

1 Two-target quantitative PCR to predict library composition for shallow shotgun
2 sequencing

3

4 Matthew Y. Cho^{1,2}, Marc Oliva^{3,4}, Anna Spreafico³, Bo Chen⁵, Xu Wei⁵, Yoojin Choi^{1,2},
5 Rupert Kaul^{1,2}, Lillian L. Siu³, Bryan Coburn^{1,2*} and Pierre H. H. Schneeberger^{1,2*}

6

7 * Co-senior Authors

8

9 1 Departments of Medicine and Laboratory Medicine & Pathobiology, University of
10 Toronto, Toronto, Canada,

11 2 Department of Medicine, Division of Infectious Diseases, University Health Network,
12 Toronto, Canada

13 3 Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre,
14 University of Toronto, Canada

15 4 Department of Medical Oncology, Catalan Institute of Oncology (Hospital Duran i
16 Reynals), IDIBELL, Barcelona (Spain)

17 5 Department of Biostatistics, Princess Margaret Cancer Centre, University of Toronto,
18 Canada

19 § Corresponding authors: Department of Medicine, Division of Infectious Diseases,
20 University Health Network, M5G 1L7, Toronto, Canada.

21 Tel.: +41 61 284 8323, E-Mail: pierre.schneeberger@swisstph.ch Tel.: +1 416 581-7457,
22 E-Mail: bryan.coburn@utoronto.ca

23

24 E-mail addresses:

25 MC matthewym.cho@mail.utoronto.ca

26 MO Moliva@iconcologia.net

27 AS anna.spreafico@uhn.ca

28 BC bo.chen@uhnresearch.ca

29 XW wei.xu@uhnresearch.ca

30 YC yoojinc.choi@mail.utoronto.ca

31 RK rupert.kaul@utoronto.ca

32 LLS Lillian.Siu@uhn.ca

33 BC bryan.coburn@utoronto.ca

34 PHHS pierre.schneeberger@swisstph.ch

35

36 Keywords:

37 Shotgun sequencing; shallow shotgun; microbiome; sample composition; host DNA
38 proportion; metagenomics.

39 **Abstract**

40 Shotgun sequencing enables retrieving high resolution information from complex
41 microbial communities. However, the technique is limited by missing information about
42 host-to-microbe ratios observed in different sample types. This makes it challenging to
43 plan sequencing experiments, especially in the context of high sample multiplexing
44 and/or limited sequencing output. We evaluated a qPCR-based assay to predict host-to-
45 microbe ratio prior to sequencing. Using a two-target assay aimed at conserved human
46 and bacterial genes, we predicted human-to-microbe ratios in two sample types and
47 validated it on independently collected samples. The assay enabled accurate prediction
48 for a broad range of sample compositions.

49 **Introduction**

50 Shotgun sequencing allows interrogation of the metagenomic composition of
51 ecological niches and has been increasingly utilized to characterize human-associated
52 microbial communities. Shallow shotgun sequencing – sequencing to a per-sample read
53 depth of 10^5 to 10^6 reads – provides taxonomic resolution greater than 16S amplicon
54 sequencing and functional characterization of metagenomes, while being less
55 expensive than whole genome sequencing or deep sequencing (typically 10^7 to 10^9
56 reads/sample) (1). However, there is a trade-off between cost and adequacy which is
57 especially problematic for samples of variable ratios of host to microbial DNA, where
58 microbial reads may be displaced by human reads in a mixed sample (2). While this is
59 generally not a concern for samples with high bacterial load, such as stool samples,
60 samples with low or variable microbial DNA relative to human DNA are common in other
61 regions of the body, such as the lung, nasopharynx, stomach, and duodenum (2, 3, 4,
62 5). Microbial taxonomic and functional analyses of metagenomic data require sufficient

63 reads to draw robust conclusions. The ability to predict the proportion of microbial reads
64 prior to sequencing would allow researchers to customize sequencing strategies for
65 desired analyses, while optimizing the cost and time spent on metagenomic sequencing.

66 In this study, we used quantitative PCR to predict the ratio of human to microbial
67 reads obtained from sequencing using three targets: the 16S rRNA gene, 18S rRNA
68 gene, and human beta-actin (ACTB) to quantitate DNA of bacterial, fungal, or human
69 origin, respectively (6-8). We compared the ratios of bacterial to human DNA
70 determined via qPCR to the percent microbial/human DNA determined via shallow
71 shotgun sequencing in samples with variable bacterial DNA. We derived a prediction
72 model from oropharyngeal swabs and stool samples, and evaluated it in a set of
73 independently collected samples, including rectal swabs and vaginal secretion samples.
74 Finally, we generated an easy-to-use tool based on qPCR data to predict sample
75 composition and sequencing depth required given a desired analytical outcome.

76 **Results and Discussion**

77 To assess the impact of shallowing sequencing depth on different bacterial DNA
78 proportions, we rarefied shotgun sequencing data from 4 sample types – stool,
79 oropharyngeal, rectal, and vaginal – to depths of 1000 to 1 million reads/sample. We
80 then determined the alpha diversity of each rarefaction using three metrics: richness,
81 Shannon index, and Berger-Parker index. Alpha diversity decreased in a sample type-
82 specific manner as sequencing depth decreased (**Fig. 1**). Notably, while vaginal
83 samples have the lowest alpha diversity in all three metrics of the four sample types,
84 alpha diversity decreased at the slowest rate as sequencing depth decreased (**Fig. 1**).

85 Conversely, while rectal swab samples had similar Shannon index and Berger-Parker
86 index values at 10^6 microbial reads to oropharyngeal and stool samples, alpha diversity
87 in rectal samples diminished at a greater rate as sequencing depth decreased (**Fig. 1B-C**). Since this effect is sample type-specific, it is critical to predict sample composition *a*
88 *priori* to ensure sufficient reads for the desired analysis for the given sample type.

90 qPCR is a widespread and robust technique available in many molecular biology
91 laboratories. Its availability as well as cheap associated costs, especially compared to
92 experiments involving high-throughput sequencing techniques, makes it an ideal
93 candidate to use to predict sample composition prior to sequencing. In this study, we
94 assessed the potential of qPCR to predict sample-specific ratios of human to microbe
95 DNA using different amplification targets. Using a multivariate approach, 5 models were
96 generated mapping 16S rRNA gene, 18S rRNA gene, and human beta-actin (ACTB)
97 qPCR-derived cycle thresholds (Ct) to observed percentage of microbial reads for a
98 sample set consisting of oropharyngeal swabs and stool samples. Microbial reads were
99 defined as any read which did not align/match with a human genome reference. The
100 following models were tested: (A) a linear fit using 16S rRNA gene and ACTB Ct values,
101 (B) a linear fit using 16S rRNA gene, 18S rRNA gene, and ACTB Ct values, (C) a linear
102 fit using logit transformed 16S rRNA gene and ACTB Ct values, (D) a linear fit using
103 logit transformed 16S rRNA gene, 18S rRNA gene, and ACTB Ct values, and (E) a
104 nonlinear regression model based on the logistic growth equation using 16S rRNA gene
105 and ACTB Ct values (**Supplementary figure 1A**). We compared goodness-of-fit for
106 each model and observed R^2 -values of 0.880, 0.880, 0.920, 0.920, and 0.990 for
107 models A – E, respectively (**Figure 2A, Supplementary figure 1A**). Observed residuals

108 had a min-max range of 67.56, 68.50, 58.93, 59.07, and 42.61 for models A – E,
109 respectively (**Supplementary figure A**). Based on these findings, model E turned out to
110 be the best fitting model to predict sample composition using qPCR, with an equation
111 of % microbial reads = $(2.7201549)/((99.50267)*e^{-0.7218*(ACTB-16S)})+ 0.02733$. In
112 addition, 18S rRNA Ct value was not found to be an informative predictor and was
113 hence removed from the model. In **Figure 2B**, we show the goodness-of-fit and
114 residuals observed with model E across the range of qPCR differences (-8.16% to
115 +34.45%). We observed homogeneous fit and variance indicating that the model
116 performs well for all observed host to microbe DNA ratios. However, we also observed
117 that the model loses accuracy at each end of the range due to the s initial dataset used
118 and sigmoidal curve generated, with limits approximately at 4% and 98%. This bias is
119 likely introduced at different steps of the process. For instance, sequencing error, and
120 resulting false negative and positive hits when mapping reads to the human database
121 are likely to account for this bias. Another potential source of bias could be introduced
122 by the carryover of contaminants between sequencing runs, hence resulting in a
123 composition change which is not picked up by the qPCR conducted *a priori*.

124 Using the equation derived from model E, we evaluated our approach on two different,
125 independently collected sample types including vaginal secretions and rectal swabs. In
126 **Fig 2C**, we show the relation between observed microbial reads percentages and the
127 difference in Ct between 16S and ACTB qPCR, derived from our validation dataset,
128 alongside a curve of expected values derived from model E. We observed the
129 difference between predicted and observed microbial reads percentages to range from -
130 18.80% to +19.22% with a mean of +0.944% (**Supplementary figure 1B**). In **Fig 2D**,

131 we show that this difference is consistent across the range of observed % microbial
132 reads. Compared to the other models, model E best described the validation dataset,
133 with a median difference of 0.25% and a standard deviation of 9.10% (**Supplementary**
134 **table 1B**). For comparison, model E described the initial sample set of
135 oropharyngeal/stool samples with a median difference of 0.14% and a standard
136 deviation of 4.35% (**Supplementary table 1A**). Since the model performed similarly
137 between the two datasets, we concluded that the model was able to describe a relation
138 between 16S and β -actin qPCR and shotgun sequencing metagenomic data in a
139 sample type-independent manner for microbial densities between 4% and 98%. We then
140 developed a tool based on our model and the rarefaction curves on different samples
141 type which predicts % microbial reads based on qPCR data and suggests a target
142 number of reads based on sample type and desired analysis (**Supplementary**).

143 The limitations of our study are as follows: The samples used in our study were low in
144 fungal content. Therefore, our model may not accurately predict microbial content in
145 sample sets where the majority of samples are rich in fungal content.

146 Moreover, as our results are based on protocols using specific reagents and
147 technologies for both sequencing and qPCR, our tool may not accurately predict
148 sequencing results when protocols, reagents, and/or technologies differ. However,
149 given that we have established a robust link among 16S qPCR, β -actin qPCR, and
150 sample content by sequencing, our approach can be easily adapted to fit different
151 experimental settings.

152 **Conclusion**

153 We have shown that shallowing shotgun sequencing depth can reduce measured alpha
154 diversity in all measured sample types, with more diverse communities being more
155 strongly negatively affected. We found that qPCR can function as a predictive tool for
156 sample composition that was strongly correlated with shotgun sequencing data. We
157 were able to create a model that can describe and predict variable sample types. We
158 hope that our tool and methodology may help fellow researchers screen for
159 sequenceable samples or allow for better optimization of sequencing.

160 **Methods**

161 *qPCR*

162 Samples were probed separately for the 16S rRNA gene, the 18S rRNA gene, and the
163 human β -actin gene. All reactions were conducted in duplicate and RNase-free water
164 was used as negative control. Each well contained 2 μ L of sample DNA, 5 μ L of
165 Taqman Universal PCR mix (Applied Biosystems, Foster City, CA), 0.3 μ M of forward
166 primer, 0.3 μ M of reverse primer, and 0.2 μ M of primer probe. PCR was performed on a
167 QuantStudio 6 Flex (Thermo Fisher Scientific, Waltham, MA) platform. Cycling was
168 done as follows: 10 minutes at 95°C followed by 45 cycles of 95°C for 15 seconds and
169 60°C for 1 minute.

170 For 16S qPCR, we used forward primer “TCCTACGGGAGGCAGCAGT” (Invitrogen,
171 Carlsbad, CA) and reverse primer “GGACTACCAGGGTATCTAACCTGTT” (Invitrogen,
172 Carlsbad, CA).(3) We used a FAM probe “CGTATTACCGCGGCTGCTGGCAC” with
173 NFQ-MGB quencher (Applied Biosystems, Foster City, CA).(3)

174 For 18S qPCR, we used forward primer “GGRAAACTCACCAAGGTCCAG” (Integrated
175 DNA Technologies, Coralville, IA) and reverse primer “GSWCTATCCCCAKCACGA”
176 (Integrated DNA Technologies, Coralville, IA).(1) We used a FAM probe
177 “TGGTGCATGGCCGTT” with NFQ-MGB quencher (Applied Biosystems, Foster City,
178 CA).(7)

179 For human qPCR, we used a β -actin gene specific forward primer
180 “CGGCCTTGGAGTGTATTAAAGTA” (Invitrogen, Carlsbad, CA) and reverse primer
181 “TGCAAAGAACACGGCTAAGTGT” (Invitrogen, Carlsbad, CA).(5) We used a VIC
182 probe “TCTGAACAGACTCCCCATCCCAAGACC” with 3QSY quencher (Applied
183 Biosystems, Foster City, CA).(8)

184 *Library preparation and sequencing*

185 Libraries were prepared using Nextera Flex (Illumina, San Diego, CA) kits with the
186 Nextera XT indices (Illumina, San Diego, CA). Barcoded sample libraries were pooled
187 together to a concentration of 17.6 ng/ul which measured with a high-sensitivity DNA
188 assay on a Qubit (Thermo Fisher Scientific, Waltham, MA) platform. A Mid-output
189 reagent kit (Illumina, San Diego, CA) was used to sequence on the Miniseq, while a SP
190 reagent kit (Illumina, San Diego, CA) was used on the Novaseq platform, both in
191 2x150bp mode.

192 *Read filtering and Taxonomic profiling*

193 We filtered human reads from non-human reads using KneadData based on a human
194 genome index for Bowtie 2 (9, 10). We considered sequence reads that did not match
195 the database as microbial reads in our analyses. Taxonomic annotation was conducted

196 using MetaPhlAn 2.0 and the ChocoPhlAn database (11). Rarefactions were performed
197 using seqtk-1.3 to subsample the microbial reads of individual samples (12). Subsample
198 compositions will be identified using MetaPhlAn2, and OTU tables were generated (11).
199 Diversity indexes were calculated using Past 4 (13).

200 *Model generation*

201 We used XLSTAT version 2019.4.2 (Addinsoft Inc., New York, NY) to generate
202 multivariate linear regressions using either 16S and ACTB qPCR cycle and microbial
203 reads percentages (Models A and C) or 16S, 18S, and ACTB qPCR cycle thresholds
204 and microbial reads percentages (Models B and D). Multivariate linear regressions
205 (models C and D) were also performed following a logit transformation of microbial
206 reads percentages. Finally, for model E, we generated the non-linear regression model
207 using the logistic growth equation in GraphPad Prism version 8.3.0 for Windows
208 (GraphPad Software, San Diego, CA).

209 **Figures**

210 **Figure 1. Alpha diversity indices are shown across a range of simulated**
211 **sequencing depths from 1E3 to 1E6 reads per sample.** (A) Sample-specific
212 rarefaction curves of species richness. (B) Shannon index calculated across a range of
213 rarefactions, by sample type. (C) Sample dominance, measured with the Berger-Parker
214 index, across a range of sequencing depths, stratified by sample type.

215 **Figure 2. Statistical model to predict sample composition using qPCR prior to**
216 **high-throughput sequencing (A)** Sigmoidal model generated from oropharyngeal
217 swabs and stool samples depicting the relationship between the difference of human

218 (ACTB) and bacterial (16S) qPCR values (Ct) with the percentage of microbial reads (R^2
219 =0.990). Nonlinear regression line (solid) is based on the following logistic growth
220 equation: % microbial reads = (2.7201549)/((99.50267)*e^(-0.7218*(ACTB-16S))+
221 0.02733). One-tailed 95% prediction interval is depicted with a dotted line. **(B)** Model
222 residuals. **(C)** Fitting of validation sample set on prediction model. The orange dots
223 represent values derived from a validation sample set composed of vaginal secretions
224 and rectal swabs samples and correlate well (R^2 = 0.930) with the prediction model
225 (solid black line). **(D)** Difference between expected and observed composition across
226 the range of microbial content.

227 **Supplementary Figure 1. (1A)** Residuals for 5 multivariate models generated using a
228 sample set comprised of oropharyngeal swabs and stool samples. i) Model A
229 represents a linear fit taking into account microbial and human-derived qPCR values; ii)
230 model B represents a linear fit taking into account microbial, fungal, and human-derived
231 qPCR values; iii) model C represents a linear fit taking into account microbial and
232 human-derived qPCR values after a logit transform of the data; iv) model D represents a
233 linear fit taking into account microbial, fungal, and human-derived qPCR values after a
234 logit transform of the data; and v) model E represents a nonlinear regression model
235 based on the logistic growth equation taking into account microbial and human-derived
236 qPCR values. Error bars depict 1 standard deviation centered around the mean. **(1B)**
237 Difference between observed and predicted percentage of microbial reads, by model,
238 using a validation dataset comprised of independently collected rectal swabs and
239 vaginal secretion samples.

240 **Supplementary Table 1. (1A)** Table summarizing residual values and model type of
241 the 5 statistical models (A-E) tested in this study. **(1B)** Residual values of the 5 models
242 when applied to an independent, validation dataset.

243 **References**

244 1. Hillmann, B., G. A. Al-ghalith, R. R. Shields-cutler, Q. Zhu, D. M. Gohl, K. B. Beckman, R. Knight, and D.
245 Knights. 2018. Evaluating the Information Content of Shallow Shotgun Metagenomics. *mSystems* 3: 1–12.

246 2. Leo, S., N. Gaïa, E. Ruppé, S. Emonet, M. Girard, V. Lazarevic, and J. Schrenzel. 2017. Detection of
247 Bacterial Pathogens from Broncho-Alveolar Lavage by Next-Generation Sequencing. *International*
248 *journal of molecular sciences* 18: 1–13.

249 3. Nadkarni, M. A., F. E. Martin, N. A. Jacques, and N. Hunter. 2002. Determination of bacterial load by
250 real-time PCR using a broad-range (universal) probe and primers set. *Microbiology* 148: 257–266.

251 4. Biesbroek G., E. A. Sanders, G. Roeselers, M. P. M. Caspers, K. Trzciński, D. Bogaert, and B. J. F. Keijser.
252 2012. Deep sequencing analyses of low density microbial communities: working at the boundary of
253 accurate microbiota detection. *PLoS One* 7(3)

254 5. Bogaert, D., B Keijser, S Huse, J. Rossen, R. Veenhoven, E. van Gils, J. Bruin, R. Montijn, M. Bonten, and
255 E. Sanders. 2011. Variability and Diversity of Nasopharyngeal Microbiota in Children: A Metagenomic
256 Analysis. *PLoS Biol* 6(2)

257 6. Sender, R., S. Fuchs, and R. Milo. 2016. Revised Estimates for the Number of Human and Bacteria Cells
258 in the Body. *PLoS Biol* 14(8)

259 7. Liu, C. M., S. Kachur, M. G. Dwan, A. G. Abraham, M. Aziz, P. R. Hsueh, Y. T. Huang, J. D. Busch, L. J.
260 Lamit, C. A. Gehring, P. Keim, and L. B. Price. 2012. FungiQuant: a broad-coverage fungal quantitative
261 real-time PCR assay. *BMC microbiology* .

262 8. Hasan, M. R., A. Rawat, P. Tang, P. v. Jithesh, E. Thomas, R. Tan, and P. Tilley. 2016. Depletion of
263 human DNA in spiked clinical specimens for improvement of sensitivity of pathogen detection by next-
264 generation sequencing. *Journal of Clinical Microbiology* 54: 919–927.

265 9. Langmead, B., and S. L. Salzberg. 2012. Fast gapped-read alignment with Bowtie 2. *Nature Methods* 9:
266 357–359.

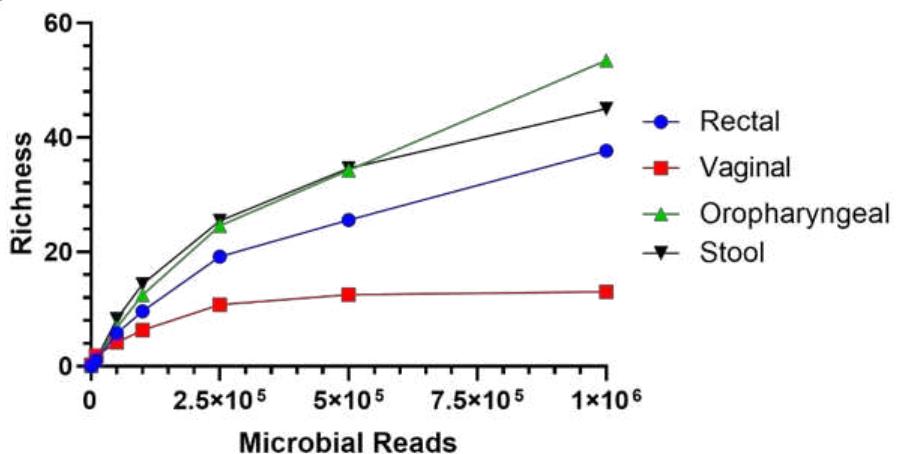
267 10. Huttenhower, C. KneadData | The Huttenhower Lab. .

268 11. Segata, N., L. Waldron, A. Ballarini, V. Narasimhan, O. Jousson, and C. Huttenhower. 2013.
269 MetaPhiAn -1-. *Nat Methods* 9: 811–814.

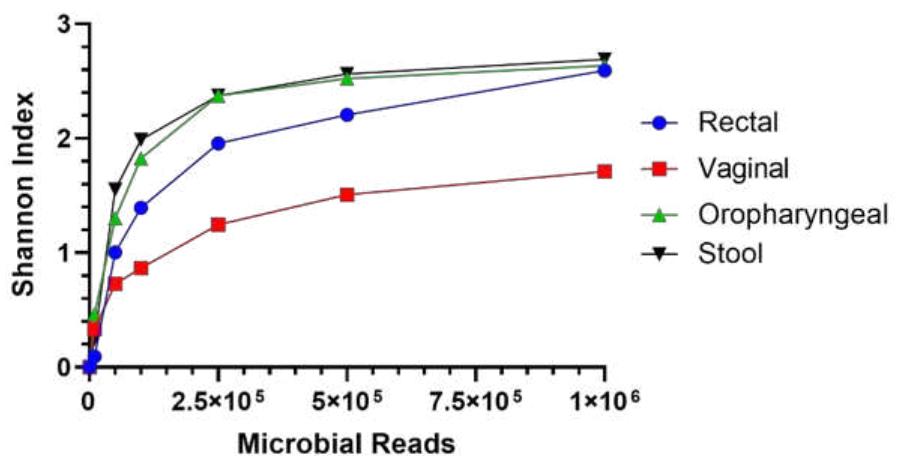
270 12. Li, H. GitHub - lh3/seqtk: Toolkit for processing sequences in FASTA/Q formats.

271 13. Hammer, Ø., Harper, D.A.T., Ryan, P.D. 2001. PAST: Paleontological statistics software package for
272 education and data analysis. *Palaeontologia Electronica* 4(1): 9pp.

(A)



(B)



(C)

