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Abstract 

 

The development of perinatal brain connectivity underpins motor, cognitive and behavioural 

abilities in later life. With the rise of advanced imaging methods such as diffusion MRI, the 

study of brain connectivity has emerged as an important tool to understand subtle alterations 

associated with neurodevelopmental conditions. Brain connectivity derived from diffusion 

MRI is complex, multi-dimensional and noisy, and hence it can be challenging to interpret on 

an individual basis. Machine learning methods have proven to be a powerful tool to uncover 

hidden patterns in such data, thus opening an opportunity for early identification of atypical 

development and potentially more efficient treatment. 

In this work, we used Deep Neural Networks and Random Forests to predict 

neurodevelopmental characteristics from neonatal structural connectomes, in a large sample 

of neonates (N = 524) derived from the developing Human Connectome Project. We achieved 

a highly accurate prediction of post menstrual age (PMA) at scan on term-born infants (Mean 

absolute error (MAE) = 0.72 weeks, r = 0.83, p<<0.001). We also achieved good accuracy when 

predicting gestational age at birth on a cohort of term and preterm babies scanned at term 

equivalent age (MAE = 2.21 weeks, r = 0.82, p<<0.001). From our models of PMA at scan for 

infants born at term, we computed the brain maturation index (i.e. predicted minus actual 

age) of individual preterm neonates and found significant correlation of this index with motor 

outcome at 18 months corrected age. Our results suggest that the neural substrate for later 

neurological functioning is detectable within a few weeks after birth in the structural 

connectome.   
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1. INTRODUCTION 

Magnetic Resonance Imaging (MRI) has provided a broad range of in vivo insights about the 

structure and function of the human brain. Diffusion MRI in particular, enables the 

characterization of microstructural changes in orientation and structure of white matter, 

opening the possibility to study brain structural connectivity and allowing the systematic 

description of whole-brain structural networks: the human connectome (Honey et al., 2010; 

Sporns et al., 2005).  

During the perinatal period, the brain undergoes significant changes and consolidation of its 

structural connectivity, which underpins the expansion of motor, cognitive and behavioural 

abilities (Johnson, 2001). Since the inception of connectomics (Hagmann 2005; Sporns, 

Tononi, and Kötter 2005) several studies have tried to characterise early development of the 

structural connectome (Fan et al. 2011; Hagmann et al. 2010). Subtle alterations in the 

development of brain connectivity have been suggested to underlie atypical 

neurodevelopmental outcome in populations with perinatal risk factors, such as children born 

preterm (Batalle et al., 2018). This is of clear significance as preterm birth comprises 

approximately 11% of all births, and is the main global cause of death and disability in children 

under 5 years of age (Blencowe et al., 2012), as well as representing one of the most pervasive 

perinatal risk factors for atypical neurodevelopment (Wood et al., 2000). It has been 

associated with an increased risk of developing neurodevelopmental conditions such as 

motor, visuospatial and sensorimotor delay (Marlow et al., 2007), inattention, anxiety and 

social difficulties (Johnson and Marlow, 2014), autism spectrum (Johnson et al., 2010), 

cerebral palsy (Marlow et al., 2005) or psychiatric disorders in adulthood such as depression 

and bipolarity (Nosarti et al., 2012). 

With the increasing interest in detailed study of neonatal brain connectivity, projects such as 

the developing Human Connectome Project (dHCP) have arisen which allow the development 

of bespoke methods to study the brain during this crucial period. The dHCP is an open science 

project which provides a large normative sample of neonatal structural, diffusion and 

functional MRI data with high spatial, angular and temporal resolutions. Features of this 

project include: advances in hardware (Hughes et al., 2017) and protocols for neonatal 

diffusion MRI acquisition (Hutter et al. 2018); the use of multiband techniques to accelerate 

acquisition time combined with approaches to correct motion (Cordero-Grande et al. 2016; 

Cordero-Grande et al. 2019); and the development of state-of-the-art preprocessing pipelines 

for neonatal MRI data (Bozek et al., 2018; Christiaens et al. 2018; Bastiani et al. 2019; 

Fitzgibbon et al. 2020; Makropoulos et al., 2018). These have together significantly improved 

neonatal MRI acquisition methods and data quality. 

Despite this progress, studying the neonatal connectome remains challenging. Indeed, many 

methodological issues hamper the interpretation of the connectome (Sporns, 2013) including 

the difficulty of detecting origins and termination of connections (Jbabdi and Johansen-Berg, 

2011) or a high number of false positive streamlines (Maier-Hein et al., 2017). Furthermore, 

the high dimensionality of the data and low number of scans usually available in neonates 

make underlying patterns very difficult to uncover.  
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Recent progress in machine learning offers a powerful alternative to study the structural 

connectome. Specifically, deep neural networks, which are known for their ability to model 

complex non-linear relationships, can help uncover hidden patterns in the connectome, and 

potentially detect abnormal patterns of connectivity in individual subjects. In adult brain 

connectivity research, a number of studies have used machine learning and deep learning to 

study the structural connectome (see (Brown and Hamarneh, 2016) for a review). Several 

studies also used similar approaches in neonates: Kawahara and colleagues have developed 

BrainNetCNN, a Convolutional Neural Network composed of edge to edge, edge to node, and 

node to graph convolution filters on structural connectivity to predict post menstrual age 

(PMA) at scan and cognitive performance from the structural connectome (Kawahara et al., 

2017). A recent study by Girault and colleagues similarly focused on using the structural 

connectome at birth to predict cognitive abilities (Mullen score) at age 2 with dense neural 

networks (Girault et al., 2019). However, little is known about the predictive power of the 

connectome in a large normative neonatal population such as that of the dHCP.  

A promising method in adult and neonatal neuroscience is the study of the <brain maturation 
index= (also known as <brain delta= or <predicted age difference=) corresponding to the 
apparent age of the subject as compared to the norm (Dosenbach et al. 2010; Cao et al. 2015; 

Jonsson et al. 2019; Liem et al. 2017; Smith et al. 2019). By training regression models to fit 

the age of subjects from large normative imaging datasets, we can predict the age of 

individual subjects and compute the difference between the prediction and subject9s true 
age. This difference gives information about brain maturation and its divergence from the 

population norm. As such, in adults, a positive (predicted age > true age) difference is 

interpreted as demonstrating accelerated ageing, and is associated with disorders such as 

cognitive impairment (Liem et al., 2017), schizophrenia (Koutsouleris et al., 2014) or diabetes 

(Franke et al., 2013). In neurodevelopment, studying the brain maturation index is therefore 

extremely relevant for preterm born infants where neurodevelopmental delays and 

psychiatric disorders often occur (Brown et al., 2017; Galdi et al., 2020; Rasmussen et al., 

2017).  

In this work, we propose the use of two different machine learning algorithms - Random 

Forests (RF) and Deep Neural Networks (DNN) - to predict PMA at scan (i.e. brain maturation), 

and gestational age (GA) at birth (i.e. degree of prematurity), from the neonatal structural 

connectome in a large sample of neonates scanned at term equivalent age. Using models 

obtained for the term-born cohort, brain maturation index was computed for our preterm-

born cohort allowing us to assess whether it predicted neurodevelopmental outcome at 18 

months.   
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2. Methods and Materials  

2.1 Participants  

All participants were part of the dHCP, approved by the National Research Ethics Service West 
London committee (14/LO/1169). 

524 infants (240 female and 284 male), born between 23+0 weeks and 42+2 week of gestation, 
underwent MRI between 37+1 weeks and 45+1 weeks. The participant gestational age at birth 
(GA) and postmenstrual age at scan (PMA) distribution is presented in Figure 1A-B. Full 
participant clinical information is presented in Table 1.  

The Bayley III Scales of Infant and Toddler Development (BSID-III) (Bayley 2006) were collected 
at 18 months corrected age and available for 314 infants including 50 preterm-born infants. 
We used scores of motor (fine and gross), communication (expressive and receptive) and 
cognitive (raw) score. Assessments were carried out by experienced paediatricians or 
psychologists. Detailed assessment distributions are presented in Table 1. 

 

Figure 1. Distribution of (A) GA at birth and (B) PMA at scan of full cohort (N=524). (C) GA at 

birth of cohort used for predicting GA at birth. 

2.2 MRI acquisition 

All scans were collected in the Evelina Newborn Imaging Centre based on the Neonatal 
Intensive Care Unit, St Thomas hospital London using a Philips Achieva 3T scanner (Best, NL). 
All scans were acquired using the dHCP neonatal brain imaging system which includes a 32 
channel receive neonatal head coil (Rapid Biomedical GmbH, Rimpar, DE) (Hughes et al., 
2017). Informed written parental consent was obtained prior to imaging. Positioning of all 
infants was done with a lightweight protective <shell=, which was positioned on an MRI safe 
trolley to ease transportation. Immobilization of the infants in the shell was done using bead 
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filled inflatable pads (Pearltec, Zurich, CH). In addition to the pads, acoustic protection 
included earplugs moulded from a silicone-based putty (President Putty, Coltene Whaledent, 
Mahwah, NJ, USA) placed in the external auditory meatus and neonatal earmuffs (MiniMuffs, 
Natus Medical Inc, San Carlos, CA, USA). To avoid sudden sound changes which might wake 
up the infant, the MRI software was modified in order to gradually increase the noise from 0 
to the average operating point (Hughes et al., 2017). All scans were supervised by a 
paediatrician or neonatal nurse experienced in MRI procedures; vital signs including pulse 
oximetry, temperature and electrocardiography data were monitored throughout data 
acquisition. All infants were scanned during natural unsedated sleep following feeding.  

T2-weighted images were acquired using a Turbo spin echo sequence with parameters TR = 
12s and TE = 156ms, SENSE factor 2.11 (axial) and 2.54 (sagittal) with overlapping slices 
(resolution = 0.8 × 0.8 × 1.6 mm3). Super-resolution methods (Kuklisova-Murgasova et al., 
2012) as well as motion correction methods (Cordero-Grande et al., 2018) were combined to 
maximise precision and resolution of T2-weighted images (resolved to 0.8 × 0.8 × 0.8 mm3 ). 
Diffusion weighted imaging was acquired in 300 directions with parameters TR = 3.8s, TE = 
90ms, SENSE factor 1.2, multiband factor 4, resolution = 1.5 × 1.5 × 3mm3 (with 1.5mm slice 
overlap), diffusion gradient encoding: b=0 s/mm2 (n=20), b=400 s/mm2 (n=64), b=1000 s/mm2 
(n=88), b=2600 s/mm2 (n=128), and using interleaved phase encoding (Hutter et al., 2018b). 

2.3 Pre-processing and connectome generation 

Tissue segmentation of T2-weighted volumes was performed using a neonatal specific 
segmentation pipeline (Makropoulos et al., 2014) and template (Schuh et al. 2018). 
Parcellation of 90 cortical and subcortical regions (Shi et al., 2011) adapted to the dHCP 
weekly age-dependant high-resolution bespoke template (Schuh et al. 2018) was propagated 
to each subject9s T2w native space through non-linear registration based in a diffeomorphic 
symmetric image normalization method (SyN) available in ANTS software (Avants et al., 2011), 
using T2w contrast and tissue segmentation as input channels. Tissue maps and atlas 
parcellation were propagated from each T2w native space to each subject9s diffusion native 
space with a rigid registration using b=0 volumes as target. All rigid registrations were 
performed with IRTK software (Schnabel et al. 2001). Details of the 90 cortical and subcortical 
regions are presented in Supplementary Table 1.  

Diffusion MRI was reconstructed at an effective resolution of 1.5mm isotropic and denoised 
using a patch-based estimation of the diffusion signal based on random matrix theory 
(Veraart et al., 2016). Gibbs ringing was suppressed (Kellner et al., 2016) and B0 field map 
estimated from b=0 volumes in order to correct magnetic susceptibility-induced distortion 
using FSL Topup (Andersson et al., 2003).  Data was corrected for slice-level motion and 
distortion in a data-driven q-space representation using a bespoke spherical harmonics and 
radial decomposition (SHARD) basis of rank 89 corresponding to spherical harmonics of order 
lmax=0,4,6,8 for each respective shell, with registration operating at a reduced rank of 22 
(Christiaens et al., 2018). DWI intensity inhomogeneity field correction was performed using 
the ANTs N4 algorithm (Tustison et al., 2010). Tools and pipelines implemented in MRtrix3 
(Tournier et al., 2019) were used for quantitative analysis of the diffusion MRI data. 
Developing neonatal brain tissue undergoes rapid changes in cellular properties and water 
content that can be to a first approximation captured by a non-negative linear combination 
of anisotropic signal from relatively mature WM and from isotropic free fluid (Pietsch et al., 
2019). We use data from 20 healthy full term control babies from our sample to extract a set 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.09.28.317180doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.28.317180
http://creativecommons.org/licenses/by/4.0/


of two representative WM (Tournier et al., 2013) and fluid-like (Dhollander et al., 2016, 
Dhollander et al., 2018) signal fingerprint (response functions) that are used to deconvolve 
each subject9s diffusion signal into a fibre orientation distribution (FOD) image, capturing 
WM-GM-like signal, and scalar fluid density image using the multi-tissue multi-shell 
constrained spherical deconvolution technique (Jeurissen et al. 2014). Residual intensity 
inhomogeneity were corrected and component densities calibrated using a multi-tissue log-
domain intensity normalisation (Raffelt, et al. 2017). Resulting normalised WM-GM-like FODs 
were used to generate 10 million streamlines with an anatomically constrained probabilistic 
tractography (ACT) (Smith et al., 2012) with biologically accurate weights (SIFT2) (Smith, et al. 
2015). The fibre density SIFT2 proportionality coefficient (μ) for each subject was obtained to 
achieve inter-subject connection density normalisation. The structural connectivity network 
of each infant was then constructed by calculating the μ × SIFT2-weighted sum of streamlines 
connecting each pair of regions (thus built as a symmetric adjacency matrix of size 90x90). 

In addition, we used 73 structural connectivity matrices obtained from an independent 
dataset (Batalle et al., 2017) to test the design of the initial hyperparameters and architecture 
for predictive algorithms presented in sections 2.4.3 and 2.4.4.  

 
2.4 Prediction of age at scan and age at birth  

All analyses on this section were performed using Python 3.7. The machine learning library 

Scikit Learn (Pedregosa et al., 2011) was used for training the RF algorithm. The deep learning 

framework Keras (version 2.0.3) (Chollet et al., 2015) was used to train the deep learning 

models.  

2.4.1 Feature set 

As the structural connectome is presented as a symmetric adjacency matrix (in our case of 

size 90x90, with 90 brain regions) the lower triangle of the matrix contains all information. 

We thus extracted and reshaped the lower triangle of each subject9s structural connectome þÿ as a 1D vector ÿÿ with number of connectivity elements n = 4005, thus leading to the 

ensemble ÿ of connectivity vectors across þ subjects:      

ÿ = ⌈ÿ1ÿ2&ÿ�⌉ , ýÿā/ ÿÿ = [þÿ,1 , þÿ,2 , & , þÿ,ÿ ];  þÿ,Ā ∈ ℝ+ ��ý � = 4005  
 

We normalized each data point across the training sets, and normalized the testing set with 

the training normalization values using a min-max normalization: þ̃ÿ,Ā = þÿ,Ā 2 ýÿ�(ÿ)ý�þ(ÿ) 2 ýÿ�(ÿ)  ýÿā/ ýÿ�(ÿ) ��ý ý�þ(ÿ) ∈ ℝ+ 

Thus, assuming that testing data also falls between previous ranges, our training and testing 

data has the following form: 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.09.28.317180doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.28.317180
http://creativecommons.org/licenses/by/4.0/


ÿ̃ = +++
 ÿ̃1ÿ̃2&ÿ̃�+++

 , ýÿā/ ÿ̃ÿ =  [þ̃ÿ,1 , þ̃ÿ,2, & , þ̃ÿ,ÿ ];  þ̃ÿ,Ā ∈ [0, 1] ��ý � = 4005  
2.4.2 Prediction models  

We carried a set of predictions of demographic information on different population samples 

using different regression algorithms. In each case, we fitted a regression model ÿ to predict 

a variable Ā representing demographic information (e.g. GA at birth or PMA at scan) for 

subjects in our dataset. We thus had prediction Y’ as follows: Ā2 = ÿ(ÿ̃);  ýÿā/ Ā2  = [ÿ1′, ÿ2′, & , ÿ�′]� 

We computed the regressor ÿ that minimizes ∣ Ā2 2 Ā ∣2. We used two different supervised 

machine learning regression algorithms to do this: RF and DNN. 

2.4.3. Random Forests regression  

RF are an ensemble learning method for classification and regression based on constructing 

a multitude of decision trees (weak learners) which are individually trained through the 

technique of <bagging=. RF makes predictions by averaging the prediction of each individual 

tree, hence acting as a strong learner (Breiman L., 2001). For optimal performance, two main 

hyperparameters should be tuned: the number of trees (estimators) in the forest and the 

maximum depth of each tree. The number of trees determines the smoothness of the 

decision boundary and the depth corresponds to the maximum number of levels allowed for 

each tree. RF regressors9 performance often depends on finding the optimal value for these 
to ensure that there is no overfitting or underfitting. 

Here we use the RF regressor from the Scikit Learn RandomForestRegressor implementation 

(Pedregosa et al., 2011). The RF were trained using mean squared error (MSE) as loss function. 

Hyperparameters were tuned separately for the PMA at scan and GA at birth prediction by 

performing a grid search on a set of 73 structural connectomes from an independent dataset 

(Batalle et al., 2017). This allowed us to choose optimal parameters without overfitting our 

model to the studied data. Hyperparameters used are presented in sections 2.4.6 and 2.4.7. 

2.4.4. Deep Neural Networks regression 

Deep (Fully Connected) Neural Networks (DNN) are universal function approximators whose 

parameters can be trained to model complex nonlinear relationships between features and 

labels via backpropagation (Rumelhart et al., 1986). However, the performance of a DNN also 

depends on the hyperparameters: design choices are mainly related to the architecture of the 

network (the layer types, number of layers and number of nodes per layers, activation 

functions at each layer), the loss function, and the training method (the number of epochs, 

the optimization function and its parameters). 

The DNN in this work were implemented using the deep learning library Keras (version 2.0.3) 

(Chollet et al., 2015). As performing a grid search to find the best model hyperparameters is 

computationally expensive when training DNN, we started with a basic architecture built from 
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previous work and common DNN knowledge (Smith 2018), and subsequently optimized these 

via manual refinement architecture search.  To avoid overfitting the model to the data used 

in this paper, this was done on the same set of 73 structural connectomes from an 

independent sample as was used for the RF training, independently for the GA at birth and 

PMA at scan prediction. For both prediction tasks, the models were trained using MSE as a 

loss function and the Adam optimizer (Kingma and Ba, 2015), albeit with different learning 

rates. Further details on the network architecture are included in sections 2.4.6 and 2.4.7.  

2.4.5 Training and evaluation of the models 

To assess the performance of the prediction models, the evaluation metric was calculated on 
test data excluded from training and hyperparameter tuning. We split the dataset into k 
groups (folds) and fit the model k times. Each time, one group is used to evaluate 
performance, while the rest of the groups are used for training and validation. The evaluation 
scheme is presented in Figure 2B. 

We split the data into k=5 groups (folds), with 20% of data used for testing at each fold. The 
remaining 80% of the data were further split for training (65%) to fit the models and validation 
(15%) to tune the hyperparameters. Min-max normalisation presented in section 2.4.1 is 
fitted on the training/validation set, where normalization parameters are saved and applied 
to the test set. 

We added a bias correction as previously described (Smith et al. 2019; Peng et al. 2019) to 

correct age dependency of the training residuals. Briefly, we used a linear model Ā2 = ÿ(ÿ) =ÿĀ +  Ā to obtain an unbiased estimate of Ā′ as Ā̂  = 
�22 Ā ÿ , where the parameters ÿ and Ā are 

estimated during training (on both the combination of training and validation set) and are 

thus applied directly to the test set. We obtained our final corrected prediction Ā̂ÿ for each 

structural connectome as follows:  

Ā̂ÿ =  ÿ(ÿ̃ÿ) 2  Āÿ = Āÿ2 2  Āÿ = þ(ÿ̃ÿ);      ÿ, Ā ∈ ℝ 

The final performance is calculated by averaging test-set performance over the 5 folds. We 

used mean absolute error (MAE) as our evaluation metric, calculated on each test set k as 

follows: ý�ýā = 1þā ∑ |Āÿ 2 Ā̂ÿ|∀ÿ∈S�  

Where þā  is the number of subjects belonging to test set k (Sā) and Āÿ and Ā̂ÿ are actual and 

predicted outcome of subject i. In addition, we also evaluate MSE and ý2  scores for each test 

set k, which are calculated as follows:  ýþýā =  1þā ∑ (Āÿ 2 Ā̂ÿ)2∀ÿ∈S�  
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ýā2 = 1 2 ∑ (Āÿ 2 Ā̂ÿ)2∀ÿ∈S�∑ (Āÿ 2 Ā̅)2∀ÿ∈S�  

Where Ā̅ is the mean actual age of test set k. We also calculated Pearson9s Correlation (ÿā) 

and p-value (�ā) between actual (Ā) and predicted output (Ā̂) for each test set. As we obtain 

a prediction for every subject (albeit with different models) we can compute the ý�ý�Ā� , ýþý�Ā� , ý�Ā�2 , ÿ�Ā� and ��Ā� by considering the predictions of the 5 test sets (see Figure 2A). 

Finally, we assessed the presence of heteroscedasticity in our predictions by comparing the 

variance ����2  of the absolute error – a lower variance signifies more homoscedastic 

predictions.  

 

2.4.6 Prediction of PMA at scan in term-born infants  

To build a model of typical development of connectivity we used the full cohort of 418 term-

born babies (GA at birth >= 37) with PMA at scan between 37 and 45 weeks. 

We first predicted PMA at scan from the vectorised and normalized structural connectome ÿ̃ 

using RF regressor model. Optimal parameters of the model (max depth = 250, number of 

estimators = 30) were found by performing a grid search in an independent dataset (see 

section 2.4.3). We trained each fold on N335 samples (80%) including a validation set. We 

then tested the model on the remaining set (N83, 20%) in each fold, thus being able to 

predict age at scan on all 418 structural connectomes of term infants (see Figure 2A).  

In a similar fashion, we also trained a regression DNN to predict PMA at scan from the 

vectorised and normalized structural connectome ÿ̃. This DNN comprises one input layer with 

4005 input nodes, 7 hidden layers, 6 activation layers (ReLu), 5 batch normalisation layers and 

one output layer with one node. Training was done for 50 epochs with learning rate of 0.007 

and remaining parameters with default value. Detailed structure of the architecture of this 

DNN is provided in Figure 2D.  

We applied the previously described bias correction method on both DNN and RF, by fitting ÿ and Ā for each model ÿā using both the training and validation set; thus reaching 5 distinct 

models þ1, þ2, & , þ5 for both the DNN and RF methods. 

2.4.7 Prediction of GA at birth  

To assess the effect of preterm birth on structural connectivity we trained a prediction model 

for GA at birth from ÿ̃ with both DNN and RF in a similar fashion as previously described for 

prediction of PMA at scan. 

Since the dHCP cohort has significantly more term-born than preterm-born infants, there is a 

<class imbalance= in the GA distribution that may skew the model prediction. We therefore 

randomly selected a sub-sample of term subjects that had, on average, equal density of 

subjects on each GA at birth weekly bin. Our 106 preterm infants were distributed in 15 

different GA at birth bins (22w-23w; 23w-24w & 36w-37w), thus providing an average of 7 

infants per age category. We kept all 106 preterm infants and randomly sampled 7 infants 
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from each of the term age categories (37w-38w, 38w-39w, & 41w-42w) and the 4 subjects 

born 42w-43w (as only 4 were born between 42w and 43w GA), for a total of 39 term-born 

infants. This resulted in a total of 145 infants with a balanced distribution (see Figure 1C).  

We first attempted prediction of GA at birth from the vectorised and normalized structural 

connectome ÿ̃ using RF with optimal parameters max depth = 300, number of estimators = 

50.  For each fold, we trained using N=116 samples (80%) including a validation set. We then 

tested the model on the remaining set (N=29, 20%) in each fold, predicting GA at birth for all 

145 structural connectomes considered.  

In a similar fashion, we also trained a DNN to predict GA at birth. This DNN consists of one 

input layer, 6 hidden layers, 6 activation layers (ReLu), one dropout layer, and one output 

layer. 120 epochs were used for training, with learning rate 0.003 and remaining parameters 

at default value. Detailed information on the architecture is provided in Figure 2E.  

We applied the bias correction method on both DNN and RF by fitting ÿ and Ā for each model /ÿ from the validation set; thus reaching 5 distinct models Ā1, Ā2, & , Ā5 for both the DNN and 

RF methods. 

2.4.8 Brain maturation index  

We defined brain maturation index � (also called brain age or predicted age difference in the 

literature) as the difference between the predicted age Ā̂ and true age Ā of a subject n 

(Dosenbach et al., 2010): �ÿ = Ā̂ÿ 2 Āÿ 
We developed a model of typical brain development by training 5 models to predict PMA at 

scan on term-born infants only (section 2.4.6). Prediction of PMA at scan for each preterm 

subject was computed by taking the mean of the predictions from each of the 5 DNN trained 

models þā  from each cross-validation partition:  

Ā̂ÿ = 15 ∑ þā(ÿ̃ÿ) = ÿ(ÿ̃ÿ)5
ā=1  

Following this, we computed the brain maturation index �ÿ of each preterm subject:  �ÿ = Ā̂ÿ 2 Āÿ = ÿ(ÿ̃ÿ) 2 Āÿ 
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Figure 2. (A) Pipeline for age prediction from MRI. (B) Cross Validation protocol. (C) Legend 

for DNN architecture components. (D) PMA at scan DNN architecture. (E) GA at birth DNN 

architecture. 
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2.5 Statistical methods  

Differences between term and preterm cohorts on all relevant characteristics were assessed 

by computing a two tailed independent t-test or chi-square test as appropriate. The 

association between brain maturation index �ÿ and neurodevelopmental outcomes was 

assessed with Pearson9s Correlation coefficient for all preterm infants having both �ÿ and 

BSID-III developmental outcomes at age 18 months corrected age. All outcomes were 

corrected for socio economic status, captured by the English Index of Multiple Deprivation 

(IMD). IMD factor summarizes information from 38 different factors such as income, 

employment, education, crime rates and health situation for all neighbourhoods in England 

(Index of Multiple Deprivation, 2015). Lower IMD relates to lower level of deprivation. All p-

values presented are uncorrected for multiple comparisons.  

2.6 Data availability 

The imaging and collateral data from the dHCP can be downloaded by registering at 

https://data.developingconnectome.org/ 

Structural connectivity networks and code used to predict age at birth and age at scan are 
available in https://github.com/CoDe-Neuro/Predicting-age-and-clinical-risk-from-the-
neonatal-connectome  
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3. Results 

3.1 Sample characteristics 

There were no significant differences in PMA at scan and male/female proportion between 

term and preterm neonates in this study. For the subjects for which 18 months BSID-III follow-

up neurodevelopmental assessment was available, there were no significant differences in 

outcomes between term and preterm infants. However, a significant group difference 

(p<<0.001) was found in IMD scores, with term infants showing significantly higher 

deprivation than preterm infants. Detailed cohort characteristics are provided in Table 1 and 

Figure 1. Neurodevelopmental outcome details are provided in Table 1.  

Table 1. Detailed sample and outcome characteristics.  

 
Term Born 

N = 418 
Preterm born 

N = 106 
p-value* 

Gestational age at birth 
[weeks +days] 

Median = 40+1 
IQR = 39+0 – 40+6 

Median = 32+2 
IQR = 28+5 – 34+4 

<<0.001 

Postmenstrual age at 
scan [weeks +days] 

Median = 41+0 
IQR = 39+6 – 42+2 

Median = 41+0 
IQR = 39+5 – 42+2 

0.771 

Sex, no. of female (%) 195 (47%) 45 (42%) 0.401 

BSID-III, no. (% of total 
population)   

264 (63%) 50 (47%) 0.002 

Gestational age at birth 
(weeks +days) of subjects 
with BSID-III data 
available 

Median = 40+1 
IQR = 39+1 – 40+6 

Median = 31+5 
IQR = 28+2 – 34+5 

<< 0.001 

Postmenstrual age at 
scan (weeks +days) of 
subjects with BSID-III 
data available 

Median = 40+6 
IQR = 39+5 – 42+0 

Median = 41+2 
IQR = 39+5 – 42+6 

0.158 

IMD Score of subjects 
with BSID-III data 
available 

Mean = 26.57 
STD = 12.33 

Mean = 18.74 
STD = 10.68 

<<0.001 

Fine Motor 
 

Mean = 11.364 
STD = 2.33 

Mean = 10.80 
STD = 2.74 

0.130 

Gross Motor 
Mean = 9.049 

STD = 1.77 
Mean = 8.74 
STD = 2.24 

0.282 

Cognitive Score 
Mean = 9.98 
STD = 2.17 

Mean = 9.74 
STD = 2.82 

0.503 

Expressive 
communication 

Mean = 8.82 
STD = 2.61 

Mean = 8.82 
STD = 2.73 

0.996 

Receptive 
Communication 

Mean = 9.90 
STD = 3.21 

Mean = 10.22 
STD = 3.31 

0.524 

*p-values computed with two tailed independent t-test or chi-square test as appropriately. 
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3.2 Prediction of PMA at scan  

3.2.1 Prediction of PMA at scan with RF 

We trained a RF regressor to fit for PMA at scan from vectorised and normalized structural 

connectome ÿ̃ on term infants only. We obtained ý�ý�Ā� = 0.84 weeks, ýþý�Ā� =  1.10, ý�Ā�2  = 0.61, ����2 =  1.10  with correlation between true and predicted ÿ�Ā� =  0.79 (��Ā� ≪0.001). Figure 3A shows true PMA vs predicted PMA on each of the 5 cross-validation folds. 

Detailed results of each fold are presented in Figure 3C.  

3.2.2 PMA at scan prediction with DNN 

Similarly, we trained a DNN regressor to fit for PMA at scan from vectorised and normalized 

structural connectome ÿ̃ on term infants only. We obtained ý�ý�Ā� = 0.72 weeks, ýþý�Ā� =  0.94, ý�Ā�2  = 0.67, ����2 =  0.94 with correlation between true and predicted ÿ�Ā� = 0.83 (��Ā� ≪ 0.001). Figure 3B shows true PMA vs predicted PMA on each of the 5 cross-

validation folds. Detailed results of each fold are presented in Figure 3D.  

3.3 Prediction of GA at birth 

3.3.1 Prediction of GA at birth with RF 

We trained a RF regressor to fit GA at birth from vectorised and normalized structural 

connectome ÿ̃ on balanced data (145 infants). We obtained ý�ý�Ā� =  2.76 weeks, ýþý�Ā� =  12.95, ý�Ā�2  = 0.43, ����2 =  12.93 with correlation between true and predicted ÿ�Ā� =  0.67 (��Ā� ≪  0.001). Figure 4A shows true GA at birth vs predicted GA at birth on 

each of the 5 folds fold. Detailed results of each fold are presented in Figure 4B.  

3.3.2 Prediction of GA at birth with DNN  

Similarly, we trained a DNN from vectorised and normalized structural connectomeÿ̃ on 

balanced data. We obtained ý�ý�Ā� = 2.21 weeks, ýþý�Ā� =  8.90, ý�Ā�2  = 0.61, ����2 = 8.86 with correlation between true and predicted ÿ�Ā� =  0.82 (��Ā� ≪ 0.001). Figure 4B 

shows true GA vs predicted GA on each of the 5 folds. Detailed results of each fold are 

presented in Figure 4D. 
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Figure 3. Detailed results of prediction of PMA at scan on term cohort. True vs Predicted 

with (A) RF, (B) DNN. Fold by fold result with (C) RF, (D) DNN. 
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Figure 4. Detailed results of prediction of GA at birth.  True vs Predicted with (A) RF, (B) 

DNN. Fold by fold result with (C)RF, (D)DNN. 
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3.3 Brain Maturation Index  

We computed the predicted PMA at scan of each preterm-born infant scanned at term-

equivalent age by averaging out the 5 predictions from the DNN term trained models. We 

obtained MAE of 1.16 weeks on prediction of 106 preterm infants (ýþý�Ā� =  2.24, ý�Ā�2  = 

0.42, ����2 =  1.45), with correlation between true and predicted age between ÿ =  0.79, 

(� ≪ 0.001). True vs predicted age is presented in Figure 5A. 

We computed the brain maturation index �ÿ from each prediction. Brain maturation index 

(�ÿ) was significantly correlated with BSID-III gross motor scale at 18 months corrected age ( ÿ = 0.4590, � =  0.0008, Figure 5BC). 

 

 

Figure 5. Association of Brain Maturation Index with BSID-III outcomes in preterm-born 

infants. (A) True vs predicted PMA at scan for preterm infants. (B) Brain maturation index δ 

vs BSID-III Gross motor outcome corrected for IMD. (C) Detailed correlation and p-values of 

preterm brain maturation index and BSID-III outcomes – statistically significant results 

highlighted in bold red. 
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4. Discussion  

This work demonstrates that machine learning can uncover connectivity patterns associated 

with typical and atypical development of structural brain connectivity, despite the high 

dimensionality of the data. We obtained accurate prediction of PMA at scan in term-born 

infants in a large normative sample of high-quality neonatal MRI data from the dHCP and 

predicted GA at birth in preterm infants from scans at term equivalent age, showing the 

impact of preterm birth on the structural connectome. Furthermore, we have also shown 

significant correlation between brain maturation index estimated from brain connectivity at 

birth and BSID-III gross motor outcome at 18 months of corrected age in preterm babies. 

Overall, our results show that machine learning approaches can extract relevant information 

on brain development from the neonatal structural connectome.  

Prediction of age at scan 

We achieved high accuracy in our prediction of PMA at scan on the term cohort, reaching a 

low MAE of 0.72 weeks (ýþý�Ā� =  0.94, ý�Ā�2  = 0.67 ) and a high correlation between true 

and predicted age (ÿ�Ā� =  0.83; ��Ā� ≪ 0.001). While the structural connectome presents 

several important challenges to study brain connectivity (Campbell and Pike, 2014) including 

high numbers of false positive streamlines (Maier-Hein et al., 2017), our results suggest that 

there is reliable information present to capture the subtle changes associated with weekly 

development. There have been several studies evaluating white matter microstructural and 

connectivity changes during the first days after birth. Indeed, it has been found that the 

postnatal period is marked by further dendritic arborization, refinement of existing 

intracortical connections, and an increase in synaptogenesis which results in an abundance of 

connections (for a review see (Keunen et al., 2017)). Some important changes have also been 

found in the structural connectome in the early postnatal period, mainly an increase in 

integration (the ease with which different brain regions communicate) and segregation 

(presence of clusters, i.e., capacity for specialised processing) (Batalle et al., 2017). These 

changes are likely captured by DNN and underlie the accurate prediction of PMA at scan.  

Predicting PMA at scan from the structural connectome has, to our knowledge, only 

previously been done by Kawahara et al., where a MAE of 2.17 weeks and a correlation 

between true and predicted age of 0.87 were achieved in a cohort of 115 preterm infants 

(between 24 and 32 weeks PMA) (Kawahara et al., 2017). Although we achieved comparable 

correlation between true and predicted age, we achieved an improved MAE, which is likely 

due to the larger high-quality dataset and use of normative population.  

Prediction of age at birth  

Several studies have assessed the effects of prematurity in brain structure. Volumetric 

changes in the cerebellum (Limperopoulos et al., 2010), cortical and subcortical grey matter 

(Padilla et al., 2015) and altered shape of hippocampus (Thompson et al., 2009) have all been 

associated with preterm birth.  The preterm brain white matter is also affected - studies have 

demonstrated significant alterations of white matter microstructure in the preterm infant 

without visible focal lesions on clinical MRI (Anjari et al., 2007; Hüppi et al., 1998), as well as 

more overt white matter injuries such as periventricular leukomalacia (Counsell et al., 2003; 
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Volpe, 2003). Other studies have focused on the impact of preterm birth on brain 

connectivity. Interestingly, several key components of structural connectivity appear to be 

unaltered by prematurity including rich club organization (Ball et al., 2014) and core 

connections (Batalle et al., 2017). However, whilst these core features are preserved, various 

other components are significantly impacted by the degree of prematurity, including 

decreased local connectivity in various brain regions (such as cerebellum and superior frontal 

lobe) (Batalle et al., 2017),  or reduced fractional anisotropy in the corticospinal tracts and 

corpus callosum (Ball et al., 2012).  

These alterations likely underlie the ability of our DNN to clearly decipher the level of 

prematurity of infants from the structural connectome and led to a relatively good prediction 

of GA at birth (DNN performance of ý�ý�Ā� =  2.21  ýþþ�Ā; ýþý�Ā� =  8.90; ý�Ā�2  = 0.61; ÿ�Ā� =  0.82; ��Ā� ≪ 0.001) from the structural connectome of preterm-born infants 

scanned at term equivalent age. This shows that the structural connectome contains 

significant markers of cerebral white matter abnormalities, which are characteristic of 

prematurity level. This result is in keeping with an earlier study by Brown and colleagues 

which achieved prediction with precision of 1.6 weeks from the structural connectome of 

preterm infants only (77 scans, GA at birth between 24 and 32 weeks) using RF (Brown et al., 

2017). This high performance is likely due to the reduced age range of the cohort compared 

to our study. Smyser and colleagues also attempted to predict preterm-birth from brain 

networks obtained from functional MRI, using support vector machines with a cohort of 100 

babies (50 preterm) scanned at term equivalent age (Smyser et al., 2016), although their 

classification was only dichotomic. They achieved accuracy of 84% in classifying term- vs 

preterm-birth, suggesting that alterations in brain connectivity are also present in functional 

connectivity networks.  

Brain maturation index 

Brain maturation indices have been suggested as a powerful tool to capture alterations in the 

maturational trajectories of brain connectivity (Cao et al., 2015). Association with 

neurodevelopmental outcomes such as BSID-III is then important to evaluate the lasting 

impact of this predicted delay. Our bespoke brain maturation index � was thus computed for 

all preterm infants in which BSID-III outcome were available (50 infants). Contrary to 

adulthood where a positive � (predicted age > true age) is associated with emergence of 

various disorders such as cognitive decline (Jonsson et al., 2019), a negative � (predicted age 

< true age) can be associated with developmental delay in neonates. This hypothesis was 

verified as we found a positive correlation between the brain maturation index and BSID-III 

gross motor outcome in our cohort of preterm infants at 18 months of corrected age. This is 

in accordance with previous findings which have linked preterm birth to motor delay in later 

development (Foulder-Hughes and Cooke, 2007). This suggests that the brain maturation 

index may be a useful tool to capture potential delays and disorders in structural connectivity 

which may have a lasting impact on later neurological outcomes. Recent studies have shown 

the potential of normative modelling to find individual alterations in preterm babies 

(Dimitrova et al., 2020; O9Muircheartaigh et al., 2020), which are characterised by 

heterogeneous brain changes. In a similar way, we suggest that for an individual subject, a 
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high deviation from the population norm, translating to age predictions significantly lower 

than true age (negative brain maturation index) can be a marker of potential developmental 

delay so that these subjects should undergo further tests and may need follow up. Therefore, 

this marker may provide an opportunity for early preventive intervention, as other similar 

studies suggest (Cao et al., 2015).  

Methodological considerations 

We have assessed the performance of RF and DNN for prediction of key developmental 

characteristics in a large sample of neonates. Although both RF and DNN have been used 

extensively in the literature for brain imaging analysis, to our knowledge this is the first 

application in a large cohort of neonates. Previous studies have used convolutional neural 

networks (Kawahara et al., 2017) to extract information from the structural connectome 

which are particularly useful for data known to have local correlation, such is the case with 

segmenting brain MR images (Lecun et al., 1998). However, since the spatial distribution of 

adjacency matrices are not reflective of brain region locality and connectivity characteristics, 

we instead chose to use DNN in our investigation. Using this approach, we achieved better 

performance compared to RF on age prediction from the neonatal structural connectome. 

Although prediction of PMA at scan was also highly accurate with RF (ý�ý�Ā� =0.84; ýþý�Ā� = 1.10; ý�Ā�2 = 0.61; ����2 = 1.10;  ÿ = 0.79) DNN achieved better 

performance (ý�ý�Ā� = 0.72; ýþý�Ā� = 0.94; ý�Ā�2 = 0.67 ; ����2 = 0.94;  ÿ = 0.83)  with 

a more homoscedastic distribution of predictions over each of the 5 cross-validation folds 

(Figure 3). The improved performance of DNN over RF was more evident for prediction of GA 

at birth, with a better performance and more homoscedastic distribution of predictions on 

each fold with DNN (ý�ý�Ā� = 2.21; ýþý�Ā� = 8.90; ý�Ā�2 = 0.61; ��Ā�2 = 8.86;  ÿ = 0.82) 

over RF (ý�ý�Ā� = 2.76; ýþý�Ā� = 12.95; ý�Ā�2 = 0.43; ��Ā�2 = 12.93;  ÿ = 0.67) (Figure 

4A-D). Our choice of undersampling the term cohort to achieve balance between age 

categories, although diminishing the sample size, was necessary to avoid a class imbalance 

problem, which could have caused a systematic positive bias for preterm infants (predicted 

GA > true GA).  The relatively good performance of our model suggests that the impact of 

preterm birth on brain connectivity development is important and clearly apparent on the 

neonatal structural connectome. 

We achieved high performance in the prediction of PMA at scan in our preterm cohort by 

averaging the predictions from all 5 term trained DNN models (ý�ý�Ā� = 1.16; ýþý�Ā� =2.24  ; ý�Ā�2 = 0.42 ; ��Ā�2 = 1.45;  ÿ = 0.79;� ≪ 0.001). Although there was high accuracy in 

prediction and correlation between true and predicted age for preterm infants, predictions 

were on average inferior to those obtained for PMA at scan for term infants (Figure 5A). This 

is expected as preterm neonates are known to have specific differences in structural 

connectivity when compared with their term counterparts which may have reduced the 

generalizability of the predictive model (Ball et al., 2012; Batalle et al., 2017; Smyser et al., 

2010). The difference between true and predicted PMA (brain maturation index) varies 

greatly across subjects, which we hypothesise is representative of the severity of the delay.   
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Limitations 

There are several limitations to this work. Firstly, although the dHCP data set is the largest of 

its kind, a key next step will be to see whether the findings generalise to other populations as 

the regression algorithms were built and trained with the specific MRI acquisition protocol, 

brain parcellation and connectome generation methods developed for that project. To enable 

this, our predictive algorithms have been made publicly available, so other researchers can 

evaluate their performance in data sets with different acquisition and processing protocols. 

As the data was normalized prior to training, given a similar parcellation, we hypothesize that 

significant correlation between true and predicted GA at birth or PMA at scan should be 

obtained if tested on different data. There is increasing interest in predicting outcomes at age 

18-24 months directly from neonatal brain connectivity, as done in (Girault et al., 2019). We 

have implemented our own version of their method and tested on the sub-set of our data set 

with available BSID-III at 18 months. However, no significant prediction capacity was reached 

with our data (data not shown). This might be due to different developmental outcome 

(Mullen scale instead of BSID-III), as well as differences in the pre-processing pipeline, or 

differences in the sample size and characteristics.  

The recent progress in geometric deep learning, a new type of deep neural models specifically 

designed for data in non-Euclidean space (such as graphs), could be of great potential to 

improve the results of dense neural networks (Bronstein et al., 2017).  

It remains difficult to deploy this type of study to clinical settings, as the highly nonlinear and 

multidimensional inner working of the algorithms are difficult to interpret by humans. Recent 

progress in deep learning explainability is of great potential to help on that matter (for a 

review, see (Xie et al., 2020)). In this context, identifying which specific edges influenced the 

decision of the network for a specific prediction could help clinicians to diagnose specific 

neurodevelopmental disorders and may have implications for targeted intervention.  

5. Conclusion  

In this work, we have used DNN to uncover important demographic and clinical information 

from the neonatal structural connectome, for the first time in a large sample of normative 

neonates. We achieved a MAE of 0.72 weeks in predicting PMA at scan, demonstrating that 

the neonatal structural connectome contains key developmental information. Furthermore, 

our prediction of GA at birth, with MAE of 2.21 weeks, shows that the patterns characteristic 

of prematurity are clearly present in the neonatal connectome, and can be uncovered with 

machine learning approaches. Finally, our brain maturation index computation on the 

preterm cohort was significantly correlated to BSID-III motor outcome at corrected age of 18 

months. Brain maturation index thus appears to be a promising biomarker for prediction of 

neurodevelopmental disorders and delays, opening a potential path for early diagnosis and 

prevention of disorders in preterm born neonates. 
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