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Abstract

A system-level understanding of the regulation and coordination mechanisms of gene expression

is essential to understanding the complexity of biological processes in health and disease. With

the rapid development of single-cell RNA sequencing technologies, it is now possible to investigate

gene interactions in a cell-type-specific manner. Here we propose the scLink method, which uses

statistical network modeling to understand the co-expression relationships among genes and to

construct sparse gene co-expression networks from single-cell gene expression data. We use

both simulation and real data studies to demonstrate the advantages of scLink and its ability to

improve single-cell gene network analysis. The source code used in this article is available at

https://github.com/Vivianstats/scLink.

Introduction

Biological systems often involve tens of thousands of genes tightly regulated in complex and dy-

namic networks, which could change substantially in different tissue types, developmental stages,

or cell states [1, 2]. Therefore, elucidating gene interactions in a network manner is crucial for

understanding complex biological processes in human physiology and pathology. By identifying

abnormal gene interactions and regulations in disease states, it is possible to reveal the biological

and biochemical pathways relevant to disease mechanisms and therapeutic targets [3]. For in-

stance, transcriptional dysregulation revealed by disease-associated gene interactions has been

reported in various diseases, including cancer [4, 5], neurological disorders [6], and psychiatric

disorders [7], leading to functional insights of transcriptome organization in disease processes.

In network analysis, genes are represented by nodes, and their relationships are depicted by

different types of directed or undirected edges between the nodes. The gene networks constructed

from bulk tissue RNA sequencing (RNA-seq) data have played a key role in identifying genes that

are responsible for similar biological functions, targets of transcriptional regulation, and regulators
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of disease-associated biological pathways [8, 9, 10]. However, the tissue-level networks can only

describe the average gene-gene relationships across multiple biological samples [11]. Rapid ad-

vances of single-cell RNA sequencing (scRNA-seq) technologies have now made it possible to

investigate gene networks across individual cells in a cell-type-specific manner [12]. ScRNA-seq

technologies can parallelly profile gene expression levels in large numbers of individual cells, offer-

ing a unique opportunity for investigating genes’ relationships at a single-cell resolution. Based on

the functional networks constructed from scRNA-seq data, biological discoveries have been made

to provide novel insights into the transcriptional regulation mechanisms underlying various biolog-

ical processes, including cancer progression [13], immune system response [14], and embryonic

development [15].

Even though exploratory analyses demonstrated the possibilities of constructing functional

gene networks across single cells, both technical and biological complications present challenges

to the genome-wide inference of gene dependencies from scRNA-seq data [16]. Due to technical

molecular inefficiencies, a truly expressed gene may not be detected by scRNA-seq in some cells,

and thus is represented by a false zero expression level [17]. Meanwhile, the stochastic gene

expression process can also lead to zero expression representing biological variation. Therefore,

scRNA-seq data are often much sparser than the traditional bulk RNA-seq data, requiring new

statistical and computational tools that could tackle the modeling challenges given the excess

zero counts. In bulk RNA-seq data analysis, studies of gene networks mostly rely on the Pearson

or Spearman’s correlation coefficients to characterize the gene co-expression strength [18, 19].

However, these two measures cannot provide a robust estimation of gene co-expression given the

sparse scRNA-seq data with substantial technical noises and biological heterogeneity [20, 21].

In light of the aforementioned problem, Iacono et al. [19] used the correlation between two

genes’ patterns of differential expression between cell types instead of gene expression levels to

study gene regulatory network plasticity. However, most reconstruction methods of gene networks

do not explicitly account for the sparsity issue. For example, PIDC uses partial information decom-

position from the multivariate information theory to quantify the statistical dependencies between

genes and infer gene networks from scRNA-seq data [22]. GENIE3 decomposes the prediction

of a gene network between p genes into p different regression problems, and uses tree-based

ensemble methods to infer the edges between genes [23]. It was shown to have competitive

performance on bulk data [24] and has also been applied to single-cell data for gene network in-

ference [25]. In addition to methods that are purely based on gene expression data, there are also

single-cell methods developed to infer direct gene regulatory relationships instead of statistical

dependencies [26]. To infer the direct gene interactions, these methods typically require external

information such as time points or pseudo-time order of the cells [27, 28] and known transcription

factors [25].

Despite being an active research area, accurate inference of functional gene networks from

single-cell gene expression data remains a challenge, partly due to a lack of sufficient resolution

in gene expression for making reliable inference [16, 26]. In this work, we propose a new method,
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scLink, to better characterize the statistical dependencies between genes in single cells, and im-

prove the construction of gene co-expression networks based on a newly proposed co-expression

measure. In summary, scLink has the following advantages. First, it proposes a robust estimator

for measuring gene co-expression strength, built upon our previous work on improving the quality

of single-cell gene expression data [29]. Instead of using all the observed read counts for mea-

suring the association between two genes, scLink aims to rely on the cells in which both genes

are accurately measured with high confidence. Second, scLink adapts the Gaussian graphical

model [30] to distinguish the direct associations between genes from indirect ones and leads to

easily interpretable sparse networks. Under this framework, the absence of an edge between two

genes indicates the independence of these two genes conditioned on all other genes. Gaussian

graphical models have been widely used to infer biological networks from genomic data and have

revealed cancer-type-specific gene interactions that potentially contribute to cancer development

and progression [31, 32, 33]. Third, scLink uses a penalized approach to identify relatively sparse

gene networks in a data-adaptive manner, adjusting the penalty strength on each edge based

on the observed co-expression strength in single cells. This penalized approach is a modified

version of the graphical lasso method [34] to improve the identification of edges using single-cell

data. We show that by combining the above features, scLink could enable more robust quan-

tification of gene co-expression relationships, more accurate construction of gene co-expression

networks, and better identification of functional gene modules that could provide insights into cell-

type-specific transcriptional regulatory mechanisms and molecular pathways.

Methods

A robust estimator for measuring gene co-expression strength

Accurate and robust estimation of the strength of gene co-expression relationships is the key to

reliable inference of gene co-expression networks. Since single-cell gene expression data con-

tain excess zero counts and relatively inaccurate low counts due to both technical and biological

variability [35, 29], the conventional Pearson or Spearman’s correlation coefficients are often not

reliable for single-cell gene expression data, especially for genes whose expression values are

highly sparse (Figure 1) [36, 20]. In our previous work, we proposed a statistical method, scIm-

pute, to address the excess zeros in scRNA-seq data [29]. Based on scImpute’s idea to identify the

highly likely outliers (i.e., gene expression values that are not accurately measured), we propose

a robust estimator for gene co-expression strength, which helps scLink to improve the inference of

sparse gene co-expression networks.

Suppose the scRNA-seq data of a certain cell type (determined using biological markers or

computational tools) is summarized as a read count matrix, with rows representing n cells and

columns representing p genes. We normalize the count matrix by the library size of each cell, so

that all cells have M reads after normalization. Typical choices for M include the median library
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size of all cells or a predetermined constant (e.g., 105) [17]. Denoting the normalized matrix by

C, we apply the log10 transformation to the count matrix to prevent a few large observations from

being extremely influential. The resulting matrix is denoted as Y , with Yij = log10(Cij + 1.01) (i =

1, 2, . . . , n, j = 1, 2, . . . , p). The pseudo count 0.01 is added to avoid infinite values in parameter

estimation.

We also denote the log-transformed gene expression matrix without the pseudo-count as X,

where Xij = log10(Cij + 1) (i = 1, 2, . . . , n, j = 1, 2, . . . , p). In conventional methods, pairwise

correlation coefficients are calculated from X to obtain the sample correlation matrix, based on

which gene networks are constructed. In our scLink method, however, we add a filtering step to

identify the accurately measured read counts and rely on these counts in network inference, by

adapting a mixture model used in scImpute. Similar mixture models have been shown to effectively

capture the bimodal characteristic of single-cell gene expression data [35, 37, 38]. Specifically, for

each gene j, we assume its expression level is a random variable Yj following a Gamma-Normal

mixture distribution, with a density function

fYj
(y) = λjGamma(y;αj , βj) + (1− λj)Normal(y;µj , σj), (1)

where λj is gene j’s non-detection rate, αj and βj are the shape and rate parameters in the

Gamma distribution, and µj and σj are the mean and standard deviation in the Normal distri-

bution. The Gamma distribution models the gene expression distribution when the sequencing

experiments fail to accurately capture gene j’s transcripts, while the Normal distribution models

the actual gene expression levels.

We designed an Expectation-Maximization algorithm to estimate the parameters in model (1),

and these estimates are denoted as λ̂j , α̂j , β̂j , µ̂j , σ̂j , respectively. We can then filter the gene

expression values based on the non-detection probability of gene j in cell i, which is estimated as

dij =
λ̂jGamma(Yij ; α̂j , β̂j)

λ̂jGamma(Yij ; α̂j , β̂j) + (1− λ̂j)Normal(Yij ; µ̂j , σ̂j)
. (2)

Since dij ∈ (0, 1) and a smaller dij indicates better confidence of the observed gene expression

Yij , we can filter expression values by selecting a threshold t. Gene expression values whose

corresponding dij < t are considered to be accurately measured with high confidence, while

expression values whose corresponding dij ≥ t are treated as missing values. We set t = 0.5 in

our analysis, as we have previously demonstrated that the selection of this threshold only impact

a tiny proportion of genes [29].

Given the identified accurate expression values and missing values, our robust estimator for

measuring gene co-expression strength is defined as the pairwise-complete Pearson correlation

coefficients. We calculate the co-expression strength from gene expression matrix X, where

Xij = log10(Cij + 1) (i = 1, 2, . . . , n, j = 1, 2, . . . , p). For genes j1 and j2, their robust correlation is
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calculated as

rj1,j2 =

∑n
i=1(Xij1 − X̄·j1)(Xij2 − X̄·j2)1I{dij1 < t}1I{dij2 < t}

√
aj1,j2

√

bj1,j2
, (3)

where X̄·j1 = 1
n

∑n
i=1Xij1 , X̄·j2 = 1

n

∑n
i=1Xij2 , and

aj1,j2 =

n
∑

i=1

(Xij1 − X̄·j1)
21I{dij1 < t}1I{dij2 < t}, (4)

bj1,j2 =

n
∑

i=1

(Xij2 − X̄·j2)
21I{dij1 < t}1I{dij2 < t}. (5)

The pairwise robust correlation coefficients are used by scLink to construct gene co-expression

networks in the following subsection. To improve the robustness of our analysis, if the sample size

for calculation between genes j1 and j2 (
∑n

i=1 1I{dij1 < t}1I{dij2 < t}) is smaller than 10, then we

instead use the Pearson correlation coefficient for this pair of genes.

The scLink method for gene network inference

To construct sparse gene co-expression networks from single-cell gene expression data, our

scLink method adapts the Gaussian graphical model [30] and the penalized likelihood method

[39, 34], which uses the principle of parsimony to select the simplest graphical model that ade-

quately explains the expression data. We assume that the actual gene expression values in each

cell, without missing values being present due to technology limitations, be a p-dimensional ran-

dom vector Z = (Z1, . . . , Zp)
T following a multivariate distribution N(µ,Σ). Note that Z denotes

the actual gene expression on the log10 scale, and Z is a hidden variable that is not directly ob-

servable. We wish to estimate the concentration matrix Θ = Σ
−1, since a zero entry θj1,j2 = 0

indicates the conditional independence between the two genes j1 and j2 given all other genes.

In other words, if we consider an undirected graph G = (V,E), where V contains p vertices cor-

responding to the p genes and the edges are denoted by E = {ej1,j2}1≤j1<j2≤p, then the edge

between genes j1 and j2 is absent if and only if θj1,j2 = 0. Thus we can infer the presence of

edges between genes by estimating parameters and identifying non-zero entries in the concentra-

tion matrix Θ.

Given a random sample (n cells) of Z, a commonly used lasso-type estimator [34] takes the

form

Θ̂ = argmax
Θ�0

log det(Θ)− tr(SΘ)− λ||Θ||1, (6)

where (log det(Θ)− tr(SΘ)) is proportional to the log-likelihood for Θ (ignoring a constant not

depending on Θ) [39] and λ||Θ||1 = λ
∑p

j1 6=j2
|θj1,j2 | (λ 6= 0) is a penalty term adding a constraint

on the number of non-zero elements in the concentration matrix. In model (6), S denotes the

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2020. ; https://doi.org/10.1101/2020.09.19.304956doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.19.304956
http://creativecommons.org/licenses/by-nc-nd/4.0/


estimated covariance matrix.

Recall that we summarize the observed gene expression matrix as X, where Xij = log10(Cij+

1) (i = 1, 2, . . . , n, j = 1, 2, . . . , p). If we directly consider each matrix column X·1, . . . ,X·j as a

realization of Z, the covariance matrix could be estimated with the sample covariance matrix Σ̂ =
1

n−1

∑n
i=1(Xi·−X̄)(Xi·−X̄)T , where X̄ = 1

n

∑n
i=1Xi·. However, due to limited detection capacity

in scRNA-seq technologies as we have discussed in the previous subsection, the observed gene

expression values X·1, . . . ,X·j cannot be directly treated as a sample of Z, and Σ̂ is not an ideal

estimator of the covariance matrix Σ. In scLink, we estimate Σ with a robust estimator S, which is

constructed with the robust estimator for gene co-expression strength as introduced in the previous

subsection. The elements in S are calculated as

Sj1,j2 = σ̂j1 σ̂j2rj1,j2 (j1, j2 = 1, . . . , p), (7)

where rj1,j2 is the robust correlation given by formula (3), and σ̂j1 , σ̂j2 are respectively the es-

timated standard deviation of genes j1 and j2 from the mixture model (1). This idea of robust

covariance estimation is motivated by a general framework for robust covariance calculation of

high-dimensional data [36], and implemented with careful consideration of single-cell data charac-

teristics.

In addition to proposing the robust estimator of covariance matrix, another improvement by

scLink is to introduce a data-adaptive penalty term instead of using a constant λ. We expect the

penalty to be stronger on θj1,j2 if the robust correlation between genes j1 and j2 is weaker, and

vice versa. Therefore, we propose a weighted penalty term λ
∑p

j1 6=j2
(1 − |rj1,j2 |)θj1,j2 to incorpo-

rate gene-pair-specific information when adding the sparsity constraint on estimated concentration

matrix Θ̂.

In summary, the scLink estimator of the concentration matrix takes the form

Θ̂scLink = argmax
Θ�0

log det(Θ)− tr(SpΘ)− λ

p
∑

j1 6=j2

(1− |rj1,j2 |)θj1,j2 , (8)

where λ > 0 and Sp is a positive semidefinite approximation of S, which is defined in (7). In detail,

Sp = S + |min{0, τ}|I, where τ is the smallest eigen value of S and I is the identity matrix [36].

There are multiple algorithms that can be implemented to solve model (8), and we selected the

QUIC algorithm [40] since its computational cost is O(p) and has a superlinear convergence rate.

After we obtain the estimated Θ̂, for network construction it follows that Êj1,j2 = 1 if θ̂j1,j2 6= 0 and

Êj1,j2 = 0 if θ̂j1,j2 = 0.

Selection of the regularization parameter

In model (8), the value of the regularization parameter λ would influence the level of sparsity in the

estimated concentration matrix and therefore the constructed gene network. Here we discuss two

approaches that can be used to guide the selection of λ. The first approach is to use the Bayesian
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information criterion (BIC) [41]. For model (8) and a particular value of λ, BIC is calculated as

BIC(λ) = ntr(SpΘ̂)− n log det(Θ̂) +m log(n),

where m is the total number of edges (i.e., non-zero elements in Θ̂). We can apply model (8) on

single-cell gene expression data with a sequence of varying regularization parameters, and select

the value of λ that leads to the minimal BIC value. The second approach is to directly select λ

based on the level of sparsity in the constructed gene networks. Suppose we have an expectation

for the sparsity level based on prior knowledge (e.g., existing biological networks or pilot studies),

we can select the value of λ that achieves the expected sparsity level of the gene network.

Simulation of synthetic gene networks and expression data

We adapted the procedures described in Mestres et al. [42] to simulate network structures. In each

simulation setting, we first generated a block diagonal connectivity matrix Ep×p, where each block

had a hub-based or power-law topology and the whole matrix also contained a fixed number of

random connections between blocks. In the connectivity matrix, |Ej1,j2 | = 1 means that there’s an

edge between genes j1 and j2, and Ej1,j2 = 0 means that there’s no edge between the two genes.

This process was assisted with the R package ldstatsHD v1.0.1 [42]. Given the connectivity

matrix, a partial correlation matrix was simulated by

Λ = [λj1,j2 ], λj1,j2 =



















Unif(0.4, 0.7) if Ej1,j2 = 1 with probability 0.5;

Unif(−0.7,−0.4) if Ej1,j2 = −1 with probability 0.5;

0 if Ej1,j2 = 0.

In case that Λ was not positive definite, we applied the transformation Λp = Λ + |min{0, τ}|I,

where τ was the smallest eigen value of Λ and I was the identity matrix. We then calculated

the corresponding correlation matrix R, and used it together with the gene expression mean and

standard deviation estimated from a real scRNA-seq dataset [43] to simulate synthetic gene ex-

pression matrix X0 from a Multivariate Gaussian distribution. The estimation of the gene expres-

sion parameters followed the procedures described in the Methods section: A robust estimator for

measuring gene co-expression strength. Next, we introduced zero counts to the gene expression

matrix to mimic the observed zeros due to technical missing values and biological non-expression.

Since the possibility of observing zero counts for a gene is negatively correlated with this gene’s

mean expression in real data [35, 29], we calculated a probability for each entry in the gene ex-

pression matrix: pi,j = exp(−ρ × (X0
ij)

2), where ρ was a parameter controlling the dependence

between missing probability and gene expression. Then a binary indicator was sampled for each

entry: Ii,j ∼ Bernoulli(pi,j), with Ii,j = 1 indicating that the corresponding entry would be re-

placed by 0. In other words, we assumed pi,j was the probability of observing a zero count for

gene j in cell i. Therefore, the final single-cell gene expression matrix was defined as X, where
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Xij = X0
ij1I{Iij = 0}. Repeating the procedures described above with different values of ρ, we

could generate synthetic single-cell gene expression matrices with known network topologies and

different levels of sparsity. In our study, we used four different values of ρ: {0.07, 0.10, 0.13, 0.16}.

Calculation of the robustness score

We use scLink as an example to describe how the robustness score was calculated in the Results

section. The robustness of PIDC and GENIE3 were calculated using the same method. Suppose

for a specific cell number (n) and gene number (p), by randomly sampling n cells from the given

cell type for L times (L = 10 in our analysis), we obtained L gene adjacency networks from scLink:

E(`) (` ∈ {1, 2, . . . , L}), where E
(`)
j1,j2

= 1 if the two genes j1 and j2 have an edge in the `-th gene

co-expression network; otherwise, E
(`)
j1,j2

= 0. To simplify the notation, we denote Es =
∑L

`=1E
(l).

The robustness of scLink is then calculated as

RS =

∑p−1
j1=1

∑p
j2=j1+1

∑L
`=1(`− 1)1I{Es

j1,j2
= `}

∑p−1
j1=1

∑p
j2=j1+1

∑p−1
j1=1

∑p
j2=j1+1

∑L
`=1(L− 1)1I{Es

j1,j2
> 0}

. (9)

For example, RS = 1 if the L inferred adjacency networks are exactly the same; RS = 0 if the L

gene networks do not have any overlap.

Results

The scLink method

To improve the construction of gene co-expression networks for single cells, we propose the scLink

method to calculate the correlation between gene pairs, and then use a penalized and data-

adaptive likelihood method to learn sparse dependencies between genes and construct sparse

gene co-expression networks. One motivation of scLink is that the conventional Pearson and

Spearman’s correlation coefficients do not provide an efficient approach to representing and in-

terpreting gene associations given the high sparsity of single-cell gene expression data. For in-

stance, we calculated the Pearson and Spearman’s correlation for a gene expression dataset of

109 immune B cells [13] (Supplementary Figure S1), after normalization and log transformation

as described in Methods. We only used the 410 genes with at least 10% detection rates, and the

proportion of zero counts in the expression matrix is 71.2%. As an example, there are 886 gene

pairs with a similar Pearson correlation coefficient in [−0.15,−0.14], and 1302 gene pairs with a

similar Spearman’s correlation in [0.14, 0.15], but their association varies in a much larger range

when we recalculated the correlation only using the cells in which both genes were detected (Fig-

ure 1A-B). To more accurately infer gene co-expression networks that can capture functional gene

modules, scLink has two key steps (Figure 1C, Methods). The first step is to calculate a robust

co-expression matrix from the gene expression data to accurately represent the co-expression re-
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lationships among the genes. In this step, scLink proposes a robust estimator for measuring gene

co-expression strength, while relying on the cells in which both genes are accurately measured

with high confidence. In the second step, scLink aims to identify a sparse gene network from the

co-expression matrix using a penalized and data-adaptive likelihood approach. We use both sim-

ulation and real data studies to demonstrate the efficiency of scLink, and how scLink improves the

identification of functional gene modules, regulatory relationships, and co-expression clues about

cellular mechanisms that are active in normal and disease processes.
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Figure 1: The motivation and workflow of the scLink method. A-B: Example gene pairs whose Pearson correlation (A)

or Spearman’s correlation (B) are similar in the B cells. The scatter plots present the log
10

-transformed gene expression

levels. The Pearson or Spearman’s correlation calculated using only cells in which both genes were detected are

marked in the scatter plots. C: The workflow of the scLink method. In the first step, scLink calculates a robust co-

expression matrix from the gene expression data. In the second step, scLink identifies a sparse gene network from the

co-expression matrix using a penalized and data-adaptive likelihood approach.

scLink demonstrates efficiency in simulation studies

Our motivations for using simulated scRNA-seq data based on synthetic networks are two-fold.

First, since the actual gene networks underlying real single-cell gene expression data are un-

known, the synthetic networks provide ground truth for comparing computational methods in a
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systematic and unbiased manner. Second, using the simulated data, we can evaluate the perfor-

mance of gene network inference methods given diverse network architectures and experimental

settings. These results can help us investigate the advantages of each method in different scenar-

ios.

In our simulation setting, we considered two types of network topology: hub-based networks

and power-law networks [42]. The power-law networks (Figure 2A) assume that the distribution of

the node degrees (i.e., the total number of edges a node has) follows a power law [44]. That is,

a(k) = k−α/ζ(α), where a(k) denotes the fraction of nodes with degree k, α is a positive constant,

and ζ(·) is the Riemann zeta function. In contrast, in the hub-based networks (Figure 2B), a few

nodes have a much higher degree than the rest nodes, and these high-degree nodes represent

hub genes with critical functions in biological networks [18]. Using a carefully designed simulation

framework (see Methods), we could generate synthetic single-cell gene expression matrices with

known network topologies and different levels of sparsity. Therefore, we can evaluate the accuracy

of a computationally inferred gene network by comparing it with the ground truth network.

We compared scLink with five alternative methods on the synthetic data to evaluate their ac-

curacy in constructing gene co-expression networks. Among these five methods, PIDC infers

genes’ dependencies in single cells based on the multivariate information theory [22]. GENIE3

was first developed to infer regulatory networks from bulk expression data [23], and was recently

applied to single-cell expression data [25]. These two methods were demonstrated to have lead-

ing performance on simulated and real scRNA-seq data in a recent comparison [16]. In addition,

our comparison also included glasso, a general statistical method for estimating sparse networks

[34], and its variants have been used to address different challenges in gene network construction

[33, 45]. Finally, we also considered gene networks constructed by thresholding the Pearson or

Spearman’s correlation coefficients, as these are commonly used statistical measures for con-

structing gene co-expression networks [18].

Since the gene networks are expected to be sparse, we use the area under the precision-recall

curves (AUPR) as the primary criterion and the area under the receiver operating characteristic

curves (AUROC) as the secondary criterion, to achieve a fair and comprehensive comparison of

the methods. For scLink and glasso, the curves were obtained by evaluating the two methods with

different values of the regularization parameter (i.e., λ, see Methods). For PIDC and GENIE3,

the curves were obtained by thresholding the estimated edge weights (between every pair of

genes) at different values. For Pearson and Spearman’s correlation, the curves were obtained by

thresholding the absolute values of correlation coefficients. For each type of network topology,

we simulated synthetic single-cell gene expression data with 100, 200, and 300 genes (nodes).

By changing the simulation parameters, we could generate gene expression data with different

sparsity level (i.e., the proportion of zero counts). In each parameter setting, the simulation was

independently repeated 50 times. We compared the computationally inferred gene networks with

the true underlying gene networks using the AUPR and AUROC scores.

Our comparison results show that for both power-law and hub-based network topologies,
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Figure 2: Comparison of scLink and the other gene network inference methods on synthetic single-cell gene expres-

sion data. A: An example 100-gene network with the power-law topology. B: An example 100-gene network with the

hub-based topology. C-D: AUPR and AUROC scores of scLink and the other five methods given gene expression data

generated from the power-law networks (C) or hub-based networks (D). The gene expression matrices have varying

number of genes (100, 200, or 300) and proportion of zero counts (marked on the x-axis).

scLink has the best AUPR and AUROC scores, outperforming glasso, PIDC, GENIE3, and the

two correlation measures (Figure 2C-D). We think an important reason why scLink demonstrates

higher accuracy is that it explicitly models the excess zero or low counts in single-cell data, provid-

ing a more robust estimator for gene co-expression strength to be used in the network inference

step. Evaluating the performance of glasso, we found that it has a similar or even slightly lower ac-

curacy compared with directly thresholding the Pearson correlation coefficients. This implies that

the basic penalized Gaussian graphical model is not very efficient for single-cell data. However, by

incorporating improved co-expression measures and adding data-adaptive penalties to the gene-

gene edges, scLink largely improves the accuracy of the graphical model. We also observed that
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most methods, including scLink, have increasing accuracy on less sparse single-cell gene ex-

pression data. A primary reason is that these datasets provide a larger effective sample size for

network inference and contain fewer noises that could lead to false discoveries. This result sug-

gests that it could be advantageous to filter out lowly expressed genes before network inference

for real single-cell gene expression data. In addition, given the same level of sparsity in single-cell

data, most methods tend to have better performance on the power-law networks than the hub-

based networks. A possible reason is that when multiple genes are simultaneously interacting

with the same hub gene, it is very challenging to precisely distinguish the direct dependencies

from the indirect ones among these genes only using the gene expression data.

As a proof-of-concept study, we also compared two modified versions of glasso with scLink

on the simulated data. The first method, glasso-r, refers to the glasso method based on scLink’s

robust correlation measure. It is the same as scLink except that it uses a uniform weight of 1 in-

stead of the adaptive weights in the penalty term. In other words, the penalty term is replaced with

λ
∑p

j1 6=j2
θj1,j2 in model (8). The second method, glasso-f, refers to the glasso method with a filter-

ing procedure. It filters out the cells that have greater than x% of zero counts before applying the

glasso approach, and we set x = 70 in this study. This reflects the practice to filter out low-quality

cells in real data applications. Our results based on both power-law and hub-based networks

show that glasso-f does not effectively improve the network construction accuracy compared with

glasso (Supplementary Figure S2). In addition, scLink achieves higher AUPR than glasso-r while

the two methods have similar AUROC, suggesting the additional benefit of using adaptive penalty

for constructing single-cell gene networks. Furthermore, as a control study, we also compared

scLink with the other methods on simulated data without introducing an extra level of sparsity

(Supplementary Figure S3). In this control study, the synthetic scRNA-seq data were also gen-

erated as described in Methods, except that the step of introducing zero counts is skipped. As

expected, all the methods, especially the two methods based on Pearson and Spearman’s corre-

lation, have improved accuracy compared with the performance on sparse gene expression data.

The control study demonstrates the unique challenge presented by the high level of sparsity in

single-cell gene expression data, and the need to develop specific methods accounting for these

data characteristics in the modeling step.

scLink identifies cell-type-specific gene networks from the Tabula Muris data

To evaluate scLink’s performance on experimental single-cell data and demonstrate its application

to construct cell-type-specific gene networks, we applied scLink to gene expression values derived

from Smart-Seq2 RNA-seq libraries [46]. This dataset from the Tabula Muris database includes

53, 760 cells of 20 different tissues from 8 mice [47], providing a valuable opportunity to perform

the analysis in a cell-type-specific manner. We separately applied scLink to gene expression

datasets of 59 cell types (each with at least 100 cells), using the top 500 highly expressed genes

in each dataset. The proportion of zero counts in the 59 gene expression matrices ranges from

1.0% to 40.5%, and has a mean of 12.4%. The regularization parameters (λ) in model (8) were
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selected as the smallest value from {1, 0.95, . . . , 0.05} such that the resulting network had no more

than 5% edges (i.e., 5% × (500 × 499)/2 ≈ 6237 edges). After applying scLink to construct the

cell-type-specific gene co-expression networks, we summarized the gene degrees, number of

network communities (identified by the Louvain algorithm [48]), and sizes of the communities in

Supplementary Figure S4.

Since the true underlying gene networks are unknown for real gene expression data, we first

investigated the identified edges between genes and known transcription factors (TFs). For each

cell type, we calculated the number of identified edges connected to known TFs in scLink’s re-

sults, and assessed their overlap with the TF-target edges discovered in previous ChIP-seq ex-

periments [49, 50, 51]. Since the ChIP-seq experiments were performed using bulk data from

human or mouse tissues instead of single cells, we pooled the TF-target pairs from the ChIP-seq

experiments for the comparison, resulting in a database of 310 TFs. We used this database as

a reference to investigate scLink’s performance, but we note that it’s not appropriate to calcu-

late precision and recall rates treating this database as the ground truth. Our results show that

a substantial proportion of the identified TF-gene edges by scLink were previously discovered in

ChIP-seq experiments (Figure 3A). This proportion ranges from 15.6% to 89.5% among different

cell types and has a median of 59.3%. Especially, the scLink identification has relatively high con-

sistency with the ChIP-seq database in the epithelial, mesenchymal, pancreatic, epidermal, and

muscle cell types, with a median overlapping proportion of 65.5%, 69.8%, 64.1%, 61.0% and 65.4%,

respectively (Figure 3A). As a comparison, we also applied five additional network construction

methods described in previous simulation studies to the Tabula Muris data: Pearson correlation,

Spearman’s correlation, PIDC, glasso-f, and glasso-r (Supplementary Table S1). The median pro-

portions of identified TF-gene edges that were previously discovered in ChIP-seq experiments are

53.0%, 53.6%, 63.5%, 56.4%, and 58.1% for these methods, respectively. We found that scLink and

PIDC generally lead to a higher consistency with the bulk tissue ChIP-seq database.

Since some TF-gene edges identified by scLink were not previously observed from ChIP-seq

experiments, we performed an additional motif analysis using HOMER [52] to study if the genes

connected to the same TF by scLink share common motifs in their promoter regions. Our motif

analysis identified both known and novel motifs for a group of TFs, including Cebpb, Cebpd, Irf8,

Jun, Klf4, Rela, and Stat3 (Figure 3B). Although we cannot conclude that these genes connected

to the TFs by scLink are the direct targets of these TFs, the motif analysis shows that the genes

connected to the same TF do have shared sequence features in their regulatory sequences and

are likely to be co-expressed. In summary, the above analyses demonstrate that by estimating the

single-cell gene networks, scLink is able to identify edges between TFs and their potential target

genes, even though scLink does not rely on any prior information of known TFs.

To further validate the biological functions of gene co-expression networks estimated by scLink,

we investigated the gene modules present in the gene networks for the pancreatic, immune, and

epithelial cell types. These modules are supposed to represent groups of highly co-expressed

genes that share similar biological functions or pathways in the corresponding cell types. For
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Figure 3: The performance of scLink on the Tabula Muris dataset. A: The numbers of TF-gene edges identified by

scLink only and by both scLink and ChIP-seq experiments. B: Known and novel motifs of seven TFs identified from the

promoter regions of genes connected to these TFs by scLink. C-E: Enriched GO terms in the two largest gene modules

identified from pancreatic cell types (C), immune cell types (D), and epithelial cell types (E). FDR-adjusted p values are

shown in the heatmaps.
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each cell type, we calculated the partial correlation matrix for the genes based on the estimated

concentration matrix Θ̂ by scLink (see Methods). Then, we performed hierarchical clustering using

(1- |partial correlation|) as the distance measure. Next, the genes were divided into separate

modules by cutting the dendrogram at the height of 0.85. Finally, we performed the Gene Ontology

(GO) enrichment analysis on the gene modules.

The enriched GO terms in the two largest gene modules of each cell type are displayed in

Figure 3C-E. For the pancreatic cells (Figure 3C), we found that GO terms related to protein trans-

portation and digestive system process are enriched in gene modules of exocrine cells (acinar

and ductal cells) , while GO terms related to glycogen metabolic process, glucose homeostasis,

and cellular response to hormone stimulus are enriched in gene modules of endocrine cells (al-

pha, beta, and delta cells). It is worth noting that “regulation of insulin receptor signaling pathway”

is only enriched in a gene module of beta cells, which have a critical role in insulin regulation

[53]. In contrast, “regulation of steroid hormone biosynthetic process” is only enriched in a gene

module of delta cells, which secrete the hormone somatostatin [54]. For the immune cells (Fig-

ure 3D), we found that GO terms related to B cell activation or proliferation are enriched in the

largest gene module of B cells, and the terms related to B cell receptor signaling pathway and

antigen processing are enriched in the second-largest module of B cells. In contrast, GO terms

enriched in monocyte gene modules are related to monocyte extravasation and monocyte immune

complex clearance. For the epithelial cells (Figure 3E), the enriched GO terms in gene modules

also demonstrate cell-type-specific biological functions. For example, “surfactant homeostasis”

is enriched in a module of lung epithelial cells [55], “prolactin secretion” is enriched in a module

of luminal epithelial cells (of the mammary gland), and “intestinal epithelial cell development” is

enriched in a module of large intestine epithelial cells.

To investigate if the gene-gene edges identified by scLink could improve the identification of

molecular pathways and functional gene modules, we studied the inferred gene networks in T

cells, skeletal muscle satellite stem cells, and pancreatic beta cells as three examples. In each

inferred gene network by scLink, we focused on the largest connected component supported by

known protein interactions in the STRING database [56], and we found that scLink can identify

gene interactions that would be missed using a conventional approach with the Pearson or Spear-

man’s correlation (Supplementary Methods). In T cells (Figure 4A), the inferred network by scLink

contains four modules corresponding to gene sets of different functions. However, these four mod-

ules are not reported in correlation-based networks with the same level of sparsity. The smallest

module contains three genes associated with the GO term “protein serine/threonine phosphatase

complex”, which was shown to be a requisite of T cells’ functions [57]. The second module con-

tains three genes (Rac1, Cdc42, and Cyba) in the pathway of leukocyte transendothelial migration

[58]. The two largest modules each contain nine genes, responsible for cell adhesion/receptor and

antigen processing, respectively. Genes in the cell adhesion module are involved in the pathways

of cell adhesion, cell surface interactions, and cell surface receptors; genes in the antigen pro-

cessing module are responsible for antigen processing and presentation and immunoregulatory
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Figure 4: Gene networks inferred by scLink overlap with functional protein interaction networks. Inferred edges by

scLink (red and blue) are displayed for T cells (A), skeletal muscle satellite stem cells (B), and pancreatic beta cells (C).

Edges that are also identified by the correlation approach are displayed in blue. All the displayed edges are supported

by known protein interactions in the STRING database. Functional gene modules are grouped in the shaded area.

interactions [58]. In the muscle stem cells (Figure 4B), the inferred network contains a module

of nine genes playing key roles in osteoclast differentiation [59, 60]. In this module, three edges

(Jund-Fos, Fosb-Fosl2, Fosl1-Fosl2) are only identified by scLink. In addition, the network also

contains a four-gene module involved in muscle regeneration [61, 62] and a five-gene module

which was shown to play roles in myoblast differentiation [63, 64, 65]. These two modules are also

missed by the classic correlation approach. In the pancreatic beta cells (Figure 4C), the inferred

network identifies a module of 15 genes responsible for oxidative phosphorylation, which plays an

important role in beta cells’ proliferation, survival, and response to rising blood glucose [66]. The

above results demonstrate that scLink is able to identify edges between genes with direct inter-

actions or close biological functions in a cell-type-specific manner. For an additional comparison,

we also investigated the largest connected components supported by known protein interactions

in the gene networks based on Pearson or Spearman’s correlation, PIDC, glasso-f, and glasso-r

of the three cell types (Supplementary Methods). The largest gene modules in these networks

are enriched with genes coding for ribosomal proteins (Supplementary Table S2) and/or are en-

riched with GO terms of biosynthetic and metabolic processes (Supplementary Tables S3-S7).

These results show that the largest gene modules identified by these methods capture less cell-
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type-specific information and functional relevance than those gene modules identified by scLink.

scLinks identifies gene network changes in breast cancer

We next applied scLink to a breast cancer single-cell dataset to study if scLink can assist with

comparing gene networks in health and disease states. We collected the gene expression data of

immune cells in the tumor (656 cells) and matched breast tissue (211 cells) from the same patient

[13]. These expression values were measured by the inDrop platform [67]. We separately applied

scLink to data from the normal and tumor tissue, using the top 500 highly expressed genes in the

normal tissue. The proportions of zero counts in the normal and tumor expression matrices are

49.0% and 66.0%, respectively. The regularization parameters (λ) for scLink were selected as the

smallest value from {1.2, 1.1, . . . , 0.5} such that the inferred network has no more than 5% edges

(i.e., 5% × (500 × 499)/2 ≈ 6237 edges). In the identified normal tissue gene network, the gene

degree ranges from 2 to 103 with an average of 24.6, and the 89 communities identified by the

Louvain algorithm has an average size of 5.6. In the tumor tissue gene network, the gene degree

ranges from 2 to 137 with an average of 26.2, and the 63 communities identified by the Louvain

algorithm has an average size of 7.9.

By comparing the inferred gene networks of the normal and tumor tissues, we found 453 dif-

ferential edges (with a greater than 0.5 change in scLink’s correlation measures) that are only

present in the normal cells but not in the tumor cells (Supplementary Figure S5A). We assessed

the statistical significance of scLink correlation for the 453 edges in the normal condition using

a bootstrap approach (Supplementary Methods), and 84.5% of the edges have a p value < 0.05

after adjusting for the false discovery rate (FDR) (Supplementary Figure S6). For example, in the

normal cells, FNBP1 is co-expressed with MGP, whose down-regulation is associated with better

survival in breast cancer [68] (scLink’s correlation = 0.77, adjusted p = 0) (Figure 5A). However,

they expressed in the tumor cells in a mutually exclusive manner (scLink’s correlation = −0.03). As

another example, scLink identifies an edge between EGR1 and NUDT3 in normal cells (scLink’s

correlation = −0.48, adjusted p = 0.004) but not in the tumor cells (scLink’s correlation = 0.35),

and both genes were reported to have regulatory roles in breast cancer (Figure 5A) [69, 70].

Meanwhile, we identified 1384 differential edges (with a greater than 0.5 change in scLinks cor-

relation measures) that are only present in the tumor cells but not the normal cells (Supplementary

Figure S5B). We also assessed the statistical significance of the scLink correlation for the 1384

edges in the tumor condition, and 90.0% of the edges have a p value < 0.05 after adjusting for the

FDR (Supplementary Figure S6). For instance, EGR1 and USF2 are highly co-expressed in tumor

cells (scLink’s correlation = 0.77, adjusted p = 0.010) but not in normal cells (Figure 5B). A similar

expression pattern was observed between CD63 and BIRC3 (scLink’s correlation = 0.58, adjusted

p = 0 in tumor cells). In addition to EGR1, CD63 and BIRC3 were also found to be associated with

breast cancer, while USF2’s role in breast cancer has not been clearly investigated [71, 72]. The

above results demonstrate that by comparing co-expression changes between health and disease
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states, it is possible to (1) identify new genes that are associated with a particular type of dis-

ease; (2) investigate how co-expression and co-regulation of genes impact cell functions [13]. In

contrast, the above co-expression changes between these gene pairs cannot be captured by the

Pearson correlation coefficients, since their values remain low on the sparse single-cell expression

data (Figure 5A-B). Actually, the Pearson correlation changes by no more than 0.2 for 97.0% of the

edges between the normal and tumor states (Supplementary Figure S5C), implying that it is not

sensitive for identifying important co-expression changes in single cells. For a more systematic

comparison, we constructed Pearson correlation networks with the same level of sparsity (i.e.,

6237 edges). We then investigated the biological functions of the 50 genes with the largest degree

changes between the normal and breast cancer conditions, using the scLink and Pearson corre-

lation networks. We found that the top enriched GO terms in the 50 genes identified by scLink

are closely related to immune responses of myeloid cells, leukocytes, and neutrophils, while those

enriched in the 50 genes identified by Pearson correlation are relevant to more general protein

regulation processes and humoral immune response (Supplementary Table S8).

By comparing the tight gene modules embedded in the gene networks of normal and tumor

cells, we could observe a dramatic change in the global network structure in addition to the change

in individual edges. By performing hierarchical clustering using the partial correlation matrix esti-

mated by scLink, we identified 12 modules with more than 10 genes in the immune cells of normal

breast tissue (Supplemental Figure S7). Similarly, we identified 11 modules with more than 10

genes in the immune cells of tumor condition (Supplemental Figure S8). However, the two sets

of module assignments only have an adjusted Rand index of 0.10 and a normalized mutual infor-

mation of 0.49, implying widespread rewiring of gene networks in the breast cancer condition [73].

For example, a 15-gene module identified from the normal condition is much less densely con-

nected in the tumor condition (Supplementary Figure S9). In this module, three genes (COL3A1,

COL1A2, and JCHAIN) have opposite co-expression relationships with the other genes between

the normal and tumor conditions (Figure 5C), and these genes are all involved in the regulation of

immune response. In particular, since the COL3A1 and COL1A2 genes are both in the pathway of

scavenging by class A receptors, which are important regulators of immune responses to cancer

[74], their co-expression changes in the tumor cells may help us better understand the immune

response processes in breast cancer.

scLink identifies gene network changes from time course data

To further demonstrate scLink’s ability to quantify gene co-expression strength and infer gene net-

works in single cells under different conditions, we applied scLink to a total of 758 single cells

profiled by scRNA-seq (Fluidigm C1 platform) at 0, 12, 24, 36, 72, and 96 h of definitive endoderm

(DE) differentiation [75]. We first compared the gene-gene correlation calculated by scLink be-

tween 51 lineage-specific marker genes [75] at different time points in the differentiation process

(Supplementary Figure S10A). Among the 1275 marker gene pairs, 240 pairs have a correlation

change greater than 0.5 along the time course of DE differentiation (Supplementary Figure S10B).
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Figure 5: scLink identifies differential co-expression relationships in normal and breast cancer tissues. A: The expres-

sion of two gene pairs (NUDT3 and EGR1; FNBP1 and MGP) are highly associated in normal immune cells but not

in breast cancer immune cells. Both scLink’s and Pearson correlation coefficients are displayed. B: The expression of

two gene pairs (CD63 and BIRC3; EGR1 and USF2) are highly associated in breast cancer immune cells but not in

normal immune cells. Both scLink’s and Pearson correlation coefficients are displayed. C: The correlation matrices of

a 15-gene module identified from the normal immune cells by scLink.

For example, the two genes NANOG and PECAM1 are weakly associated at the early time points

(0, 12, and 24 h), but moderately associated at the late time points (36 and 72 h) (Figure 6A); the

genes MT1X and SOX17 do not demonstrate association at the early time points, but become

negatively associated at 36 and 72 h (Figure 6B). These findings are consistent with previous ob-

servations in DE differentiation studies [76, 77], but our results provide a detailed view of the asso-

ciation changes between the time points, thanks to the availability of the time course scRNA-seq

data. These results may be used to interpret how these genes jointly regulate cell fate decisions in

DE differentiation. In contrast, the Pearson correlation coefficients between these two gene pairs

remain constantly low at almost all time points (Supplementary Figure S10C), making it difficult to

identify and interpret the association changes along the time course.

Next, we separately applied scLink to the scRNA-seq data from 0 h and 96 h, using the top 1000
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Figure 6: scLink identifies gene network changes along the time course of DE differentiation. A-B: The co-expression

between PECAM1 and NANOG (A), MT1X and SOX17 (B) at different time points in the differentiation process of DE.

Displayed numbers are correlation measures calculated by scLink. C: For genes whose degree changes are greater

than 25 between 0 h and 96 h, their degrees at both time points are displayed. Labeled genes have degree changes

greater than 100. D: scLink’s correlation matrices of genes having degree changes greater than 100 between 0 h and

96 h.

highly expressed genes in the whole dataset. The proportions of zero counts in the two expression

matrices are 1.8% and 2.1%, respectively, and the gene-level zero proportion is 0 ∼ 98.9% at

0 h and 0 ∼ 46.8% at 96 h. The regularization parameters (λ) are selected as the smallest

value from {0.2, 0.19, . . . , 0.01} such that the inferred network has no more than 1% edges (i.e.,

1% × (1000 × 999)/2 = 4995 edges). In the 0 h gene network, the gene degree ranges from 2

to 274 with an average of 11.9, and the 188 communities identified by the Louvain algorithm has

an average size of 5.3. In the 96 h gene network, the gene degree ranges from 2 to 136 with

an average of 11.8, and the 296 communities identified by the Louvain algorithm has an average

size of 3.4. By comparing the gene networks identified for the two time points, we found 595

differential edges whose corresponding gene pairs have a greater than 0.5 change in their co-
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expression (Supplementary Figure S11).

To compare the differences in hub genes between the two time points, we assessed the change

of gene degrees from 0 h to 96 h. We found that genes with higher degrees at 0 h are enriched

with GO terms relevant to mitosis, cell cycle, and chromosome separation, while genes with higher

degrees at 96 h are enriched with GO terms relevant to regulation of cell differentiation and organ-

ismal development (Supplementary Figure S12). Among the genes that have the largest changes

in their degrees, we observed three lineage-specific marker genes, LHX1, HAPLN1, and GNG11

(Figure 6C). In addition, among the genes that have much larger degrees at 0 h than at 96 h,

we observed CYP26A1, CDK6, VIM, and ITGA5, which were shown to have regulatory roles in

cell proliferation and/or cell differentiation (Figure 6C) [78, 79, 80]. Visualizing the pairwise co-

expression matrices between these genes, we can observe two tight gene modules at 96 h but

only one such module at 0 h (Figure 6D), implying that the joint expression of the genes includ-

ing COL5A2, LEPREL1, VIM, NTS, ITGA5, and GNG11 may be critical for the differentiation of

embryonic stem cells. The above results show that the gene co-expression networks identified by

scLink from different time points provide important clues regarding transcriptional changes in the

differentiation process of DE. In contrast, we also constructed Pearson correlation networks with

the same level of sparsity (i.e., 4995 edges), and investigated the biological functions of genes

with high degrees at 0 h or 96 h. We found 30.9% of the 1000 genes to have the same direction of

degree change in the scLink and correlation networks (Supplementary Figure S13A). Unlike the

scLink networks, genes with higher degrees at 0 h in the correlation network are enriched with

general GO terms of translation processes, while genes with higher degrees at 96 h are enriched

with GO terms relevant to apoptosis (Supplementary Figure S13).

scLink demonstrates computational efficiency and robustness

To evaluate the computational efficiency and robustness of gene network construction, we com-

pared the performance of scLink with PIDC and GENIE3 based on scRNA-seq data from two

technologies, Smart-Seq2 [46] and 10x Genomics [81]. For the Smart-Seq2 technology, we se-

lected four cell types, late pro-B cells, bladder urothelial cells, myeloid cells, and microglial cells,

from the Tabula Muris database. The cell numbers of the four cell types are 306, 684, 1208, and

4394, respectively. For each cell type, we selected the top expressed 100, 200, and 500 genes for

network construction to evaluate how computational efficiency depends on the network scales. In

order to assess the robustness of the three methods given random variation, for each cell type, we

randomly selected half of the cells for network construction and independently repeated the pro-

cedure ten times with each method. The robustness score of each method was calculated based

on the consistency between the ten inferred networks of the same cell type (see Methods). It is a

score between 0 and 1, with 0 indicating non-overlap between the ten networks and 1 indicating

complete overlap. For each method, the summarized computation time and memory usage were

averaged across the ten repeated experiments. Our results show that scLink achieves higher ro-

bustness than PIDC and GENIE3 while requiring much less computation time and memory usage
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(Supplemental Figure S14). For the 10x Genomics technology, we evaluated scLink and PIDC

based on scRNA-seq data of 10, 085 B cells [81]. Since the computation time of GENIE3 for

Smart-Seq2 data exceeded 105 s (2.8 hours) when 500 genes and 2197 cells were used, we did

not test it on the large-scale 10x data. For the B cells, we selected the top expressed 500 and

1000 genes for network construction. In order to assess the robustness, we randomly selected

5000 or 8000 B cells for network construction and independently repeated the procedure 10 times

for each method. The results again demonstrate that scLink achieves higher computational effi-

ciency and robustness than PIDC (Supplemental Figure S15). In addition, scLink can finish the

computation in fewer than 100 s to construct a co-expression network of 1000 genes from 8000

cells. We also notice that the best robustness score achieved by scLink is around 0.5, and this

could be explained by two major reasons. First, the correlation calculation and network inference

are inevitably affected by the random variation in single-cell gene expression data, leading to vari-

ation of identified edges for randomly sampled cells of the same cell type. Second, since the cell

types in real scRNA-seq data were also computationally inferred, there may exist cell subtypes that

have biologically different gene co-expression networks. The above experiments were performed

using the Ubuntu 16.04.5 system and two 8-core CPUs of Intel Xeon CPU E5-2670 at 2.60GHz.

Discussion

In this work, we developed a method called scLink to improve the construction of sparse gene

co-expression networks based on single-cell gene expression data. To demonstrate the applica-

tions of scLink and disseminate the research findings in our real data studies, we also developed

a web application of scLink (https://rutgersbiostat.shinyapps.io/sclink/). This application

provides an interactive platform for users to subset and visualize the cell-type-specific correlation

matrices and gene networks constructed by scLink (Supplementary Figure S16). For easy ap-

plication of scLink to additional single-cell gene expression datasets, we also implemented the

methods in the R package scLink (https://github.com/Vivianstats/scLink).

In the simulated and real data studies, the gene networks we constructed contain 100 to 1000

genes depending on the dataset used. In actual applications of scLink, we also suggest a filtering

step of genes based on the gene detection rates and/or the mean expression levels [16]. Instead

of selecting an arbitrary number of genes to be retained, researchers can also set the threshold

such that genes of particular interest will be included. The rationale for implementing this filtering

step is that genes with small detection rates and low expression level often have low biological

relevance and do not provide sufficient information for co-expression estimation, and including

these genes might increase false edges in the gene networks. For example, our simulation studies

demonstrate that the accuracy of network construction decreases with increasing level of sparsity

in single-cell data, regardless of the method being used (Figure 2). Given the relatively high

sparsity level of data generated by droplet-based scRNA-seq protocols [82], this filtering step is

especially necessary on gene expression datasets from these protocols. When it is of interest
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to construct a network of thousands of genes, it is still possible to directly apply scLink, but the

likelihood optimization step would be more time-consuming because it involves large scale matrix

operations. An alternative approach is to first divide the genes into a few major modules based on

scLink’s correlation, then apply scLink to each major module separately to identify co-expression

networks.

Since the first step of scLink was partially motivated by our scImpute method [29] and addi-

tional imputation methods for single-cell gene expression data have also become available [83],

an alternative approach to the construction of gene co-expression networks is to apply conven-

tional inference methods on imputed gene expression data. However, we would like to discuss

two potential issues with this approach. First, previous studies have shown that imputed data may

still be much sparser than bulk data, even though containing fewer zero counts than the observed

single-cell data [29, 84]. Therefore, conventional methods designed for bulk data may still have

poor performance in network construction even when applied to imputed single-cell data. Sec-

ond, imputation of gene expression could be a time-consuming step depending on the number of

individual cells in the data [85]. By skipping the imputation step and directly accounting for the

sparsity issue in co-expression calculation, scLink can achieve better computational efficiency.

Even though our simulation and real data studies demonstrated the great potential of scLink

on different types of single-cell gene expression data, we need to interpret the results with cau-

tion, since the edges identified by scLink are based on statistical dependencies and do not have

directions. These edges may capture the actual regulatory processes, such as the relationships

between transcription factors and their putative target genes. However, the inferred edges may

also represent co-regulatory relationships of genes regulated by common transcription factors.

In addition, we may also identify edges between genes that are responsible for similar biological

functions and demonstrate coordinated expression patterns. It is not feasible to directly distinguish

the above different types of edges using only gene expression data, but scLink’s results provide

good candidates for further computational and/or experimental validations. For example, single-

cell ChIP-seq experiments could be designed and prioritized based on scLink’s identified TF-gene

pairs [86]. It is also possible to take advantage of existing databases of transcription factors and

protein-protein interactions at the validation step, but the knowledge derived from previous bulk

tissue research does not necessarily reflect the true scenario in single cells [26].

As discussed in several recent methods, it is possible to more directly infer gene regulatory

relationships instead of co-expression relationships on the condition that temporal information is

available for the single cells. Some of these methods take pseudo-time orders estimated by other

computational methods [87, 27], while others assume actual time course data are available [88].

Since most scRNA-seq experiments were not performed along a time course, only pseudo-time

orders may be available for the majority of datasets. However, since pseudo-time orders are

only point estimates of physical time orders, it is important to consider how to quantify pseudo-

time uncertainty and propagate this into the construction regulatory gene networks [89]. Aside

from the temporal information, additional experimental data, such as ATAC-seq or ChIP-seq data,
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have also been shown to assist the inference of gene regulatory networks in bulk tissue studies

[90, 91]. As single-cell multi-omics technologies and data integration methods continue to emerge

and evolve [92, 83], it will become possible to modify and extend existing bulk-tissue methods

for single-cell data. The penalized likelihood approach used in scLink will be able to incorporate

the above additional information with flexibility. For instance, we can extend the penalty terms

in scLink to apply different levels of regularization on each gene pair based on the epigenetic or

chromatin accessibility information. Another future direction for extending scLink is to construct

differential gene networks between biological conditions from scRNA-seq data. In our real data

studies, we used a straightforward approach to identify differential edges based on the differences

in scLink’s correlation strength. However, it is possible to extend the likelihood model to directly

identify differential networks using scRNA-seq data from both conditions, as previously done for

bulk tissue RNA-seq data [31, 93, 94]. With the ongoing efforts of single cell atlases such as the

Human Cell Atlas [95] to better define cell types, states, and lineages, it will also become possible

to investigate how gene co-expression and interactions differ in related tissue and cell types. In

summary, we expect scLink to be a useful tool for inferring functional gene networks from single-

cell gene expression data, with the potential to incorporate other omics data types as single-cell

technologies continue to develop.

Conclusions

In this work, we developed a method called scLink to improve the construction of sparse gene

co-expression networks based on single-cell gene expression data. In the scLink method, we first

propose a new correlation measure for the strength of gene co-expression relationships, while

accounting for the sparsity feature of single-cell gene expression data. Next, relying on the more

robust correlation measure, scLink identifies gene co-expression networks in single cells using a

penalized and data-adaptive graph model. We first evaluated and compared scLink with five other

state-of-the-art methods using carefully designed synthetic networks and gene expression data.

These alternative methods include two methods specifically designed for single-cell data and three

conventional methods for gene network inference. Our simulation studies showed that scLink has

the best accuracy in gene network construction, given different network topologies (hub-based or

power-law), gene numbers, and sparsity levels of gene expression. We then conducted a series of

real data studies to evaluate the performance of scLink on real single-cell gene expression data.

Our results based on the Tabula Muris database show that scLink is able to identify cell-type-

specific networks and functional gene modules, and the edges inferred by scLink can potentially

capture regulatory relationships between gene pairs. Moreover, our real data studies also demon-

strate that scLink can help identify co-expression changes and gene network rewiring between

healthy and disease states such as breast cancer. In addition, scLink was also demonstrated to

reveal network differences and critical hub genes in time course data, such as those from the

differentiation process of definitive endoderm.

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2020. ; https://doi.org/10.1101/2020.09.19.304956doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.19.304956
http://creativecommons.org/licenses/by-nc-nd/4.0/


Availability of data and materials

All single-cell gene expression data analysed during this study are included in published articles

and their supplementary information files [47, 13, 75]. The source code used in this article is avail-

able at https://github.com/Vivianstats/scLink, which is under GNU General Public License

v3.0.

Authors’ contributions

Wei Vivian Li: Conceptualization, Methodology, Formal analysis, Software, Writing - Original

Draft; Yanzeng Li: Software, Writing- Reviewing and Editing.

Competing interests

The authors declare that they have no competing interests.

Acknowledgments

The authors thank Dr. Jian Cao at Rutgers Cancer Institute of New Jersey for the helpful discus-

sions. We also thank the editor and the anonymous reviewers for their insightful comments and

suggestions. The research reported in this manuscript was supported by the Rutgers School of

Public Health Pilot Grant (to WVL) and the New Jersey Alliance for Clinical and Translational Sci-

ence Mini-methods Grant (to WVL), a component of the National Institute of Health (NIH) under

Award Number UL1TR0030117. Computational resources were provided by the Office of Ad-

vanced Research Computing (OARC) at Rutgers, The State University of New Jersey, under the

National Institutes of Health Grant No. S10OD012346.

References

[1] Trudy FC Mackay, Eric A Stone, and Julien F Ayroles. The genetics of quantitative traits:

challenges and prospects. Nature Reviews Genetics, 10(8):565, 2009.

[2] Sarvenaz Choobdar, Mehmet E Ahsen, Jake Crawford, Mattia Tomasoni, Tao Fang, David

Lamparter, Junyuan Lin, Benjamin Hescott, Xiaozhe Hu, Johnathan Mercer, et al. Assess-

ment of network module identification across complex diseases. Nature methods, 16(9):843–

852, 2019.

[3] Adam A Margolin, Ilya Nemenman, Katia Basso, Chris Wiggins, Gustavo Stolovitzky, Ric-

cardo Dalla Favera, and Andrea Califano. Aracne: an algorithm for the reconstruction of

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2020. ; https://doi.org/10.1101/2020.09.19.304956doi: bioRxiv preprint 

https://github.com/Vivianstats/scLink
https://doi.org/10.1101/2020.09.19.304956
http://creativecommons.org/licenses/by-nc-nd/4.0/


gene regulatory networks in a mammalian cellular context. In BMC bioinformatics, volume 7,

page S7. BioMed Central, 2006.

[4] Peter Bailey, David K Chang, Katia Nones, Amber L Johns, Ann-Marie Patch, Marie-Claude

Gingras, David K Miller, Angelika N Christ, Tim JC Bruxner, Michael C Quinn, et al. Genomic

analyses identify molecular subtypes of pancreatic cancer. Nature, 531(7592):47, 2016.

[5] Hui Zhang, Tao Liu, Zhen Zhang, Samuel H Payne, Bai Zhang, Jason E McDermott, Jian-Ying

Zhou, Vladislav A Petyuk, Li Chen, Debjit Ray, et al. Integrated proteogenomic characteriza-

tion of human high-grade serous ovarian cancer. Cell, 166(3):755–765, 2016.

[6] Jeremy A Miller, Steve Horvath, and Daniel H Geschwind. Divergence of human and mouse

brain transcriptome highlights alzheimer disease pathways. Proceedings of the National

Academy of Sciences, 107(28):12698–12703, 2010.

[7] Irina Voineagu, Xinchen Wang, Patrick Johnston, Jennifer K Lowe, Yuan Tian, Steve Horvath,

Jonathan Mill, Rita M Cantor, Benjamin J Blencowe, and Daniel H Geschwind. Transcriptomic

analysis of autistic brain reveals convergent molecular pathology. Nature, 474(7351):380,

2011.

[8] Donald Petrey and Barry Honig. Structural bioinformatics of the interactome. Annual review

of biophysics, 43:193–210, 2014.

[9] Monique GP van der Wijst, Dylan H de Vries, Harm Brugge, Harm-Jan Westra, and Lude

Franke. An integrative approach for building personalized gene regulatory networks for pre-

cision medicine. Genome medicine, 10(1):96, 2018.

[10] Yang Yang, Leng Han, Yuan Yuan, Jun Li, Nainan Hei, and Han Liang. Gene co-expression

network analysis reveals common system-level properties of prognostic genes across cancer

types. Nature communications, 5:3231, 2014.

[11] Wei Vivian Li and Jingyi Jessica Li. Modeling and analysis of rna-seq data: a review from a

statistical perspective. Quantitative Biology, 6(3):195–209, 2018.

[12] Allon Wagner, Aviv Regev, and Nir Yosef. Revealing the vectors of cellular identity with single-

cell genomics. Nature biotechnology, 34(11):1145, 2016.

[13] Elham Azizi, Ambrose J Carr, George Plitas, Andrew E Cornish, Catherine Konopacki,

Sandhya Prabhakaran, Juozas Nainys, Kenmin Wu, Vaidotas Kiseliovas, Manu Setty, et al.

Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell,

174(5):1293–1308, 2018.

[14] Monique GP van der Wijst, Harm Brugge, Dylan H de Vries, Patrick Deelen, Morris A Swertz,

and Lude Franke. Single-cell rna sequencing identifies celltype-specific cis-eqtls and co-

expression qtls. Nature genetics, 50(4):493, 2018.

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2020. ; https://doi.org/10.1101/2020.09.19.304956doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.19.304956
http://creativecommons.org/licenses/by-nc-nd/4.0/


[15] Stefan Semrau, Johanna E Goldmann, Magali Soumillon, Tarjei S Mikkelsen, Rudolf

Jaenisch, and Alexander Van Oudenaarden. Dynamics of lineage commitment revealed by

single-cell transcriptomics of differentiating embryonic stem cells. Nature communications,

8(1):1096, 2017.

[16] Aditya Pratapa, Amogh P Jalihal, Jeffrey N Law, Aditya Bharadwaj, and TM Murali. Bench-

marking algorithms for gene regulatory network inference from single-cell transcriptomic data.

Nature Methods, pages 1–8, 2020.

[17] Elham Azizi, Sandhya Prabhakaran, Ambrose Carr, and Dana Pe’er. Bayesian inference

for single-cell clustering and imputing. Genomics and Computational Biology, 3(1):e46–e46,

2017.

[18] Peter Langfelder and Steve Horvath. Wgcna: an r package for weighted correlation network

analysis. BMC bioinformatics, 9(1):559, 2008.

[19] Giovanni Iacono, Ramon Massoni-Badosa, and Holger Heyn. Single-cell transcriptomics un-

veils gene regulatory network plasticity. Genome biology, 20(1):110, 2019.

[20] Daniel Sanchez-Taltavull, Theodore J Perkins, Noelle Dommann, Nicolas Melin, Adrian

Keogh, Daniel Candinas, Deborah Stroka, and Guido Beldi. Bayesian correlation is a ro-

bust similarity measure for single cell rna-seq data. BioRxiv, page 714824, 2019.

[21] Hunyong Cho, Chuwen Liu, John S Preisser, and Di Wu. A bivariate zero-inflated nega-

tive binomial model for identifying underlying dependence with application to single cell rna

sequencing data. BioRxiv, 2020.

[22] Thalia E Chan, Michael PH Stumpf, and Ann C Babtie. Gene regulatory network inference

from single-cell data using multivariate information measures. Cell systems, 5(3):251–267,

2017.

[23] Alexandre Irrthum Vân Anh Huynh-Thu, Louis Wehenkel, and Pierre Geurts. Inferring regu-

latory networks from expression data using tree-based methods. PloS one, 5(9), 2010.

[24] Alex Greenfield, Aviv Madar, Harry Ostrer, and Richard Bonneau. Dream4: Combining ge-

netic and dynamic information to identify biological networks and dynamical models. PloS

one, 5(10), 2010.
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[36] Christophe Croux and Viktoria Öllerer. Robust and sparse estimation of the inverse covari-

ance matrix using rank correlation measures. In Recent Advances in Robust Statistics: The-

ory and Applications, pages 35–55. Springer, 2016.

[37] Wei Vivian Li and Jingyi Jessica Li. A statistical simulator scDesign for rational scRNA-seq

experimental design. Bioinformatics, 35(14):i41–i50, 07 2019.

[38] Trung Nghia Vu, Quin F Wills, Krishna R Kalari, Nifang Niu, Liewei Wang, Mattias Ranta-

lainen, and Yudi Pawitan. Beta-poisson model for single-cell rna-seq data analyses. Bioinfor-

matics, 32(14):2128–2135, 2016.

[39] Onureena Banerjee, Laurent El Ghaoui, and Alexandre dAspremont. Model selection through

sparse maximum likelihood estimation for multivariate gaussian or binary data. Journal of

Machine learning research, 9(Mar):485–516, 2008.

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2020. ; https://doi.org/10.1101/2020.09.19.304956doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.19.304956
http://creativecommons.org/licenses/by-nc-nd/4.0/


[40] Cho-Jui Hsieh, Inderjit S Dhillon, Pradeep K Ravikumar, and Mátyás A Sustik. Sparse in-
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[71] Mónica Mendoza-Rodrı́guez, Haruki Arévalo Romero, Ezequiel M Fuentes-Panana, Jorge-

Tonatiuh Ayala-Sumuano, and Isaura Meza. Il-1β induces up-regulation of birc3, a gene

involved in chemoresistance to doxorubicin in breast cancer cells. Cancer letters, 390:39–44,

2017.

31

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2020. ; https://doi.org/10.1101/2020.09.19.304956doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.19.304956
http://creativecommons.org/licenses/by-nc-nd/4.0/


[72] Xiaojing Lai, Qing Gu, Xia Zhou, Wei Feng, Xiao Lin, Yan He, Jinming Cao, Pengfei Liu,

Huojun Zhang, and Xiao Zheng. Decreased expression of cd63 tetraspanin protein predicts

elevated malignant potential in human esophageal cancer. Oncology letters, 13(6):4245–

4251, 2017.

[73] Maximilian Billmann, Varun Chaudhary, Mostafa F ElMaghraby, Bernd Fischer, and Michael

Boutros. Widespread rewiring of genetic networks upon cancer signaling pathway activation.

Cell systems, 6(1):52–64, 2018.

[74] Xiaofei Yu, Chunqing Guo, Paul B Fisher, John R Subjeck, and Xiang-Yang Wang. Scav-

enger receptors: emerging roles in cancer biology and immunology. In Advances in cancer

research, volume 128, pages 309–364. Elsevier, 2015.

[75] Li-Fang Chu, Ning Leng, Jue Zhang, Zhonggang Hou, Daniel Mamott, David T Vereide, Jeea

Choi, Christina Kendziorski, Ron Stewart, and James A Thomson. Single-cell rna-seq reveals

novel regulators of human embryonic stem cell differentiation to definitive endoderm. Genome

biology, 17(1):173, 2016.
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