

1 **Title:** Force generation by protein-DNA co-condensation

2

3 **Author list:** Thomas Quail^{1,2,3,4}, Stefan Golfier^{1,2,3,4}, Maria Elsner^{1,2,3,4}, Keisuke
4 Ishihara^{1,2,3,4}, Vasanthanarayanan Murugesan^{1,2,3,4}, Roman Renger¹, Frank
5 Jülicher^{*2,3,4}, Jan Brugués^{*1,2,3,4}

6

7 **Affiliations:**

8 ¹Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany

9 ²Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany

10 ³Center for Systems Biology Dresden, 01307 Dresden, Germany

11 ⁴Cluster of Excellence Physics of Life, TU Dresden, 01307 Dresden, Germany

12 *correspondence: julicher@pks.mpg.de, brugues@mpi-cbg.de

13

14 **Abstract:** Interactions between liquids and surfaces generate forces^{1,2} that are
15 crucial for many processes in biology, physics, and engineering, including the
16 motion of insects on the surface of water³, modulation of the material properties
17 of spider silk⁴, and self-assembly of microstructures⁵. Recent studies have shown
18 that cells assemble biomolecular condensates via phase separation⁶. In the
19 nucleus, these condensates are thought to drive transcription⁷, heterochromatin
20 formation⁸, nucleolus assembly⁹, and DNA repair¹⁰. Here, we show that the
21 interaction between liquid-like condensates and DNA generates forces that might
22 play a role in bringing distant regulatory elements of DNA together, a key step in
23 transcriptional regulation. We combine quantitative microscopy, *in vitro*
24 reconstitution, optical tweezers, and theory to show that the transcription factor
25 FoxA1 mediates the condensation of a DNA-protein phase via a mesoscopic first-
26 order phase transition. After nucleation, co-condensation forces drive growth of
27 this phase by pulling non-condensed DNA. Altering the tension on the DNA strand
28 enlarges or dissolves the condensates, revealing their mechanosensitive nature.
29 These findings show that DNA condensation mediated by transcription factors
30 could bring distant regions of DNA in close proximity, suggesting that this physical
31 mechanism is a possible general regulatory principle for chromatin organization
32 that may be relevant *in vivo*.

33

34

35 **Main text:** Compartmentalization is key to organizing cellular biochemistry.
36 Biomolecular condensate formation underlies the compartmentalization of many
37 cellular functions⁶. Considerable progress has been made towards understanding
38 the biophysical properties of condensates in bulk. However, how these
39 condensates interact with other cellular components such as polymers,
40 membranes, and chromatin remains unclear. Transcriptional hubs are an example
41 of compartments in the nucleus. These hubs involve the coalescence of
42 transcription factors, biochemical regulators of transcription, and DNA¹¹. The
43 physical nature of these transcription hubs is under debate, though recent studies
44 have proposed that transcriptional hubs can be understood as examples of
45 biomolecular condensates¹². In theory, the interactions between transcriptional
46 machinery condensates and the DNA polymer could deform DNA, potentially
47 bridging distal regulatory elements, a critical step in gene regulation. However, we
48 still lack a physical picture of how transcriptional regulators interact with each
49 other and with the surface of the DNA polymer.

50

51 To investigate how transcription factors physically organize DNA, we attached
52 linearized λ -phage DNA to a coverslip via biotin-streptavidin linkers (Fig. 1a). We
53 used TIRF microscopy to image the interactions between DNA and Forkhead Box
54 Protein A1 (FoxA1), a pioneer transcription factor that regulates tissue
55 differentiation across a range of organisms¹³ (Fig. 1b). Upon addition of 10 nM
56 FoxA1-mCherry (FoxA1) to the flow chamber in the presence of DNA, FoxA1
57 formed protein condensates that decorated the strand (Fig. 1c). In the absence of
58 DNA, FoxA1 did not nucleate condensates in solution at concentrations ranging
59 from 10 to 500 nM (Extended Data Fig. 1a). The requirement for DNA in
60 condensate formation at low concentrations suggests that DNA mediates the
61 condensation of a thin layer of FoxA1 on DNA.

62

63 In our assay, DNA molecules displayed a broad distribution of end-to-end
64 distances (L), determined by the DNA-coverslip attachment points (Fig. 1c, d). This
65 end-to-end distance tunes the tension of the DNA¹⁴. For DNA strands with end-to-
66 end distances greater than approximately 10 μ m, FoxA1 generated protein
67 condensates on DNA (Fig. 1c). However, FoxA1 condensation did not influence the

68 DNA molecule (Fig. 1c, leftmost pair of images). Strikingly, for DNA molecules with
69 end-to-end distances below 10 μm , FoxA1 pulled DNA into highly enriched
70 condensates of FoxA1 and DNA (Fig. 1c, Extended Data Fig. 1b-e) with a density of
71 roughly 750 molecules/ μm^3 (see Methods, Extended Data Fig. 2a-d). To quantify
72 FoxA1-mediated DNA condensation, we measured the cross-correlation of FoxA1-
73 DNA intensities as a function of end-to-end distance (see Methods, Fig. 1d,e,
74 Extended Data Fig. 3a). Consistent with the ability of FoxA1 to form FoxA1-DNA
75 condensates at low tensions, the cross-correlation decayed from one to zero with
76 increasing end-to-end distance (Fig. 1e). Thus, FoxA1 mediates the formation of a
77 DNA-protein-rich phase in a tension-dependent manner.

78
79 The observation that FoxA1 drives DNA condensation suggests that it can
80 overcome the DNA molecule's entropic tension set by the end-to-end distance¹⁴.
81 Incorporating DNA into the condensates increases the tension on the strand,
82 thereby reducing the transverse DNA fluctuations of the non-condensed DNA. To
83 quantify this, we measured the DNA envelope width of the non-condensed DNA
84 fluctuations (see Methods, Extended Data Fig. 3b). In buffer, the DNA envelope
85 width decreased as a function of end-to-end distance, consistent with the
86 corresponding increase of DNA strand tension for increasing end-to-end
87 distances¹⁴ (Fig. 1f). However, in the presence of FoxA1, the DNA envelope width
88 remained constant for all end-to-end distances as FoxA1 pulled DNA into one or
89 more condensates. The magnitude of the DNA envelope width was lower in the
90 presence of FoxA1 than in buffer conditions for all end-to-end distances (Fig. 1f).
91 Taken together, this suggests that FoxA1-DNA condensates generate forces that
92 can overcome the entropic tension of the non-condensed DNA and buffer its
93 tension.

94
95 The observation that FoxA1 can mediate DNA condensation suggests that it could
96 bridge distant DNA strands. To investigate this possibility, we examined DNA
97 molecules that were bound to the same streptavidin molecule at one end (Fig. 1g,
98 Extended Data Fig. 3c). In the absence of FoxA1, these DNA molecules form a v-
99 shaped morphology and fluctuate independently of one another. Upon addition of
100 FoxA1, however, we observed that the two strands zipped together, generating a

101 y-shaped morphology as the condensation of FoxA1 increased over time (Fig. 1g,
102 Extended Data Fig. 3c). Taken together, these data demonstrate that FoxA1 can
103 physically bridge DNA strands in both *cis* and *trans*.

104

105 Two mechanisms can be postulated to explain FoxA1-mediated DNA condensation
106 in our experiments: (i) direct cross-linking via the multiple DNA-binding activities
107 of FoxA1¹⁵ or (ii) weak protein-protein interactions driven by disordered regions
108 of FoxA1. FoxA1 consists of a winged helix-turn-helix DNA-binding domain and
109 two N and C termini domains that are mostly disordered¹⁵. The DNA-binding
110 domain contains a sequence-specific binding region composed of three alpha
111 helices and a non-sequence-specific binding region composed of two wings. Two
112 point mutations known to affect sequence-specific DNA binding (NH-FoxA1¹⁵) had
113 virtually no influence on DNA condensation activity (Fig. 2a). Although the
114 presence of two point mutations known to affect non-sequence-specific DNA
115 binding (RR-FoxA1¹⁵) partially inhibited FoxA1 localization to the strand (Fig. 2b),
116 this mutant still condensed DNA. In this case, condensation occurred on a time
117 scale of minutes rather than seconds (as in WT-FoxA1), which can be explained by
118 the delay in condensing sufficient RR-FoxA1 to the strand. These data suggest that
119 non-sequence-specific binding drives the localization of FoxA1 to DNA but does
120 not mediate DNA condensation through cross-linking. Furthermore, the sequence-
121 specific binding domain of FoxA1 is dispensable for its localization to DNA *in vitro*.
122 To probe whether FoxA1 protein-protein interactions through disordered
123 domains mediate DNA condensation, we truncated both the N and C termini of
124 FoxA1. Although Δ N-FoxA1 retained DNA condensation activity (Fig. 2c),
125 truncating the disordered C terminus of FoxA1 largely inhibited DNA
126 condensation activity (Fig. 2d). Additionally, we found that, at high FoxA1
127 concentrations in bulk (50 μ M), 3% PEG (30K) nucleated highly-enriched
128 spherical FoxA1 condensates (Extended Data Fig. 4a), further suggesting the
129 existence of weak FoxA1-FoxA1 interactions. Thus, non-sequence-specific binding
130 drives FoxA1 localization to DNA, and the disordered C terminus of FoxA1
131 promotes DNA condensation.

132

133 Our results support the hypothesis that FoxA1 condenses onto DNA to generate a
134 DNA–protein-rich condensate via weak protein–protein interactions that exerts a
135 pulling force on the non-condensed strand (see the section Thermodynamic
136 description of DNA–protein condensation in the Supplementary information). To
137 explore the thermodynamics of condensation, we developed a theoretical
138 description based on a semi-flexible polymer partially condensing into a liquid-
139 like condensate. Here, the semi-flexible polymer is DNA and the condensation is
140 mediated by the transcription factor. The free energy of this process contains
141 volume, ($v \frac{4}{3} \pi R^3$), and surface contributions, ($\gamma 4\pi R^2$), as well as a term
142 representing the free energy of the non-condensed DNA (Fig. 3a), where v is the
143 condensation free energy per volume, R is the condensate radius, and γ is the
144 surface tension of the condensate. We assume that DNA is fully collapsed inside
145 the condensate and thus its volume is proportional to the condensed DNA contour
146 length, $V = \alpha L_d$, where $1/\alpha$ describes the packing density given as DNA length
147 per condensate volume. The free energy of the polymer, $F_p(L, L_p) = \int_0^L f(L, L_p) dl$,
148 can be obtained from the force-extension curve of the polymer $f(L, L_p)$, where
149 L_p is the contour length of the non-condensed polymer. Using $L_p = L_c - L_d$ where
150 L_c is the contour length of λ -phage DNA (16.5 μm), the free energy is as follows,

$$151 \quad F(L, L_d) = -v\alpha L_d + \gamma 4\pi \left(\frac{3\alpha}{4\pi} \right)^{\frac{2}{3}} L_d^{\frac{2}{3}} \\ 152 \quad + \kappa \left(\frac{(L_c - L_d)^2}{4(L_c - L_d - L)} - \frac{L}{4} + \frac{L^2}{2(L_c - L_d)} - \frac{(L_c - L_d)}{4} \right)$$

153 where $\kappa = \frac{k_B T}{P}$, k_B is the Boltzmann constant, T is the temperature, and P is the
154 persistence length of DNA (see the section Thermodynamic description of DNA-
155 protein condensation in the Supplementary information). For fixed L , the
156 minimum of $F(L, L_d)$ determines the preferred size of the condensate. This free
157 energy predicts upon variation of L a stochastic first-order phase transition for the
158 formation of DNA–protein condensates (Fig. 3b). The distribution of condensate
159 sizes is then given by $P(L_d) \sim e^{-\beta F(L, L_d)}$ for fixed L (Fig. 3c). This accounts for a
160 sharp transition of DNA condensation controlled by the end-to-end distance and
161 thus the tension of the DNA molecule. The first-order nature of this behavior
162 implies regimes of hysteresis and bistability. Our theory also predicts that the

163 condensation forces exerted on the non-condensed DNA are kept roughly
164 constant.

165

166 To test this theory, we first measured DNA condensate volumes and found that
167 they increase linearly with the length of condensed DNA (L_d), with $\alpha=0.04 \pm 0.01$
168 μm^2 (Fig. 3d, Extended Data Fig. 4d, Methods). This confirms that DNA is in a
169 collapsed conformation inside the condensates. Next, we simultaneously fit the
170 predictions to the average amount of DNA contained in the condensates (L_d), and
171 the probability of nucleating a DNA condensate (P_{cond}) as a function of end-to-end
172 distance (see Methods). We calculated L_d (Fig. 3e, Extended Data Fig. 4e, Extended
173 Data Fig. 5) and P_{cond} (Fig. 3g, Extended Data Fig. 4f) using the Boltzmann
174 probability distributions (Fig. 3c) from the free energy. Our fits agree
175 quantitatively with the data and show that L_d decreases with L until a critical end-
176 to-end distance beyond which DNA condensates do not form. Below this critical
177 length, we observed that the force exerted by the condensate is buffered at 0.21
178 pN (0.18 – 0.30 pN CI), consistent with the theory (Fig. 3f). To complement our
179 force measurements, we performed optical tweezer measurements of FoxA1-
180 mediated DNA condensation. Incubating a single λ -phage DNA molecule at either
181 $L = 6$ or $8 \mu\text{m}$ in the presence of 150 nM FoxA1 generated forces on the order of
182 0.4-0.6 pN, consistent with the force measurements using fluorescence
183 microscopy (Methods, Extended Data Figs. 6,7). Finally, P_{cond} exhibits a sharp
184 transition at $L = 10.5 \mu\text{m}$ (9.4 – 10.9 μm CI), in agreement with a stochastic first-
185 order phase transition (Fig. 3g). We also observed a sudden force jump during the
186 onset of condensate formation (as measured by the individual temporal force
187 trajectories in the optical tweezer experiments), consistent with a first order
188 phase transition (Extended Data Figs. 6c,7). Close to the transition point FoxA1-
189 mediated DNA condensation displayed bistability. This bistability was observed in
190 strands that contained multiple FoxA1 condensates, but where only some of them
191 condensed DNA (Extended Data Fig. 8a). Our fits allowed us to extract the physical
192 parameters associated with condensate formation, namely the condensation free
193 energy per volume $v = 2.6 \text{ pN}/\mu\text{m}^2$ (2.3 – 5.2 $\text{pN}/\mu\text{m}^2$ CI) and the surface tension
194 $\gamma=0.04 \text{ pN}/\mu\text{m}$ (0.04 – 0.28 $\text{pN}/\mu\text{m}$ CI), see Methods section. These parameters are
195 consistent with previous measurements for *in vitro* and *in vivo* condensates^{16,17}.

196
197 Our theory and experiments show that two key parameters govern DNA–protein
198 co-condensation, namely the condensation free energy per volume (v) and the
199 surface tension (γ). We reasoned that different DNA-binding proteins may exhibit
200 a range of behaviors depending on these parameters. First, we investigated the
201 sequence-specific DNA-binding region mutant (NH-FoxA1), which also condensed
202 DNA but to a lesser extent (Fig. 2a). Quantitatively, we found that the surface
203 tension of condensates formed with this mutant was roughly unchanged
204 compared to WT-FoxA1, $\gamma=0.065$ pN/ μm (0.05 – 0.07 pN/ μm CI), but the free
205 energy per volume of condensation was reduced consistent with reduced DNA
206 binding, $v=1.05$ pN/ μm^2 (0.9 – 1.1 pN/ μm^2 CI), Extended Data Fig. 9, Fig. 4a. This
207 was also reflected in a decrease in the extent of DNA packing with $\alpha = 0.09 \pm 0.02$
208 μm^2 (Extended Data Fig. 9a). We also observed that NH-FoxA1-mediated
209 condensates generated a force of 0.17 pN (0.16 – 0.19 pN, CI), lower than that for
210 WT-FoxA1. In addition, NH-FoxA1 displayed bistable DNA–protein condensation
211 activity in the neighborhood of the transition point (Extended Data Fig. 8b). Next,
212 we examined the interactions of a different transcription factor Tata-Box-binding
213 protein (TBP) with DNA. We found that TBP also formed small condensates on
214 DNA, but did not condense DNA even at the lowest imposed DNA tensions (Fig.
215 4b). Instead, TBP performed a diffusive motion along the DNA strand (Extended
216 Data Fig. 10c), suggesting that DNA–protein condensation is not
217 thermodynamically favored. Another transcription factor, Gal4-VP16, formed
218 condensates on DNA and condensed DNA in a tension-dependent manner
219 consistent with FoxA1 (Extended Data Fig. 10e). Lastly, we analyzed somatic
220 linker histone H1, a protein that is structurally similar to FoxA1. However, in
221 contrast to FoxA1, one of the known functions of H1 is to compact chromatin¹⁸, so
222 we expected H1 to strongly condense DNA. Consistent with this, we found that H1
223 displayed a stronger DNA condensation activity compared to FoxA1, condensing
224 DNA for all measured end-to-end distances (Fig. 4c). Interestingly, the *Xenopus*
225 embryonic linker histone B4 condensed DNA in a tension-dependent manner but
226 not to the same extent as H1 (Extended Data Fig. 10f). Thus, we propose that the
227 competition between condensation free energy per volume of the DNA–protein

228 phase and surface tension regulate a spectrum of DNA condensation activities,
229 which may be tuned by the structure of transcription factors.

230

231 Here, we show that FoxA1 can condense DNA under tension to form a DNA-
232 protein-rich phase that nucleates through a force-dependent first-order transition
233 for forces below a critical value. This critical force, which is on the order of 0.2-0.6
234 pN for FoxA1, is set by co-condensation forces that the DNA-protein phase exerts
235 on the non-condensed DNA. These forces are similar in magnitude to those
236 recently measured for DNA loop extrusion on the order of 0.2-1 pN^{19,20} and those
237 estimated in intact nuclei from nuclear condensate fusion²¹. Thus, we speculate
238 that these weak forces we find *in vitro* may be of relevance to the mechanics of
239 chromatin organization, though future studies are necessary to show this. Taken
240 together, our work suggests that co-condensation forces may act as an additional
241 mechanism to remodel chromatin in addition to molecular motors that extrude
242 loops and complexes that remove or displace nucleosomes (Fig. 4d).

243

244 Transcription-factor-mediated DNA-protein condensation represents a possible
245 mechanism by which transcription factors coordinate enhancer-promoter
246 contacts in transcriptional hubs¹². In this context, DNA-protein condensates could
247 act as scaffolds, pulling co-factors into the droplet (Fig. 4d). Our theoretical
248 description reveals that these DNA-protein condensates are formed via a first-
249 order phase transition, suggesting that they can be assembled and disassembled
250 rapidly by changing mechanical conditions. Near the transition point, assembly
251 and disassembly of these *in vitro* DNA-protein condensates becomes highly
252 stochastic, reminiscent of the rapid dynamics associated with the initiation and
253 cessation of transcriptional bursts observed *in vivo*²².

254

255 We have demonstrated that protein-DNA co-condensation is associated with a
256 difference in chemical potential between the condensed and non-condensed DNA.
257 This difference in chemical potential is transduced by the condensate to perform
258 mechanical work on the non-condensed DNA strand. Capillary forces represent
259 another example of forces that involve liquid-surface interactions^{1,2,23}. With both
260 co-condensation and capillary forces, attractive interactions give rise to the

261 transduction of free energy into work. Such forces may also be relevant beyond
262 chromatin in other biological contexts, including membranes and the
263 cytoskeleton.

264

265 DNA–protein co-condensation not only provides mechanisms to facilitate
266 enhancer–promoter contacts, but could also play a more general role in DNA
267 compaction and maintenance of bulk chromatin rigidity in processes such as
268 mitotic chromatid compaction²⁴, and the formation of chromatin
269 compartments^{8,25,26}. Owing to the tension-dependent nature of DNA–protein co-
270 condensation, our work suggests that these forces could play a key and, as yet,
271 underappreciated role in genome organization and transcriptional initiation. It is
272 appealing to imagine that transcriptional outputs not only respond to
273 concentrations of transcription factors in the nucleus, but also to mechanical cues
274 from chromatin.

275

276 **References:**

- 277 1. De Gennes, P.-G., Brochard-Wyart, F. & Quere, D. *Capillarity and Wetting*
278 *Phenomena*. Springer (2013).
- 279 2. Bico, J., Reyssat, É. & Roman, B. Elastocapillarity: When Surface Tension
280 Deforms Elastic Solids. *Ann. Rev. Fluid Rev.* **50**, 629-659 (2017).
- 281 3. Hu, D.L. & Bush, J. W. M. The hydrodynamics of water-walking arthropods.
282 *J. Fluid Mech.* **664**, 5-33 (2010).
- 283 4. Elettoro, H., Neukirch, S., Vollrath, F. & Antkowiak, A. In-drop capillary
284 spooling of spider capture thread inspires hybrid fibers with mixed solid-
285 liquid mechanical properties. *Proc. Natl. Acad. Sci. USA* **113**, 6143-6147
286 (2016).
- 287 5. Mastrangeli, M. *et al.* Self-assembly from milli- to nanoscales: methods and
288 applications. *J. Micromech. Microeng.* **19**, 083001-38 (2009).
- 289 6. Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid-Liquid Phase Separation in
290 Biology. *Annu. Rev. Cell Dev. Biol.* **30**, 39-58 (2014).
- 291 7. Sabari, B. R. *et al.* Coactivator condensation at super-enhancers links phase
292 separation and gene control. *Science* **361**, eaar3958-13 (2018).
- 293 8. Larson, A. G. *et al.* Liquid droplet formation by HP1 α suggests a role for
294 phase separation in heterochromatin. *Nature* **547**, 236-240 (2017).
- 295 9. Feric, M. *et al.* Coexisting Liquid Phases Underlie Nucleolar
296 Subcompartments. *Cell* **165**, 1686-1697 (2016).
- 297 10. Patel, A. *et al.* A Liquid-to-Solid Phase Transition of the ALS Protein FUS
298 Accelerated by Disease Mutation. *Cell* **162**, 1066-1077 (2015).
- 299 11. Furlong, E. E. M. & Levine, M. Developmental enhancers and chromosome
300 topology. *Science* **361**, 1341-1345 (2018).

- 301 12. Cramer, P. Organization and regulation of gene transcription. *Nature* **573**,
302 45-54, (2019).
- 303 13. Zaret, K. S. & Mango, S. E. Pioneer transcription factors, chromatin
304 dynamics, and cell fate control. *Curr. Opin. Genet. Dev.* **37**, 76–81 (2016).
- 305 14. Bustamante, C., Marko, J. F., Siggia, E. D. & Smith, S. Entropic elasticity of
306 lambda-phage DNA. *Science* **265**, 1599–1600 (1994).
- 307 15. Sekiya, T., Muthurajan, U. M., Luger, K., Tulin, A. V. & Zaret, K. S.
308 Nucleosome-binding affinity as a primary determinant of the nuclear
309 mobility of the pioneer transcription factor FoxA. *Genes Dev.* **23**, 804–809
310 (2009).
- 311 16. Jawerth, L. M. *et al.* Salt-Dependent Rheology and Surface Tension of
312 Protein Condensates Using Optical Traps. *Phys. Rev. Lett.* **121**, 258101
313 (2018).
- 314 17. Brangwynne, C. P. *et al.* Germline P granules are liquid droplets that
315 localize by controlled dissolution/condensation. *Science* **324**, 1729–1732
316 (2009).
- 317 18. Botao, X. *et al.* Histone H1 compacts DNA under force and during
318 chromatin assembly. *Mol. Biol. Cell.* **23**, 4864–4871 (2012).
- 319 19. Golfier, S., Quail, T., Kimura, H. & Brugués, J. Cohesin and condensin
320 extrude DNA loops in a cell-cycle dependent manner. *Elife* **9**, (2020).
- 321 20. Banigan, E. J. & Mirny, L. A. Loop extrusion: theory meets single-molecule
322 experiments. *Curr. Opin. Cell Biol.* **64**, 124–138 (2020).
- 323 21. Shin, Y. *et al.* Liquid Nuclear Condensates Mechanically Sense and
324 Restructure the Genome. *Cell* **175**, 1481–1491 (2018).
- 325 22. Fukaya, T., Lim, B. & Levine, M. Enhancer Control of Transcriptional
326 Bursting. *Cell* **166**, 358–368 (2016).
- 327 23. Jang, J., Schatz, G. C., & Ratner, M. A. Capillary force in atomic force
328 microscopy. *J. Chem. Phys.* **120**, 1157–1160 (2004).
- 329 24. Yoshimura, S. H. & Hirano, T. HEAT repeats – versatile arrays of
330 amphiphilic helices working in crowded environments? *J. Cell. Sci.*
331 jcs.185710–8 (2016).
- 332 25. Strom, A. R. *et al.* HP1 α is a chromatin crosslinker that controls nuclear
333 and mitotic chromosome mechanics. *bioRxiv* **29**, 717–742 (2020).
- 334 26. Williams, J. F. *et al.* Phase separation enables heterochromatin domains to
335 do mechanical work. *bioRxiv* **78**, 236–245 (2020).
- 336 27. McCall, P. M. *et al.* Quantitative phase microscopy enables precise and
337 efficient determination of biomolecular condensate composition. *bioRxiv*
338 **16**, 2885–19 (2020).
- 339 28. Shakya, A., Park, S., Rana, N. & King, J. T. Liquid-Liquid Phase Separation of
340 Histone Proteins in Cells: Role in Chromatin Organization. *Biophys. J.* **118**,
341 753–764 (2020).
- 342 29. Turner, A. L. *et al.* Highly disordered histone H1–DNA model complexes
343 and their condensates. 1–6 (2018). doi:10.1073/pnas.1805943115
- 344
- 345

346 **Acknowledgements:** We thank Pavel Tomancak, Anthony Hyman, Stephan Grill,
347 Iain Patten, Martin Loose, David Oriola, Benjamin Dalton, Patrick McCall, and
348 Claudia Meyer for helpful feedback and stimulating discussions. We would like to

349 thank Aliona Bogdanova for discussions and help with cloning as well as both the
350 Protein Expression and Purification Facility and the Light Microscopy Facility at
351 the Max Planck Institute of Molecular Cell Biology and Genetics. We would like to
352 acknowledge and thank Nadine Vastenhouw for discussions and the construct
353 containing the Tata-box-binding protein template, and Christoph Zechner for
354 help with statistical analyses. Lastly, we would like to thank Kenneth Zaret for
355 sending constructs, information on mutant FoxA1 proteins, and advice on FoxA1
356 protein purification. This work was supported by an EMBO long-term fellowship
357 (ALTF-1456-2015) (TQ), DFG project BR 5411/1-1 (JB,VN), and a Volkswagen
358 "Life" grant number 96827 (JB,TQ).

359

360 **Author contributions:** T.Q. and J.B. conceived the project. T.Q. and S.G. performed
361 imaging experiments. S.G. established the single-strand DNA assay. T.Q. purified
362 proteins, made constructs, and performed data analysis. T.Q., J.B., and F.J.
363 performed theoretical calculations. M.E. made the TBP and Gal4-VP16 constructs
364 and purified the proteins. V.M. purified B4. T.Q. and R.R. performed optical
365 tweezer measurements. S.G. and R.R. performed data analysis and contributed to
366 methods writing. K.I. made the initial FoxA1 construct and provided key
367 biochemical support. J.B. and F.J. supervised the work. T.Q., J.B., and F.J. wrote the
368 manuscript and all authors contributed ideas and reviewed the manuscript.

369

370 **Competing interest statement:** The authors declare no competing financial
371 interests.

372

373

374

375

376

377

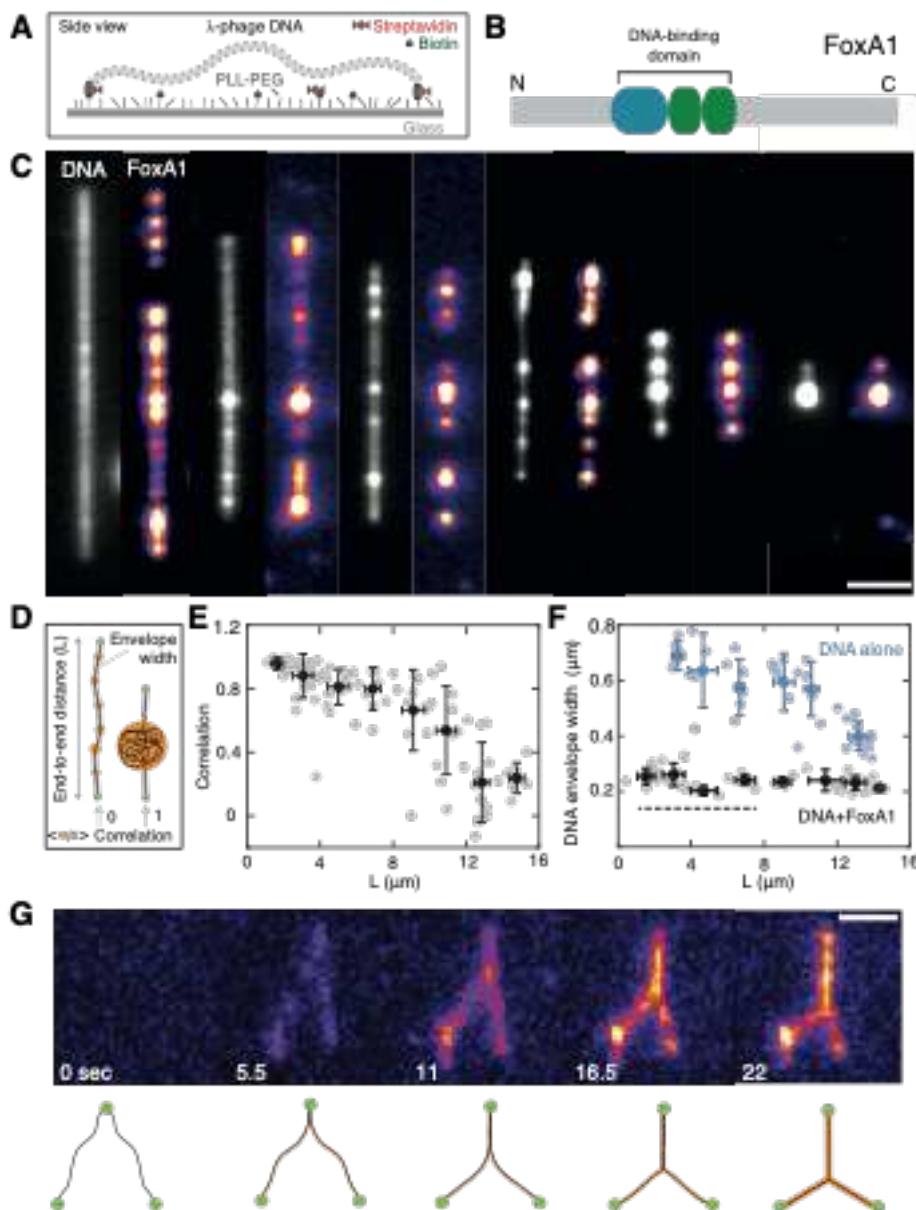
378

379

380

381

382


383

384

385

386

387 **Figure 1**

388

389 **Figure 1: FoxA1 forms DNA-FoxA1 condensates in a tension-dependent**
390 **manner.** (A) Schematic of single λ-phage DNA molecule assay. (B) Structure of
391 FoxA1, consisting of a structured DNA-binding domain flanked by mostly
392 disordered N and C termini. The DNA-binding domain has a sequence-specific
393 binding region (blue) and two non-sequence-specific binding regions (green). (C)
394 The extent of FoxA1-mediated DNA condensation depends on the end-to-end
395 distance of the strand. Representative time-averaged projections of FoxA1 and
396 DNA. Note that the total amount of DNA is the same in each example. The DNA was
397 imaged using 10 nM Sytox Green. Scale bar=2 μm . (D) Schematic displaying three
398 main quantities used to characterize DNA-FoxA1 condensation: the end-to-end
399 distance L ; Cross-correlation of DNA and FoxA1 intensities; and DNA envelope
400 width, a measure of transverse DNA fluctuations. (E) Cross-correlation of FoxA1
401 and DNA signals shows that FoxA1 condenses DNA below a critical end-to-end
402 distance. The gray dots represent individual strands, $n=107$. The data is binned
403 every 2- μm (black, mean \pm SD for both correlations and strand lengths). (F) DNA

404 envelope width measurements (see Methods) reveal that FoxA1-DNA
405 condensation buffers DNA tension (blue and black dots correspond to control and
406 DNA+FoxA1 conditions, n=45 and n=50 respectively). The data is binned every 2-
407 μ m (mean \pm SD for both the envelope widths and strand lengths). The dashed
408 black line represents the theoretical diffraction limit. (G) Representative images
409 of FoxA1 zipping two independent DNA strands over time. Scale bar=2 μ m.

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

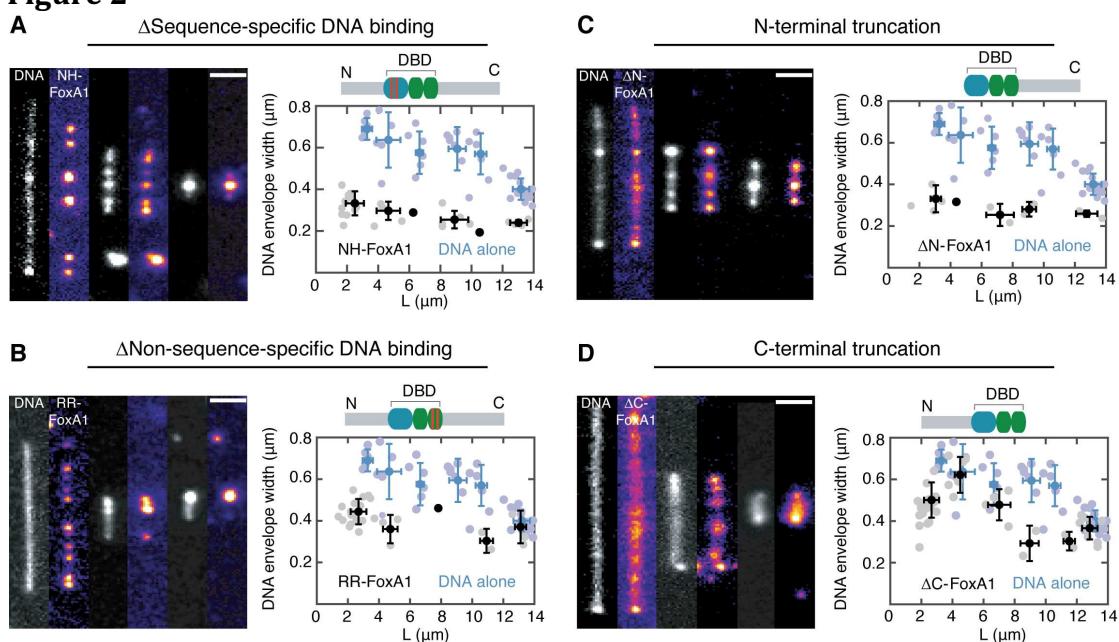
444

445

446

447

448


449

450

451

452

453 **Figure 2**

454

455 **Figure 2: Mutant analysis reveals that the C terminus of FoxA1 drives DNA**
456 **condensation.** Representative images and DNA envelope width measurements
457 for FoxA1 mutants. The data is binned every 2-μm and the mean \pm SD (for both
458 the envelope width and the strand length) are shown in black for each mutant
459 and in blue for control (n=45). Scale bars=2 μ m. (A) Sequence-specific DNA
460 binding mutant NH-FoxA1 condenses DNA (n=30). (B) Non-sequence-specific
461 DNA-binding mutant RR-FoxA1 condenses DNA (n=28). (C) N-terminal
462 truncation of FoxA1 ΔN-FoxA1 condenses DNA (n=13). (D) C-terminal truncation
463 of FoxA1 ΔC-FoxA1 inhibits DNA condensation (n=44). In all conditions, the
464 protein concentration was 10 nM.

465

466

467

468

469

470

471

472

473

474

475

476

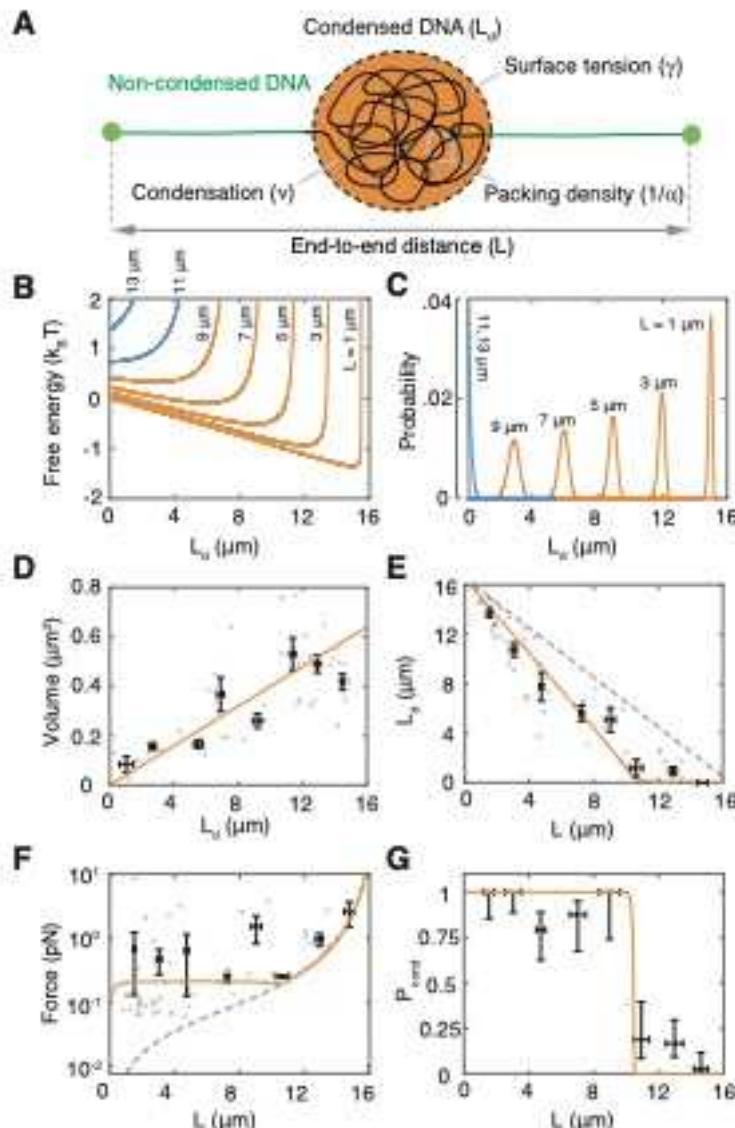
477

478

479

480

481


482

483

484

485

Figure 3

486

487 **Figure 3: Thermodynamic description of a liquid phase condensing onto a**

488 **semi-flexible polymer explains FoxA1-mediated DNA condensation.** (A)

489 Schematic representing DNA-FoxA1 condensation (orange). DNA can be in a

490 condensed state (black) or a non-condensed state (green). DNA condensation

491 depends on the condensate surface tension (γ), condensation free energy per

492 volume (v), and DNA packing efficiency (α). (B) Free energy profiles as a function

493 of condensed DNA (L_d) for different L reveal a first-order phase transition for

494 DNA-protein condensation (orange and blue correspond to favorable and

495 unfavorable condensation, respectively). (C) Boltzmann distributions

496 corresponding to the free energy profiles in (B). (D) Condensate volume linearly

497 increases with L_d . The orange curve represents a linear fit to individual strands

498 ($n=47$). For (D), (E), and (F), individual strands are represented as gray dots and

499 binned mean \pm SEM is in black. (E) Amount of condensed DNA as a function of L

500 ($n=63$) reveals sharp transition. Orange curve represents optimal theoretical fit.

501 The gray dashed-line corresponds to the limit of maximum condensation where

502 L_d is equal to the contour length of DNA (16.5 μm) minus L . (F) Condensation

503 forces that DNA-protein condensates exert on non-condensed DNA are buffered

504 ($n=62$). Orange curve is the theoretical prediction. The gray dashed line

505 represents the force when $L_d=0$. (G) Probability to nucleate a DNA-FoxA1
506 condensate (P_{cond}) reveals a sharp transition at a critical end-to-end distance. P_{cond}
507 is computed from binned local correlation data ($n=181$ condensates). The end-to-
508 end distance error bars are the SD and the P_{cond} error bars are the 95% confidence
509 intervals from a Beta distribution.

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

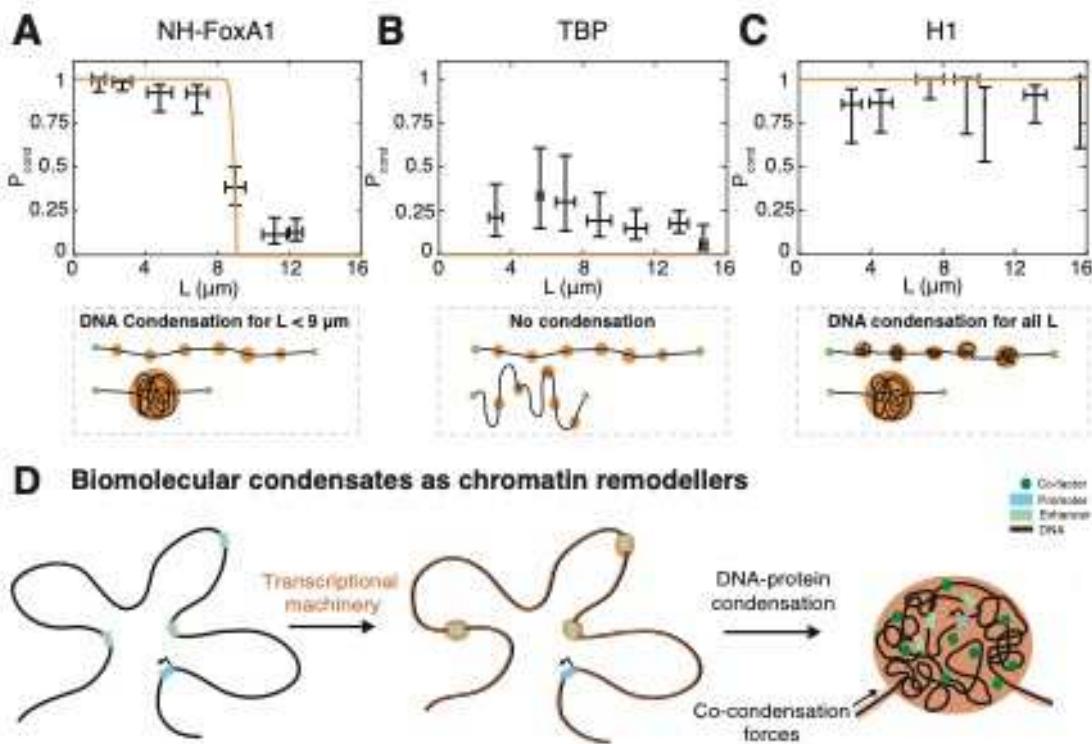
545

546

547

548

549


550

551

552

553

Figure 4

554
555 **Figure 4: Universality of protein-DNA co-condensation.** Probability to form a
556 protein-DNA co-condensate for NH-FoxA1 (A), Tata-box-binding protein (B), and
557 Somatic linker histone H1 (C). P_{cond} is computed from local correlation data with
558 $n=361$ condensates for NH-FoxA1 (A), $n=247$ condensates for Tata-box-binding
559 protein (B), and $n=101$ for H1 (C). Scale bar= $2 \mu\text{m}$. The error bars for the end-to-
560 end distance are SD and the P_{cond} error bars are the 95% confidence intervals from
561 a Beta distribution. We found that NH-FoxA1 condensed DNA less strongly than
562 WT-FoxA1, TBP could not condense DNA for any end-to-end distance, and H1
563 condensed DNA for all measured end-to-end distances. (D) Biomolecular
564 condensates generate condensation forces that could serve to recruit
565 transcriptional regulators, and potentially remodel chromatin at physiologically
566 relevant force scales in order to properly regulate transcription. See Figure 2 in
567 the Supplementary Information for representative protein-DNA images of NH-
568 FoxA1, TBP, and H1.

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583 **Methods**

584

585 Cloning and protein purification

586 FoxA1-mCherry was introduced into a bacterial expression vector with an N-
587 terminal His₆ tag using Gateway cloning. Unlabeled FoxA1 was cloned and purified
588 the same way. This vector was transformed into T7 express cells (enhanced BL21
589 derivative, NEB C2566I), grown to OD~0.4-0.8, whereupon we added 1 mM IPTG
590 and expressed His₆-FoxA1-mCherry for 3-4 hours at 37°C. We thawed frozen
591 pellets in binding buffer (1xBB) that contained 20 mM Tris-HCl (pH=7.9), 500 mM
592 NaCl, 20 mM Imidazole, 1 mM MgCl₂, supplemented with protease inhibitors and
593 Benzonase. The redissolved pellets were lysed and clarified via centrifugation.
594 Discarding the supernatant, we resuspended the pellets in 1xBB + 6 M Urea, spun,
595 collected the supernatant and poured it over an IMAC column, eluting the protein
596 with 1xBB+6 M Urea+250 mM Imidazole. We dialyzed overnight into storage
597 buffer (1xSB), 20 mM HEPES (pH=6.5), 100 mM KCl, 1 mM MgCl₂, 3 mM DTT, and
598 5 M Urea. Multiple dialysis rounds reduced the concentration of urea. Finally, the
599 protein was dialyzed into 1xSB+2 M Urea, spun-concentrated to 4-5 mg/ml (~50
600 μM), and then snap-frozen nitrogen and stored at -80°C. NH-FoxA1-mCherry and
601 RR-FoxA1-mCherry were obtained following¹⁵ using the Q5 Site-Directed
602 Mutagenesis Kit. The truncation constructs were generated using restriction
603 digestion-ligation approaches coupled with PCR. We used Alexa-488-labeled
604 somatic linker histone H1 purified from calf thymus (H-13188, ThermoFisher). To
605 purify mCherry-B4, the gene (Genscript) was cloned into a bacterial expression
606 vector with N-terminal His₆ and mCherry tags, transformed into T7 express cells,
607 grown to OD~0.7 and supplemented with 0.8 mM IPTG and expressed at 37°C for
608 four hours. Resuspending the pellets in lysis buffer, 1xPBS with 500 mM NaCl, 1
609 mM DTT plus protease inhibitors and Benzonase, we then lysed the cells, collected
610 the supernatant, ran the supernatant over an IMAC column, and eluted the protein
611 with lysis buffer+250 mM Imidazole. The protein was dialyzed into 1xPBS+500
612 mM NaCl overnight, spun-concentrated, snap-frozen, and stored at -80 °C. We
613 purified labeled versions of Tata-box binding protein and Gal4-VP16 using similar
614 purification strategies. Both vectors—His₆-MBP-eGFP-zTBP and His₆-Gal4-GFP-
615 VP16—were transformed into T7 express cells, grown to OD~0.6, whereupon we
616 added 0.2 mM IPTG and expressed overnight at 18 °C. We lysed the cells into

617 buffer containing 50 mM Tris-HCl (pH=8.0), 1 M NaCl, 10% glycerol, 1 mM DTT, 1
618 mM MgCl₂ supplemented with protease inhibitors. For subsequent steps, 10 µM
619 ZnSO₄ was added to buffers for the Gal4-VP16 purification. After lysis, we added
620 NP40 to 0.1% and clarified via centrifugation. We performed a polyethylenimine
621 precipitation to precipitate DNA and then an ammonium sulfate precipitation to
622 recover the protein, resuspending the precipitated proteins in buffer containing
623 50 mM Tris-HCl (pH=8.0), 1 M NaCl, 10% glycerol, 1 mM DTT, 0.1% NP40, and 20
624 mM imidazole and clarified the soluble fraction via centrifugation. We poured the
625 lysate over an IMAC column and eluted the protein using 2xPBS, 250 mM
626 imidazole, 10% glycerol, and 1 mM DTT. We pooled protein fractions and dialyzed
627 TBP overnight into 20 mM HEPES pH=7.7, 150 mM KCl, 10% glycerol, and 1 mM
628 DTT and Gal4-VP16 into 20 mM Hepes (pH=7.7), 100 mM KCl, 50 mM Sucrose, 0.1
629 mM CaCl₂, 1 mM MgCl₂, 1 mM DTT, and 10 µM ZnSO₄. We then spun-concentrated
630 the proteins, snap-froze using liquid nitrogen, and stored at -80°C.

631

632 DNA functionalization, cover slip PEGylation, and DNA micro-channel preparation
633 To biotinylate DNA purified from λ-phage (λ-phage DNA), we followed the
634 protocol given in¹⁹. Each end of the biotinylated λ-phage DNA had two biotin
635 molecules. To PEGylate the cover slips and prepare the DNA microchannels we
636 followed the protocol given in¹⁹.

637

638 DNA and protein imaging

639 We fluorescently stained immobilized DNA strands with 10 nM Sytox Green in
640 Cirillo buffer (20 mM HEPES, pH=7.8, 50 mM KCl, 2 or 3 mM DTT, 5% glycerol, 100
641 µg/ml BSA). For experiments with H1 and TBP, we imaged DNA using 25 nM Sytox
642 Orange. We used protein concentrations of 10 nM. We used a Nikon Eclipse
643 microscope with a Nikon 100x/NA 1.49 oil SR Apo TIRF and an Andor iXon3
644 EMCCD camera using a frame-rate of 100 – 300ms. A highly inclined and laminated
645 optical sheet (HILO) was established using a Nikon Ti-TIRF-E unit mounted onto
646 the microscope stand.

647

648 Optical tweezer measurements

649 We performed optical tweezer experiments using a C-Trap G2 system (Lumicks)
650 in a microfluidics flowcell (Lumicks), providing separate laminar flow channels.
651 For each experiment, we trapped two streptavidin-coated polystyrene beads
652 (Spherotech SVP-40-5). Once trapped, we moved these beads to a channel
653 containing biotinylated λ -phage DNA (Lumicks) at a concentration of 0.5 μ g/ml,
654 whereupon we used an automated “tether-finder” routine to capture a single
655 molecule between the two beads. Once a single λ -phage DNA molecule was
656 attached to the two beads, we moved the trapped beads to a buffer-only channel
657 (containing Cirillo buffer: 20 mM HEPES, pH=7.8, 50 mM KCl, 3 mM DTT, 5%
658 glycerol, 100 μ g/ml BSA). In the buffer-only channel, we fixed the molecule’s end-
659 to-end distance at either L=6 or 8 μ m. We then moved the tethered DNA to a
660 channel containing 150 nM FoxA1 in Cirillo buffer or another buffer-only channel
661 (as a control) and tracked the force and imaged the FoxA1-mCherry fluorescence
662 for 100 seconds.

663

664 **Bulk phase separation assays**

665 We performed bulk phase separation assays with FoxA1-mCherry, NH-FoxA1-
666 mCherry, and somatic linker histone H1. The storage buffer for FoxA1 and NH-
667 FoxA1 was 20 mM HEPES (pH=6.5), 100 mM KCl, 1 mM MgCl₂, 3 mM DTT, and 2
668 M Urea. The storage buffer for H1 was 1xPBS. For FoxA1, we combined 6 μ l of
669 FoxA1 (at 50 μ M) and 1 μ l of 20% 30K poly-ethylene glycol (PEG). For NH-FoxA1,
670 we combined 9 μ l and 1 μ l of 20% 30K PEG. For H1, we combined 9 μ l H1 and 1 μ l
671 100 μ M 32-base pair ssDNA. We prepared flow channels with double-sided tape
672 on the cover slide and attached a PEGylated cover slip to the tape. We imaged the
673 condensates using spinning disk microscopy and a 60x objective.

674

675 **FoxA1 molecule number estimation**

676 To estimate the number of FoxA1-mCherry molecules per condensate, we
677 quantified the intensity of single FoxA1-mCherry molecules bound non-
678 specifically to the slide. Around each segmented spot of DNA-independent FoxA1
679 intensity, we cropped an area of 10x10 pixels, performed a background
680 subtraction and summed the remaining intensity in the cropped area. To
681 determine the contribution of the background, the same method was applied to

682 10x10 pixel areas void of FoxA1 signal intensity. The resulting distribution of
683 these integrated signal intensities reveals consecutive peaks that are evenly
684 spaced by an average intensity of about 400 a.u., allowing us to calculate the
685 number of molecules. This approach should interpreted as a lower bound
686 estimate of the number of FoxA1-mCherry molecules per condensate, as it
687 neglects effects such as fluorescent quenching²⁷.

688

689 Hydrodynamic stretching of DNA

690 DNA molecules bound at only one end to the slide were hydrodynamically
691 stretched using a constant flow rate of 100 μ l/min of 0.5 nM FoxA1-mCherry in
692 Cirillo buffer with 10 nM Sytox Orange. The flow rate was sustained for tens of
693 seconds using a programmable syringe pump (Pro Sense B.V., NE-501).

694

695 Strand length calculation

696 To calculate the end-to-end distance, we generated time-averaged projections of
697 FoxA1 and DNA and integrated these projections along the strand's orthogonal
698 axis. To find the profile's "left" edge, we computed the gradient of the signal and
699 determined the position where the gradient went through a threshold (defined as
700 0.2). We then took all the points from the start of the signal to this position,
701 performed a background subtraction, and fit an exponential to these points. To
702 ensure that we included the entire DNA signal, we defined the fitted threshold for
703 both the left and the right edges as three-quarters of the value of the fitted
704 exponential value at the point when the gradient had gone through the intensity
705 threshold. Using this fitted threshold, we computed the position values for the left
706 and the right sides, and computed the end-to-end distance as the difference
707 between these two positions.

708

709 Global cross-correlation analysis

710 We generated time-averaged projections from movies of both FoxA1 and DNA, and
711 then summed the intensities in the orthogonal axis to the strand, generating line
712 profiles. We then calculated the strand length and cropped both the FoxA1 and
713 DNA line profiles from the edges of the strand. We then subtracted the mean value
714 from these cropped line profiles, normalized the amplitudes of the signals by their

715 Euclidean distances, and computed the zero-lag cross-correlation coefficient of
716 the normalized signals, which we defined as “Correlation”: $R(\tau = 0) = \sum_{n=1}^N \overline{x_n y_n}$,
717 where τ is the number of lags, N is the number of points in the normalized FoxA1
718 and DNA signals, $\overline{x_n}$ is the n th entry of the normalized FoxA1 signal, and $\overline{y_n}$ is the
719 n th entry of the normalized FoxA1 signal. In general, Correlation values range
720 from -1 to 1, but in our experimental data the values range from roughly 0 to 1,
721 where 1 represents the formation of DNA-FoxA1 condensates and 0 represents
722 the formation of only FoxA1 condensates (no DNA condensation).

723

724 DNA envelope width calculation

725 To compute the DNA envelope width, we first generated time-averaged
726 projections from movies of FoxA1 and DNA. We then selected segments of the
727 strand that did not contain FoxA1—regions of non-condensed DNA. Using these
728 segments, we extracted a line profile of the DNA signal orthogonal to the strand
729 that gave the maximum width. We then subtracted off the background of the DNA
730 profile, normalized the signal’s amplitude using the Euclidean distance, and fit a
731 Gaussian. We defined the DNA envelope width as $\sqrt{2}\sigma$, which represents the
732 square root of two times the standard deviation of the fitted Gaussian. The
733 theoretical diffraction limit is calculated using the Rayleigh criterion, a measure of
734 the minimal resolvable distance between two point sources in close proximity for
735 a given set of imaging conditions: $d = \frac{0.61\lambda}{NA}$, where λ represents the imaging
736 wavelength and NA is the numerical aperture. For our imaging setup, $d = 0.2 \mu\text{m}$,
737 which is approximately 2σ of the fluorescent source from the DNA. As the DNA
738 envelope width is defined as $\sqrt{2}\sigma$, our “diffraction limit” as given by the dashed
739 line in Fig. 1f is given as $0.14 \mu\text{m}$.

740

741 Condensate volume analysis

742 To calculate condensate volumes, we generated time-averaged DNA-FoxA1
743 projections and then localized the peaks of the DNA condensates. Using the peak
744 locations, we extracted background-subtracted one-dimensional profiles of the
745 DNA condensates in the orthogonal axis to the strand—these profiles went
746 through the peak location. We fit Gaussians to these profiles without normalizing

747 the amplitude. To define the radii of the condensates, we computed the gradient
748 of the fitted Gaussians and defined the condensate “edges” as when the absolute
749 value of the gradient of the Gaussian function gradient went through a threshold
750 value (defined as one, and determined by comparing with fluorescence).
751 Assuming condensates are spherical, we computed the condensate volume as $V =$
752 $\frac{4}{3}\pi R^3$, where R is the condensate’s radius. To compute a condensate volume for
753 strands with multiple condensates, we simply added up the volumes for each
754 condensate.

755

756 Condensed DNA amount analysis

757 To compute the amount of condensed DNA, L_d , we generated time-averaged
758 projections of DNA and FoxA1 signals, integrating the DNA signal in the orthogonal
759 direction to the strand. We then defined condensed vs non-condensed DNA with
760 $\text{Threshold}_{\text{drop}}$: the median value of the profile plus a tolerance. Intensity values
761 below $\text{Threshold}_{\text{drop}}$ were defined as pixels of non-condensed DNA, and intensity
762 values above $\text{Threshold}_{\text{drop}}$ were defined as pixels of condensed DNA. This
763 assumption was also consistent with the measured FoxA1 signal, where FoxA1
764 signals clearly localized to regions of condensed DNA, as defined by the
765 $\text{Threshold}_{\text{drop}}$. The tolerance value was used to suppress artefactual fluctuations
766 of the non-condensed DNA signal in the neighborhood of the median. To optimize
767 the tolerance value, we assume that L_d as a function of L is linear for lower values
768 of L ($< 5 \mu\text{m}$) with a y-intercept equal to the contour length of the DNA molecule
769 ($16.5 \mu\text{m}$), as this is consistent with our theoretical description. We plotted the y-
770 intercepts of the linear fits as a function of tolerance and found that tolerance=500
771 gives a y-intercept equal to 16.5 and generates DNA-FoxA1 condensates up to 10
772 μm consistent with our data and analysis (Extended Data Fig. 6). To calculate the
773 DNA length contained within the droplet, we integrated the intensities from pixels
774 above $\text{Threshold}_{\text{drop}}$, divided this value by the sum of the total intensity of the
775 profile, and then multiplied this ratio by the contour length of λ -phage DNA, 16.5
776 μm . The non-condensed DNA length was calculated as simply the contour length
777 minus L_d . We used the same tolerance = 500 for the NH-FoxA1 mutant analysis.

778

779 Force analysis

780 To calculate the force that the condensate exerts on the non-condensed DNA, we
781 used the worm-like chain model, which relates λ -phage DNA's extension and force.
782 Upon addition of FoxA1, the amount of non-condensed DNA reduces, and the
783 extension changes as follows, $E = \frac{L}{L_c - L_d}$, where L_d is the amount of condensed
784 DNA, L is the end-to-end distance, and L_c is the total contour length of the
785 molecule. We then directly compute the force using the worm-like-chain model,
786
$$F = \kappa \left(\frac{1}{4} (1 - E)^{-2} - \frac{1}{4} + E \right)$$

787

788 Condensate nucleation probability analysis

789 To calculate the probability of the formation of a DNA-protein condensate as a
790 function of end-to-end distance, we localized the peaks of the FoxA1 condensates
791 from time-averaged projections of FoxA1 and DNA. We then extracted $0.9 \mu\text{m} \times$
792 $0.5 \mu\text{m}$ windows centered around the localized FoxA1 peaks of both the FoxA1 and
793 DNA signals—with the window's long axis going with the strand and the short axis
794 as orthogonal to the strand. We then computed the zero-lag normalized cross-
795 correlation coefficient as follows:

796
$$C_{loc} = \frac{\sum \sum (f(x, y) - \mu_f)(g(x, y) - \mu_g)}{\sqrt{\sum f(x, y)^2 - \mu_f^2} \sqrt{\sum g(x, y)^2 - \mu_g^2}}$$

797 where $f(x, y)$ is the DNA, $g(x, y)$ is FoxA1, μ_f is the mean of the DNA image, and
798 μ_g is the mean of the FoxA1 image. This generates values from -1 to 1. For FoxA1-
799 mediated DNA condensation, the values for particular condensates are close to 1.
800 When FoxA1 fails to condense DNA, owing to the morphology of the underlying
801 DNA strand and the small number of pixels, we obtain values that range from -1 to
802 roughly 0.5. To obtain a value for P_{cond} as a function of end-to-end distance, we
803 selected a threshold of 0.75— C_{loc} values above the threshold are considered as
804 “condensed” and values below would be considered “non-condensed”. We binned
805 the C_{loc} data in $2\text{-}\mu\text{m}$ increments as a function of end-to-end distance, and
806 calculated P_{cond} by taking the number of “condensed” condensates and dividing it
807 by the total number of condensates within the bin. The confidence intervals for
808 P_{cond} in each respective bin are computed by computing the 95% confidence
809 interval of a beta-distribution, which represents the probability distribution for a

810 Bernoulli process that takes into account the total number of successes with
811 respect to the total number of attempts.

812

813 Parameter fitting of the thermodynamic description and confidence intervals

814 To fit α , we used a linear fit of the condensate volumes for individual strands as a
815 function of L_d . The confidence intervals are the 95 per cent CI generated from
816 directly fitting the points. To fit the surface tension γ and condensation free energy
817 per volume v , we minimized the error of the average $\overline{L_d}(L)$ and $P_{cond}(L)$ with
818 respect to the data to optimize the parameter values. We used the normalized

819 Boltzmann distribution $P(L_d) = \frac{e^{-\beta F(L, L_d)}}{\int_0^{L_c-L} e^{-\beta F(l)} dl}$ to calculate $\overline{L_d} = \int_0^{L_c-L} l P(l) dl$. To

820 compute $P_{cond}(L)$, we localized the position of the local maximum in the free
821 energy, L_d^{max} for a given L and then computed the probability to “not” nucleate a
822 droplet from the Boltzmann distribution $\int_0^{L_d^{max}} P(l) dl$, which gives $P_{cond} = 1 -$

823 $\int_0^{L_d^{max}} P(l) dl$. To minimize the error, we binned the data in 2- μ m-width bins. For
824 each “binned” mean for both condensed DNA and condensation probability, we

825 computed the squared residual of the mean value with respect to the theoretical
826 expression. For residuals calculated from $\overline{L_d}(L)$, we normalized each residual by
827 the squared standard error of the mean, and then summed the normalized
828 residuals to obtain the error. For residuals calculated from $P_{nuc}(L)$, we normalized

829 each residual by the variance of the beta distribution, $P_{nuc, cond} \sigma^2 = \frac{(1+k)(1-k+N)}{(2N^2(3+N))}$ and

830 then summed the normalized residuals to obtain the error. For the global error,
831 we simply added the error from both deviations in $\overline{L_d}(L)$ and $P_{cond}(L)$. We then

832 iterated through a range of values for (γ, v) and computed the total error
833 associated with each set of parameter values, exponentiated the negative values

834 of the total error matrix, and computed the largest combined value to select the
835 parameter values. To calculate the parameters’ confidence intervals, we obtained

836 one-dimensional profiles of the integrated exponentiated total error for v as a
837 function of γ and γ as a function of v . The peaks of these profiles represented the

838 values that we selected for our best-fit parameters. We assumed that these profiles
839 represented probability distributions for parameter selection, and then calculated

840 the left and right bounds where the area under the curve between these bounds

841 represented 95 per cent of the area. These left and right bounds represent the
842 lower and upper values of our confidence intervals. To compute the 95 per cent
843 confidence intervals for the force for each respective end-to-end distance value,
844 we scanned through (γ, ν) parameter space and computed the value of L_d for each
845 set of parameters. We then plotted these values against the probability that these
846 parameter values were the “true” values—simply the probability from the
847 exponentiated error matrix. Integrating the points under the Probability vs. L_d
848 curve and dividing this by the total area under this curve, we generated a
849 probability distribution function from which we could compute the 95%
850 confidence intervals for L_d . Because the force was constant, to compute the
851 confidence intervals for the force, we calculated the force using the worm-like
852 chain model using corresponding L_d values for an end-to-end distance that
853 retained FoxA1-mediated DNA condensation. To compute the confidence intervals
854 for L_{crit} , we scanned through (γ, ν) parameter space and computed L_{crit} for each
855 set of parameters. We then plotted L_{crit} values with the corresponding values
856 from the probability that these parameter values were true (again, the
857 exponentiated error matrix). Integrating the points under the Probability vs L_{crit}
858 curve and dividing this by the total area under this curve, we generated a
859 probability distribution function from which we could compute the 95%
860 confidence intervals for L_{crit} .

861

862 **Data availability statement:** Source data files are made available for this paper.
863 Data generated and analysed supporting the findings of this manuscript will be
864 made available upon reasonable request.

865

866 **Code availability statement:** Code generated supporting the findings of this
867 manuscript will be made available upon reasonable request.

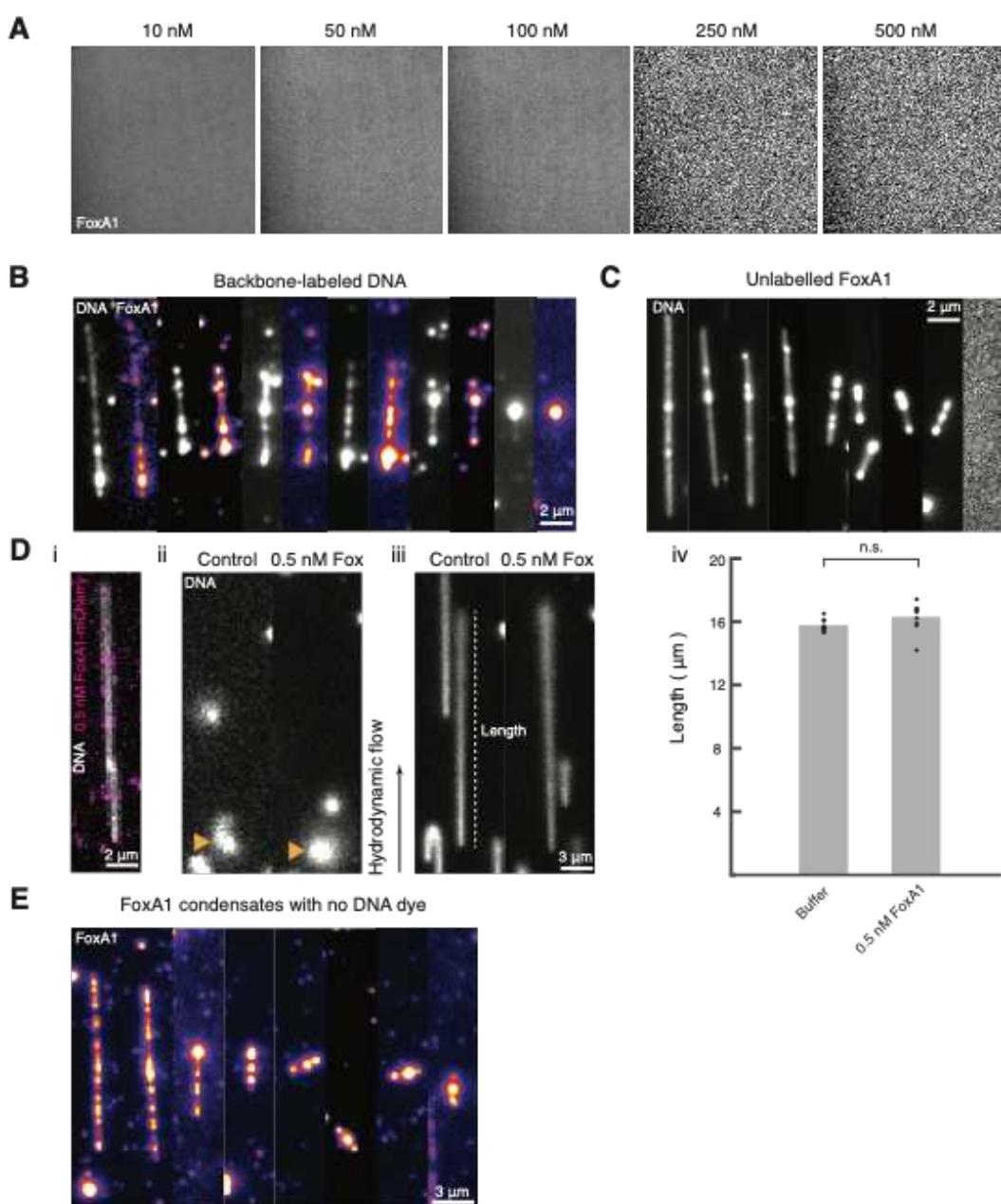
868

869

870

871

872


873

874

875

876

877 **Extended Data Figure 1**

878

879

880

881

882

883

884

885

886

887

888

889

890

891

Extended Data Figure 1: Experimental controls for FoxA1-mediated DNA condensation.

(A) Representative fluorescent images of FoxA1-mCherry in buffer (20 mM HEPES, pH=7.8, 50 mM KCl, 2 mM DTT, 5% glycerol, 100 μg/ml BSA) at different concentrations, 10-500 nM, in the absence of DNA reveals that FoxA1 does not form condensates in bulk at these concentrations. Using spinning disk microscopy and a 60x objective, we acquired images 70 μm x 70 μm in size with an exposure time of 250 msec and a time stamp of 500 msec to generate movies 30 seconds in duration. For all measured concentrations we generated n=3 movies and did not observe any FoxA1 condensation. (B) FoxA1-mCherry condenses λ-phage DNA molecules with Cy5 dye covalently attached to the phosphate backbone of DNA (Label-IT Nucleic Acid Labeling Kit, Cy5, Mirus). (C) Unlabeled FoxA1 condenses DNA (visualized with 10 nM Sytox Green). The rightmost panel is a representative image of the mCherry 561 nm imaging channel, revealing that

892 the FoxA1 molecule does not have a mCherry fluorophore. (D) Sparse labeling of
893 FoxA1 (0.5 nM) does not influence the persistence length and contour length of λ -
894 phage DNA, as determined by hydrodynamic stretching (see Methods). (i) FoxA1
895 (purple) is sparsely bound to DNA (in grey), visualized with 10 nM Sytox Green.
896 (ii) Snapshots of unstretched DNA molecules bound at only one end to the
897 coverslip before hydrodynamic stretching in both control and 0.5 nM FoxA1
898 conditions. The yellow arrows point to the DNA molecules. (iii) Snapshots of
899 stretched DNA molecules bound at one end to the coverslip during hydrodynamic
900 stretching in both control and 0.5 nM FoxA1 conditions. (iv) Quantification of
901 stretched DNA lengths in both control (n=10) and 0.5 nM FoxA1 (n=9) conditions
902 reveals that there is no significant difference in the length under hydrodynamic
903 stretching (unpaired t-test, p=0.11). (E) FoxA1 condensates imaged in the absence
904 of DNA dye are consistent in size with that of FoxA1 condensates formed in the
905 presence of DNA dye.

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

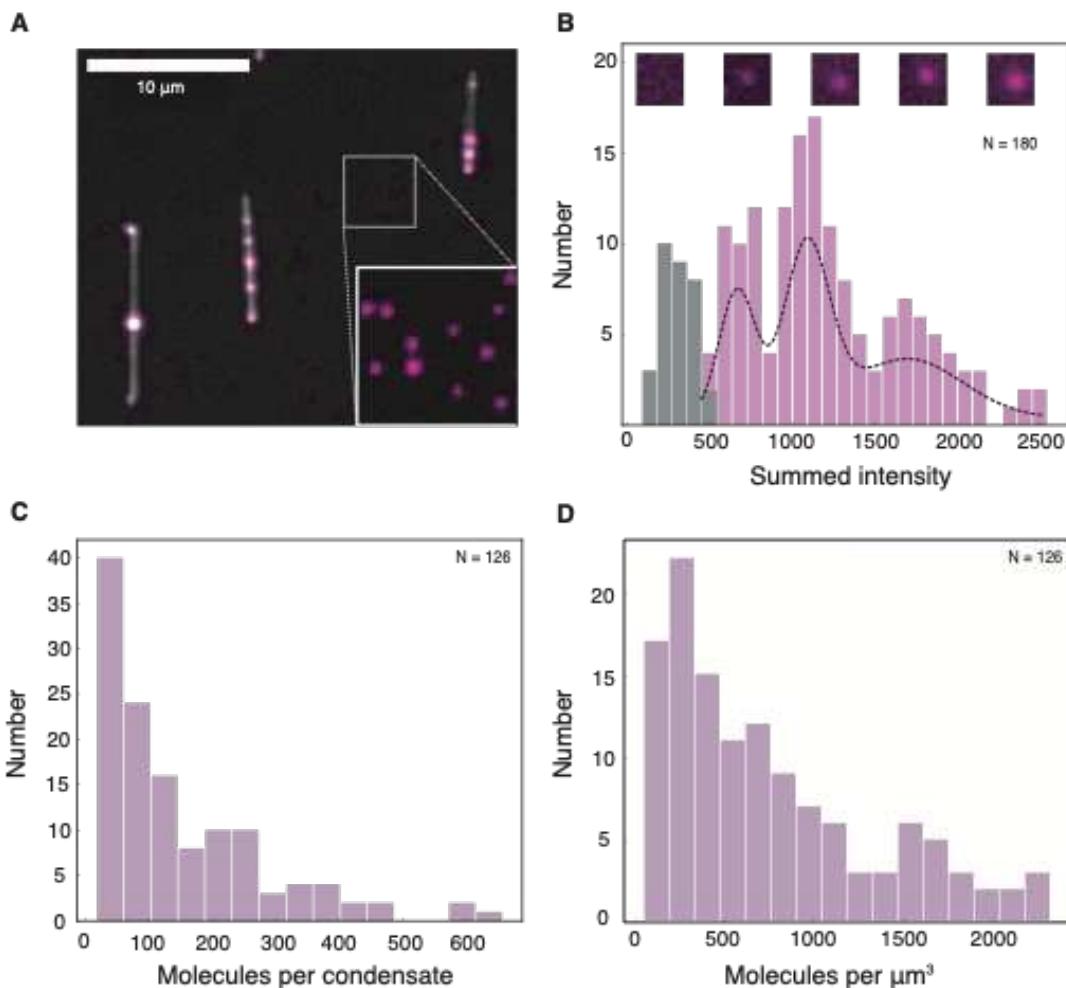
932

933

934

935

936

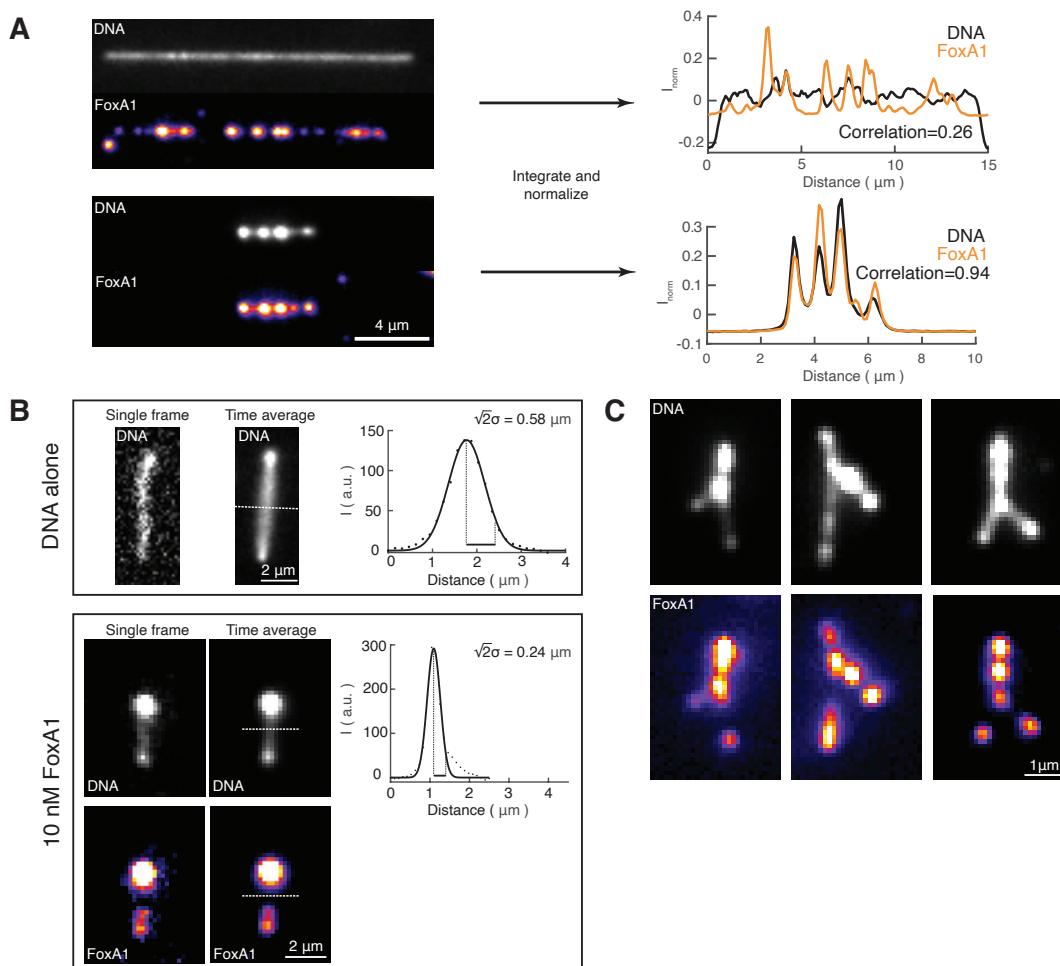

937

938

939

940

941 **Extended Data Figure 2**

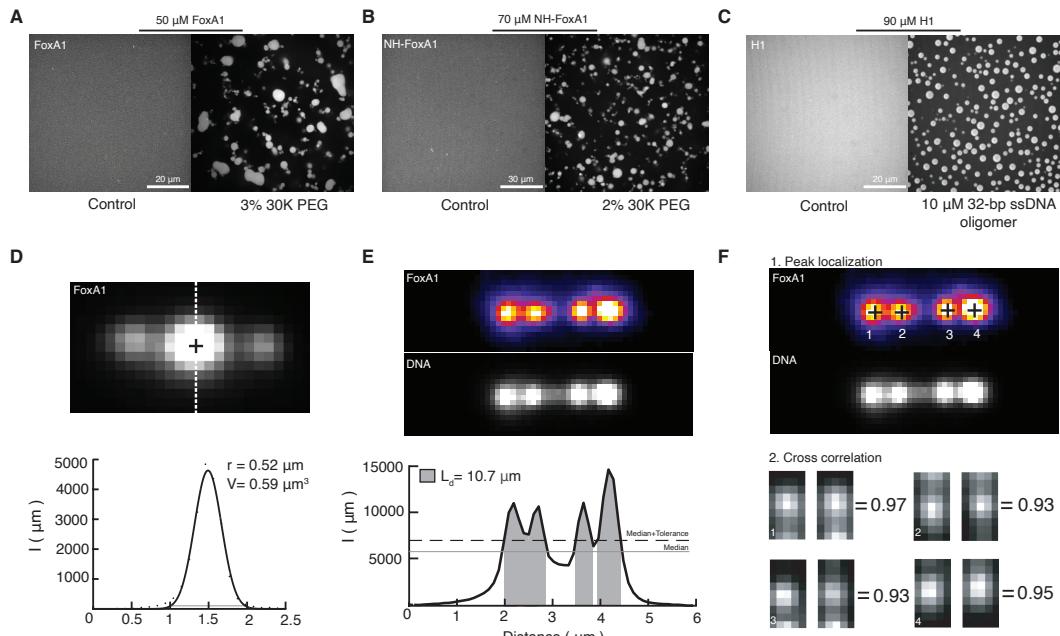

942

943

Extended Data Figure 2: Counting FoxA1 molecules in condensates. (A) Representative image of three DNA strands with FoxA1 condensates. The inset shows an area of the PEGylated glass slide void of DNA. Increased contrast reveals the presence of individual spots of FoxA1 non-specifically bound to the coverslip. (B) Histogram of integrated intensities of these DNA-independent FoxA1 to calibrate the amount of fluorescence per molecule. The grey bars represent the integrated background intensity of areas where no FoxA1 signal could be detected (maximum at 289 a.u.). Pink bars represent the integrated intensity of individual spots of DNA-independent FoxA1 signal. Black dotted line is a multi-Gaussian fit to the pink histogram, indicating consecutive peaks in the histogram at intensities of 683, 1096 and 1706 (a.u.), suggesting an integrated intensity of 400 a.u. per FoxA1 molecule. Representative images (10x10 pixels) of background (left) and individual DNA-independent FoxA1 spots used in this analysis are placed above the histogram according to their integrated signal intensity. (C) Histogram of the number of FoxA1 molecules in FoxA1 condensates on DNA, calculated based on an integrated intensity of 400 a.u. per FoxA1 molecule, determined in (B). The mean number of molecules is 150 per condensate. (D) Histogram of the density of FoxA1 molecules in the FoxA1-DNA condensates analyzed in (C). The mean value is 750 molecules per μm^3 . These estimates represent lower bounds as previous studies

962 have demonstrated that fluorescent-based methods for estimating the number of
963 molecules neglect effects such as quenching and can underestimate the number of
964 molecules by as much as 50 fold²⁷.
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010

1011 **Extended Data Figure 3**



1012
 1013 **Extended Data Figure 3: Quantification of FoxA1-mediated DNA**
 1014 **condensation.** (A) Global cross-correlation between FoxA1 and DNA reveals
 1015 FoxA1-mediated DNA condensation. Left, representative fluorescent time-
 1016 averaged projections of DNA and FoxA1 at two different end-to-end distances.
 1017 Integrating both the DNA and FoxA1 signals along the axis orthogonal to the long
 1018 axis of the strand gave rise to line profiles, which we normalized, and then plotted
 1019 as a function of distance (DNA in black and FoxA1 in orange). We then computed
 1020 the zero-lag cross-correlation coefficient defined as “Correlation” (see Methods).
 1021 (B) DNA envelope width measure measures the transverse fluctuation of non-
 1022 condensed DNA. Top box: DNA alone condition. Bottom box: DNA+FoxA1
 1023 condition. For both conditions, we display representative fluorescent images of
 1024 single frames and time-averaged projections of the DNA and FoxA1 signals. The
 1025 white dashed line represents the maximum width of the DNA signal along the
 1026 orthogonal axis of the non-condensed DNA. The black dots in the profile represent
 1027 the background-subtracted points from the white dashed line, and the black line
 1028 represents a Gaussian fit. The DNA envelope width was defined as $\sqrt{2}\sigma$, where σ
 1029 is the standard deviation of the Gaussian fit. (C) Three representative examples of
 1030 FoxA1-mediated zipping. These images are time-averaged projections of both
 1031 FoxA1 and DNA.

1032

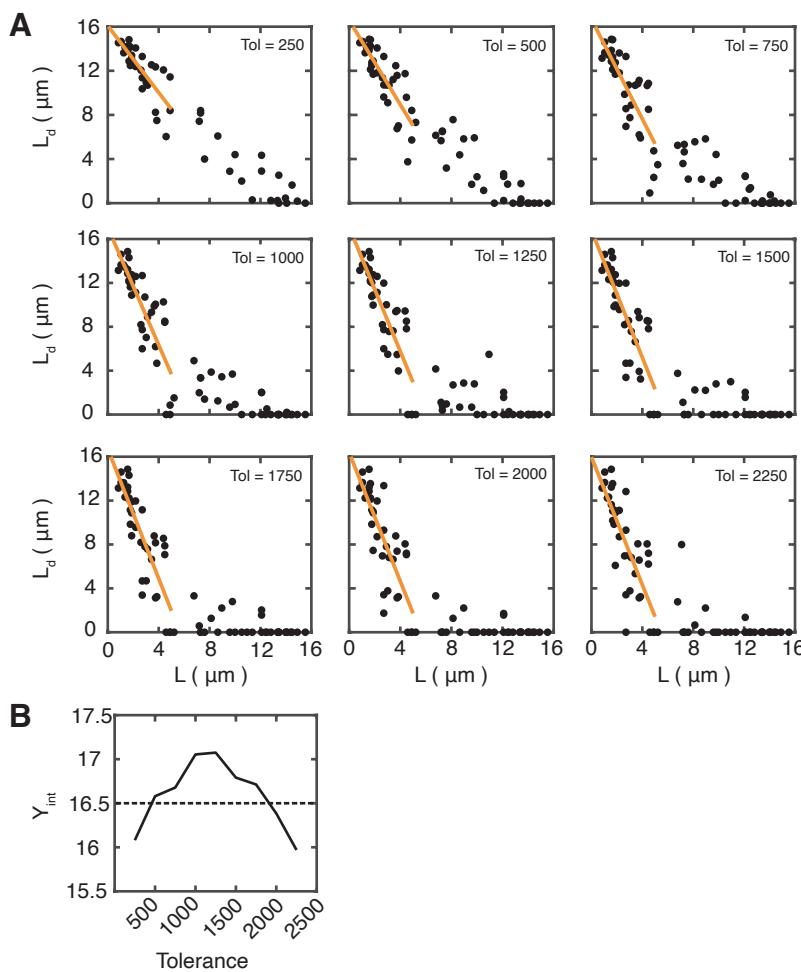
1033

1034 **Extended Data Figure 4**

1035

1036 **Extended Data Figure 4: Bulk biomolecular condensate formation and**
1037 **quantification of condensate volume, condensed DNA length, and**
1038 **condensation probability.** (A) Three per cent 30K PEG triggers FoxA1
1039 condensate formation in bulk at 50 μ M in storage buffer: 20 mM HEPES (pH=6.5),
1040 100 mM KCl, 1 mM MgCl₂, 3 mM DTT, and 2 M Urea. (B) Two per cent 30K PEG
1041 triggers NH-FoxA1 condensate formation in bulk at 70 μ M in storage buffer. (C)
1042 The addition of 10 μ M 32-BP ssDNA oligomers nucleated droplets of H1 in bulk at
1043 90 μ M that exhibited features of liquid-like droplets consistent with literature^{28,29}.
1044 These data demonstrate that H1-DNA form liquid-like condensates, which could
1045 be driven via transient cross-linking of H1 and DNA or H1-H1 interactions. Both
1046 mechanisms are accounted for in our free energy description. (D) Condensate
1047 volume quantification of a representative time-averaged projection of a FoxA1-
1048 DNA condensate, where the black cross is the condensate peak location and the
1049 white dashed line is the intersecting profile to measure the volume. Lower panel:
1050 the black dots are the profile's background-subtracted values and the solid black
1051 line is a Gaussian fit. The gray line represents the threshold value computed from
1052 the gradient of the Gaussian function that defines the edges of the condensate (see
1053 Methods). (E) Condensed DNA length quantification of a representative time-
1054 averaged projection of FoxA1 and DNA. Below: the integrated one-dimensional
1055 DNA profile is defined into condensed versus non-condensed regions using the
1056 median of the profile's median (gray) plus a tolerance (black dashed). (F) Local
1057 correlation quantification of a representative time-averaged projection of FoxA1
1058 and DNA. The condensates were localized (black crosses) and then 0.9 μ m x 0.5
1059 μ m boxes centered around these peaks were cropped. The correlations between
1060 the cropped regions of FoxA1 (left) and DNA (right) were then computed.

1061


1062

1063

1064

1065

1066 **Extended Data Figure 5**

1067

1068

Extended Data Figure 5: Tolerance value calculation. Quantification of the condensed DNA length as a function of end-to-end distance for a range of tolerance values. Condensed DNA length is computed by defining regions of condensed versus non-condensed DNA using a threshold composed of the signal's median value plus a tolerance. (A) Condensed DNA length is plotted as a function of end-to-end distance L for tolerance values from 250 to 2250 where the black dots represent the condensed DNA length for individual strands and the orange curve represent linear fits to these points for end-to-end distance below 5 μm . (B) Y intercept of the fitted linear curves. A tolerance=500 was selected as the y intercept was equal to the contour length of λ -phage DNA (16.5 μm) and gave FoxA1-DNA condensate formation up to approximately 10 μm , consistent with experimental observations (see Methods).

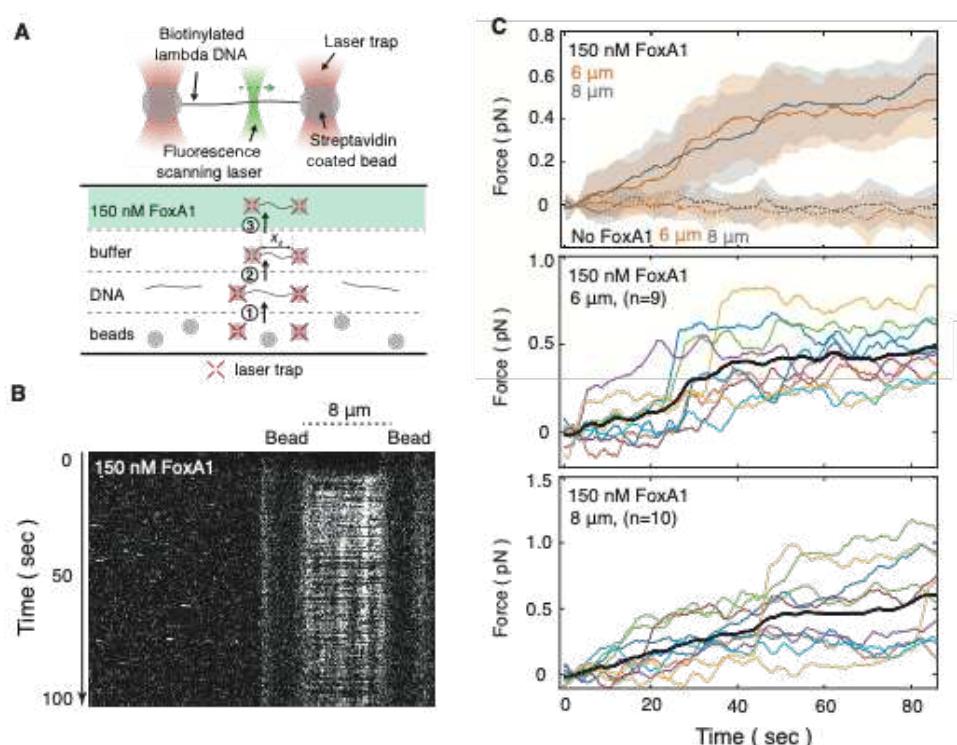
1080

1081

1082

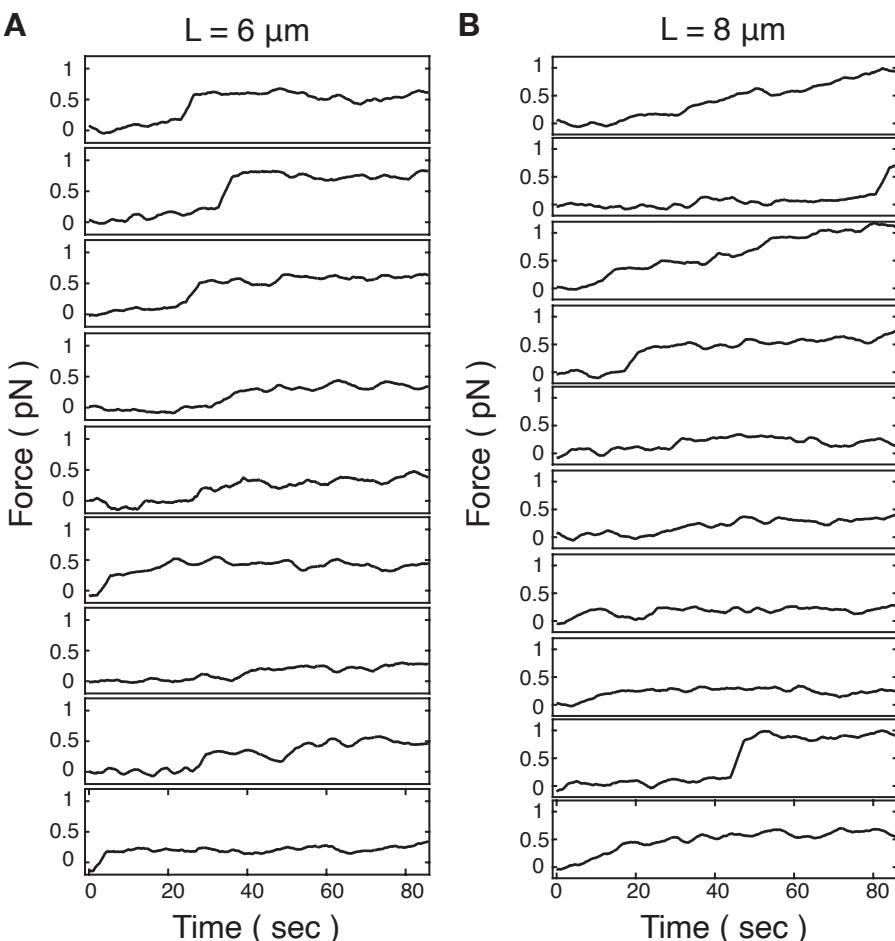
1083

1084


1085

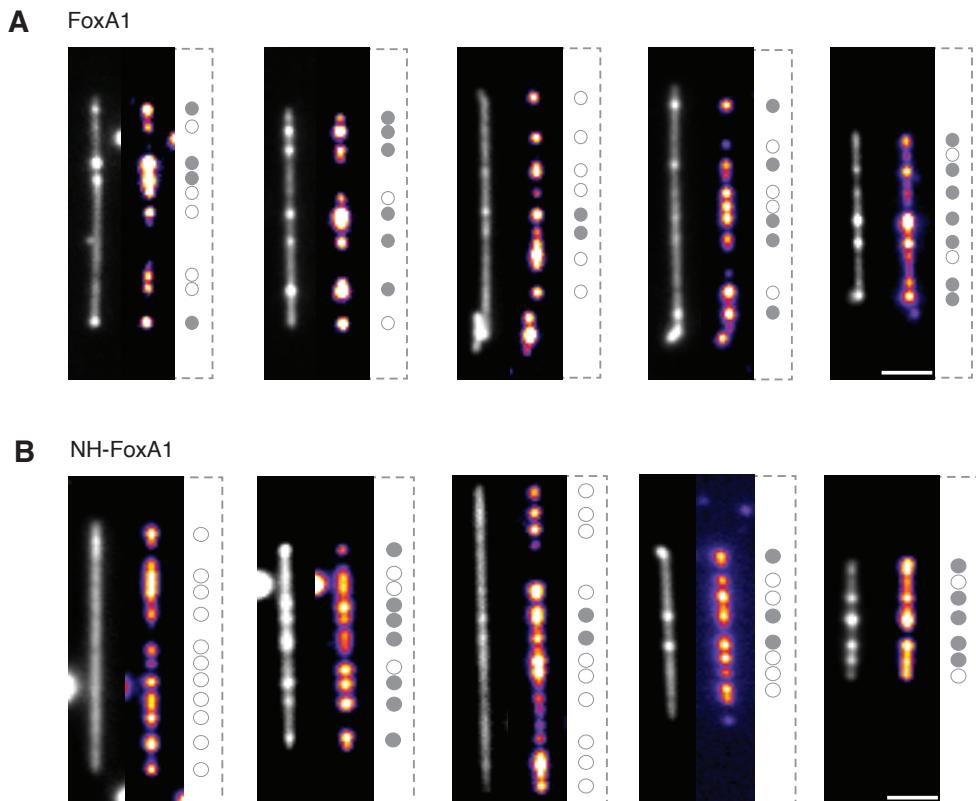
1086

1087


1088

1089 **Extended Data Figure 6**

1090
1091 **Extended Data Figure 6: Optical tweezer measurements reveal that FoxA1**
1092 **generates forces on the order of 0.4-0.6 pN.** (A) Schematic outlining optical
1093 tweezer experimental design (see Methods). (B) Representative kymograph
1094 reveals that FoxA1 condensates co-localize with a single molecule of λ -phage DNA
1095 trapped between two beads at an end-to-end distance of 8 μm . (C) Force
1096 trajectories for single DNA molecules reveal forces on the order of 0.4-0.6 pN
1097 when in FoxA1-containing buffer. (Top panel) This panel displays the mean \pm STD
1098 of force trajectories for each condition (n=9 for +FoxA1 with L=6 μm , n=10 for
1099 +FoxA1 with L=8 μm , n=10 for control with L=6 μm , and n=13 for control with L=8
1100 μm). This average force is slightly higher than what we measured in Fig. 3F using
1101 fluorescence, though a comparison of the relative errors reveals that both
1102 measurements give rise to comparable forces close to their respective detection
1103 limits and within the error bars. Additionally, the optical tweezer measurements
1104 were performed at a higher FoxA1 concentration—this was due to the large
1105 amount of tubing from the entry port to the flowcell in the custom-built Lumicks
1106 system, representing a considerable amount of surface for the protein to non-
1107 specifically bind to. We found that 150 nM FoxA1 was necessary to elicit a force
1108 response and to observe FoxA1 condensate formation on DNA. We conducted
1109 these measurements in the presence of 150 nM FoxA1 in Cirillo buffer 20 mM
1110 HEPES, pH=7.8, 50 mM KCl, 3 mM DTT, 5% glycerol, 100 $\mu\text{g}/\text{ml}$ BSA (solid lines)
1111 and in the presence of Cirillo buffer only (hatched lines) at end-to-end distances
1112 of L=6 (orange) or 8 μm (grey). Individual force trajectories for λ -phage DNA in
1113 the presence of buffer containing 150 nM FoxA1 with an initial end-to-end
1114 distance of 6 μm (middle panel) and 8 μm (bottom panel) reveal jumps in force,
1115 consistent with a first-order phase transition. These trajectories are re-plotted for
1116 clarity in Extended Data Fig. 7.


1117 **Extended Data Figure 7**

1118
1119 **Extended Data Figure 7: Individual temporal optical tweezer force**
1120 **measurements.** Temporal force measurements from optical tweezers with an
1121 initial end-to-end distance of $6 \mu\text{m}$ ($n=9$ strands) (A) and $8 \mu\text{m}$ ($n=10$ strands) (B)
1122 in the presence of 150 nM FoxA1. These data are the same as in Extended Data Fig.
1123 6c, and are re-plotted individually for clarity.
1124

1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140

1141 **Extended Data Figure 8**

1142

1143

Extended Data Figure 8: Bistability of FoxA1-mediated DNA condensation.

1144 (A) Representative time-averaged projections of DNA and FoxA1 signals show
1145 that FoxA1 condenses DNA in an all-or-nothing manner. On the right side of each
1146 pair of images, we localized the FoxA1 condensates and showed whether FoxA1
1147 condenses DNA (filled-in gray circle) or not (open circle). Interestingly, there is a
1148 mixed population, revealing the bistable nature of the condensation process. (B)
1149 Representative images of condensation bistability for the sequence-specific DNA-
1150 binding mutant, NH-FoxA1. Scale bars = 2 μ m.

1151

1152

1153

1154

1155

1156

1157

1158

1159

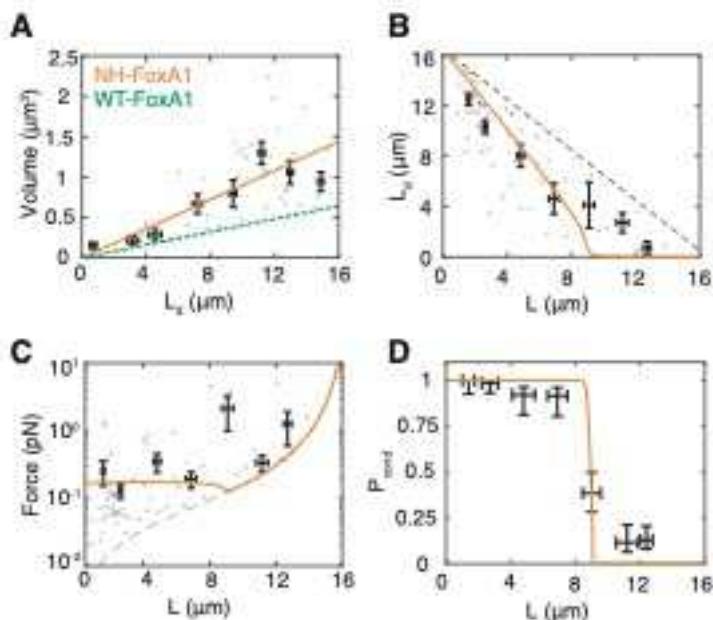
1160

1161

1162

1163

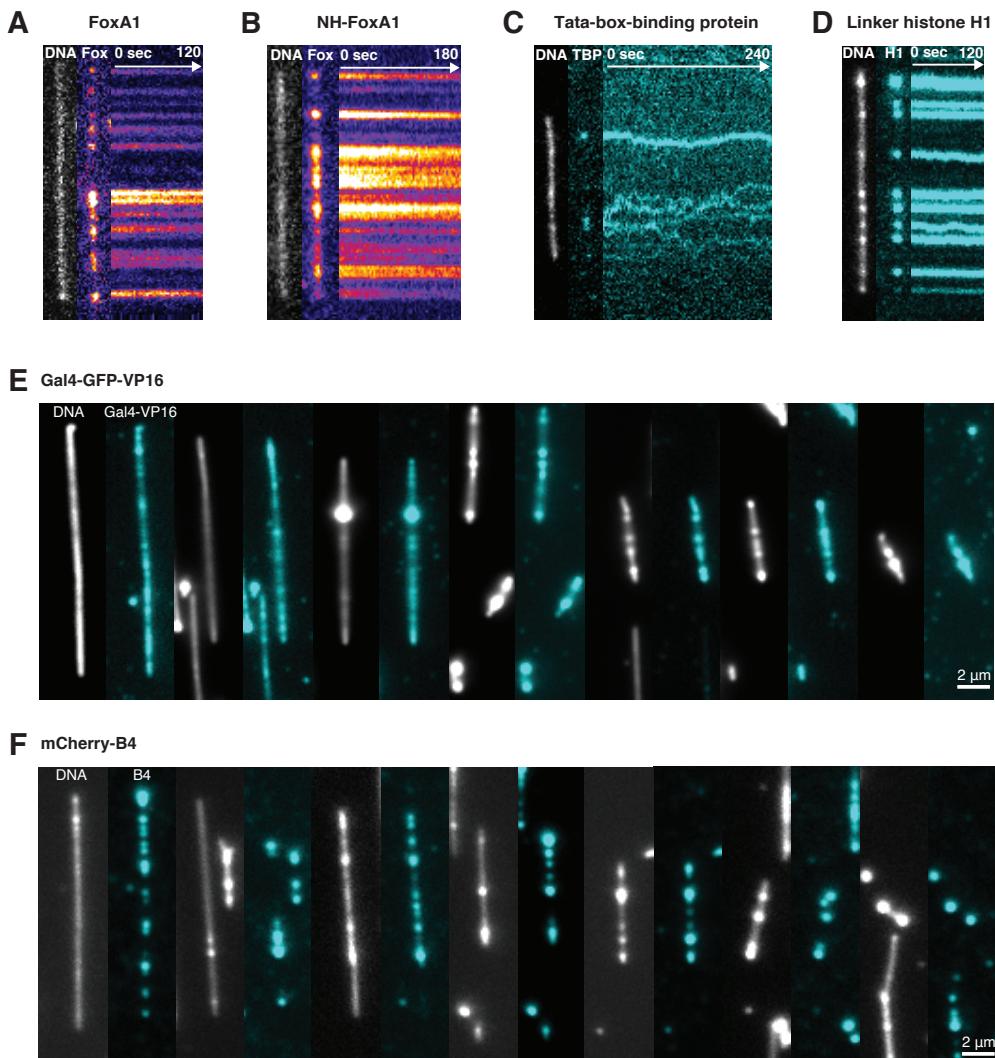
1164


1165

1166

1167

1168


1169 **Extended Data Figure 9**

1170
1171 **Extended Data Figure 9: Quantification of NH-FoxA1-mediated DNA**
1172 **condensation.** (A) Condensate volume as a function of condensed DNA length
1173 (L_d). The grey dots represent individual strands ($n=47$) and the data is binned
1174 every 2 μm (mean \pm SEM). The individual data are points are fit with a linear curve
1175 with a slope of 0.09 μm^2 given in orange. The green dashed line is the WT-FoxA1
1176 fit (slope=0.04 μm^2). (B) Condensed DNA length as a function of end-to-end
1177 distance. The black dots represent individual strands ($n=70$) and the data is
1178 binned every 2 μm (mean \pm SEM). The orange curve is the expression computed
1179 from the theoretical description with parameter values determined through error
1180 minimization (see Methods). The black hatched line represents the DNA's contour
1181 length (16.5 μm) minus the end-to-end distance. (C) The force that the condensate
1182 exerts on the non-condensed DNA as a function of end-to-end distance. The grey
1183 dots represent individual strands ($n=68$) and the data is binned every 2 μm (mean
1184 \pm SEM). The orange curve is the expression computed from the theoretical
1185 expression of L_d versus L from panel B for the force. NH-FoxA1 generates forces at
1186 roughly 0.17 pN. The dashed black line represents the force exerted on the non-
1187 condensed strand when $L_d=0$. (D) Probability for NH-FoxA1 to form a DNA-FoxA1
1188 condensate reveals a sharp transition at a critical end-to-end distance. Local
1189 correlations of individual FoxA1 condensates with DNA (Extended Data Fig. 4c)
1190 are calculated, binned into 2- μm -width bins, and P_{cond} is calculated (see Methods).
1191 There are a total number of $n=361$ condensates used for this analysis. The dashed
1192 lines represent the P_{cond} value as computed within the bin with \pm SD for the
1193 strand's end-to-end distance. The confidence intervals for P_{cond} are computed by
1194 computing the 95% confidence interval of a beta-distribution (see Methods). The
1195 orange curve represents P_{cond} computed from the theoretical description with
1196 parameter values determined through error minimization.

1197
1198
1199
1200
1201

1202 **Extended Data Figure 10**

1203
1204 **Extended Data Figure 10: Dynamics of DNA-binding proteins.** (A)
1205 Representative images of FoxA1 condensates on DNA. The kymograph reveals
1206 FoxA1 condensates do not move on DNA. (B) NH-FoxA1 condensates remain
1207 stable on DNA and do not move. (C) TBP condensates exhibit diffusive-like
1208 behavior on DNA. (D) Similar to FoxA1 condensation, H1 condensates do not
1209 exhibit diffusive-like behavior on DNA. (E) Representative images of Gal4-GFP-
1210 VP16-mediated DNA condensation. DNA was imaged with 10 nM Sytox Orange.
1211 (F) Representative images of mCherry-B4-mediated DNA condensation. DNA was
1212 imaged with 10 nM Sytox Green.

Supplementary Information

1 Thermodynamic description of DNA-protein condensation

We consider the free energy associated with nucleating a condensate that contains DNA and FoxA1. The free energy of this process contains volume and surface contributions of the DNA-protein condensate as well as the free energy of the DNA polymer outside the condensate,

$$F(L, L_d) = F_d(L_d) + F_p(L, L_d), \quad (1)$$

where L is the end-to-end distance of the DNA, L_d is the length of condensed DNA, F_d is the free energy of the condensate, and F_p is the free energy of the DNA polymer outside the condensate. Assuming that the DNA co-condenses with the protein to form a dense condensed phase with defined volume fraction of DNA, the droplet volume and the length of condensed DNA are linearly related, $V = \alpha L_d$, or $R^3 = \frac{3\alpha}{4\pi} L_d$, where $1/\alpha$ describes the DNA packing density given as DNA length per condensate volume. We can then obtain the condensate free energy of nucleating a condensate as a function of L_d and end-to-end distance L as

$$F_d(L_d) = -\nu\alpha L_d + \gamma 4\pi \left(\frac{3\alpha}{4\pi}\right)^{2/3} L_d^{2/3}, \quad (2)$$

where ν is the condensation free energy per volume, and γ is the surface tension of the condensate. The free energy of the polymer $F_p(L, L_d)$ is related to the external force applied to pin the free DNA polymer and its associated chemical potential by

$$f_{\text{ext}} = \frac{\partial F_p}{\partial L} \Big|_{L_d}, \quad \mu_p = -a \frac{\partial F_p}{\partial L_d} \Big|_L, \quad (3)$$

where a is the length of a base pair. The force-extension relation for λ -phage DNA has been extensively studied previously, and here we use the phenomenological force-extension curve of the worm-like-chain model for λ -phage DNA (14) with contour length, L_c (for λ -phage DNA $L_c = 16.5 \mu\text{m}$). If a length L_d of the DNA is condensed, the extension of the non-condensed strand is $x = \frac{L}{L_c - L_d}$. The force on the strand then can be expressed as

$$f_{\text{ext}} = \frac{k_B T}{P} \left(\frac{1}{4} \frac{1}{(1-x)^2} - \frac{1}{4} + x \right), \quad (4)$$

where k_B is the Boltzmann constant, T is the temperature, and P is the persistence length of DNA. For what follows we define $\kappa = \frac{k_B T}{P}$. From this expression of the force and its relation to the free energy of the DNA polymer (equation 3), we can obtain the free energy of the DNA polymer outside the condensate as $F_p(L, L_d) = \int_0^L dL' f_{\text{ext}}(L', L_d)$, leading to

$$F_p(L, L_d) = \kappa \left(\frac{1}{4} \frac{(L_c - L_d)^2}{L_c - L_d - L} - \frac{1}{4} L + \frac{1}{2} \frac{L^2}{L_c - L_d} - \frac{1}{4} (L_c - L_d) \right) \quad (5)$$

The total free energy associated with nucleating a FoxA1-DNA condensate on a DNA strand reads:

$$F(L, L_d) = -\nu \alpha L_d + \gamma 4\pi \left(\frac{3\alpha}{4\pi} \right)^{2/3} L_d^{2/3} + \kappa \left(\frac{1}{4} \frac{(L_c - L_d)^2}{L_c - L_d - L} - \frac{1}{4} L + \frac{1}{2} \frac{L^2}{L_c - L_d} - \frac{1}{4} (L_c - L_d) \right) \quad (6)$$

The equilibrium between condensate and polymer is given by $\frac{\partial F}{\partial L_d} = 0$, which is equivalent to equilibrating the chemical potentials of the condensate and free polymer,

$$a \frac{\partial F}{\partial L_d} = \mu_d(L_d) - \mu_p(L, L_d) = 0, \quad (7)$$

with

$$\mu_p(L, L_d) = -a\kappa \left(\frac{1}{4} + \frac{L^2}{2(L_c - L_d)^2} + \frac{(L_c - L_d)^2}{4(L_c - L - L_d)^2} - \frac{L_c - L_d}{2(L_c - L - L_d)} \right) \quad (8)$$

Using the expression for the total free energy, we can vary the length L_d of condensed polymer and obtain profiles for the free energy as a function of L_d , which depend on the end-to-end distance L (see Fig. 3b). For L values close to 0—where the strand is not under tension—we observe that there is a minimum of F for L_d close to L_c . This means that, at this end-to-end distance, FoxA1 has mediated the generation of a FoxA1-DNA condensate using almost all of the DNA in the strand. As L increases, however, the local minimum shifts to lower values of L_d and ultimately F at the minimum becomes higher than the free energy without condensate $F(L_d = 0)$, giving rise to a branch of metastable states. For even higher L values, the metastable state disappears and the global minimum is at $L_d = 0$ (Fig. 3b). This sharp transition corresponds to a first-order phase transition. Simple scaling arguments are useful to generate intuition for the conditions necessary for condensate formation, and for the condensate to pull DNA. Briefly, there are three energy scales associated with this problem: the energy associated to create a droplet, which is $\nu\alpha L$; the surface energy of scale $4\gamma\pi\left(\frac{3\alpha}{4\pi}\right)^{2/3}L^{2/3}$; and lastly the energy scale associated to the non-condensed polymer $L\frac{k_B T}{P}$. First, to create a droplet, $\frac{\nu(4\pi)^{2/3}(\alpha L)^{1/3}}{4\pi 3^{2/3}\gamma} > 1$. Once condensation is favorable, in order for the droplet to pull DNA, $\frac{\nu\alpha P}{k_B T} > 1$. Notably, fitting the parameter values (see Methods) demonstrated that, at low L , the free energy gained by the system is on order of 1-2 $k_B T$, implying that stochasticity

is relevant for the condensation process. To account for the inherent stochastic nature of the condensation, we compute the probability of nucleating a DNA-protein condensate of size L_d using Boltzmann distributions from the corresponding energy profiles,

$$P(L_d) = \frac{e^{-\beta F(L, L_d)}}{\int_0^{L_c-L} dL'_d e^{-\beta F(L, L'_d)}} \quad (9)$$

where $\beta = \frac{1}{k_B T}$. To determine the relationship between L_d and L , we compute the mean L_d value of these Boltzmann distributions: $\bar{L}_d = \int_0^{L_c-L} L_d P(L_d) dL_d$ which then allows us also to calculate the magnitude of the condensation forces using the worm-like chain model given in Eq. (4).

2 Supplementary Information Figures

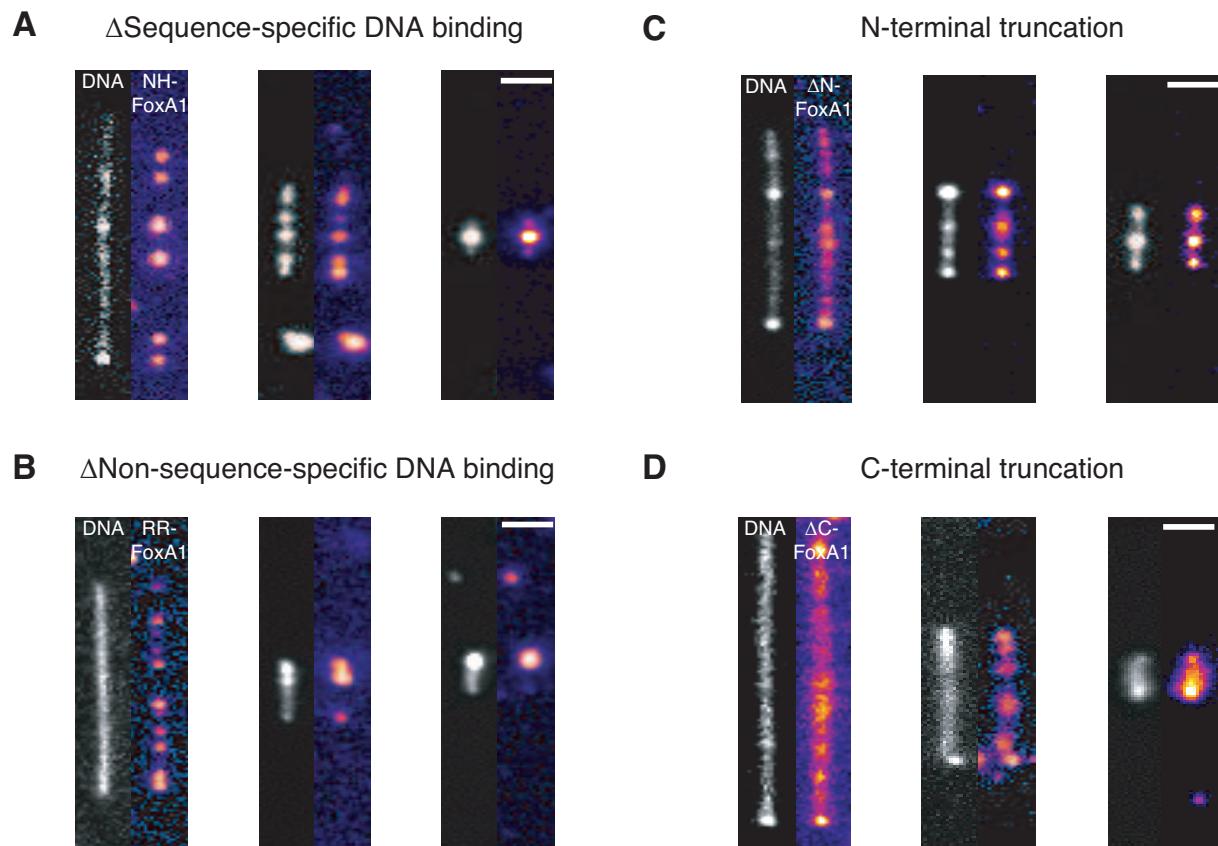


Figure 1: Representative images of sequence-specific-binding NH-FoxA1 mutant (A) non-sequence-specific-binding RR-FoxA1 mutant (B) N-terminal FoxA1 truncation (C) and C-terminal FoxA1 truncation (D). The scale bars are $2 \mu\text{m}$. DNA is imaged with 10 nM Sytox Green. Note that the contour length of each DNA molecules is constant ($16.5 \mu\text{m}$) but the end-to-end distance is different.

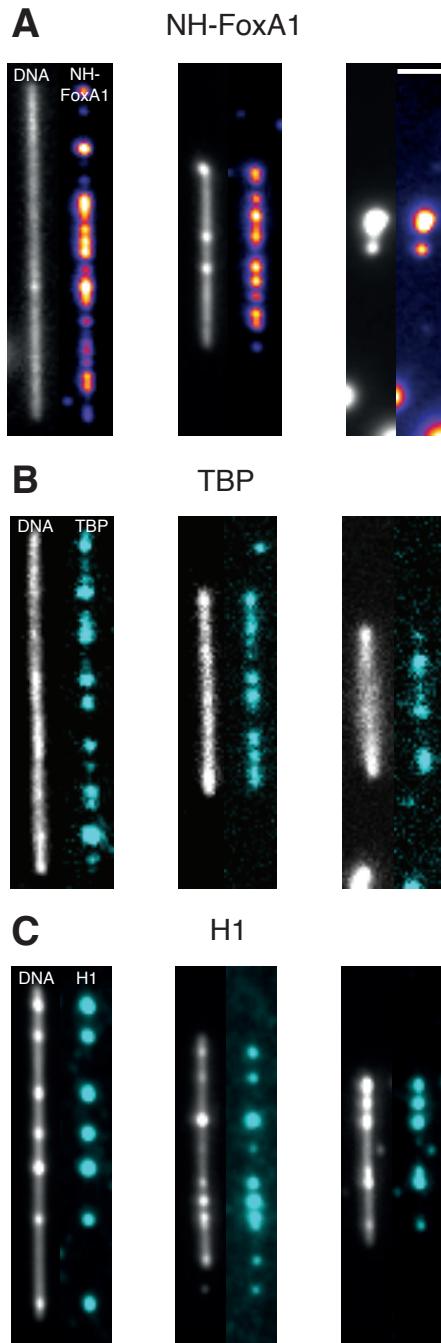


Figure 2: Representative images for NH-FoxA1 (A) Tata-box-binding protein (B) and somatic linker histone H1 (C). The images are time-averaged projections of movies for NH-FoxA1 and H1 but single images for TBP owing to TBP's diffusivity. The scale bar is $2 \mu\text{m}$.