and
accuracy) are recorded at regular intervals. Optimization of the network weights is performed to
minimize the loss. After training, the synaptic weight matrix can be saved, and state variables and
network output can be generated for any given trial.

12

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.30.321752doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.30.321752
http://creativecommons.org/licenses/by-nd/4.0/

from psychrnn.tasks.perceptual_discrimination import PerceptualDiscrimination
from psychrnn.backend.models.basic import Basic  
import tensorflow as tf  

pdm = PerceptualDiscrimination(dt = 10, tau = 100, T = 2000, N_batch = 128)

network_params = pdm.get_task_params() # get the params passed in and defined in pdm

network_params['name'] = 'model' # name the model uniquely if running mult models in unison

 network_params['N_rec'] = 50 # set the number of recurrent units in the model
  model = Basic(network_params) # instantiate a basic vanilla RNN
model.train(pdm) # train model to perform pdm task

  x,target_output,mask, trial_params = pdm.get_trial_batch() # get pdm task inputs and outputs
model_output, model_state = model.test(x) # run the model on input x

Figure 2: Example Task (Perceptual Discrimination). (A) Inputs and target output as
specified by the task (top two panels), and the network’s output for the displayed input (bottom
panel). Because the output mask is zero during the stimulus period, the network is not directly
constrained during that period. (B) Percent of decisions the network makes for Choice 1 at
varying coherence levels. Negative coherences levels indicate stimulus inputs rewarded Choice 2. A
psychometric function is fit to the data (black). This plot validates that the network successfully
learned the task. (C) State variable activity traces across for a range of stimulus coherences, for
multiple example units, averaged over correct trials. The network produces state variable activity
across all units. (D) Population activity traces in the subspace of the top two principal components
(PCs). PCA was applied to the activity matrix formed by concatenating across coherences the trial-
averaged correct-trial traces, for each unit. (E) Minimal example code for using PsychRNN. All
relevant modules are imported (lines 1-4), a PerceptualDiscrimination Task object is initialized
(lines 6-11), the basic RNN model is initialized, built, and trained (lines 13-15), output and state
variables are extracted (lines 17-18).

13

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.30.321752doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.30.321752
http://creativecommons.org/licenses/by-nd/4.0/

Task modularity

Trial progression

Structural modularity

In 1

In N

In 2

Input channels

Out 1

Out M

Out 2

Output channels

Time

Cue A Cue BDelay ResponseFore

Delay duration

Stimulus duration

A C

Figure 3: Modularity of task definition. (A) Task modularity. This schematic illustrates the
trial progression of one trial of a delayed discrimination task. The task is modularly defined such
that stimulus and delay duration can be varied easily, simply by changing task parameters. (B) One
input channel generated by a delayed discrimination task, with varied stimulus and delay durations
(Extended Data, Figure 3-1). Delay duration is varied across columns, and stimulus duration
is varied across rows. (C) Structural modularity. Tasks can provide any numbers of channels
for input and output on which to train a particular RNN model. Variation in numbers of inputs
and outputs is enabled through simple modular task parameters in PsychRNN. (D) Example of a
match-to-category task. The number of inputs (colored outer circles) is varied across columns, and
the number of output categories (Cat) is varied across rows (Extended Data, Figure 3-2).

14

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.30.321752doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.30.321752
http://creativecommons.org/licenses/by-nd/4.0/

0.1 0.0 0.1
Coherence

0

50

100

%
 C

ho
ice

 1

0.1 0.0 0.1
Coherence

0

50

100

0.1 0.0 0.1
Coherence

0

50

100

0.1 0.0 0.1
Coherence

0

50

100

0 10 20 30 40
Pre-synaptic

0

10

20

30

40Po
st-

sy
na

pt
ic

0 10 20 30 40
Pre-synaptic

0

10

20

30

40

0 10 20 30 40
Pre-synaptic

0

10

20

30

40

0 10 20 30 40
Pre-synaptic

0

10

20

30

40

-0.218 0 0 0.231 -0.241 0 0 0.233 -0.625 0 0 0.42 -0.525 0 0 0.152

Synaptic weights Synaptic weights Synaptic weights Synaptic weights

No autapses Connectivity Dale's principle Fixed weights

Fi
xe

d

Fixed

A C E G

B D F H

Figure 4: Neurobiologically motivated constraints. This figure illustrates the effects of differ-
ent connectivity constraints on the recurrent weight matrices and psychometric functions of RNNs
trained on the perceptual discrimination task (Figure 2). For the recurrent weight matrices (top
row), red and blue show excitatory and inhibitory connections, respectively. The coherence plots
(bottom row) show that the network successfully trains to perform the task while adhering to the
constraints. (A,B) This network is constrained to have no autapses, i.e., no self-connections, as
illustrated by zeros along the diagonal of the weight matrix. (C,D) This network is constrained to
have two densely connected populations of units with sparse connection between the populations.
This constraints can be used to simulate long-range interactions among different brain regions.
(E,F) This network is constrained to follow Dale’s principle: each neuron either has entirely ex-
citatory or entirely inhibitory outputs. (E,F) This network has Dale’s principle enforced and has
subset of weights which are fixed, i.e., they cannot be updated by training. In this example, all
connections between excitatory and inhibitory neurons are fixed, and other within excitatory-to-
excitatory and inhibitory-to-inhibitory connections are plastic during training.

15

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.30.321752doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.30.321752
http://creativecommons.org/licenses/by-nd/4.0/

Update trial set

Train on trial set Test on trial set

A

B

D
if
fi
c
u
lt
y

o
f
tr

ia
l
s
e
t

P
e
rf

o
rm

a
n
c
e

o
n
 t
ri
a
l
s
e
t

Training iteration

Performance

threshold

Curriculum learning

Intermediate

criteria reached

Criteria

not reached

Example: Difficulty increases when

performance threshold is reached

Reaching performance threshold

triggers increase in difficulty

Terminal

criteria reached

STOP

Figure 5: Curriculum learning. (A) Schematic of curriculum learning, or task shaping. The
network is trained on selections from the trial set, then tested on selections from that trial set.
Depending on the performance when testing on the trial set, the trial set can then be updated,
e.g., to contain progressively more difficult trial conditions. (B) Example schematic of increasing
difficulty of trial set (top) paired with performance over time (bottom). The task difficulty is
progressively increased each time performance reaches the performance threshold. (C) Comparison
of number of iterations needed to train a network to perform the perceptual discrimination task
(from Fig. 2) with 90% accuracy at coherence level of 0.1. Ten networks were randomly initialized
and each was trained both on a curriculum with decreasing coherence, and without a curricula
with fixed coherence. Networks trained without curriculum learning were trained solely on stimulus
with coherence = 0.1. Networks trained with curriculum learning were trained with a curriculum
with coherence decreasing from 0.7 to 0.5 to 0.3 to 0.1 as performance improved (see Extended
Data, Figure 5-1). When the network reached 90% accuracy on stimuli with coherence = 0.1,
training was stopped. Networks trained with curriculum learning reached 90% accuracy significantly
faster than networks without it (p < 0.01). (D) Trajectories of difficulty (defined here as inverse
coherence), accuracy, and loss (mean squared error) across training iterations, for two identically
initialized networks from (C), one of which was trained with curriculum learning, and one of which
was trained without curriculum learning.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.30.321752doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.30.321752
http://creativecommons.org/licenses/by-nd/4.0/

Implemented
Features

PsychRNN PyCog (Song et al., 2016) Keras (Chollet and others, 2015)

Key advantages Curriculum learning; modular
task and network definition;
neurobiological constraints;
supported backend

Neurobiological constraints on
RNNs

Compatible with multiple
backends

Language Python Python Python

Backend (actively
supported?)

TensorFlow 1 (maintenance
mode only) and 2 (yes)

Theano (no) TensorFlow 1 (maintenance
mode only), TensorFlow 2 (yes),
Theano (no), CNTK (yes)

Biological
constraints
supported

Dale’s Principle; Connectivity
patterns; Fixed-weight training

Dale’s Principle; Connectivity
patterns; Fixed-weight training

No built-in support

Curriculum
learning
supported?

Yes No Not applicable

Modular task
definition?

Yes No Not applicable

Object-oriented
framework

Task; RNN RNN Network layers

LSTM Built-in support Not supported Built-in support

Optimizer TensorFlow built-in options with
implemented regularizers

Stochastic gradient descent
(SGD) with implemented
regularizers

Built-in options

GPU support Yes Yes Yes

Supports PyTorch No No No

Figure 6: Comparison of PsychRNN to alternative RNN training packages. Red, yellow,
and green indicate limited, moderate, and maximal flexibility or accessibility, respectively.

17

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.30.321752doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.30.321752
http://creativecommons.org/licenses/by-nd/4.0/

Extended Data. PsychRNN package and documentation.

18

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.30.321752doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.30.321752
http://creativecommons.org/licenses/by-nd/4.0/

1

2 c l a s s SimplePD(Task) :
3 de f i n i t (s e l f , dt , tau , T, N batch) :
4 super (SimplePD , s e l f) . i n i t (2 , 2 , dt , tau , T, N batch)
5 de f g en e r a t e t r i a l p a r ams (s e l f , batch , t r i a l) :
6

7 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 # Def ine parameters o f a t r i a l
9 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 params = d i c t ()
11 params [’ coherence ’] = np . random . exponent i a l (s c a l e =1/5)
12 params [’ d i r e c t i o n ’] = np . random . cho i c e ([0 , 1])
13

14 re turn params
15

16 de f t r i a l f u n c t i o n (s e l f , t , params) :
17 s t im no i s e = 0 .1
18 onset = s e l f .T/4 .0
19 st im dur = s e l f .T/2 .0
20

21 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
22 # I n i t i a l i z e with no i s e
23 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 x t = np . sq r t (2∗ s e l f . a lpha ∗ s t im no i s e ∗ s t im no i s e) ∗np . random . randn (s e l f . N in)
25 y t = np . z e r o s (s e l f . N out)
26 mask t = np . ones (s e l f . N out)
27

28 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
29 # Retr i eve parameters
30 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
31 coh = params [’ coherence ’]
32 d i r e c t i o n = params [’ d i r e c t i o n ’]
33

34 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
35 # Compute va lue s
36 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
37 i f onset < t < onset + st im dur :
38 x t [d i r e c t i o n] += 1 + coh
39 x t [(d i r e c t i o n + 1) % 2] += 1
40

41 i f t > onset + st im dur + 20 :
42 y t [d i r e c t i o n] = 1 .
43

44 i f t < onset + st im dur :
45 mask t = np . z e r o s (s e l f . N out)
46

47 re turn x t , y t , mask t

Extended Data, Figure 1-1: Example PsychRNN code showing task definition.
This code sample defines a simple two-alternative perceptual decision-making task. The
function generate trial params selects the coherence and direction on a trial by trial basis.
trial function sets the input, target output and output mask depending on the time in the
trial and the passed parameters.

19

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.30.321752doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.30.321752
http://creativecommons.org/licenses/by-nd/4.0/

1 from psychrnn . ta sk s . d e l ayed d i s c r im import De layedDiscr iminat ion
2

3 f o r i in range (3) :
4 f o r j in range (3) :
5 dd = DelayedDiscr iminat ion (dt = 10 , # s imu la t i on time step
6 tau = 100 , # uni t time constant
7 T = 2000 , # t r i a l l ength
8 N batch = 1 , # number o f t r i a l s per update
9 de l ay dura t i on = (j +1) ∗ 250 , # delay l ength

10 de c i s i o n du r a t i o n = 250 , # de c i s i o n l ength
11 onse t t ime = 125 , # f i r s t s t imulus onset time
12 s t im dura t i on 1 = (i +1)/3 ∗ 500 , # stim 1 length
13 s t im dura t i on 2 = (i +1)/3 ∗ 500) # stim 2 length
14 x , ta rget output , mask , t r i a l pa r ams= dd . g e t t r i a l b a t c h () # get task

Extended Data, Figure 3-1: Example PsychRNN code showing modularity of task
structure. This code sample produces all data shown in Fig. 3B. Although each plot in Fig. 3B
has different task durations, iteration through all of them is simplified through the object-oriented
modular task definitions enabled by PsychRNN. Resulting code is compact and readable compared
to non-modular alternatives.

1 from psychrnn . ta sk s . match to category import MatchToCategory
2

3 f o r i in range (3) :
4 f o r j in range (3) :
5 mc = MatchToCategory (dt=10, # s imu la t i on time step
6 tau = 100 , # uni t time constant
7 T = 2000 , # t r i a l l ength
8 N batch = 1 , # number o f t r i a l s per t r a i n i n g update
9 N in=(i +1)∗4 , # number o f network inputs

10 N out =(j +1)∗2) # number o f network outputs
11 x , ta rget output , mask , t r i a l pa r ams = mc . g e t t r i a l b a t c h () # get task

Extended Data, Figure 3-2: Example PsychRNN code showing modularity of task
inputs and outputs. This code sample produces all data shown in Figure 3D. Although each
plot in Fig. 3D has different numbers of inputs and outputs, iteration through all of them is
simplified through the object-oriented modular task definitions enabled by PsychRNN. Resulting
code is compact and readable compared to non-modular alternatives.

20

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.30.321752doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.30.321752
http://creativecommons.org/licenses/by-nd/4.0/

1 from psychrnn . ta sk s . p e r c ep tu a l d i s c r im i n a t i o n import Perceptua lD i s c r im inat i on
2 from psychrnn . Backend . curr icu lum import Curriculum
3

4 coherences = [. 7 , . 5 , . 3 , . 1]
5 t a s k l i s t = [Perceptua lD i s c r im inat i on (dt=10, # s imu la t i on time step
6 tau = 100 , # uni t time constant
7 T = 2000 , # t r i a l l ength
8 N batch = 128 , # number o f t r i a l s per update
9 coherence = coh # coherence o f t r i a l s

10) f o r coh in coherences]
11 curr icu lum = Curriculum (t a s k l i s t , # l i s t o f t a sk s that make up the curr icu lum
12 o u t p u t f i l e=” . / a c cu r a c i e s ” , # path to save metr ic va lue
13 metr ic epoch= 5 # i n t e r v a l to check the metr ic
14)
15 t ra in params = {
16 ” save we ight s path ” : ” . / weights . npz” , # path to save t ra in ed network weights
17 ” t r a i n i n g i t e r s ” : 100000 , # maximum number o f t r a i n i n g i t e r a t i o n s
18 ” l o s s epo ch ” : 5 , # how o f t en to c a l c u l a t e l o s s
19 ” curr icu lum” : curr icu lum # Curriculum ob j e c t
20 }
21

22 # curriculum−t r a i n i n g s p e c i f i c wrapper o f the t r a i n func t i on
23 l o s s e s , t r a in ing t ime , i n i t i a l i z a t i o n t i m e = model . t r a i n c u r r i c (
24 t ra in params # t r a i n i n g parameters
25)

Extended Data, Figure 5-1: Example PsychRNN code showing curriculum learning.
This code sample trains an RNN on a sequence of perceptual discrimination tasks with decreasing
stimulus coherence. The network is first trained to perform the task with high coherence. Once
the network reaches 90% accuracy on a given task (here, set of stimulus coherences), the network
initiates training on the next task. This continues until the network has reached 90% accuracy
on the final task—in this case, the lowest-coherence task. Curriculum learning is implemented
by defining a list of tasks that form the curriculum (line 4-10), and passing that list in to the
Curriculum class to form a Curriculum object (line 11-14). That Curriculum object is then
included in the training parameters dictionary (line 15-20), and when the network is passed those
training parameters for training, the network will be trained using the curriculum, or sequence of
task parameters defined in lines 4-10.

21

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.30.321752doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.30.321752
http://creativecommons.org/licenses/by-nd/4.0/

References

Barak O (2017) Recurrent neural networks as versatile tools of neuroscience research. Curr Opin

Neurobiol 46:1–6.

Bengio Y, Louradour J, Collobert R, Weston J (2009) Curriculum learning In Proceedings of the

26th Annual International Conference on Machine Learning, ICML ’09, pp. 41–48, New York,

NY, USA. ACM.

Berger M, Calapai A, Stephan V, Niessing M, Burchardt L, Gail A, Treue S (2018) Standardized

automated training of rhesus monkeys for neuroscience research in their housing environment. J

Neurophysiol 119:796–807.

Carnevale F, de Lafuente V, Romo R, Barak O, Parga N (2015) Dynamic control of response

criterion in premotor cortex during perceptual detection under temporal uncertainty. Neu-

ron 86:1067–1077.

Chollet F et al. (2015) Keras https://github.com/fchollet/keras.

Freedman DJ, Assad JA (2006) Experience-dependent representation of visual categories in parietal

cortex. Nature 443:85–88.

Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks

In Teh YW, Titterington M, editors, Proceedings of the Thirteenth International Conference

on Artificial Intelligence and Statistics, Vol. 9 of Proceedings of Machine Learning Research,

pp. 249–256, Chia Laguna Resort, Sardinia, Italy. PMLR.

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Computation 9:1735–1780.

Kriegeskorte N (2015) Deep neural networks: A new framework for modeling biological vision and

brain information processing. Annu Rev Vis Sci 1:417–446.

Krueger KA, Dayan P (2009) Flexible shaping: how learning in small steps helps. Cogni-

tion 110:380–94.

Latimer KW, Freedman DJ (2019) Learning dependency of motion direction tuning in the lateral

intraparietal area during a categorization task. Program No. 756.10. 2019 Neuroscience Meeting

Planner. Chicago, IL: Society for Neuroscience, 2019. Online.

Mante V, Sussillo D, Shenoy KV, Newsome WT (2013) Context-dependent computation by recur-

rent dynamics in prefrontal cortex. Nature 503:78–84.

Masse NY, Yang GR, Song HF, Wang XJ, Freedman DJ (2019) Circuit mechanisms for the

maintenance and manipulation of information in working memory. Nat Neurosci 22:1159–1167.

Miconi T (2017) Biologically plausible learning in recurrent neural networks reproduces neural

dynamics observed during cognitive tasks. Elife 6.

22

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.30.321752doi: bioRxiv preprint

https://github.com/fchollet/keras
https://doi.org/10.1101/2020.09.30.321752
http://creativecommons.org/licenses/by-nd/4.0/

Murphy TH, Michelson NJ, Boyd JD, Fong T, Bolanos LA, Bierbrauer D, Siu T, Balbi M, Bolanos

F, Vanni M, LeDue JM (2020) Automated task training and longitudinal monitoring of mouse

mesoscale cortical circuits using home cages. Elife 9.

Orhan AE, Ma WJ (2019) A diverse range of factors affect the nature of neural representations

underlying short-term memory. Nat Neurosci 22:275–283.

Rajan K, Harvey CD, Tank DW (2016) Recurrent network models of sequence generation and

memory. Neuron 90:128–42.

Remington ED, Narain D, Hosseini EA, Jazayeri M (2018) Flexible sensorimotor computations

through rapid reconfiguration of cortical dynamics. Neuron 98:1005–1019.e5.

Richards BA, Lillicrap TP, Beaudoin P, Bengio Y, Bogacz R, Christensen A, Clopath C, Costa

RP, de Berker A, Ganguli S, Gillon CJ, Hafner D, Kepecs A, Kriegeskorte N, Latham P, Lindsay

GW, Miller KD, Naud R, Pack CC, Poirazi P, Roelfsema P, Sacramento J, Saxe A, Scellier B,

Schapiro AC, Senn W, Wayne G, Yamins D, Zenke F, Zylberberg J, Therien D, Kording KP

(2019) A deep learning framework for neuroscience. Nat Neurosci 22:1761–1770.

Rikhye RV, Gilra A, Halassa MM (2018) Thalamic regulation of switching between cortical repre-

sentations enables cognitive flexibility. Nat Neurosci 21:1753–1763.

Roitman JD, Shadlen MN (2002) Response of neurons in the lateral intraparietal area during a

combined visual discrimination reaction time task. J Neurosci 22:9475–89.

Romo R, Brody CD, Hernández A, Lemus L (1999) Neuronal correlates of parametric working

memory in the prefrontal cortex. Nature 399:470–3.

Ruder S (2017) An overview of gradient descent optimization algorithms. arXiv p. 1609.04747.

Song HF, Yang GR, Wang XJ (2016) Training excitatory-inhibitory recurrent neural networks for

cognitive tasks: A simple and flexible framework. PLoS Comput Biol 12:e1004792.

Sussillo D (2014) Neural circuits as computational dynamical systems. Curr Opin Neuro-

biol 25:156–63.

Sussillo D, Abbott L (2009) Generating coherent patterns of activity from chaotic neural networks.

Neuron 63:544 – 557.

Sussillo D, Churchland MM, Kaufman MT, Shenoy KV (2015) A neural network that finds a

naturalistic solution for the production of muscle activity. Nature neuroscience 18:1025.

V. Le Q, Jaitly N, E. Hinton G (2015) A simple way to initialize recurrent networks of rectified

linear units .

Yamins DLK, DiCarlo JJ (2016) Using goal-driven deep learning models to understand sensory

cortex. Nat Neurosci 19:356–65.

23

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.30.321752doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.30.321752
http://creativecommons.org/licenses/by-nd/4.0/

Yang GR, Wang XJ (2020) Artificial neural networks for neuroscientists: A primer. Neu-

ron 107:1048–1070.

24

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.30.321752doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.30.321752
http://creativecommons.org/licenses/by-nd/4.0/

