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 Shotgun sequencing enables retrieving high resolution information from complex 40 

microbial communities. However, the technique is limited by missing information about 41 

host-to-microbe ratios observed in different sample types. This makes it challenging to 42 

plan sequencing experiments, especially in the context of high sample multiplexing 43 

and/or limited sequencing output. We evaluated a qPCR-based assay to predict host-to-44 

microbe ratio prior to sequencing. Using a two-target assay aimed at conserved human 45 

and bacterial genes, we predicted human-to-microbe ratios in two sample types and 46 

validated it on independently collected samples. The assay enabled accurate prediction 47 

for a broad range of sample compositions. 48 

Introduction 49 

Shotgun sequencing allows interrogation of the metagenomic composition of 50 

ecological niches and has been increasingly utilized to characterize human-associated 51 

microbial communities. Shallow shotgun sequencing – sequencing to a per-sample read 52 

depth of 105 to 106 reads –  provides taxonomic resolution greater than 16S amplicon 53 

sequencing and functional characterization of metagenomes, while being less 54 

expensive than whole genome sequencing or deep sequencing (typically 107 to 109 55 

reads/sample) (1). However, there is a trade-off between cost and adequacy which is 56 

especially problematic for samples of variable ratios of host to microbial DNA, where 57 

microbial reads may be displaced by human reads in a mixed sample (2). While this is 58 

generally not a concern for samples with high bacterial load, such as stool samples, 59 

samples with low or variable microbial DNA relative to human DNA are common in other 60 

regions of the body, such as the lung, nasopharynx, stomach, and duodenum (2, 3, 4, 61 

5). Microbial taxonomic and functional analyses of metagenomic data require sufficient 62 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 15, 2020. ; https://doi.org/10.1101/2020.09.21.304006doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.21.304006
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

reads to draw robust conclusions. The ability to predict the proportion of microbial reads 63 

prior to sequencing would allow researchers to customize sequencing strategies for 64 

desired analyses, while optimizing the cost and time spent on metagenomic sequencing. 65 

In this study, we used quantitative PCR to predict the ratio of human to microbial 66 

reads obtained from sequencing using three targets: the 16S rRNA gene, 18S rRNA 67 

gene, and human beta-actin (ACTB) to quantitate DNA of bacterial, fungal, or human 68 

origin, respectively (6-8). We compared the ratios of bacterial to human DNA 69 

determined via qPCR to the percent microbial/human DNA determined via shallow 70 

shotgun sequencing in samples with variable bacterial DNA. We derived a prediction 71 

model from oropharyngeal swabs and stool samples, and evaluated it in a set of 72 

independently collected samples, including rectal swabs and vaginal secretion samples. 73 

Finally, we generated an easy-to-use tool based on qPCR data to predict sample 74 

composition and sequencing depth required given a desired analytical outcome. 75 

Results and Discussion 76 

To assess the impact of shallowing sequencing depth on different bacterial DNA 77 

proportions, we rarefied shotgun sequencing data from 4 sample types – stool, 78 

oropharyngeal, rectal, and vaginal – to depths of 1000 to 1 million reads/sample. We 79 

then determined the alpha diversity of each rarefaction using three metrics: richness, 80 

Shannon index, and Berger-Parker index. Alpha diversity decreased in a sample type-81 

specific manner as sequencing depth decreased (Fig. 1). Notably, while vaginal 82 

samples have the lowest alpha diversity in all three metrics of the four sample types, 83 

alpha diversity decreased at the slowest rate as sequencing depth decreased (Fig. 1). 84 
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Conversely, while rectal swab samples had similar Shannon index and Berger-Parker 85 

index values at 106 microbial reads to oropharyngeal and stool samples, alpha diversity 86 

in rectal samples diminished at a greater rate as sequencing depth decreased (Fig. 1B-87 

C). Since this effect is sample type-specific, it is critical to predict sample composition a 88 

priori to ensure sufficient reads for the desired analysis for the given sample type. 89 

qPCR is a widespread and robust technique available in many molecular biology 90 

laboratories. Its availability as well as cheap associated costs, especially compared to 91 

experiments involving high-throughput sequencing techniques, makes it an ideal 92 

candidate to use to predict sample composition prior to sequencing. In this study, we 93 

assessed the potential of qPCR to predict sample-specific ratios of human to microbe 94 

DNA using different amplification targets. Using a multivariate approach, 5 models were 95 

generated mapping 16S rRNA gene, 18S rRNA gene, and human beta-actin (ACTB) 96 

qPCR-derived cycle thresholds (Ct) to observed percentage of  microbial reads for a 97 

sample set consisting of oropharyngeal swabs and stool samples. Microbial reads were 98 

defined as any read which did not align/match with a human genome reference. The 99 

following models were tested: (A) a linear fit using 16S rRNA gene and ACTB Ct values, 100 

(B) a linear fit using 16S rRNA gene, 18S rRNA gene, and ACTB Ct values, (C) a linear 101 

fit using logit transformed 16S rRNA gene and ACTB Ct values, (D) a linear fit using 102 

logit transformed 16S rRNA gene, 18S rRNA gene, and ACTB Ct values, and (E) a 103 

nonlinear regression model based on the logistic growth equation using 16S rRNA gene 104 

and ACTB Ct values (Supplementary figure 1A). We compared goodness-of-fit for 105 

each model and observed R2-values of 0.880, 0.880, 0.920, 0.920, and 0.990 for 106 

models A – E, respectively (Figure 2A, Supplementary figure 1A). Observed residuals 107 
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had a min-max range of 67.56, 68.50, 58.93, 59.07, and 42.61 for models A – E, 108 

respectively (Supplementary figure A). Based on these findings, model E turned out to 109 

be the best fitting model to predict sample composition using qPCR, with an equation 110 

of % microbial reads = (2.7201549)/((99.50267)*e^(-0.7218*(ACTB-16S))+ 0.02733). In 111 

addition, 18S rRNA Ct value was not found to be an informative predictor and was 112 

hence removed from the model. In Figure 2B, we show the goodness-of-fit and 113 

residuals observed with model E across the range of qPCR differences (-8.16% to 114 

+34.45%). We observed homogeneous fit and variance indicating that the model 115 

performs well for all observed host to microbe DNA ratios. However, we also observed 116 

that the model loses accuracy at each end of the range due to the s initial dataset used 117 

and sigmoidal curve generated, with limits approximately at 4% and 98%. This bias is 118 

likely introduced at different steps of the process. For instance, sequencing error, and 119 

resulting false negative and positive hits when mapping reads to the human database 120 

are likely to account for this bias. Another potential source of bias could be introduced 121 

by the carryover of contaminants between sequencing runs, hence resulting in a 122 

composition change which is not picked up by the qPCR conducted a priori. 123 

Using the equation derived from model E, we evaluated our approach on two different, 124 

independently collected sample types including vaginal secretions and rectal swabs. In 125 

Fig 2C, we show the relation between observed microbial reads percentages and the 126 

difference in Ct between 16S and ACTB qPCR, derived from our validation dataset, 127 

alongside a curve of expected values derived from model E. We observed the 128 

difference between predicted and observed microbial reads percentages to range from -129 

18.80% to +19.22% with a mean of +0.944% (Supplementary figure 1B). In Fig 2D, 130 
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we show that this difference is consistent across the range of observed % microbial 131 

reads. Compared to the other models, model E best described the validation dataset, 132 

with a median difference of 0.25% and a standard deviation of 9.10% (Supplementary 133 

table 1B). For comparison, model E described the initial sample set of 134 

oropharyngeal/stool samples with a median difference of 0.14% and a standard 135 

deviation of 4.35% (Supplementary table 1A). Since the model performed similarly 136 

between the two datasets, we concluded that the model was able to describe a relation 137 

between 16S and β-actin qPCR and shotgun sequencing metagenomic data in a 138 

sample type-independent manner for microbial densities between 4% and 98%.We then 139 

developed a tool based on our model and the rarefaction curves on different samples 140 

type which predicts % microbial reads based on qPCR data and suggests a target 141 

number of reads based on sample type and desired analysis (Supplementary).  142 

The limitations of our study are as follows: The samples used in our study were low in 143 

fungal content. Therefore, our model may not accurately predict microbial content in 144 

sample sets where the majority of samples are rich in fungal content.  145 

Moreover, as our results are based on protocols using specific reagents and 146 

technologies for both sequencing and qPCR, our tool may not accurately predict 147 

sequencing results when protocols, reagents, and/or technologies differ. However, 148 

given that we have established a robust link among 16S qPCR, B-actin qPCR, and 149 

sample content by sequencing, our approach can be easily adapted to fit different 150 

experimental settings. 151 

Conclusion 152 
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We have shown that shallowing shotgun sequencing depth can reduce measured alpha 153 

diversity in all measured sample types, with more diverse communities being more 154 

strongly negatively affected. We found that qPCR can function as a predictive tool for 155 

sample composition that was strongly correlated with shotgun sequencing data. We 156 

were able to create a model that can describe and predict variable sample types. We 157 

hope that our tool and methodology may help fellow researchers screen for 158 

sequenceable samples or allow for better optimization of sequencing.  159 

Methods 160 

qPCR 161 

Samples were probed separately for the 16S rRNA gene, the 18S rRNA gene, and the 162 

human β-actin gene. All reactions were conducted in duplicate and RNase-free water 163 

was used as negative control. Each well contained 2 µL of sample DNA, 5 µL of 164 

Taqman Universal PCR mix (Applied Biosystems, Foster City, CA), 0.3 µM of forward 165 

primer, 0.3 µM of reverse primer, and 0.2 µM of primer probe. PCR was performed on a 166 

QuantStudio 6 Flex (Thermo Fisher Scientific, Waltham, MA) platform. Cycling was 167 

done as follows: 10 minutes at 95ºC followed by 45 cycles of 95ºC for 15 seconds and 168 

60ºC for 1 minute.  169 

For 16S qPCR, we used forward primer “TCCTACGGGAGGCAGCAGT” (Invitrogen, 170 

Carlsbad, CA) and reverse primer “GGACTACCAGGGTATCTAATCCTGTT” (Invitrogen, 171 

Carlsbad, CA).(3) We used a FAM probe “CGTATTACCGCGGCTGCTGGCAC” with 172 

NFQ-MGB quencher (Applied Biosystems, Foster City, CA).(3)  173 
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For 18S qPCR, we used forward primer “GGRAAACTCACCAGGTCCAG” (Integrated 174 

DNA Technologies, Coralville, IA) and reverse primer “GSWCTATCCCCAKCACGA” 175 

(Integrated DNA Technologies, Coralville, IA).(1) We used a FAM probe 176 

“TGGTGCATGGCCGTT” with NFQ-MGB quencher (Applied Biosystems, Foster City, 177 

CA).(7)   178 

For human qPCR, we used a β-actin gene specific forward primer 179 

“CGGCCTTGGAGTGTGTATTAAGTA” (Invitrogen, Carlsbad, CA) and reverse primer 180 

“TGCAAAGAACACGGCTAAGTGT” (Invitrogen, Carlsbad, CA).(5) We used a VIC 181 

probe “TCTGAACAGACTCCCCATCCCAAGACC” with 3QSY quencher (Applied 182 

Biosystems, Foster City, CA).(8) 183 

Library preparation and sequencing 184 

Libraries were prepared using Nextera Flex (Illumina, San Diego, CA) kits with the 185 

Nextera XT indices (Illumina, San Diego, CA). Barcoded sample libraries were pooled 186 

together to a concentration of 17.6 ng/ul which measured with a high-sensitivity DNA 187 

assay on a Qubit (Thermo Fisher Scientific, Waltham, MA) platform. A Mid-output 188 

reagent kit (Illumina, San Diego, CA) was used to sequence on the Miniseq, while a SP 189 

reagent kit (Illumina, San Diego, CA) was used on the Novaseq platform, both in 190 

2x150bp mode.  191 

Read filtering and Taxonomic profiling  192 

We filtered human reads from non-human reads using KneadData based on a human 193 

genome index for Bowtie 2 (9, 10). We considered sequence reads that did not match 194 

the database as microbial reads in our analyses. Taxonomic annotation was conducted 195 
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using MetaPhlAn 2.0 and the ChocoPhlAn database (11). Rarefactions were performed 196 

using seqtk-1.3 to subsample the microbial reads of individual samples (12). Subsample 197 

compositions will be identified using MetaPhlAn2, and OTU tables were generated (11).  198 

Diversity indexes were calculated using Past 4 (13). 199 

Model generation 200 

We used XLSTAT version 2019.4.2 (Addinsoft Inc., New York, NY) to generate 201 

multivariate linear regressions using either 16S and ACTB qPCR cycle and microbial 202 

reads percentages (Models A and C) or  16S, 18S, and ACTB qPCR cycle thresholds 203 

and microbial reads percentages (Models B and D). Multivariate linear regressions 204 

(models C and D) were also performed following a logit transformation of microbial 205 

reads percentages. Finally, for model E, we generated the non-linear regression model 206 

using the logistic growth equation in GraphPad Prism version 8.3.0 for Windows 207 

(GraphPad Software, San Diego, CA).  208 

Figures  209 

Figure 1. Alpha diversity indices are shown across a range of simulated 210 

sequencing depths from 1E3 to 1E6 reads per sample. (A) Sample-specific 211 

rarefaction curves of species richness. (B) Shannon index calculated across a range of 212 

rarefactions, by sample type. (C) Sample dominance, measured with the Berger-Parker 213 

index, across a range of sequencing depths, stratified by sample type. 214 

Figure 2. Statistical model to predict sample composition using qPCR prior to 215 

high-throughput sequencing (A) Sigmoidal model generated from oropharyngeal 216 

swabs and stool samples depicting the relationship between the difference of human 217 
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(ACTB) and bacterial (16S) qPCR values (Ct) with the percentage of microbial reads (R2 218 

=0.990). Nonlinear regression line (solid) is based on the following logistic growth 219 

equation: % microbial reads = (2.7201549)/((99.50267)*e^(-0.7218*(ACTB-16S))+ 220 

0.02733). One-tailed 95% prediction interval is depicted with a dotted line. (B) Model 221 

residuals. (C) Fitting of validation sample set on prediction model. The orange dots 222 

represent values derived from a validation sample set composed of vaginal secretions 223 

and rectal swabs samples and correlate well (R2 = 0.930) with the prediction model 224 

(solid black line). (D) Difference between expected and observed composition across 225 

the range of microbial content.  226 

Supplementary Figure 1. (1A) Residuals for 5 multivariate models generated using a 227 

sample set comprised of oropharyngeal swabs and stool samples. i) Model A 228 

represents a linear fit taking into account microbial and human-derived qPCR values; ii) 229 

model B represents a linear fit taking into account microbial, fungal, and human-derived 230 

qPCR values; iii) model C represents a linear fit taking into account microbial and 231 

human-derived qPCR values after a logit transform of the data; iv) model D represents a 232 

linear fit taking into account microbial, fungal, and human-derived qPCR values after a 233 

logit transform of the data; and v) model E represents a nonlinear regression model 234 

based on the logistic growth equation taking into account microbial and human-derived 235 

qPCR values. Error bars depict 1 standard deviation centered around the mean. (1B) 236 

Difference between observed and predicted percentage of microbial reads, by model, 237 

using a validation dataset comprised of independently collected rectal swabs and 238 

vaginal secretion samples. 239 
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Supplementary Table 1. (1A) Table summarizing residual values and model type of 240 

the 5 statistical models (A-E) tested in this study. (1B) Residual values of the 5 models 241 

when applied to an independent, validation dataset. 242 
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