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Abstract

The development of perinatal brain connectivity underpins motor, cognitive and behavioural
abilities in later life. With the rise of advanced imaging methods such as diffusion MRI, the
study of brain connectivity has emerged as an important tool to understand subtle alterations
associated with neurodevelopmental conditions. Brain connectivity derived from diffusion
MRI is complex, multi-dimensional and noisy, and hence it can be challenging to interpret on
an individual basis. Machine learning methods have proven to be a powerful tool to uncover
hidden patterns in such data, thus opening an opportunity for early identification of atypical
development and potentially more efficient treatment.

In this work, we used Deep Neural Networks and Random Forests to predict
neurodevelopmental characteristics from neonatal structural connectomes, in a large sample
of neonates (N = 524) derived from the developing Human Connectome Project. We achieved
a highly accurate prediction of post menstrual age (PMA) at scan on term-born infants (Mean
absolute error (MAE) = 0.72 weeks, r =0.83, p<<0.001). We also achieved good accuracy when
predicting gestational age at birth on a cohort of term and preterm babies scanned at term
equivalent age (MAE = 2.21 weeks, r = 0.82, p<<0.001). From our models of PMA at scan for
infants born at term, we computed the brain maturation index (i.e. predicted minus actual
age) of individual preterm neonates and found significant correlation of this index with motor
outcome at 18 months corrected age. Our results suggest that the neural substrate for later
neurological functioning is detectable within a few weeks after birth in the structural
connectome.
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1. INTRODUCTION

Magnetic Resonance Imaging (MRI) has provided a broad range of in vivo insights about the
structure and function of the human brain. Diffusion MRI in particular, enables the
characterization of microstructural changes in orientation and structure of white matter,
opening the possibility to study brain structural connectivity and allowing the systematic
description of whole-brain structural networks: the human connectome (Honey et al., 2010;
Sporns et al., 2005).

During the perinatal period, the brain undergoes significant changes and consolidation of its
structural connectivity, which underpins the expansion of motor, cognitive and behavioural
abilities (Johnson, 2001). Since the inception of connectomics (Hagmann 2005; Sporns,
Tononi, and Kotter 2005) several studies have tried to characterise early development of the
structural connectome (Fan et al. 2011; Hagmann et al. 2010). Subtle alterations in the
development of brain connectivity have been suggested to underlie atypical
neurodevelopmental outcome in populations with perinatal risk factors, such as children born
preterm (Batalle et al., 2018). This is of clear significance as preterm birth comprises
approximately 11% of all births, and is the main global cause of death and disability in children
under 5 years of age (Blencowe et al., 2012), as well as representing one of the most pervasive
perinatal risk factors for atypical neurodevelopment (Wood et al., 2000). It has been
associated with an increased risk of developing neurodevelopmental conditions such as
motor, visuospatial and sensorimotor delay (Marlow et al., 2007), inattention, anxiety and
social difficulties (Johnson and Marlow, 2014), autism spectrum (Johnson et al., 2010),
cerebral palsy (Marlow et al., 2005) or psychiatric disorders in adulthood such as depression
and bipolarity (Nosarti et al., 2012).

With the increasing interest in detailed study of neonatal brain connectivity, projects such as
the developing Human Connectome Project (dHCP) have arisen which allow the development
of bespoke methods to study the brain during this crucial period. The dHCP is an open science
project which provides a large normative sample of neonatal structural, diffusion and
functional MRI data with high spatial, angular and temporal resolutions. Features of this
project include: advances in hardware (Hughes et al., 2017) and protocols for neonatal
diffusion MRI acquisition (Hutter et al. 2018); the use of multiband techniques to accelerate
acquisition time combined with approaches to correct motion (Cordero-Grande et al. 2016;
Cordero-Grande et al. 2019); and the development of state-of-the-art preprocessing pipelines
for neonatal MRI data (Bozek et al.,, 2018; Christiaens et al. 2018; Bastiani et al. 2019;
Fitzgibbon et al. 2020; Makropoulos et al., 2018). These have together significantly improved
neonatal MRI acquisition methods and data quality.

Despite this progress, studying the neonatal connectome remains challenging. Indeed, many
methodological issues hamper the interpretation of the connectome (Sporns, 2013) including
the difficulty of detecting origins and termination of connections (Jbabdi and Johansen-Berg,
2011) or a high number of false positive streamlines (Maier-Hein et al., 2017). Furthermore,
the high dimensionality of the data and low number of scans usually available in neonates
make underlying patterns very difficult to uncover.
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Recent progress in machine learning offers a powerful alternative to study the structural
connectome. Specifically, deep neural networks, which are known for their ability to model
complex non-linear relationships, can help uncover hidden patterns in the connectome, and
potentially detect abnormal patterns of connectivity in individual subjects. In adult brain
connectivity research, a number of studies have used machine learning and deep learning to
study the structural connectome (see (Brown and Hamarneh, 2016) for a review). Several
studies also used similar approaches in neonates: Kawahara and colleagues have developed
BrainNetCNN, a Convolutional Neural Network composed of edge to edge, edge to node, and
node to graph convolution filters on structural connectivity to predict post menstrual age
(PMA) at scan and cognitive performance from the structural connectome (Kawahara et al.,
2017). A recent study by Girault and colleagues similarly focused on using the structural
connectome at birth to predict cognitive abilities (Mullen score) at age 2 with dense neural
networks (Girault et al., 2019). However, little is known about the predictive power of the
connectome in a large normative neonatal population such as that of the dHCP.

A promising method in adult and neonatal neuroscience is the study of the “brain maturation
index” (also known as “brain delta” or “predicted age difference”) corresponding to the
apparent age of the subject as compared to the norm (Dosenbach et al. 2010; Cao et al. 2015;
Jonsson et al. 2019; Liem et al. 2017; Smith et al. 2019). By training regression models to fit
the age of subjects from large normative imaging datasets, we can predict the age of
individual subjects and compute the difference between the prediction and subject’s true
age. This difference gives information about brain maturation and its divergence from the
population norm. As such, in adults, a positive (predicted age > true age) difference is
interpreted as demonstrating accelerated ageing, and is associated with disorders such as
cognitive impairment (Liem et al., 2017), schizophrenia (Koutsouleris et al., 2014) or diabetes
(Franke et al., 2013). In neurodevelopment, studying the brain maturation index is therefore
extremely relevant for preterm born infants where neurodevelopmental delays and
psychiatric disorders often occur (Brown et al.,, 2017; Galdi et al., 2020; Rasmussen et al.,
2017).

In this work, we propose the use of two different machine learning algorithms - Random
Forests (RF) and Deep Neural Networks (DNN) - to predict PMA at scan (i.e. brain maturation),
and gestational age (GA) at birth (i.e. degree of prematurity), from the neonatal structural
connectome in a large sample of neonates scanned at term equivalent age. Using models
obtained for the term-born cohort, brain maturation index was computed for our preterm-
born cohort allowing us to assess whether it predicted neurodevelopmental outcome at 18
months.
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2. Methods and Materials
2.1 Participants

All participants were part of the dHCP, approved by the National Research Ethics Service West
London committee (14/L0O/1169).

524 infants (240 female and 284 male), born between 23*° weeks and 42*2 week of gestation,
underwent MRI between 37*! weeks and 45*! weeks. The participant gestational age at birth
(GA) and postmenstrual age at scan (PMA) distribution is presented in Figure 1A-B. Full
participant clinical information is presented in Table 1.

The Bayley Ill Scales of Infant and Toddler Development (BSID-III) (Bayley 2006) were collected
at 18 months corrected age and available for 314 infants including 50 preterm-born infants.
We used scores of motor (fine and gross), communication (expressive and receptive) and
cognitive (raw) score. Assessments were carried out by experienced paediatricians or
psychologists. Detailed assessment distributions are presented in Table 1.
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Figure 1. Distribution of (A) GA at birth and (B) PMA at scan of full cohort (N=524). (C) GA at
birth of cohort used for predicting GA at birth.

2.2 MRI acquisition

All scans were collected in the Evelina Newborn Imaging Centre based on the Neonatal
Intensive Care Unit, St Thomas hospital London using a Philips Achieva 3T scanner (Best, NL).
All scans were acquired using the dHCP neonatal brain imaging system which includes a 32
channel receive neonatal head coil (Rapid Biomedical GmbH, Rimpar, DE) (Hughes et al.,
2017). Informed written parental consent was obtained prior to imaging. Positioning of all
infants was done with a lightweight protective “shell”, which was positioned on an MRI safe
trolley to ease transportation. Immobilization of the infants in the shell was done using bead
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filled inflatable pads (Pearltec, Zurich, CH). In addition to the pads, acoustic protection
included earplugs moulded from a silicone-based putty (President Putty, Coltene Whaledent,
Mahwah, NJ, USA) placed in the external auditory meatus and neonatal earmuffs (MiniMuffs,
Natus Medical Inc, San Carlos, CA, USA). To avoid sudden sound changes which might wake
up the infant, the MRI software was modified in order to gradually increase the noise from 0
to the average operating point (Hughes et al., 2017). All scans were supervised by a
paediatrician or neonatal nurse experienced in MRI procedures; vital signs including pulse
oximetry, temperature and electrocardiography data were monitored throughout data
acquisition. All infants were scanned during natural unsedated sleep following feeding.

T2-weighted images were acquired using a Turbo spin echo sequence with parameters TR =
12s and TE = 156ms, SENSE factor 2.11 (axial) and 2.54 (sagittal) with overlapping slices
(resolution = 0.8 x 0.8 x 1.6 mm?3). Super-resolution methods (Kuklisova-Murgasova et al.,
2012) as well as motion correction methods (Cordero-Grande et al., 2018) were combined to
maximise precision and resolution of T2-weighted images (resolved to 0.8 x 0.8 x 0.8 mm?3).
Diffusion weighted imaging was acquired in 300 directions with parameters TR = 3.8s, TE =
90ms, SENSE factor 1.2, multiband factor 4, resolution = 1.5 x 1.5 x 3mm?3 (with 1.5mm slice
overlap), diffusion gradient encoding: b=0 s/mm? (n=20), b=400 s/mm? (n=64), b=1000 s/mm?
(n=88), b=2600 s/mm? (n=128), and using interleaved phase encoding (Hutter et al., 2018b).

2.3 Pre-processing and connectome generation

Tissue segmentation of T2-weighted volumes was performed using a neonatal specific
segmentation pipeline (Makropoulos et al.,, 2014) and template (Schuh et al. 2018).
Parcellation of 90 cortical and subcortical regions (Shi et al., 2011) adapted to the dHCP
weekly age-dependant high-resolution bespoke template (Schuh et al. 2018) was propagated
to each subject’s T2w native space through non-linear registration based in a diffeomorphic
symmetricimage normalization method (SyN) available in ANTS software (Avants et al., 2011),
using T2w contrast and tissue segmentation as input channels. Tissue maps and atlas
parcellation were propagated from each T2w native space to each subject’s diffusion native
space with a rigid registration using b=0 volumes as target. All rigid registrations were
performed with IRTK software (Schnabel et al. 2001). Details of the 90 cortical and subcortical
regions are presented in Supplementary Table 1.

Diffusion MRI was reconstructed at an effective resolution of 1.5mm isotropic and denoised
using a patch-based estimation of the diffusion signal based on random matrix theory
(Veraart et al., 2016). Gibbs ringing was suppressed (Kellner et al., 2016) and BO field map
estimated from b=0 volumes in order to correct magnetic susceptibility-induced distortion
using FSL Topup (Andersson et al., 2003). Data was corrected for slice-level motion and
distortion in a data-driven g-space representation using a bespoke spherical harmonics and
radial decomposition (SHARD) basis of rank 89 corresponding to spherical harmonics of order
Imax=0,4,6,8 for each respective shell, with registration operating at a reduced rank of 22
(Christiaens et al., 2018). DWI intensity inhomogeneity field correction was performed using
the ANTs N4 algorithm (Tustison et al., 2010). Tools and pipelines implemented in MRtrix3
(Tournier et al., 2019) were used for quantitative analysis of the diffusion MRI data.
Developing neonatal brain tissue undergoes rapid changes in cellular properties and water
content that can be to a first approximation captured by a non-negative linear combination
of anisotropic signal from relatively mature WM and from isotropic free fluid (Pietsch et al.,
2019). We use data from 20 healthy full term control babies from our sample to extract a set
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of two representative WM (Tournier et al., 2013) and fluid-like (Dhollander et al., 2016,
Dhollander et al., 2018) signal fingerprint (response functions) that are used to deconvolve
each subject’s diffusion signal into a fibre orientation distribution (FOD) image, capturing
WM-GM-like signal, and scalar fluid density image using the multi-tissue multi-shell
constrained spherical deconvolution technique (Jeurissen et al. 2014). Residual intensity
inhomogeneity were corrected and component densities calibrated using a multi-tissue log-
domain intensity normalisation (Raffelt, et al. 2017). Resulting normalised WM-GM:-like FODs
were used to generate 10 million streamlines with an anatomically constrained probabilistic
tractography (ACT) (Smith et al., 2012) with biologically accurate weights (SIFT2) (Smith, et al.
2015). The fibre density SIFT2 proportionality coefficient (u) for each subject was obtained to
achieve inter-subject connection density normalisation. The structural connectivity network
of each infant was then constructed by calculating the u x SIFT2-weighted sum of streamlines
connecting each pair of regions (thus built as a symmetric adjacency matrix of size 90x90).

In addition, we used 73 structural connectivity matrices obtained from an independent
dataset (Batalle et al., 2017) to test the design of the initial hyperparameters and architecture
for predictive algorithms presented in sections 2.4.3 and 2.4.4.

2.4 Prediction of age at scan and age at birth

All analyses on this section were performed using Python 3.7. The machine learning library
Scikit Learn (Pedregosa et al., 2011) was used for training the RF algorithm. The deep learning
framework Keras (version 2.0.3) (Chollet et al., 2015) was used to train the deep learning
models.

2.4.1 Feature set

As the structural connectome is presented as a symmetric adjacency matrix (in our case of
size 90x90, with 90 brain regions) the lower triangle of the matrix contains all information.
We thus extracted and reshaped the lower triangle of each subject’s structural connectome
S; as a 1D vector X; with number of connectivity elements n = 4005, thus leading to the
ensemble X of connectivity vectors across N subjects:

X1

X, . +

X = ,With X; = [xl-ll,xl-,z, ...,xi,n]; x;j € R" and n = 4005
Xy

We normalized each data point across the training sets, and normalized the testing set with
the training normalization values using a min-max normalization:
- xi,]’ - Mln(X)
X:: =
" Max(X) — Min(X)

with Min(X) and Max(X) € R*

Thus, assuming that testing data also falls between previous ranges, our training and testing
data has the following form:
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X=[%2|,withX; = [%;1, %2 ., %n|; % € [0,1] and n = 4005

2.4.2 Prediction models

We carried a set of predictions of demographic information on different population samples
using different regression algorithms. In each case, we fitted a regression model f to predict
a variable Y representing demographic information (e.g. GA at birth or PMA at scan) for
subjects in our dataset. We thus had prediction Y’ as follows:

' =f(X); withY' =y, 55", o8

We computed the regressor f that minimizes | Y’ — Y |2. We used two different supervised
machine learning regression algorithms to do this: RF and DNN.

2.4.3. Random Forests regression

RF are an ensemble learning method for classification and regression based on constructing
a multitude of decision trees (weak learners) which are individually trained through the
technique of “bagging”. RF makes predictions by averaging the prediction of each individual
tree, hence acting as a strong learner (Breiman L., 2001). For optimal performance, two main
hyperparameters should be tuned: the number of trees (estimators) in the forest and the
maximum depth of each tree. The number of trees determines the smoothness of the
decision boundary and the depth corresponds to the maximum number of levels allowed for
each tree. RF regressors’ performance often depends on finding the optimal value for these
to ensure that there is no overfitting or underfitting.

Here we use the RF regressor from the Scikit Learn RandomForestRegressor implementation
(Pedregosaetal., 2011). The RF were trained using mean squared error (MSE) as loss function.
Hyperparameters were tuned separately for the PMA at scan and GA at birth prediction by
performing a grid search on a set of 73 structural connectomes from an independent dataset
(Batalle et al., 2017). This allowed us to choose optimal parameters without overfitting our
model to the studied data. Hyperparameters used are presented in sections 2.4.6 and 2.4.7.

2.4.4. Deep Neural Networks regression

Deep (Fully Connected) Neural Networks (DNN) are universal function approximators whose
parameters can be trained to model complex nonlinear relationships between features and
labels via backpropagation (Rumelhart et al., 1986). However, the performance of a DNN also
depends on the hyperparameters: design choices are mainly related to the architecture of the
network (the layer types, number of layers and number of nodes per layers, activation
functions at each layer), the loss function, and the training method (the number of epochs,
the optimization function and its parameters).

The DNN in this work were implemented using the deep learning library Keras (version 2.0.3)
(Chollet et al., 2015). As performing a grid search to find the best model hyperparameters is
computationally expensive when training DNN, we started with a basic architecture built from
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previous work and common DNN knowledge (Smith 2018), and subsequently optimized these
via manual refinement architecture search. To avoid overfitting the model to the data used
in this paper, this was done on the same set of 73 structural connectomes from an
independent sample as was used for the RF training, independently for the GA at birth and
PMA at scan prediction. For both prediction tasks, the models were trained using MSE as a
loss function and the Adam optimizer (Kingma and Ba, 2015), albeit with different learning
rates. Further details on the network architecture are included in sections 2.4.6 and 2.4.7.

2.4.5 Training and evaluation of the models

To assess the performance of the prediction models, the evaluation metric was calculated on
test data excluded from training and hyperparameter tuning. We split the dataset into k
groups (folds) and fit the model k times. Each time, one group is used to evaluate
performance, while the rest of the groups are used for training and validation. The evaluation
scheme is presented in Figure 2B.

We split the data into k=5 groups (folds), with 20% of data used for testing at each fold. The
remaining 80% of the data were further split for training (65%) to fit the models and validation
(15%) to tune the hyperparameters. Min-max normalisation presented in section 2.4.1 is
fitted on the training/validation set, where normalization parameters are saved and applied
to the test set.

We added a bias correction as previously described (Smith et al. 2019; Peng et al. 2019) to
correct age dependency of the training residuals. Briefly, we used a linear model Y’ = f(X) =

~ r_
aY + B to obtain an unbiased estimate of Y’ as Y = %, where the parameters a and (8 are

estimated during training (on both the combination of training and validation set) and are
thus applied directly to the test set. We obtained our final corrected prediction 17l for each
structural connectome as follows:

s _f(X)-B_¥' -8

Y, " - =F(X;); aB €ER

The final performance is calculated by averaging test-set performance over the 5 folds. We
used mean absolute error (MAE) as our evaluation metric, calculated on each test set k as
follows:

1 _
MAE, = N—VZS v - 7
IESk

Where N, is the number of subjects belonging to test set k (S) and Y; and 171 are actual and
predicted outcome of subject i. In addition, we also evaluate MSE and R? scores for each test
set k, which are calculated as follows:

1 -
MSE = 5= ) (6= 7

ViESy
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N2
_ ZViESk(Yi - Yl)
Dvies, (Y; — V)2

Where Y is the mean actual age of test set k. We also calculated Pearson’s Correlation (73,)
and p-value (py) between actual (Y) and predicted output (¥) for each test set. As we obtain
a prediction for every subject (albeit with different models) we can compute the MAE,;,
MSE,,;, R?,;, T¢or and p;,; by considering the predictions of the 5 test sets (see Figure 2A).
Finally, we assessed the presence of heteroscedasticity in our predictions by comparing the
variance g2, of the absolute error — a lower variance signifies more homoscedastic
predictions.

RZ=1

2.4.6 Prediction of PMA at scan in term-born infants

To build a model of typical development of connectivity we used the full cohort of 418 term-
born babies (GA at birth >= 37) with PMA at scan between 37 and 45 weeks.

We first predicted PMA at scan from the vectorised and normalized structural connectome X
using RF regressor model. Optimal parameters of the model (max depth = 250, number of
estimators = 30) were found by performing a grid search in an independent dataset (see
section 2.4.3). We trained each fold on N~335 samples (80%) including a validation set. We
then tested the model on the remaining set (N~83, 20%) in each fold, thus being able to
predict age at scan on all 418 structural connectomes of term infants (see Figure 2A).

In a similar fashion, we also trained a regression DNN to predict PMA at scan from the
vectorised and normalized structural connectome X. This DNN comprises one input layer with
4005 input nodes, 7 hidden layers, 6 activation layers (ReLu), 5 batch normalisation layers and
one output layer with one node. Training was done for 50 epochs with learning rate of 0.007
and remaining parameters with default value. Detailed structure of the architecture of this
DNN is provided in Figure 2D.

We applied the previously described bias correction method on both DNN and RF, by fitting
a and S for each model f, using both the training and validation set; thus reaching 5 distinct
models F;, F,, ..., F5 for both the DNN and RF methods.

2.4.7 Prediction of GA at birth

To assess the effect of preterm birth on structural connectivity we trained a prediction model
for GA at birth from X with both DNN and RF in a similar fashion as previously described for
prediction of PMA at scan.

Since the dHCP cohort has significantly more term-born than preterm-born infants, there is a
“class imbalance” in the GA distribution that may skew the model prediction. We therefore
randomly selected a sub-sample of term subjects that had, on average, equal density of
subjects on each GA at birth weekly bin. Our 106 preterm infants were distributed in 15
different GA at birth bins (22w-23w; 23w-24w ... 36w-37w), thus providing an average of 7
infants per age category. We kept all 106 preterm infants and randomly sampled 7 infants


https://doi.org/10.1101/2020.09.28.317180
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.28.317180; this version posted September 29, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

from each of the term age categories (37w-38w, 38w-39w, ... 41w-42w) and the 4 subjects
born 42w-43w (as only 4 were born between 42w and 43w GA), for a total of 39 term-born
infants. This resulted in a total of 145 infants with a balanced distribution (see Figure 1C).

We first attempted prediction of GA at birth from the vectorised and normalized structural
connectome X using RF with optimal parameters max depth = 300, number of estimators =
50. For each fold, we trained using N=116 samples (80%) including a validation set. We then
tested the model on the remaining set (N=29, 20%) in each fold, predicting GA at birth for all
145 structural connectomes considered.

In a similar fashion, we also trained a DNN to predict GA at birth. This DNN consists of one
input layer, 6 hidden layers, 6 activation layers (ReLu), one dropout layer, and one output
layer. 120 epochs were used for training, with learning rate 0.003 and remaining parameters
at default value. Detailed information on the architecture is provided in Figure 2E.

We applied the bias correction method on both DNN and RF by fitting a and 8 for each model
h; from the validation set; thus reaching 5 distinct models H;, H,, ..., Hs for both the DNN and
RF methods.

2.4.8 Brain maturation index

We defined brain maturation index § (also called brain age or predicted age difference in the
literature) as the difference between the predicted age ¥ and true age Y of a subject n
(Dosenbach et al., 2010): §; = ¥; — Y;

We developed a model of typical brain development by training 5 models to predict PMA at
scan on term-born infants only (section 2.4.6). Prediction of PMA at scan for each preterm
subject was computed by taking the mean of the predictions from each of the 5 DNN trained
models F;, from each cross-validation partition:

5
.1 - -
Y, = Ez F.(X) =6(X))
k=1

Following this, we computed the brain maturation index §; of each preterm subject:

6= Y, -Y,=G(X;) -V,
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Figure 2. (A) Pipeline for age prediction from MRI. (B) Cross Validation protocol. (C) Legend
for DNN architecture components. (D) PMA at scan DNN architecture. (E) GA at birth DNN
architecture.
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2.5 Statistical methods

Differences between term and preterm cohorts on all relevant characteristics were assessed
by computing a two tailed independent t-test or chi-square test as appropriate. The
association between brain maturation index §; and neurodevelopmental outcomes was
assessed with Pearson’s Correlation coefficient for all preterm infants having both §; and
BSID-Ill developmental outcomes at age 18 months corrected age. All outcomes were
corrected for socio economic status, captured by the English Index of Multiple Deprivation
(IMD). IMD factor summarizes information from 38 different factors such as income,
employment, education, crime rates and health situation for all neighbourhoods in England
(Index of Multiple Deprivation, 2015). Lower IMD relates to lower level of deprivation. All p-
values presented are uncorrected for multiple comparisons.

2.6 Data availability

The imaging and collateral data from the dHCP can be downloaded by registering at
https://data.developingconnectome.org/

Structural connectivity networks and code used to predict age at birth and age at scan are
available in  https://github.com/CoDe-Neuro/Predicting-age-and-clinical-risk-from-the-
neonatal-connectome
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3. Results
3.1 Sample characteristics

There were no significant differences in PMA at scan and male/female proportion between
term and preterm neonates in this study. For the subjects for which 18 months BSID-III follow-
up neurodevelopmental assessment was available, there were no significant differences in
outcomes between term and preterm infants. However, a significant group difference
(p<<0.001) was found in IMD scores, with term infants showing significantly higher
deprivation than preterm infants. Detailed cohort characteristics are provided in Table 1 and
Figure 1. Neurodevelopmental outcome details are provided in Table 1.

Table 1. Detailed sample and outcome characteristics.

Term Born Preterm born "
N = 418 N = 106 p-value
Gestational age at birth Median = 40*! Median = 32*2
[weeks *9#¥] IQR = 390 — 40* IQR = 28*5 — 34+ <<0.001
Postmenstrual age at Median = 41*° Median = 41*° —
scan [weeks 9% IQR = 39*6 — 42+2 IQR = 39*° — 42*2 '
Sex, no. of female (%) 195 (47%) 45 (42%) 0.401
BSID—III,. no. (% of total 264 (63%) 50 (47%) 0.002
population)
Gestational age at birth
(weeks *9¥%) of subjects Median = 40*! Median = 31* << 0.001
with BSID-1I data IQR = 39*1 — 40*® IQR = 282 —34* '
available
Postmenstrual age at
scan (weeks *9¥s) of Median = 40*® Median = 41*2 0.158
subjects with BSID-IlI IQR = 39*> —42%*0 IQR = 39*> —42* '
data available
mi Scc;;rse|oci]|c||sum;actt§ Mean = 26.57 Mean = 18.74 <<0.001
. STD =12.33 STD = 10.68
available
Fine Motor Mean =11.364 Mean =10.80 0.130
STD=2.33 STD=2.74
Mean = 9.049 Mean = 8.74
Gross Motor STD = 1.77 STD = 2.24 0.282
. Mean = 9.98 Mean =9.74
Cognitive Score STD = 2.17 STD = 2.82 0.503
Expressive Mean = 8.82 Mean = 8.82 0.996
communication STD =2.61 STD =2.73
Receptive Mean =9.90 Mean = 10.22 0.524
Communication STD=3.21 STD=3.31

*p-values computed with two tailed independent t-test or chi-square test as appropriately.
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3.2 Prediction of PMA at scan
3.2.1 Prediction of PMA at scan with RF

We trained a RF regressor to fit for PMA at scan from vectorised and normalized structural
connectome X on term infants only. We obtained MAE,,, = 0.84 weeks, MSE,,, = 1.10,
R%,, =0.61, 62, = 1.10 with correlation between true and predicted 7,y = 0.79 (Pror <
0.001). Figure 3A shows true PMA vs predicted PMA on each of the 5 cross-validation folds.
Detailed results of each fold are presented in Figure 3C.

3.2.2 PMA at scan prediction with DNN

Similarly, we trained a DNN regressor to fit for PMA at scan from vectorised and normalized
structural connectome X on term infants only. We obtained MAE,,, = 0.72 weeks,
MSE,,; = 0.94,R?,,=0.67, 62, = 0.94 with correlation between true and predicted 1}, =
0.83 (pror < 0.001). Figure 3B shows true PMA vs predicted PMA on each of the 5 cross-
validation folds. Detailed results of each fold are presented in Figure 3D.

3.3 Prediction of GA at birth
3.3.1 Prediction of GA at birth with RF

We trained a RF regressor to fit GA at birth from vectorised and normalized structural
connectome X on balanced data (145 infants). We obtained MAE,,, = 2.76 weeks,
MSE,,; = 12.95, R%,, = 0.43, 62, = 12.93 with correlation between true and predicted
Tior = 0.67 (Dror <K 0.001). Figure 4A shows true GA at birth vs predicted GA at birth on
each of the 5 folds fold. Detailed results of each fold are presented in Figure 4B.

3.3.2 Prediction of GA at birth with DNN

Similarly, we trained a DNN from vectorised and normalized structural connectomeX on
balanced data. We obtained MAE,,, = 2.21 weeks, MSE,,, = 8.90, R%,, = 0.61, ¢2.,. =
8.86 with correlation between true and predicted 13, = 0.82 (psor < 0.001). Figure 4B
shows true GA vs predicted GA on each of the 5 folds. Detailed results of each fold are
presented in Figure 4D.
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PMA at scan prediction with RF
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c Fold by fold results - PMA Corrected Prediction with RF D Fold by fold results - PMA Corrected Prediction with DNN
MAE | MSE R> |Correlation| p value MAE = MSE R> |Correlation| p value

Fold 1 | 0.8687 | 1.1703  0.6872 0.8637 |<<0.001 ‘ Fold1 | 0.6227 - 0.6036 | 0.8387 0.9180 .<<0.001
Fold2  0.8111 | 1.0505 | 0.5766 0.7714 |<<0.001 Fold2 | 0.8014 1.0740 | 0.5671 0.8066 <<0.001
Fold3 | 0.7581 | 0.8899 | 0.6707 | 0.8307 |<<0.001 | Fold3 | 0.6606 0.6832 | 0.7472 0.8665 |<<0.001
Fold4 0.8800 | 1.2175 | 0.5213 0.7238 |<<0.001 Fold4 | 0.7368 1.3695 | 0.4615 0.7285 <<0.001
Fold5 0.8767 | 1.1925 | 0.5384 0.7372 |<<0.001 | Fold5 | 0.7769 0.9875 | 0.6178 0.8068 <<0.001
Total | 0.8387 | 1.1036 | 0.6083 0.7886 |<<0.001 ‘ Total | 0.7195 0.9424 | 0.6655 0.8276 | <<0.001

Figure 3. Detailed results of prediction of PMA at scan on term cohort. True vs Predicted
with (A) RF, (B) DNN. Fold by fold result with (C) RF, (D) DNN.
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GA at birth prediction with RF
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MAE | MSE R |Correlation| p value MAE | MSE R |Correlation| p value
Fold 1 | 2.2933 | 8.2487 | 0.5007 0.7446 | <<0.001 Fold1 | 2.1004 | 7.1552 | 0.5669 0.8536 |<<0.001
Fold 2 | 2.5409 | 17.026 | 0.2226 0.4984 |0.00593 Fold2 | 2.1143 | 8.0324 | 0.6332 0.8000 |<<0.001
Fold 3 | 2.6691 | 10.707 | 0.4854 | 0.7570 |<<0.001 Fold 3 | 1.6632 | 5.3014 | 0.7452 0.8958 |<<0.001
Fold 4 | 3.2971 | 14.605 | 0.4581 0.7264 |<<0.001 Fold4 | 2.4973 |10.3184| 0.6172 0.8611 <<0.001
Fold5 | 3.0124 | 14.141 | 0.4454 0.7299 |<<0.001 Fold5 | 2.6632 |13.6840| 0.4634 0.7544 |<<0.001
Total | 2.7626 | 12.946 | 0.4255 | 0.6670 |<<0.001 Total | 2.2077 | 8.8983 | 0.6051 | 0.8195 |<<0.001

Figure 4. Detailed results of prediction of GA at birth. True vs Predicted with (A) RF, (B)
DNN. Fold by fold result with (C)RF, (D)DNN.
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3.3 Brain Maturation Index

We computed the predicted PMA at scan of each preterm-born infant scanned at term-
equivalent age by averaging out the 5 predictions from the DNN term trained models. We
obtained MAE of 1.16 weeks on prediction of 106 preterm infants (MSE,,; = 2.24, R%,, =
0.42, 2., = 1.45), with correlation between true and predicted age between r = 0.79,
(p < 0.001). True vs predicted age is presented in Figure 5A.

We computed the brain maturation index §; from each prediction. Brain maturation index
(6;) was significantly correlated with BSID-IIl gross motor scale at 18 months corrected age (
r = 0.4590,p = 0.0008, Figure 5BC).

A Preterm PMA at scan Prediction B Brain Maturation Index vs. Gross Motor OUTCOME
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True PMA at scan[weeks] Brain Maturation Index
c . Correlation with prediction residuals
Outcome Sample size -
Correlation p-value
Fine Motor 50 0.0825 0.5688
Gross Motor 50 0.4590 0.0008
BSID-1Il outcomes | Receptive Communication 50 0.1278 0.3766
Expressive Communication 50 0.2578 0.0707
Cognitive scaled score 50 0.1986 0.1667

Figure 5. Association of Brain Maturation Index with BSID-1Il outcomes in preterm-born
infants. (A) True vs predicted PMA at scan for preterm infants. (B) Brain maturation index &
vs BSID-IIl Gross motor outcome corrected for IMD. (C) Detailed correlation and p-values of

preterm brain maturation index and BSID-IIl outcomes — statistically significant results

highlighted in bold red.
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4, Discussion

This work demonstrates that machine learning can uncover connectivity patterns associated
with typical and atypical development of structural brain connectivity, despite the high
dimensionality of the data. We obtained accurate prediction of PMA at scan in term-born
infants in a large normative sample of high-quality neonatal MRI data from the dHCP and
predicted GA at birth in preterm infants from scans at term equivalent age, showing the
impact of preterm birth on the structural connectome. Furthermore, we have also shown
significant correlation between brain maturation index estimated from brain connectivity at
birth and BSID-IIl gross motor outcome at 18 months of corrected age in preterm babies.
Overall, our results show that machine learning approaches can extract relevant information
on brain development from the neonatal structural connectome.

Prediction of age at scan

We achieved high accuracy in our prediction of PMA at scan on the term cohort, reaching a
low MAE of 0.72 weeks (MSE,,, = 0.94, R?,, = 0.67 ) and a high correlation between true
and predicted age (1o = 0.83; ptor < 0.001). While the structural connectome presents
several important challenges to study brain connectivity (Campbell and Pike, 2014) including
high numbers of false positive streamlines (Maier-Hein et al., 2017), our results suggest that
there is reliable information present to capture the subtle changes associated with weekly
development. There have been several studies evaluating white matter microstructural and
connectivity changes during the first days after birth. Indeed, it has been found that the
postnatal period is marked by further dendritic arborization, refinement of existing
intracortical connections, and an increase in synaptogenesis which results in an abundance of
connections (for a review see (Keunen et al., 2017)). Some important changes have also been
found in the structural connectome in the early postnatal period, mainly an increase in
integration (the ease with which different brain regions communicate) and segregation
(presence of clusters, i.e., capacity for specialised processing) (Batalle et al., 2017). These
changes are likely captured by DNN and underlie the accurate prediction of PMA at scan.

Predicting PMA at scan from the structural connectome has, to our knowledge, only
previously been done by Kawahara et al., where a MAE of 2.17 weeks and a correlation
between true and predicted age of 0.87 were achieved in a cohort of 115 preterm infants
(between 24 and 32 weeks PMA) (Kawahara et al., 2017). Although we achieved comparable
correlation between true and predicted age, we achieved an improved MAE, which is likely
due to the larger high-quality dataset and use of normative population.

Prediction of age at birth

Several studies have assessed the effects of prematurity in brain structure. Volumetric
changes in the cerebellum (Limperopoulos et al., 2010), cortical and subcortical grey matter
(Padilla et al., 2015) and altered shape of hippocampus (Thompson et al., 2009) have all been
associated with preterm birth. The preterm brain white matter is also affected - studies have
demonstrated significant alterations of white matter microstructure in the preterm infant
without visible focal lesions on clinical MRI (Anjari et al., 2007; Hippi et al., 1998), as well as
more overt white matter injuries such as periventricular leukomalacia (Counsell et al., 2003;
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Volpe, 2003). Other studies have focused on the impact of preterm birth on brain
connectivity. Interestingly, several key components of structural connectivity appear to be
unaltered by prematurity including rich club organization (Ball et al., 2014) and core
connections (Batalle et al., 2017). However, whilst these core features are preserved, various
other components are significantly impacted by the degree of prematurity, including
decreased local connectivity in various brain regions (such as cerebellum and superior frontal
lobe) (Batalle et al., 2017), or reduced fractional anisotropy in the corticospinal tracts and
corpus callosum (Ball et al., 2012).

These alterations likely underlie the ability of our DNN to clearly decipher the level of
prematurity of infants from the structural connectome and led to a relatively good prediction
of GA at birth (DNN performance of MAE,,, = 2.21 weeks; MSE,,, = 8.90; R, =
0.61; 110t = 0.82; pror < 0.001) from the structural connectome of preterm-born infants
scanned at term equivalent age. This shows that the structural connectome contains
significant markers of cerebral white matter abnormalities, which are characteristic of
prematurity level. This result is in keeping with an earlier study by Brown and colleagues
which achieved prediction with precision of 1.6 weeks from the structural connectome of
preterm infants only (77 scans, GA at birth between 24 and 32 weeks) using RF (Brown et al.,
2017). This high performance is likely due to the reduced age range of the cohort compared
to our study. Smyser and colleagues also attempted to predict preterm-birth from brain
networks obtained from functional MRI, using support vector machines with a cohort of 100
babies (50 preterm) scanned at term equivalent age (Smyser et al., 2016), although their
classification was only dichotomic. They achieved accuracy of 84% in classifying term- vs
preterm-birth, suggesting that alterations in brain connectivity are also present in functional
connectivity networks.

Brain maturation index

Brain maturation indices have been suggested as a powerful tool to capture alterations in the
maturational trajectories of brain connectivity (Cao et al., 2015). Association with
neurodevelopmental outcomes such as BSID-Ill is then important to evaluate the lasting
impact of this predicted delay. Our bespoke brain maturation index § was thus computed for
all preterm infants in which BSID-lll outcome were available (50 infants). Contrary to
adulthood where a positive § (predicted age > true age) is associated with emergence of
various disorders such as cognitive decline (Jonsson et al., 2019), a negative § (predicted age
< true age) can be associated with developmental delay in neonates. This hypothesis was
verified as we found a positive correlation between the brain maturation index and BSID-III
gross motor outcome in our cohort of preterm infants at 18 months of corrected age. This is
in accordance with previous findings which have linked preterm birth to motor delay in later
development (Foulder-Hughes and Cooke, 2007). This suggests that the brain maturation
index may be a useful tool to capture potential delays and disorders in structural connectivity
which may have a lasting impact on later neurological outcomes. Recent studies have shown
the potential of normative modelling to find individual alterations in preterm babies
(Dimitrova et al., 2020; O’Muircheartaigh et al., 2020), which are characterised by
heterogeneous brain changes. In a similar way, we suggest that for an individual subject, a
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high deviation from the population norm, translating to age predictions significantly lower
than true age (negative brain maturation index) can be a marker of potential developmental
delay so that these subjects should undergo further tests and may need follow up. Therefore,
this marker may provide an opportunity for early preventive intervention, as other similar
studies suggest (Cao et al., 2015).

Methodological considerations

We have assessed the performance of RF and DNN for prediction of key developmental
characteristics in a large sample of neonates. Although both RF and DNN have been used
extensively in the literature for brain imaging analysis, to our knowledge this is the first
application in a large cohort of neonates. Previous studies have used convolutional neural
networks (Kawahara et al., 2017) to extract information from the structural connectome
which are particularly useful for data known to have local correlation, such is the case with
segmenting brain MR images (Lecun et al., 1998). However, since the spatial distribution of
adjacency matrices are not reflective of brain region locality and connectivity characteristics,
we instead chose to use DNN in our investigation. Using this approach, we achieved better
performance compared to RF on age prediction from the neonatal structural connectome.
Although prediction of PMA at scan was also highly accurate with RF (MAE;,; =
0.84; MSE,,, = 1.10; RZ, =0.61; 62, =1.10; r =0.79) DNN achieved better
performance (MAE,,; = 0.72; MSE,,, = 0.94; R?,, = 0.67 ; 0., = 0.94; r = 0.83) with
a more homoscedastic distribution of predictions over each of the 5 cross-validation folds
(Figure 3). The improved performance of DNN over RF was more evident for prediction of GA
at birth, with a better performance and more homoscedastic distribution of predictions on
each fold with DNN (MAE,,, = 2.21; MSE,,, = 8.90; R%,, = 0.61;02, = 8.86; r = 0.82)
over RF (MAE,,; = 2.76; MSE,,, = 12.95; RZ,, = 0.43; 02, = 12.93; r = 0.67) (Figure
4A-D). Our choice of undersampling the term cohort to achieve balance between age
categories, although diminishing the sample size, was necessary to avoid a class imbalance
problem, which could have caused a systematic positive bias for preterm infants (predicted
GA > true GA). The relatively good performance of our model suggests that the impact of
preterm birth on brain connectivity development is important and clearly apparent on the
neonatal structural connectome.

We achieved high performance in the prediction of PMA at scan in our preterm cohort by
averaging the predictions from all 5 term trained DNN models (MAE;,; = 1.16; MSE,,; =
2.24 ;R%,, = 0.42; 0%, = 1.45; r = 0.79;p < 0.001). Although there was high accuracy in
prediction and correlation between true and predicted age for preterm infants, predictions
were on average inferior to those obtained for PMA at scan for term infants (Figure 5A). This
is expected as preterm neonates are known to have specific differences in structural
connectivity when compared with their term counterparts which may have reduced the
generalizability of the predictive model (Ball et al., 2012; Batalle et al., 2017; Smyser et al.,
2010). The difference between true and predicted PMA (brain maturation index) varies
greatly across subjects, which we hypothesise is representative of the severity of the delay.
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Limitations

There are several limitations to this work. Firstly, although the dHCP data set is the largest of
its kind, a key next step will be to see whether the findings generalise to other populations as
the regression algorithms were built and trained with the specific MRI acquisition protocol,
brain parcellation and connectome generation methods developed for that project. To enable
this, our predictive algorithms have been made publicly available, so other researchers can
evaluate their performance in data sets with different acquisition and processing protocols.
As the data was normalized prior to training, given a similar parcellation, we hypothesize that
significant correlation between true and predicted GA at birth or PMA at scan should be
obtained if tested on different data. There is increasing interest in predicting outcomes at age
18-24 months directly from neonatal brain connectivity, as done in (Girault et al., 2019). We
have implemented our own version of their method and tested on the sub-set of our data set
with available BSID-Ill at 18 months. However, no significant prediction capacity was reached
with our data (data not shown). This might be due to different developmental outcome
(Mullen scale instead of BSID-Ill), as well as differences in the pre-processing pipeline, or
differences in the sample size and characteristics.

The recent progress in geometric deep learning, a new type of deep neural models specifically
designed for data in non-Euclidean space (such as graphs), could be of great potential to
improve the results of dense neural networks (Bronstein et al., 2017).

It remains difficult to deploy this type of study to clinical settings, as the highly nonlinear and
multidimensional inner working of the algorithms are difficult to interpret by humans. Recent
progress in deep learning explainability is of great potential to help on that matter (for a
review, see (Xie et al., 2020)). In this context, identifying which specific edges influenced the
decision of the network for a specific prediction could help clinicians to diagnose specific
neurodevelopmental disorders and may have implications for targeted intervention.

5. Conclusion

In this work, we have used DNN to uncover important demographic and clinical information
from the neonatal structural connectome, for the first time in a large sample of normative
neonates. We achieved a MAE of 0.72 weeks in predicting PMA at scan, demonstrating that
the neonatal structural connectome contains key developmental information. Furthermore,
our prediction of GA at birth, with MAE of 2.21 weeks, shows that the patterns characteristic
of prematurity are clearly present in the neonatal connectome, and can be uncovered with
machine learning approaches. Finally, our brain maturation index computation on the
preterm cohort was significantly correlated to BSID-IIl motor outcome at corrected age of 18
months. Brain maturation index thus appears to be a promising biomarker for prediction of
neurodevelopmental disorders and delays, opening a potential path for early diagnosis and
prevention of disorders in preterm born neonates.
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