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Shotgun sequencing enables retrieving high resolution information from complex
microbial communities. However, the technique is limited by missing information about
host-to-microbe ratios observed in different sample types. This makes it challenging to
plan sequencing experiments, especially in the context of high sample multiplexing
and/or limited sequencing output. We evaluated a qPCR-based assay to predict host-to-
microbe ratio prior to sequencing. Using a two-target assay aimed at conserved human
and bacterial genes, we predicted human-to-microbe ratios in two sample types and
validated it on independently collected samples. The assay enabled accurate prediction

for a broad range of sample compositions.
Introduction

Shotgun sequencing allows interrogation of the metagenomic composition of
ecological niches and has been increasingly utilized to characterize human-associated
microbial communities. Shallow shotgun sequencing — sequencing to a per-sample read
depth of 10° to 10° reads — provides taxonomic resolution greater than 16S amplicon
sequencing and functional characterization of metagenomes, while being less
expensive than whole genome sequencing or deep sequencing (typically 10’ to 10°
reads/sample) (1). However, there is a trade-off between cost and adequacy which is
especially problematic for samples of variable ratios of host to microbial DNA, where
microbial reads may be displaced by human reads in a mixed sample (2). While this is
generally not a concern for samples with high bacterial load, such as stool samples,
samples with low or variable microbial DNA relative to human DNA are common in other
regions of the body, such as the lung, nasopharynx, stomach, and duodenum (2, 3, 4,
5). Microbial taxonomic and functional analyses of metagenomic data require sufficient
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reads to draw robust conclusions. The ability to predict the proportion of microbial reads
prior to sequencing would allow researchers to customize sequencing strategies for

desired analyses, while optimizing the cost and time spent on metagenomic sequencing.

In this study, we used quantitative PCR to predict the ratio of human to microbial
reads obtained from sequencing using three targets: the 16S rRNA gene, 18S rRNA
gene, and human beta-actin (ACTB) to quantitate DNA of bacterial, fungal, or human
origin, respectively (6-8). We compared the ratios of bacterial to human DNA
determined via qPCR to the percent microbial/lhuman DNA determined via shallow
shotgun sequencing in samples with variable bacterial DNA. We derived a prediction
model from oropharyngeal swabs and stool samples, and evaluated it in a set of
independently collected samples, including rectal swabs and vaginal secretion samples.
Finally, we generated an easy-to-use tool based on gPCR data to predict sample

composition and sequencing depth required given a desired analytical outcome.

Results and Discussion

To assess the impact of shallowing sequencing depth on different bacterial DNA
proportions, we rarefied shotgun sequencing data from 4 sample types — stool,
oropharyngeal, rectal, and vaginal — to depths of 1000 to 1 million reads/sample. We
then determined the alpha diversity of each rarefaction using three metrics: richness,
Shannon index, and Berger-Parker index. Alpha diversity decreased in a sample type-
specific manner as sequencing depth decreased (Fig. 1). Notably, while vaginal
samples have the lowest alpha diversity in all three metrics of the four sample types,

alpha diversity decreased at the slowest rate as sequencing depth decreased (Fig. 1).
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85  Conversely, while rectal swab samples had similar Shannon index and Berger-Parker
86 index values at 10° microbial reads to oropharyngeal and stool samples, alpha diversity
87 in rectal samples diminished at a greater rate as sequencing depth decreased (Fig. 1B-
88 C). Since this effect is sample type-specific, it is critical to predict sample composition a

89  priori to ensure sufficient reads for the desired analysis for the given sample type.

90 gPCR is a widespread and robust technique available in many molecular biology
91 laboratories. Its availability as well as cheap associated costs, especially compared to
92 experiments involving high-throughput sequencing techniques, makes it an ideal
93 candidate to use to predict sample composition prior to sequencing. In this study, we
94 assessed the potential of qPCR to predict sample-specific ratios of human to microbe
95 DNA using different amplification targets. Using a multivariate approach, 5 models were
96 generated mapping 16S rRNA gene, 18S rRNA gene, and human beta-actin (ACTB)
97 gPCR-derived cycle thresholds (Ct) to observed percentage of microbial reads for a
98 sample set consisting of oropharyngeal swabs and stool samples. Microbial reads were
99 defined as any read which did not align/match with a human genome reference. The
100 following models were tested: (A) a linear fit using 16S rRNA gene and ACTB Ct values,
101 (B) alinear fit using 16S rRNA gene, 18S rRNA gene, and ACTB Ct values, (C) a linear
102  fit using logit transformed 16S rRNA gene and ACTB Ct values, (D) a linear fit using
103 logit transformed 16S rRNA gene, 18S rRNA gene, and ACTB Ct values, and (E) a
104  nonlinear regression model based on the logistic growth equation using 16S rRNA gene
105 and ACTB Ct values (Supplementary figure 1A). We compared goodness-of-fit for
106 each model and observed R?values of 0.880, 0.880, 0.920, 0.920, and 0.990 for

107 models A — E, respectively (Figure 2A, Supplementary figure 1A). Observed residuals
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108 had a min-max range of 67.56, 68.50, 58.93, 59.07, and 42.61 for models A — E,
109  respectively (Supplementary figure A). Based on these findings, model E turned out to
110  be the best fitting model to predict sample composition using qPCR, with an equation
111 of % microbial reads = (2.7201549)/((99.50267)*e”(-0.7218*(ACTB-16S))+ 0.02733). In
112  addition, 18S rRNA Ct value was not found to be an informative predictor and was
113  hence removed from the model. In Figure 2B, we show the goodness-of-fit and
114  residuals observed with model E across the range of qPCR differences (-8.16% to
115  +34.45%). We observed homogeneous fit and variance indicating that the model
116  performs well for all observed host to microbe DNA ratios. However, we also observed
117  that the model loses accuracy at each end of the range due to the s initial dataset used
118  and sigmoidal curve generated, with limits approximately at 4% and 98%. This bias is
119  likely introduced at different steps of the process. For instance, sequencing error, and
120  resulting false negative and positive hits when mapping reads to the human database
121 are likely to account for this bias. Another potential source of bias could be introduced
122 by the carryover of contaminants between sequencing runs, hence resulting in a

123 composition change which is not picked up by the gPCR conducted a priori.

124  Using the equation derived from model E, we evaluated our approach on two different,
125 independently collected sample types including vaginal secretions and rectal swabs. In
126  Fig 2C, we show the relation between observed microbial reads percentages and the
127  difference in Ct between 16S and ACTB gPCR, derived from our validation dataset,
128 alongside a curve of expected values derived from model E. We observed the
129  difference between predicted and observed microbial reads percentages to range from -

130 18.80% to +19.22% with a mean of +0.944% (Supplementary figure 1B). In Fig 2D,
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131  we show that this difference is consistent across the range of observed % microbial
132 reads. Compared to the other models, model E best described the validation dataset,
133  with a median difference of 0.25% and a standard deviation of 9.10% (Supplementary
134 table 1B). For comparison, model E described the initial sample set of
135 oropharyngeal/stool samples with a median difference of 0.14% and a standard
136  deviation of 4.35% (Supplementary table 1A). Since the model performed similarly
137  between the two datasets, we concluded that the model was able to describe a relation
138  between 16S and B-actin gPCR and shotgun sequencing metagenomic data in a
139  sample type-independent manner for microbial densities between 4% and 98%.We then
140 developed a tool based on our model and the rarefaction curves on different samples
141  type which predicts % microbial reads based on qPCR data and suggests a target

142  number of reads based on sample type and desired analysis (Supplementary).

143 The limitations of our study are as follows: The samples used in our study were low in
144  fungal content. Therefore, our model may not accurately predict microbial content in

145  sample sets where the majority of samples are rich in fungal content.

146  Moreover, as our results are based on protocols using specific reagents and
147  technologies for both sequencing and gPCR, our tool may not accurately predict
148  sequencing results when protocols, reagents, and/or technologies differ. However,
149 given that we have established a robust link among 16S gPCR, B-actin qPCR, and
150 sample content by sequencing, our approach can be easily adapted to fit different

151  experimental settings.

152  Conclusion
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153  We have shown that shallowing shotgun sequencing depth can reduce measured alpha
154  diversity in all measured sample types, with more diverse communities being more
155  strongly negatively affected. We found that gPCR can function as a predictive tool for
156 sample composition that was strongly correlated with shotgun sequencing data. We
157 were able to create a model that can describe and predict variable sample types. We
158 hope that our tool and methodology may help fellow researchers screen for

159  sequenceable samples or allow for better optimization of sequencing.

160 Methods

161 gPCR

162  Samples were probed separately for the 16S rRNA gene, the 18S rRNA gene, and the
163  human B-actin gene. All reactions were conducted in duplicate and RNase-free water
164 was used as negative control. Each well contained 2 pL of sample DNA, 5 pL of
165 Tagman Universal PCR mix (Applied Biosystems, Foster City, CA), 0.3 uM of forward
166  primer, 0.3 uM of reverse primer, and 0.2 uM of primer probe. PCR was performed on a
167 QuantStudio 6 Flex (Thermo Fisher Scientific, Waltham, MA) platform. Cycling was
168  done as follows: 10 minutes at 95°C followed by 45 cycles of 95°C for 15 seconds and

169  60°C for 1 minute.

170  For 16S gPCR, we used forward primer “TCCTACGGGAGGCAGCAGT” (Invitrogen,
171  Carlsbad, CA) and reverse primer “GGACTACCAGGGTATCTAATCCTGTT” (Invitrogen,
172  Carlsbad, CA).(3) We used a FAM probe “CGTATTACCGCGGCTGCTGGCAC” with

173 NFQ-MGB quencher (Applied Biosystems, Foster City, CA).(3)
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174  For 18S gPCR, we used forward primer “GGRAAACTCACCAGGTCCAG” (Integrated
175 DNA Technologies, Coralville, IA) and reverse primer “GSWCTATCCCCAKCACGA”
176  (Integrated DNA Technologies, Coralville, 1A).(1) We wused a FAM probe
177 “TGGTGCATGGCCGTT” with NFQ-MGB quencher (Applied Biosystems, Foster City,

178 CA).(7)

179 For human 9gPCR, we wused a f-actin gene specific forward primer
180 “CGGCCTTGGAGTGTGTATTAAGTA” (Invitrogen, Carlsbad, CA) and reverse primer
181 “TGCAAAGAACACGGCTAAGTGT” (Invitrogen, Carlsbad, CA).(5) We used a VIC
182 probe “TCTGAACAGACTCCCCATCCCAAGACC” with 3QSY quencher (Applied

183  Biosystems, Foster City, CA).(8)

184  Library preparation and sequencing

185 Libraries were prepared using Nextera Flex (lllumina, San Diego, CA) kits with the
186  Nextera XT indices (lllumina, San Diego, CA). Barcoded sample libraries were pooled
187 together to a concentration of 17.6 ng/ul which measured with a high-sensitivity DNA
188 assay on a Qubit (Thermo Fisher Scientific, Waltham, MA) platform. A Mid-output
189  reagent kit (Illumina, San Diego, CA) was used to sequence on the Miniseq, while a SP
190 reagent kit (lllumina, San Diego, CA) was used on the Novaseq platform, both in

191  2x150bp mode.

192  Read filtering and Taxonomic profiling

193  We filtered human reads from non-human reads using KneadData based on a human
194 genome index for Bowtie 2 (9, 10). We considered sequence reads that did not match

195 the database as microbial reads in our analyses. Taxonomic annotation was conducted
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196  using MetaPhlAn 2.0 and the ChocoPhlAn database (11). Rarefactions were performed
197  using seqtk-1.3 to subsample the microbial reads of individual samples (12). Subsample
198  compositions will be identified using MetaPhlAn2, and OTU tables were generated (11).

199  Diversity indexes were calculated using Past 4 (13).
200  Model generation

200 We used XLSTAT version 2019.4.2 (Addinsoft Inc., New York, NY) to generate
202  multivariate linear regressions using either 16S and ACTB qPCR cycle and microbial
203  reads percentages (Models A and C) or 16S, 18S, and ACTB gPCR cycle thresholds
204 and microbial reads percentages (Models B and D). Multivariate linear regressions
205 (models C and D) were also performed following a logit transformation of microbial
206  reads percentages. Finally, for model E, we generated the non-linear regression model
207 using the logistic growth equation in GraphPad Prism version 8.3.0 for Windows

208  (GraphPad Software, San Diego, CA).
209 Figures

210 Figure 1. Alpha diversity indices are shown across a range of simulated
211 sequencing depths from 1E3 to 1E6 reads per sample. (A) Sample-specific
212 rarefaction curves of species richness. (B) Shannon index calculated across a range of
213 rarefactions, by sample type. (C) Sample dominance, measured with the Berger-Parker

214  index, across a range of sequencing depths, stratified by sample type.

215  Figure 2. Statistical model to predict sample composition using gPCR prior to
216  high-throughput sequencing (A) Sigmoidal model generated from oropharyngeal

217 swabs and stool samples depicting the relationship between the difference of human

10
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218 (ACTB) and bacterial (16S) gPCR values (Ct) with the percentage of microbial reads (R?
219  =0.990). Nonlinear regression line (solid) is based on the following logistic growth
220 equation: % microbial reads = (2.7201549)/((99.50267)*e(-0.7218*(ACTB-16S))+
221 0.02733). One-tailed 95% prediction interval is depicted with a dotted line. (B) Model
222 residuals. (C) Fitting of validation sample set on prediction model. The orange dots
223 represent values derived from a validation sample set composed of vaginal secretions
224 and rectal swabs samples and correlate well (R = 0.930) with the prediction model
225  (solid black line). (D) Difference between expected and observed composition across

226  the range of microbial content.

227  Supplementary Figure 1. (1A) Residuals for 5 multivariate models generated using a
228  sample set comprised of oropharyngeal swabs and stool samples. i) Model A

229 represents a linear fit taking into account microbial and human-derived gPCR values; ii)
230 model B represents a linear fit taking into account microbial, fungal, and human-derived
231  gPCR values; iii) model C represents a linear fit taking into account microbial and

232 human-derived qPCR values after a logit transform of the data; iv) model D represents a
233 linear fit taking into account microbial, fungal, and human-derived gPCR values after a
234  logit transform of the data; and v) model E represents a nonlinear regression model

235 based on the logistic growth equation taking into account microbial and human-derived
236 qPCR values. Error bars depict 1 standard deviation centered around the mean. (1B)
237  Difference between observed and predicted percentage of microbial reads, by model,
238 using a validation dataset comprised of independently collected rectal swabs and

239  vaginal secretion samples.

11
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240 Supplementary Table 1. (1A) Table summarizing residual values and model type of
241  the 5 statistical models (A-E) tested in this study. (1B) Residual values of the 5 models

242  when applied to an independent, validation dataset.
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