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Abstract

1. Whereas the study of patterns of distributioomaéroscopic animals has long been dominated by the
ubiquity paradigm, we are starting to appreciatat tmicroscopic animals are not as widespread as
previously thought and that habitat preferences heye a strong role in structuring their patterfs o
occurrence. However, we still ignore to what extant through which mechanisms the environment
selects for specific communities or traits in mégopic animals. This gap is partly due to the laicata

on the relevant traits of many species, and pdélgause measuring environmental variables at an
appropriate resolution may be problematic.

2. We here overcome both issues by analysing thetiinal space of marine mite communities living in
a sea-grassPfsidonia oceanica) meadow across two habitats: the leaves and thee.mehe strictly
benthic lifestyle and the conserved morphology @esnallow for unambiguous characterization of thei
functional traits, while the discrete nature of thv® habitats alleviates the uncertainty in theinlegical
characterization.

3. Our results show that habitat filters the disttion of certain traits favouring a higher divéysi
dispersion, and evenness of functional traits érttatte than in the leaves. We further observegdeah
variations in the functional diversity of commuggj potentially following the seasonal renovatiow a
decay of seagrass leaves. However, in spite oftidnd ecological differences between the two hébita
and across seasons, the filtering effect is paatidl affects mostly relative species abundances.

4. We conclude that in other microscopic organisms, habitat filtering might appmanmere subtle
especially if they are capable of long distancepelisal or occur in ecological systems where
environmental variables vary continuously or flatiithrough time. Our study therefore emphasises t
need of moving from a merely taxonomical towardiractional view of ecological studies of microscopic

organisms if we want to achieve a mechanistic wtdeding of their habitat and distribution patterns

Keywords: Functional originality; meiofauna; Grinellian hig; n-dimensional hypervolumes; trait

ecology

Introduction

It is unlikely to see buffaloegrazing on the sea surface or whatgigling in the sky (Adams, 1984).
However, as the body size of animals decreaseqrtimlility increases okencoungring them in places
wherethey are not supposed to be. This is because the realised niche of a micrdscmpimal—namely,

where it can be actually found—can extend well Inelythe set of abiotic conditions that allow postiv
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75  population growth rates (Grinnellian niche). Thésead ecological ranges are more frequent amongst
76  microscopic animals possessing traits that fatélitang distance dispersal such as dormancy, leng t
77  viability, and parthenogenesis (Fontaneto & Hor2fl13, Fontaneto, 2019). Similar traits are foufiod,
78  example, in many species of nematodes (Fonseldat®, 2015), rifers (Fontaneto, Barraclough, Chen,
79 Ricci, & Herniou, 2008), anthrdigrades (Bartels, Kaczmarek,ZRowska, & Nelson, 2020; Kaczmarek,
80  Michalczyk, & Mcinnes, 2015). In comparison, sonmeages of microscopic organisms are specialised
81 to thrive within narrow ranges of environmental ditions like caves (Mammola et al., 2020), mountain
82  summits (Hoschitz & Kaufmann, 2004), hydrothermemts (Zeppilli et al, 2018), and deep terrestrial
83  subsurface habitats (Borgonie et &011). Many of thse animals evolved distinct and often convergent
84 traits for these specific conditions. Quintessential examples are microscopic annelids and copepods
85 specialised to feed in the chemocline of certainatiq caves (Martinez et al., 2019; Worsaae et al.,
86  2019); or mouthless species of nematodes and ftats/diving in strict association to prokaryotic
87  symbiont in anoxic marine sediments (Ott, RiegéegRr, & Enderes, 1982).
88 The corollary of these examples is that not onby liody size but also the presence of certain
89 traits and the interaction between them and their@mwent determines the ecological range of
90 microscopic organisms. This is nothing new, as ithe® was already grasped in the original formafati
91  of the “everything small is everywhere’ paradigm, which included the postil hut the environment
92  selects’ (Baas-Becking, 1934; Bass & Boenigk, 2011). Soneev stand to a point where we know that
93 even broadly distributed and apparently genergjpiscies may not be actually so widespread andatdler
94  when their habitat preferences are taken into atcfar, in other words, that the density of indivéds
95 across the distribution range of a given speciesoishomogeneous as it varies across habitats). But
96 unfortunately, this filtering effect has provenfidifilt to quantify, partly due to the lack of data the
97 relevant traits of many microscopic animals (Gie2@08) and partly due to the intrinsic problem of
98 measuring relevant environmental variables at gpjate resolutions (Levin, 1992; Potter, Arthur
99  Woods, & Pincebourde, 2013) overestimating the @ilian niche (Soberén & Nakamura, 2009). These
100 two issues have challenged all community-level issidhat have so far attempted to directly link
101 functional traits of microscopic animals and thdistribution patterns at the relevant scale (Foetiamet
102  al. 2011). In other words, we ignore to what extantl through which mechanisms the environment
103  selects for specific communities and their traits
104 We here set to examine the effect of habitat on dis¢ribution of microscopic animals by
105 comparing the multidimensionalrictional space (Blonder, LamannapNé, & Enquist,2014; Blonder
106 et al.,, 2018) of assemblages of mites dwelling seagrassHosidonia oceanica (L.)] meadow in the
107 Mediterranean—a marine plant with a well-studiedch@ecture and growth pattern (Molenaar,
108 Barthélémy, De Reffye, Meinesz, & Mialet, 2000).eDto their strictly benthic life mode and easy-to-
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109 measure external traits with a clear functional meg marine mites are an excellent model systena fo
110 similar analysis. Furthermore, the patchy distitutof seagrass within meadows provides independent
111  replicates of discrete habitats, the leaves vettseisnatte (i.e., the grid formed by rhizomes, rpatsd
112  trapped particlg). Because these twolitats present different envirommtal conditions and availability
113  of food, we expect that they will filter differentites from the pool of species present in the meatlde
114  expect that this filter will be evidenced in themgounity traits, favouring the dominance of more
115 specialised phytophagous or epiphytes feeder speoiethe leaves, and limiting the presence of
116  generalistic detritivorous species to the matte. thWégefore hypothesise that i) at the communitelev
117 there should be higher diversity, dispersion, amehaess of functional traits in the matte thanha t
118 leaves. As a corollary of the previous hypothesis,also expect that ii) at the species level, tighdr
119  diversity of traits in the matte will be reflectdy the presence of more functionally original speci
120  Furthermore, the annual phenological changes dutheaoseasonal renovation and decay of seagrass
121 leaves affects nutrient availability (Drew, 197&ipo, Buia, & Mazzella1997). So, wealso hypothesize
122 i) temporal variations in the functional divessibf mite communities following the annual cycle Ff
123  oceanica, particularly on the leaves

124

125 Material and M ethods

126

127  Mode organism

128 The model organisms selected for this study arénmanites of the family Halacaridae (subsequently
129 referred to as marine mites), a lineage of micrp&carachnids that colonized the ocean from a stied
130 ancestor around 270 million years ago, radiatindifferent types of marine habitats (Pepato, Vidigal, &
131 Klimov, 2018). Due to this terrestrial origin, thedy plan of the group is constrained, being alin®
132  strictly restricted to benthic habitats. The impbi#ity of marine mites to swim or disperse by aother
133 means than crawling in direct contact with the gabs, ensures that the species found in each sampl
134  belong to the local community. This feature placesine mites among those with a realised nicheishat
135 smaller than the potential Grinnellian niche, eifethey are microscopic: not all available habitamtsan
136 area are colonised, and the animals are not foonkdabitats that cannot sustain viable populations.
137  Furthermore, the presence of a hard, hydrophobticleuallows for a precise measurement of
138 morphological traits even in fixed material, redwgrimeasurement errors. Finally, the conserved
139 morphology ensures unequivocal homology assessafighe functional traits. These three properties—
140 dispersal exclusively by crawling, hard cuticledaronserved morphology—make marine mites ideal
141  candidates for quantifying the effect of habitdtiefing on the distribution and functional diveysibf

142  microscopic animals.
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Habitats and sampling design

As a study area, we selected the exposed seagesessom of Cala del Cuartel, in Santa Pola, south-

eastern Spain (38° 12' 34.04" N, 0° 30' 19.12"W\;S84 reference system), consisting of replicated

patches at 4—-7 m depth separated by bare sandye®nlglarine mites prefer thi® oceanica patches and

are rarely found in the sand (Garcia-Gémez etsabhmitted). So, in relation to the size and dispersa

capabilities of the marine mites, each patch reprissa discrete and independent replica of the same
habitat within a larger area. The fact that all flaéches are within the same bay limits the cordoun

effect of depth, temperature, salinity, or diffdrerposition to currents.

Each patch consists of two compartments regorisg the two different habitats, the leaves and
the matte (Figure 1A). The leaves are exposedriutence and affected by seasonal changes in length
and growth of epiphytic algae and epifauna, whioteptially represents the main source of food ffier t
mites (Pugh & King, 1985a). In contrast, the matsheltered and offers a high and constant avhiiab
of detritus throughout the year.

In each season between December 2015 and Augu$t 20@ba divers sampled these two
habitats (leaves and matte) in six randomly setepteches of 400 chof Posidonia oceanica (4 season
X 6 patches x 2 habitats, totalling 48 samplesgdch patch, leaves were collected first by cuttiregn at
the ligulae level, while # surface of thenderlying matte wascraped into a sepae container.

Meiofauna from each sample was extracted combitiiegnagnesium chloride and the ‘bubble
and blot’ decantation techniques to ensure thevexgoof all species of marine mites (Higgins & Thie
1988; Sgrensen & Pardos, 2008). The selected msshwas 62um to collect both juveniles and adult
forms. Each sample was bulk fixed using 7% formiaydie in the field. All studied material has been

deposited at the Laboratory of Meiofauna at theveisidad Complutense de Madrid.

In each habitat, we estimated a proxy for the abdity of food. For each leaves sample, we
estimated the average length of the leaves asith@nde from the ligula to the apical end of ak th
complete leaves. Length of the leaves is knownotoetate with the abundance of epiphytic organisms
(Malbrouk, Hamza & Bradai, 2011)For each matte sample, we directheasured the percentage of

organic carbon using the approach by Walkley & BIg934).

Speciesidentification and morphological traits measurement
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Mites were sorted using a MOTICSMZ-168 stereoscope, whole-mounted in a modifiemyets
medium (Mitchell & Cook, 1952), and assigned to cipe and developmental stageg inspecting
relevant morphological characters with a light mgmope equipped with Nomarski optics and an
Olympus DP70 camera. We used the keys by André6(1&4d Green and MacQuitty (1987), as well as
the available literature (Bartsch, 1991, 2000, 200drselli, 1980).

For each species, we examined 13 morphologicas trelated to body size and shape, the ability
to withstand the water currents, and trophic spiseigon (Table 1). Body size and shape measures we
taken on all 502 well-preserved specimens fromsaunpes. The traits were estimated separately from
adults and juveniles (larval or nymphal stages),ddferent life stages exhibit different ecological
preferences and dispersal capabilities even wittensame species (Bartsch, 2002; Somerfield & Jeal,
1995; 1996). The other traits, species-specific maodchanging between individuals of different ages

were assigned at the species level.

Functional space characterization
We expected the properties of the functional sgaceary between the two different habitats, reftegt
the habitat filtering effect in sorting the mitenamunities according to the presence of certairistrai
Furthermore, we expected seasonal variations infuhetional space in relation to the phenological
changes of th®. oceanica meadow through the year. Therefore, we performexdseis of analyses: one,
grouping all the samples from each habitat; andhampin which the samples were separated according
to different surveys, each corresponding to a seaso

We represented the functional space of mite comtesnin the two habitats and across seasons
with geometricah-dimensional hypervolumes (Blonder et al., 2014,80Since some of the functional
traits considered here are categorical, we apiggower dissimilarity measure to the complete trait
matrix and extracted orthogonal morphological atkesugh principal coordinate analysis (Carvalho &
Cardoso, 2020; Mammola & Cardoso, 2020). We deleteehypervolumes with the R package
‘hypervolume’ (Blonder & Harris, 2018using a gaussian kernel density estimate (Blontef.£2014,
2018), the first four principal coordinate axes nfudiatively 60% variance explained), a default
bandwidth for each axis, and species abundancgaussian kernel density estimation was selectéd as
allows a probabilistic rather than a binary chaggzation of the functional space (Mammola & Caros
2020). Five samples with one or no species wer@verhfrom the analyses. We analysed the properties
of the hypervolumes with specific indices (Mamm@&laCardoso, 2020) implemented in the R package
‘BAT’ (Cardoso, Rigal, & Carvalho, 2015; Cardosdammola, Rigal, & Carvélo 2020). Foeach set of
analyses, we expressed functional diversity with kérnel.alpha function as the total volume of the

functional space. We verified if communities in teand leaves and across seasons were subjected to
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207  different filtering processes by calculating thdispersion of the functional space with the
208  kernel.dispersion function and the ‘divergence’ method (Mammola & @#so, 2020). The regularity of
209 traits distributions within the total functionalasge was verified using thernel.evenness function, which
210 expresses evenness as the overlap between thehiyppervolume and a theoretical hypervolume whose
211 traits and abundances are evenly distributed withgir possible range (Mammola & Cardoso, 2020).

212 We inspected whether certain assemblages of méeiesp act as indicators of the two habitats,
213 and which species contribute most original trait®ach habitat (i.e., functional outliers; Violle at,
214  2017). In particular, we expect the distributiontloé originality values to have a smaller variatiorthe
215 leaves than in the matte, reflecting the strongerihg effect exerted by this habitat comparedhe
216 matte. We calculated the functional originality edich species in each community with the function
217  kerndl.originality, weighting originality by species abundan@@ammola & Cardoso, 2020). We
218  expressed originality as the average distance legtwach species to a sample of 10% stochasticspoint
219  within the boundaries of the hypervolume. For eaahitat, we expressed the total originality of aces
220 as the average originality of the species acrdssoahmunities in which it was present. Also, insthi
221  analysis, we considered the stages of the saméspsaparately.

222 To define the degree to which a given species Wasacteristic to one habitat or the other, we
223  further calculated tha Originality by subtracting to the value of origiitya of each species in the matte
224  the value of originality of the same species in ld®ves. When a species was absent in a habitat, we
225 assigned its originality in this habitat to zeroeWisualizedA Originality values as histograms centred to
226  the value of zero, where positive values indicgtecges that are more original in the matte thathen
227 leaves, and negative valuése versa. We estimated and visualized the theoretical dgo$ivalues with
228 the R package ‘ggplot2’ (Wickham, 2016), by compgtia kernel density estimate with a default
229  bandwidth through the data.

230 To ease the interpretation of our findings, we Ifinaalculated the probability of recovering a
231 given trait within each habitat as the communityighiked mean with thewm function in ‘BAT’. For
232  categorical traits, we calculated instead the ity of finding each state of the trait in eachbitat
233  using a function developest! hoc for this study—see R code uploaded alongsidestiinission.

234

235

236  Statistical analyses

237  We performed analysis of variance (ANOVA) to evaédutine significance of the differences observed in
238 functional diversity, dispersion, and evenness betwthe matte and the leaves samples (Hypothesis 1)
239 as well as amongst seasons (Hypothesis 3). Whea was a significant effect of season, we perforaed

240  post hoc Tukey Honestly Significant Difference tesidentify significant differences between paiifs
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241  seasons, using the R package ‘multcomp’ (HothoreizB & Westfall, 2008). We verified whether the
242  originality values of species in the leaves wegnigicantly higher and lower than those in the matt
243  using a null modelling approach (Hypothesis 2). péeformed 99 permutations of the species between
244  the two habitats, deping fixed the originabbundance \aes. For eaclrun, we recalculated the
245  hypervolumes and the originality values and estahahow many species in the leaves had higher
246  originality than the species in the matte. As innMiaola et al. (2020), the null hypothesis of random
247  sorting of species between the two habitats watejl if the observed value was higher than thg 97.
248  percentile or lower than the 2.5 percentile of #erandomizations. For each permutation, we estichat
249 the standard effect size and associated p-value.

250

251 Reaults

252

253  We successfully reconstructed the hypervolumeshi®®d3 communities (that is, all those with moranth
254  one species). We observed a clear polarizatioheotrit space according to the two habitats (Edijr

255  Properties of the functional space of the commuinitthe two habitats were significantly differetite

256 communities in the matte were functionally moreetdse (ANOVA: Fi41)= 26.94, p < 0.001), more
257  disperse (frai= 20.93, p < 0.001), and more ever = 74.75, p < 0.001) than those in the leaves
258  (Figure 2A, Table 2).

259 Distribution of the total functional originality wees was similar in both habitats (Figure 3A).
260  According to the null modelling analysis, the number of species more original in the leaves than in th
261  matter was not lower than what is expected fromralom sorting of species across habitats (Standard
262  effect size = -0.41, p-value = 0.06). Regarding vhkies ofA Originality, we found a set of distinct
263  species in the two habitats, allowing us to diffgiae the leaves and matte communities accordiriget
264  functional traits of few indicator species (Fig3i®).

265 There was a pronounced seasonal variability irfihetional space of leave communities (Figure
266  2B), reflected in the differences in functional elisity (Rs.0= 5.146, p = 0.008), dispersiondky)=

267  10.35, p < 0.001), and evennesg £§= 7.593, p = 0.001) among seasons. In coincideriitetiie peaks
268  of production of the meadow (Figure 2B, in-set dWamll three metrics were significantly higher in
269  spring than in autumn and summer (Post-Hoc tegp: €10.05). Functional dispersion and evennes& wer
270 also significantly higher in winter than in autunfifost-Hoc test: both p < 0.05). All other seasonal
271  comparisons in the leaves were not significant tPiog test: all p > 0.05). In contrast, the seakona
272  pattern was not significant in the matte, neitterrichness (ANOVA: k,15= 1.33, p = 0.303), nor for
273  dispersion (k,15= 2.13, p = 0.139) nor evennesg (5= 1.32, p = 0.306).

274
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Discussion

Spatial patternsin functional diversity

Our analyses confirmed our first hypothesis thaensbmmunities in matte habitat had a significantly
higher functional richness, dispersion, and evesirtean those in the leaves. Analytically, this nsean
that, on average, ¢hfunctional space in ¢hleaves is signifantly less voluminoud.é. trait diversity is
lower) and observations are less dispersed gpecies have traits that are more similar amorigshY
and less even.é. the traits hypervolume is not homogenous indicativad certain combinations of traits
are more common than others) than in the matte. Biologically, this suggests that the selective conditions
in the leaves exert a stronger filtering effect mgbe traits present in the colonizing species, relme
only a small subset from all the pool of traitsgamet in the seagrass meadow allows mites to timitlee
leaves. This habitat filtering is reflected in ttistribution of mites between habitats: even if tiabitats
are physically connected, communities in the le@egsst of a subset of the species present in the matte
The leaves are the habitat in which it is moreeljkto find individuals bearing specialised traits
(Supplementary Material Figure S1). These traitesdriefly specialised claws (Figure S1d, Sle), twhic
might aid in clinging to the leaf's surface andréi®y withstand turbulence (e.g. Pfingstl, Kerschibay

& Shimano, 2020; but see Pugh, King, & Fordy, 198l a larger body size (Figure S1g). In contrast,
the assemblages in the matte consist of speciegbdhese traits, as well as species with more stende
bodies (Figure S1i) and a longer and pointier gmedima (Figure S1j). Whereas the slender body
presumably aids this species to crawl in the tighigbitat spaces in the matte, as observed in most
interstitial microscopic species (Gie20808), it is more difficli to interpret the functional meaning of the
elongation of the gnathosoma. We here speculatatthmght aid this species in feeding on detritunsl
deposits of organic matter accumulated in the tiglaces, but more in-depth studies would be needed
corroborate this assumption. A third group of spgcipresumably consisting of predators feeding on
mites (Bartsch,1989; J. Green & MacQuitty, 1987), are fouadcasionally in some of the samples,
occurring stochastically both in the leaves andnifatte as they wander around in the meadow segrchin
for their prey.

This general pattern further emerges from the aimabf originality values, a metric that averages
the distance betweeeach observation to a sampé stochastic points ithin the boundaries of the
hypervolume. It thereby measures how unique thetiposof individual observations is in the trait
hyperspace, as the distances are expected to secasahe species’ combination of traits becomapian
(Mammola & Cardoso, 2020). Therefore, we expectedenfunctionally original species in the matte,
because species in the leaves need special adaptatiesumably to cope with turbulence and feed on

specialised food sources. The same adaptationsicreequired in the matte, where the presence of
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shelters and more diverse sources of food mighkree filtering effect on species and traits. Trhight
result in a more functionally heterogeneous assagebin which the probability of finding a given
species is less dependent upon their traits. Gaultee however, did not support this assumptioremgiv
that originality values in the leaves did not diffegnificantly from those in the matte (Figure .3&his
might be the case because the species with thegstighlues of originality—such &&lacarus aculeatus,
Agaue panopae, Agauopsis microrhyncha, or Agaue abyssorum; Table S1—typically consisted of large
rare species with uncommon traits that facilitatedption upon other microscopic animals, including
mites (Bartsch, 1989; Green & MacQuitty, 1987). S&nspecies also occur in low abundances and their
distribution is scattered across the meadow, biingd stochastically in one habitat or the otherfalkt,
these species can be considered functional outkensu Violle et al., 2017) in that they take extreme
values ofA Originality (Figure 3b), as they only occur in lawambers in either habitat, thus indicating
that the filtering may act at another spatial angeral scale on them. However, we acknowledge that
further studies on the feeding biology of marin¢éesiwould be needed to fully understand the bickigi

mechanisms behind the ecological patterns we doctetde

Temporal patternsin functional diversity

Our results partially corroborate our third hypdtise as we found significant temporal variationghia
functional diversity of mite communities in theaves likely following the annual cycle of tResidonia
oceanica. As above, these changes permeate all metricehwiére significantly higher in spring than in
autumn and summer, in coincidence with the spriagkp of production in the meadow. Functional
dispersion and evenness were also significantlydrign winter than in autumn.

The end of the summer is characterized in the Medibean by an increase of the rainfall and
primary production, which favours a rapid growthPobceanica in winter reaching a peak in the biomass
in the seagrass meadow in spring (Champenois &d30rg014). A large number of epiphytes colonize
the leaves, which get densely populated by divepseghytic communities (Mabrouk, Hamza, Brahim, &
Bradai, 2011; Rizzi, Balata, & Cecchele 2016), as theyenlarge. Food resources are hence more
abundant and diverse in the leaves at their peak of production in spring, which positively feedeack
mite populations. Furthermore, the basal partemd leaves are less exposed to hydrodynamicsaasde
themselves provide shelter from the current towalds bottom (Folkard, 2005). These two factors,
increase of food and higher shelter, presumablylréa a milder ecological filter, enhancing the
possibility for different mites to exploit this higdit and reproduce therein. Indeed, juveniles, tvinave
not developed yet all their adult traits to withmtacurrents (e.g. smaller body or legs with fewer
segments, yet provided with claws as in adultsjpbee dominant in the long leaves exclusively inrgpr

(Garcia-Gémez et al., submitted).
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In contrast, the matte does not experience simpilanounced phenological changes and we can
speculate that this is the reason for which noisaggmt changes were observed in the functionabidiity

of mite communities in the matte.

Conclusion

Being the first study using hypervolumes to defimectional properties of meiofauna communities, our
study highlights a potential role of the environmanaffecting the distribution of microscopic arata
between connected habitats by filtering them adngrtb the presence of certain traits. Remarkabisg,
filtering effect was relatively weak, as most spscivere found in both habitats and the filterings wa
mostly reflected by their relative abundances. &foge, one may argue that our results of filteeffgcts
between connected habitats might not be appliedl taicroscopic animals more widely and that mites
seagrass meadows might represent only a specifie. Gimilar filtering effects might be even more
subtle and difficult to isolate in other microsao@inimal groups (rotifers, tardigrades, and sottibd
groups) for which the functional interpretation oforphological traits is often obscure and trait
measurements subjected to strong artefacts duedbnmrtem contraction, fixation, and other bias
(Higgins & Thiel, 1988). Furthermore, most microgimoanimals have a high probability to be passively
dispersed to suboptimal habitats (Armonies, 1988ydiiman & Rieger, 1981; Hauspie & Polk, 1973),
increasing the uncertainty associated with hahitaracterization at a small scale relevant for their
biology, thus overestimating their potential Grilia@ niche.

Therefore, it is not surprising that in such stediee distribution of microscopic animals might
appear either uniform or random, simply as a comsece of the high uncertainty associated with
measurements and morphological interpretation etsthall spatial scales. In other words, microscopic
size may generate uncertainty in a macroscopicrebseon both the definition of traits and the défon
of niche even ithe environment did select. Exploring the distribution of small animals throute lens of
functional ecology, targeting traits with clear @ional meaning related to habitat occupation riial
to overcome some of these biases (Violle, ReRdtala, Bquist, & Kattge, 2014). Our study therefore
emphasises the need of moving from a merely taxaradrioward a functional view of ecological studies

of microscopic organisms (Green, Bohannan, & WHtakR008).
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TABLES & FIGURES

Table 1. Morphological traits considered in the analyseshwiypotheses on their functional meaning
Trait Variable description Functional meaning

Total length Measurement the tip of thEroxy of the total biovolume, trophic levi

gnathosoma to the tip of th

idiosome in mm

eand passive resistance of mites against w

currents.

ater

Idiosome length

Idiosome dorsal length

Proxy ofithed body length.

Idiosome width

Idiosome dorsal width

Proxy of therdhbody width.

Gnathosoma

(dorsal) length

Length of the gnathosoma whi

ciProxy of the diet. The length of th

is not covered by the idiosomgnathosoma is adapted to exploit differ

and exposed dorsally.

food resources (Bartsch 2006).

regular, and 3 = large combs

Idiosome Ratio between idiosome lengthProxy of body shape. Wider body shapes

length/width and width limit the colonization of habitat consisting pf

narrow spaces. Indeed, slender shaped mites
are often found amongst fine sediments
(Bartsch 2006).

Relative Ratio between gnathosoma dorg&8roxy of the diet, as a measure of protruding

gnathosoma length length total body length gnathosoma relative to body size.

Accessory tooth Categorical, reflecting fhie mites, especially those species linked to
presence/absence of an access@yuatic habitats, claws are essential| to
tooth on claws withstand physical stress, whether lafge

(Pfingstl et al. 2020) or structural complex
1 claws (Pugh & Fordy, 1987; Bartsch 2006).
Combs Degree of comb complexity, i
_ We here include four claw structures [to
where 0 = absence, 1 = fine, 4 = ) ) o
account for different possible combinatigns

1
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Median claw type | Degree median cleli\l\hat define claw  complexity. Trle
development, where 0 = absenpepmbination of these variables provideg a
1 = small, and 2 = large mediaiproxy of the resistance of each individual| to
claw turbulence, as increasing claw complexity

means a better grip to the substrate.

Number of legg Number of pairs of legs whose

with combs claws bear combs

Lamella Categorical, reflecting thdeamella are present mostly in species that
presence/absence obccur in sediments (Bartsch 2006).
cerotegumental or  cuticular
lamella on legs

Pincer Categorical, reflecting theSpecialised legs for feeding (Green (&
presence of a first pair of legdMacquitty 1987; Bartsch 2006).
modified as a pincer

Table 2. Summary of the average values (x standard ewbrthe number of species, number of

individuals, and hypervolume metrics for the sammguped by habitat (leaves and matte) and season.
Number of  |Number of

Habitat |Season | Richness Dispersion Evenness |species individuals

leaves | total 0.007 £0.002| 0.204 +0.009 0.07604D. | 6.792 £ 0.48158.583 + 13.127
autumn | 0.026 +0.004| 0.261 +£0.008 0.213 +0.014.667 + 0.615| 146.167 + 31.584
winter |0.001+0 0.159 £ 0.005| 0.029+0.016 1633 22.167 £2.701
spring |0.011+0.004 | 0.225+0.017 0.106 +0.018.167 +£1.138| 41.667 + 8.053
summer| 0.014 £+ 0.004| 0.248 +0.012 0.122 +0.014.333 £ 1.202| 24.333 +£3.148

matte | total 0.003+0.001| 0.185+0.013 0.046486.0| 8.000 +0.66215.053 + 1.822
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autumn | 0.025 +£0.004 | 0.262 +0.013 0.216 +0.023.6 + 1.364 13.2 + 3.967

winter |0.019 £0.005 | 0.244 +0.016) 0.189 +0.017.667 +0.803| 13 +£1.592

spring |0.036 £+0.008 | 0.285+0.009 0.239 +0.028.667 +0.882| 13.667 +0.333

summer| 0.022 +0.01 0.24 +0.026 0.193 +0.0134 +9..833 20.2 £5.305
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Figure 1. A) The 4-dimensional hypervolume of the mite commasiiin thePosidonia oceanica leaves
(n=24) and matte (n=19). Large points with whiteders represent the centroid of each hyperve
(note that due to the proximity of centroids, musints appear superimposed). The shape and boas
of each hypervolume are defined by 1000d@n points. All points are coloured according te kabita.
B) Summary of the morphological traits measured amedéd for each species and developmental .
Further details on the interpretation of each taaét provided in Table 1 and the averagkies of trais
across habitats in Figure S1. Abbreviatiostsaccessory tootlgh comb,ce ceratogegumental lamelt,

cu cuticular lamella€lc lateral clawmc median claw.
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583 Functional richness Functional dispersion Functional eveness

584  Figure 2. A—C) Overall differences in functional richness (A), gbssion (B) and evenness (C) betw
585  mite communities in leaves and matie-F) Differences in functional richness (D), dispersi&) ani
586 evenness (F) across seasons. Inset graphd megkesent the variation in leaves mean lengtteifin for
587 the leavesand the organic matter content (in %) for thetepahus reflecting the change in energy irs
588 due to the regeneration of leaves in the seagrasslon across the four seasons.
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593  Figure 3. A) Violin plots showing the distribution of functionaliginality values of species in the les
594  and the matte. Species present in both habitatsommected by grey lineB) Histogram ofA Originality
595 values between species in the two habitats, calculatesubtracting the value of originality of e
596  species in the leaves to the value of originalftgach species in the matte. Orange smoothed dinev
597 the predicted density of values according to a dledensity estimation. The letters above eacr

598 correspond to the species listed at the rear diighee.
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599 Supplementary material Figure S1

600 Habitat differencesfilter functional diversity of low disper sive microscopic animals
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605  Figure S1. Probability of finding each state of discrete sd#—f) and community weighted mearf

606  continuous trait$g—k) for mite communities in the leaves and matte.
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