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Abstract

Interpreting and integrating results from omics studies typically requires a
comprehensive and time consuming survey of extant literature. Here, we introduce
GeneCup, an easy to use literature mining web service that searches all PubMed
abstracts for user-provided gene symbols in conjunction with a set of custom keywords
organized into a customized ontology, as well as results from human genome-wide
association studies (GWAS). As an example, we organized over 300 keywords related
to drug addiction into seven categories. The literature search is conducted by querying
the NIH PubMed server using a programming interface, which is followed by retrieving
abstracts from a local copy of the PubMed archive. The main results presented to the
user are individual sentences containing the gene symbol, organized by the keywords
they also contain. These sentences are presented through an interactive graphical
interface or as tables. GWAS results are displayed using a similar method. All results
are linked to the original abstract in PubMed. In addition, a convolutional neural network
is employed to distinguish sentences describing systemic stress from those describing
cellular stress. The automated and comprehensive search strategy provided by
GeneCup facilitates the integration of new discoveries from omic studies with existing
literature. GeneCup is free and open source software. The source code of GeneCup
and the link to a running instance is available at

https://qgithub.com/hakangunturkun/GeneCup
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1.Introduction

We describe a web service and application—Mining gene relationships using custom

ontology from PubMed (GeneCup) (http://genecup.org)—that automatically extracts

information from PubMed and NHGRI-EBI GWAS catalog on the relationship of any
gene with a list of keywords hierarchically organized into a user created ontology. In
addition, genetic associations related to the keywords are also retrieved from the GWAS
catalog. As an example, we created an ontology for drug addiction related concepts
containing seven categories and over 300 keywords. We will describe the details of

GeneCup by using this ontology.

Omic studies are becoming the main driving force for discovering molecular
mechanisms of human diseases. Over 5000 genome-wide association studies (GWAS)
have mapped over 71,000 associations between genetic variants and diseases/traits
(Buniello et al. 2019). For example, GWAS has become the main platform of discovery
on genetic variants responsible for phenotypes related to substance abuse and
psychiatric disorders. One recent human GWAS identified over 500 variants associated
with smoking and alcohol usage related traits (Liu et al. 2019). GWAS on other drugs of
abuse, such as opioid (Polimanti et al. 2020) or cocaine (Huggett and Stallings 2020)
have also been conducted or are ongoing. GWAS on psychiatric diseases also had

numerous successes. A recent survey identified 1223 genome-wide significant SNPs
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associated with psychiatric phenotypes (Horwitz et al. 2019). Many risk SNPs are
shared among addiction and psychiatric phenotypes (Horwitz et al. 2019). Specialized
databases, such as the GWAS catalog (Buniello et al. 2019), are available for searching
the association between genetic variants and phenotypes. Genetic mapping studies
using model organisms, such as worms, flies, mice and rats, have also identified many
associations between genetic variants and drug abuse related phenotypes. These
phenotypes range from response to or voluntary consumption of cocaine, opioids,
nicotine, alcohol, etc. (Engleman et al. 2016; Adkins et al. 2017; Highfill et al. 2019;
Zhou et al. 2019). Transcriptome (Farris et al. 2015b; Lo lacono et al. 2016; Zhang et al.
2016; Kapoor et al. 2019; Cates et al. 2019; Huggett and Stallings 2020) or epigenome
(Ponomarev et al. 2012; Farris et al. 2015a; De Sa Nogueira et al. 2019) profiling using
bulk tissue or single cells (Avey et al. 2018; Karagiannis et al. 2020) have also
discovered the involvement of many genes in response to drugs of abuse, stress, or

other psychiatric related conditions.

In these omics studies, understanding the function of genes is a challenging task that
requires thorough integration of existing knowledge. Statistics-driven gene ontology, or
pathway analysis, are often employed for this purpose. However, extensive review of
the primary literature is ultimately needed to provide a comprehensive and nuanced
narrative of these mechanisms. For many scientists, this starts as searches of PubMed
based on their domain knowledge. These ad hoc searches often miss important

information not only because of the inherent complexity of the biology, but also because
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of the amount of time required for designing a search strategy, conducting the searches,
reading the texts, extracting relevant facts, and organizing them into categories. The
task of literature searches is especially daunting when many genes are identified in a
single study. To the best of our knowledge, GeneCup is the only web service designed
to alleviate much of these manual labors by bringing the relevant facts from PubMed

and GWAS catalogue to the users.

GeneCup relies mostly on keyword matching to select relevant sentences. However, as
in the example of addiction ontology the same keyword can have multiple meanings. In
particular, stress promotes initial drug use, escalates continued drug use, precipitates
relapse and is a major factor contributing to drug addiction (Koob and Schulkin 2019).
Stress in this context refers to the body’s response to internal and external challenges
and is mediated by activating the hypothalamic—pituitary—adrenal axis. In addition,
stress can also refer to the responses of cells to perturbations of their environment,
such as extreme temperature, mechanical damage, or accumulation of metabolites, etc.
These responses often involve the activation of specific molecular pathways. Both
systemic and cellular stress have a large collection of literature. We therefore developed
a machine learning model to separate sentences describing cellular stress from those

that describe system stress.
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GeneCup is available as a free web-service. In addition, its source code is available for
those interested in setting up a service of their own or modifying the code to better suit

their needs.

2.Methods

2.1. System Overview

GeneCup is a free and open source web application (Fig. 1). The source code and URL

of a running instance is available at https://github.com/hakangunturkun/GeneCup. The

main user interface contains a search box that accepts up to 200 gene symbols from
the user. Each gene symbol is then paired with each one of the custom ontological
categories to query PubMed. The title and abstract of these records are then obtained
from a mirrored copy of PubMed on the local server. Sentences containing at least one
gene symbol and one keyword are retained. A local copy of NHGRI-EBI GWAS catalog
is also searched for associations between the queried genes and phenotypes related to
the ontology. The results are available as an interactive graph or a table that provides
links to key sentences from the abstracts, which in turn, are linked to PubMed. In the
example of addiction keywords, sentences that contain the keyword “stress” are further
classified into two types (i.e. systemic vs cellular) before presented to the user, by using

a one dimensional convolutional neural network.
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2.2. Sources of data: PubMed and GWAS catalog

We created a copy of the entire PubMed abstract on our server following instructions
provided by the NCBI (Kans 2020). This allows us to rapidly retrieve the abstracts and
bypass the limits imposed by NCBI on automated retrievals to prevent system overload.

This local copy is updated automatically every week on our server.

We also store a local copy of the GWAS catalog database (Buniello et al. 2019) (i.e. all
associations v1.0.2 from https://www.ebi.ac.uk/gwas/docs/file-downloads). This file is
updated manually upon every new release of the catalog. This allows us to perform

customized and rapid queries.

2.3. User defined ontologies

The custom ontology has three-levels. The top level is the name of the categories,
which can be used to decide whether its sub-categories are included in a new search.
The second level are concepts that are displayed in the results (i.e. interactive graphs
and tables). The third level contains the actual keywords used in PubMed queries and
finding matching sentences. For example, the top level “cells” can contain second level
concepts such as “neurons” and “glial cells”, with “glial cells” further containing
keywords such as “astrocytes”, “microglia”, etc. The matching keywords at the third
level are highlighted using bold font when the sentences are displayed. A special top

level keyword “GWAS” is reserved for searching the GWAS catalog. Any keyword under

this branch is used to search the GWAS catalog database. This is a flexible structure
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that allows the user to freely organize a large collection of keywords to fit their needs. A

free user account is needed for creating and editing custom ontologies.

2.4. Query processing and user interfaces

We wrote the web-service in the Python programming language and used the Flask
library as the web application framework (“Flask”). Users of the web service have the
option of creating an account for the purpose of saving search results for later reviews.
Query terms provided by the user are first paired with all the keywords. Keywords
belonging to the same second level ontology terms are combined using the boolean OR
operator before joining with the gene symbol using the AND operator. The E-utilities
provided by the NCBI Entrez system (Kans 2020) are used to send the query to the
PubMed database (Esearch) and to retrieve PMIDs (Efetch). Corresponding records for
each PMID are obtained from the local copy of PubMed and the xtract tool is used to
parse the titles and abstracts. The Python NLTK library (Bird et al. 2009) is then used to
tokenize the abstracts into sentences. Python regular expressions are used to find
sentences that contain at least one instance of a query gene and one instance of a
keyword. The number of abstracts containing such sentences are then counted. The
gene is also searched in the GWAS catalog for phenotypic associations. The number of
associations are also counted. A network graph is constructed using the Cytoscape
Javascript library (Shannon et al. 2003), where all genes, keywords, and GWAS terms
are used as nodes, and a connection is made between nodes describing a gene and a
keyword. The number of abstracts are used as the weight of the edge. This interactive

graph allows a user to click on the edge to review the corresponding sentences. All
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sentences are linked to their original PubMed abstract. The user can also click on a
gene to see its synonyms. These synonyms are obtained from the NCBI gene database
but are not included in the original search. This is because they often do not appear in
the literature or have other meanings and thus provide inaccurate results. However, the
web interface allows these synonyms to be included in a new search to retrieve

additional information that is potentially relevant.

We also provide a set of scripts for querying large numbers of genes at the Linux
command line. The first script counts the number of relevant abstracts. The second
script retrieves the abstracts and extracts the relevant sentences. A third script then
generates an html page containing all the results. The intermediate results can be
examined and cutoff thresholds can be determined between the scripts. This set of
scripts can be executed without a web browser and thus is suitable for querying much

larger set of genes (e.g. >1000)

Lastly, queries can also be initiated by placing the terms in the URL. For example, to
start a search for CHRNA5 and BDNF genes against the keyword categories drug,
stress, addiction, and GWAS, the following hyperlink can be used:

https://genecup.org/progress?type=drug&type=stress&type=GWAS&type=addiction&qu

ery=CHRNA5+BDNF
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This allows links to GeneCup queries to be embedded into other websites. When the
hyperlink above is clicked, the results in graphical format will appear in a separate

window.

The GeneCup source code is distributed as free and open source software and can
therefore easily be installed on other systems. The whole service with dependencies is

described as a byte reproducible GNU Guix software package (Wurmus et al. 2018).

2.3. Mini-ontology for addiction related concepts

We created a mini-ontology for addiction related concepts (Table S1). The top level has
the following seven categories: addiction stage, drugs, brain region, CNS cell type,
stress, psychiatric diseases and molecular function. The second level is composed of
relevant keywords and the third level includes subconcepts of the keywords or
commonly used spelling or acronyms for the keywords. Users have the option to skip

any category to speed up the query.

2.5. Finding the most researched genes related to addiction

Using the script interface described above, we first retrieved all (61,636) human genes
from the NCBI gene website (NCBI). We parsed the gene symbols together with their
aliases and counted the total number of abstracts for each gene using E-Utils. Relevant
sentences for all genes with more than 50 abstracts were then retrieved. We manually
examined the most studied 100 genes with the most abstracts iteratively and removed

988 words from the list of gene symbols and aliases before the majority of the
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sentences in the final results are relevant for the search. Because of the need to
manually inspect the results and exclude gene synonyms that yield false matchings, this

function is not provided in the web interface.

2.6. Convolutional neural network to classify sentences describing
stress

There are many machine learning methods that have been applied to natural language
processing (NLP) tasks. Young et al (Young et al. 2017) compared some of the deep
learning related algorithms employed in different types of NLP tasks. Among them,
convolutional neural network (CNN) has been shown to be efficient in many sentence
level classification projects (dos Santos et al. 2015; Francis-Landau et al. 2016; Lopez
and Kalita 2017; Gehring et al. 2017; Wang and Gang 2018). CNN was initially
designed for two dimensional image processing (Lecun et al. 1998). It uses a linear
operation called convolution besides the regular neural network components, and
explores the important patterns in a data by identifying both local and global features of
the data. The ability to detect nonlinear relationships among the features effectively is
one of the key advantages of deep learning architectures. Here, we trained a one
dimensional CNN to classify sentences describing stress to either cellular stress or
system stress (Fig. 2). To create a training corpus, we used a word2vec embeddings
library based on PubMed and PubMedCentral data (Moen and Ananiadou 2013) by
retrieving words that are similar to examples of systemic stress and cellular stress (e.qg,
restraint, corticosterone, CRH, and oxidative stress respectively). We then manually

crafted two PubMed queries to retrieve abstracts related to systemic or cellular stress:

12


https://paperpile.com/c/ZKE4KF/Vddj
https://paperpile.com/c/ZKE4KF/Q9Jm+GMuj+IwgG+5z0d+ITO4
https://paperpile.com/c/ZKE4KF/Q9Jm+GMuj+IwgG+5z0d+ITO4
https://paperpile.com/c/ZKE4KF/fYka
https://paperpile.com/c/ZKE4KF/BZIn
https://doi.org/10.1101/2020.09.17.297358
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.17.297358; this version posted June 8, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A. (CRF OR AVP OR urocortin OR vasopressin OR CRH OR restraint OR stressor
OR tail-shock OR (social AND defeat) OR (foot AND shock) OR immobilization
OR (predator AND odor) OR intruder OR unescapable OR inescapable OR
CORT OR corticosterone OR cortisol or ACTH OR prolactin OR PRL OR
adrenocorticotropin OR adrenocorticotrophin) AND stress NOT (ROS OR
oxidative OR redox-regulation OR nitrosative OR nitrative OR hyperglycemia OR
carbonyl OR lipoxidative OR Nrf2-driven OR thiol-oxidative)
B. (ROS OR oxidative OR redox-regulation OR nitrosative OR nitrative OR
hyperglycemia OR carbonyl OR lipoxidative OR Nrf2-driven OR thiol-oxidative)
AND stress
We downloaded all the PubMed abstracts returned from these two queries. Manually
examining some of the abstracts confirmed the relevance of the results. We then
extracted all sentences containing the word stress from each set and kept 9,974
sentences from the “systemic stress” class and 9,652 sentences from the “cellular
stress” class as our stress training/validation corpus. We maintained another set of

10,000 sentences as the testing corpus, 5,000 sentences for each class.

To clean the data and make it ready for deep learning, we split 19,626 sentences into
words, removed punctuation marks, filtered the stop words and stemmed the words
(Brownlee 2017). The words formed a vocabulary of size 23,153 and were tokenized by
the Tokenizer library of Keras API. Then the tokenized sentences were split randomly

into training and validation sets at 80% and 20%, respectively. We built a 1D
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convolutional neural network in Keras on top of the Tensorflow framework (Abadi et al.
2016). The model includes an embedding layer that projects each word to a 32
dimensional space; hence this layer produces a weight matrix with 23,153 x 32
dimensions. Sentences are padded to 64 words, resulting in 64x32 sized matrices in the
model. After that, a one dimensional convolutional layer with 16 filters and a kernel size
of 4 is implemented and activated by the rectified linear unit (ReLU). This layer
produces a 4 x 32 x 16 weight matrix. Downsampling is performed by max pooling with
a window size of 2. Then a flattened layer with 480 neurons is connected to two fully
connected layers, one of which has 10 neurons activated with ReLU and the latter one
is the final layer activated with a sigmoid function. We validate the model using 3,924
sentences, 1,997 of them belong to the “systemic stress” class, 1,927 sentences belong
to the “cellular stress” class. These were selected randomly before training. To minimize
the value of the loss function and update the parameters, Adamax optimization
algorithm (Kingma and Ba 2014) was used with the parameters of learning rate=0.002,
beta1=0.9, beta2=0.999. The binary cross entropy loss function is used for this binary

classification task. These hyperparameters were optimized using the training corpus.

We used the confusion matrix to evaluate the performance of the classification and
summarize the results for the test dataset (Table 1). The rows and the columns of the
matrix represent the values for the actual class and predicted class, respectively. The
measures of accuracy in the table were calculated by using the values in the table; the

number of true positives (TP), false negatives (FN), false positives (FP) and true

14


https://paperpile.com/c/ZKE4KF/SSMu
https://paperpile.com/c/ZKE4KF/SSMu
https://paperpile.com/c/ZKE4KF/7Br4
https://doi.org/10.1101/2020.09.17.297358
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.17.297358; this version posted June 8, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

negatives (TN). Sensitivity, i.e., the ratio of TP to TP+FN, is the proportion of the
systemic stress sentences correctly identified. Specificity, i.e., the ratio of TN to TN+FP,
is the ability of the model to identify the cellular stress sentences correctly. Precision is
the proportion of the correct systemic stress sentences in the predicted class of
systemic stress sentences, and is calculated as the ratio of TP to TP+FP. Accuracy of
the model is the proportion of the total number predictions that are correct, and is
calculated as the ratio of TP+TN to all. The performance measures including the area
under the ROC curve (sensitivity vs. 1-specificity) produced by these values are given in

the Results section.

3. Results

We have written a command line and a graphical interface for searching the role genes
play in biological systems. The command line interface is more suitable for searching a
large number of genes and requires the user to install the software and maintain a local
mirror of PubMed. Using this interface, we queried all human genes against PubMed
and identified the most researched genes in addiction. The top 10 genes with the
greatest number of addiction related abstracts are FOS, BDNF, TH, OPRM1, CNR1,
DRD2, CREB1, SLC6A4, TNF and CYP2B6. Many of these genes are involved in the
activation of neurons or neurotransmission. In addition, some of the genes involved in
the immune system function and intracellular signalling, such as TNF and IL6 are
among the top genes. This list of genes are provided in Table S2. These genes and

their associated sentences are available at the http://genecup.org website.
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The graphical interface, on the other hand, is more user friendly and can be used
through our website. A query of 3 terms can be completed in about 20-30 seconds. The
query time increases linearly by the number of terms. Thus a search of 20 genes can be
completed in about 2-3 minutes. Most of the time is spent on interacting with PubMed
to obtain PMIDs. As a demonstration of the utility of the web interface, we entered the
nine genes that reached suggestive significance in a recent genome wide association
study of opioid cessation (Cox et al. 2020). The graph view of the search results are
shown in Figure 3. Genes and keywords are all shown as circles and lines connecting
them show the number of abstracts containing the two circles they connect. Keywords
under the same main category are shown with the same color in the graphic output.
Clicking on the lines brings up a new page that displays all sentences containing the
keywords that line connect. An alternative tabular view of the same results is also
available, where genes, the keywords, and number of abstracts are shown as separate

columns.

Our results contained sentences in PubMed that described the roles played by PTPRD,
SNAP25 and MYOM?2 in addiction, which were all discussed in the original publication
(Cox et al. 2020). In addition, our results found sentences indicated the potential
involvement of RIT2 and SYT4 in addiction. For example, RIT2 is associated with
smoking initiation (Liu et al. 2019) and autism (Liu et al. 2016). Recent publications

indicated that RIT2 is involved in dopamine transporter trafficking (Fagan et al. 2020)
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and plays a sex-specific role in acute cocaine response (Sweeney et al. 2020). SYT4 is
expressed in the hippocampus and entorhinal cortex (Crispino et al. 1999) and
regulates synaptic growth (Harris et al. 2016; O’Léime et al. 2018). Further, SUCLA2P2
has been implicated in age of smoking initiation (Argos et al. 2014) and Schizophrenia
(Ikeda et al. 2019). This example demonstrated the utility of GeneCup in rapidly finding
information that links a gene to addiction and thus integrating new findings with previous

research findings.

For sentences containing the word “stress”, we designed a one-dimensional
convolutional neural network with 4 hidden layers (Fig. 2) to differentiate them into two
classes, namely systemic and cellular stress. The neural network was optimized using
the gradient based optimization algorithm Adamax. During training, model accuracy
(Fig. S1.A) increased rapidly during the first five epochs to approximately 0.995, while
validation accuracy peaked at 0.991 at epoch five. On the other hand, model loss curve
(Fig. S1.B) on the training dataset continued to decline after the initial drop and
approached zero after 15 epochs. However, the loss on the validation data set started to
increase after epoch five, indication model overfitting. Therefore, we used the weights
that maximized the validation performance before overfitting (i.e. epoch five). By using
these weights and parameters, our model has an AUC of 99.2% on the validation

dataset.
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We tested the model on a new dataset consisting of 5,000 system stress sentences and
5,000 cellular stress sentences. The confusion matrix for the prediction of the test
dataset is presented as Table 1. The sensitivity of the model that is the proportion of
predicted systemic class sentences to all sentences observed in this class is 97%. The
similar measure for cellular class sentences, i.e., specificity is 94%. The prediction
accuracy of the model that is the ability to distinguish two classes on the test dataset is

95.4% and the AUC is 98.9% for the test dataset.

We also checked the distribution of the predicted probabilities (Fig. S2) of the test
dataset. The model predicts a probability of the class membership for each sentence. If
the predicted probability of a sentence is more than 0.5, it is labelled as a system stress
sentence. Otherwise the sentence is predicted to be a member of the cellular stress
class. Among the system stress sentences in the test dataset, 88% of the sentences
had predicted probabilities greater than 0.9. This shows the model's confidence of its
prediction on stress sentences. Likewise, 88% of the cellular stress sentences had
predicted probabilities less than 0.1. Therefore the model is 90% confident about the

classification of 88% of the cellular stress sentences.

The weights of the trained model are saved on the server and are used to make
predictions for each retrieved sentence when the user clicks on the edge connecting the
stress category and the gene name (Fig. 4). As an example of run time performance, it

took approximately 12 seconds to classify 3,908 sentences on CRF and stress.
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4. Discussion

We present here a literature mining web application, GeneCup, that extracts sentences
from a locally mirrored copy of PubMed abstracts containing user provided gene
symbols and the keywords of the custom ontology. Associations between the genes and
various phenotypes from human GWAS results are also provided. The users can
include up to 200 gene symbols in each search. The results are presented in a
graphical or a tabular format, both provide links to review individual sentences that
contain the gene and at least one keyword. Gene synonyms are also presented and can
be included in additional searches. We also provide an addiction ontology that is
approximately 300 predefined addiction-related keywords organized into seven
categories. Stress related sentences are automatically classified into system vs cellular

stress if the addiction ontology is used.

Scientists using omics methods face a particularly challenging task when trying to
integrate new findings with existing knowledge. The increasing number of genes
contained in data sets, the breadth of sciences, and the large amount of existing
knowledge captured in PubMed make systematic literature surveys daunting tasks.
Typically, scientists manually conduct more detailed searches in areas where they have
expertise and the queries are much less thorough in other areas. The search strategies

are often crafted ad hoc and likely different from one day to another.

19


https://doi.org/10.1101/2020.09.17.297358
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.17.297358; this version posted June 8, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

GeneCup provides an interface that allows comprehensive queries of the role of any
gene using a set of user defined keywords. Although most of the functions provided by
GeneCup can be carried out manually, it will require several orders of magnitude more
time and effort. Even then, the manually collected results will be difficult to review. In
contrast, results provided by GeneCup are automatically organized by the ontology. All
the genes and keywords can be seen in one graph or table, with informative sentences

and abstracts readily available.

We also curated an addiction ontology of about 300 keywords. These keywords provide
a comprehensive coverage of key concepts related to addiction. The applied machine
learning solution to resolve the ambiguity of the word stress further reduced the burden

of the user when coming through the vast amount of literature on stress.

GeneCup presents to the user sentences containing genes and keywords of interest to
the user. Compared to phrases or abstracts, sentences are the most succinct semantic
unit to convey a fact. Ding et al (2002) compared different text processing units for text
mining system design and found that the highest precision of information retrieval is
achieved when phrases are used as the text unit whereas using sentences are more
effective than both phrases and abstracts. Therefore, similar to our previous text mining
tool (Chen and Sharp 2004), we continue to use sentences as the information unit.
Unlike the commonly used gene ontology enrichment (Osborne et al. 2007) or gene set

enrichment (Subramanian et al. 2005) analysis, the literature analysis provided by
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GeneCup does not evaluate any statistical significance. Instead, these key sentences
provide easy access to relevant prior research, where the nuanced details can be easily
obtained by following the link from the sentence to the abstract and then to the full text

article.

Stress plays key roles in addiction. Using a convolutional network, we trained a model
that achieved 97% sensitivity and 94% specificity in classifying sentences containing the
word stress to either systemic stress or cellular stress. Training such a model requires
large amounts of labeled data. Manually labeling these data is very labor intensive.
Using an approach that is similar to some recent advances in automated data labeling
(Ratner et al. 2020), we carefully crafted two PubMed queries to obtain over 30,000
sentences that mostly belong to the correct category. This large corpus of text allowed
us to achieve peak classification performance with less than 5 epochs of training (Fig.

S1).

Gene synonyms represent a large challenge to any text mining approach. Not including
synonyms will result in the loss of information. However, many synonyms, especially
those that are short, have multiple meanings. For example, CNR is a synonym for the
CNR1 gene. However, CNR is also an acronym for contrast noise ratio, frequently used
in imaging analysis literature. We manually edited the list of aliases for the most studied
100 addiction related genes, which are shown in Table S2. For user supplied gene

symbols, we do not include synonyms in the initial search to prevent the noise from
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“‘drowning out” the signal. However, we do provide users an option to either search
individual synonyms or to conduct a combined search of all synonyms as a secondary
step. We think this middle-of-the-road approach is the most efficient method to achieve
a balance between computation and performance. Future work can potentially use deep
learning to classify all PubMed abstracts for their relevance to addiction and thus
exclude many abstracts containing short words that are not relevant to addiction from

being confounded with gene synonyms.

Other future improvements for GeneCup are possible. For example, GeneCup uses
PubMed abstracts as the source of data, rather than PubMed Central, which contains
full-text articles. Lin (Lin 2009) compared the effectiveness of information retrieval from
abstract vs full text search and found that full text search, when indexed using
paragraphs as the unit, is more effective than the abstract-only search. Several groups
have reported either using full text search for curation (Van Auken et al. 2014; Mlller et
al. 2018) or using full text for analysis (Wei and Collier 2011; Verspoor et al. 2012;
Islamaj Dogan et al. 2017). NCBI also provides an API for PubMed Central. However,
the majority of the articles in PubMed Central are subject to traditional copyright
restriction (“PMC Open Access” 2020) and it is not feasible to establish a local mirror of
the full-text collection. Interactively retrieving text via NCBI API is not feasible on the
scale we need (e.g, several thousand articles at a time). Further, we anticipate full text

may cause duplications of information and increase the noise in results.
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GeneCup does not retrieve relationships between genes. There are several existing
tools available for this purpose, such as Chilibot (Chen and Sharp 2004), or GeneMania
(Warde-Farley et al. 2010). Instead, GeneCup focuses on the relationship between
genes and a set of keywords organized as an ontology. The addiction ontology was
developed based on the expertise of the authors. It certainly contains biases and can be
further improved. For example, tight integration with community developed ontology for
addiction or psychiatric disease, such as those that are available from the Open

Biological and Biomedical Ontology Foundry (www.obofoundry.org), or automated

methods for converting MESH headings can be tested in the future.

Availability of data and materials

GeneCup is a free and open source web application. The source code of GeneCup and
the link to a running instance is available at

https://qithub.com/hakangunturkun/GeneCup.
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Figure Legends:

Figure 1: Overview of the workflow of GeneCup

GeneCup allows researchers to query the relationship of any gene with a list of
keywords hierarchically organized into a user created ontology. This information is
automatically extracted from PubMed and NHGRI-EBI GWAS catalog. The users have
an option to choose keyword categories during the search. Searches are conducted
using EUtils against the PubMed database but abstracts are retrieved from a locally
mirrored copy of PubMed. The results are displayed as a cytoscape graph (Fig. 3) and a
table. The graph and the table have many interactive elements, including displaying
sentences that include the gene symbols and the keywords. The number of unique
abstracts and related sentences are shown separately. Custom ontologies and search
results are archived on the server if the user chooses to log in. If addiction ontology is
used, sentences containing the keyword stress are classified using a convolutional
neural network into one of two classes: systemic stress or cellular stress (Figs. 2 and 4).

Figure 2: Pipeline for training the convolutional neural network that classifies
sentences containing the word “stress”

We used biomedical natural language processing tool (Moen and Ananiadou 2013) and
the word2vec embeddings derived from PubMed and PMC text. The relevant terms with
“system stress” and “cellular stress” were searched by using the cosine similarity tool in
Python’s Gensim library and the abstracts including these terms were fetched from
PubMed. Abstracts then were parsed into sentences, punctuations were then removed,
stop words were filtered, and all words were reduced to their stems. These words were
then “tokenized” and were splitted into training (80%) and validation (20%) sets. Input
layer of the model passed the training data to the embedding layer, which produced a
32 dimensional embedding vector for each word. After a 1D convolutional layer with 16
filters and a kernel size of 4, downsampling is implemented by a maximum pooling layer
with window size of 2. Output of this is flattened to a 480 node layer and connected to
two fully connected layers. We use the rectifier unit function to activate the neurons in
the convolution layer and the dense layer. Last dense layer is activated by the sigmoid
function. The final weights of the model were used to classify input sentences into either
system stress or cellular stress.

Figure 3: An interactive Cytoscape graph visualizing gene-keyword relationships

Nodes (circles) represent either search terms (in red) or keywords (colored according to
the mini ontology; GWAS results are in grey). Clicking the keyword nodes displays the
individual terms that are included in the search. Clicking the gene symbols displays their
synonyms. The edges represent relationships between nodes. The number of PubMed
abstracts where the gene symbol and keyword co-occur in the same sentence are
displayed on the edges. The width of edge is correlated with the number of abstracts.
Clicking on the edges shows these sentences, which are linked back to PubMed
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abstracts. Nodes can be moved about for better visibility of relationships. These genes
were taken from a recent genome wide association study of opioid cessation (Cox et al.
2020).

Figure 4: Steps for classifying sentences using a trained neural network

Abstracts are fetched from the locally mirrored copy of PubMed and are parsed into
sentences. Punctuation marks and stop words are removed and the remaining words of
the sentences are stemmed. The words are tokenized by using the Tokenizer library of
the Keras API. The weight matrices of the trained model are multiplied by the sentence
matrix to predict whether the input sentences are related to system stress or cellular
stress.
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Table 1:Confusion Matrix of CNN on Test Data

Predicted Class
Systemic Stress Cellular Stress
Systemic | 4,853 (TP) 147 (FN) Sensitivity: 97%
Actual | Stress
Class
Cellular 310 (FP) 4,690 (TN) Specificity: 94%
Stress
Precision: 94% Negative Predictive Accuracy: 95%
Value: 97%
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Figure 1: Overview of the workflow of GeneCup

GeneCup allows researchers to query the relationship of any gene with a list of keywords
hierarchically organized into a user created ontology. This information is automatically extracted
from PubMed and NHGRI-EBI GWAS catalog. The users have an option to choose keyword
categories during the search. Searches are conducted using EUtils against the PubMed
database but abstracts are retrieved from a locally mirrored copy of PubMed. The results are
displayed as a cytoscape graph (Fig. 3) and a table. The graph and the table have many
interactive elements, including displaying sentences that include the gene symbols and the
keywords. The number of unique abstracts and related sentences are shown separately.
Custom ontologies and search results are archived on the server if the user chooses to log in. If
addiction ontology is used, sentences containing the keyword stress are classified using a
convolutional neural network into one of two classes: systemic stress or cellular stress (Figs. 2
and 4).
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Figure 2: Pipeline for training the convolutional neural network that classifies sentences
containing the word “stress”

Pipeline for training the convolutional neural network that classifies sentences containing the
word “stress”. We used biomedical natural language processing tool (Moen and Ananiadou
2013) and the word2vec embeddings derived from PubMed and PMC text. The relevant terms
with “system stress” and “cellular stress” were searched by using the cosine similarity tool in
Python’s Gensim library and the abstracts including these terms were fetched from PubMed.
Abstracts then were parsed into sentences, punctuations were then removed, stop words were
filtered, and all words were reduced to their stems. These words were then “tokenized” and
were splitted into training (80%) and validation (20%) sets. Input layer of the model passed the
training data to the embedding layer, which produced a 32 dimensional embedding vector for
each word. After a 1D convolutional layer with 16 filters and a kernel size of 4, downsampling is
implemented by a maximum pooling layer with window size of 2. Output of this is flattened to a
480 node layer and connected to two fully connected layers. We use the rectifier unit function to
activate the neurons in the convolution layer and the dense layer. Last dense layer is activated
by the sigmoid function. The final weights of the model were used to classify input sentences
into either system stress or cellular stress.
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Figure 3: An interactive Cytoscape graph visualizing gene-keyword relationships

An interactive Cytoscape graph visualizing gene-keyword relationships. Nodes (circles)
represent either search terms (in red) or keywords (colored according to the mini ontology;
GWAS results are in grey). Clicking the keyword nodes displays the individual terms that are
included in the search. Clicking the gene symbols displays their synonyms. The edges
represent relationships between nodes. The number of PubMed abstracts where the gene
symbol and keyword co-occur in the same sentence are displayed on the edges. The width of
the edge is correlated with the number of abstracts. Clicking on the edges shows these
sentences, which are linked back to PubMed abstracts. Nodes can be moved about for better
visibility of relationships. These genes were taken from a recent genome wide association
study of opioid cessation (Cox et al. 2020).
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Figure 4. Steps for classifying sentences using a trained neural network

Steps for classifying sentences using a trained neural network. Abstracts are fetched from the
locally mirrored copy of PubMed and are parsed into sentences. Punctuation marks and stop
words are removed and the remaining words of the sentences are stemmed. The words are
tokenized by using the Tokenizer library of the Keras APIl. The weight matrices of the trained
model are multiplied by the sentence matrix to predict whether the input sentences are related
to system stress or cellular stress.
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Supplementary Figure 1 : The accuracy and loss curve of a convolutional neural network trains
to classify sentences containing the word “stress”. A convolutional neural network was trained
on a dataset containing 19,626 sentences. This dataset was splitted into two parts, having 80%
for training and 20% for validation. The gradient based Adamax algorithm was deployed with a
learning rate of 0.002 during model training. The accuracy (A) increased rapidly up to 0.995
after the first five epochs. At the same time, the validation accuracy was maximized at 0.991. On
the other hand, the loss curve (B) experienced a sharp fall followed by a continuous decrease.
The increase of the loss curve on the validation set after the fifth epoch was an indication of an
overfitting. To avoid overfitting we used the parameters that maximized the validation
performance. Our model with these parameters has an AUC of 99.2%.
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Supplementary Figure 2.
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Supplementary Figure 2 : Distribution of the predicted probabilities of the test dataset. We tested
the convolutional neural network model on a dataset including 5000 sentences from each class
containing the cellular stress and system stress related sentences. In order to have a better
understanding on the model's reliability of its prediction on the new data, we checked the
distribution of the predicted probabilities of the test dataset. The bars represent the number of
sentences having the predicted probabilities shown on the x-axis (histogram). The sentences
having predicted probabilities greater than 0.5 are labelled as systemic stress sentences (red
bars). The blue bars represent sentences belonging to cellular stress class. Among the system
stress sentences in the test dataset, 88% of them had predicted probabilities greater than 0.9.
Similarly 88% of the cellular stress sentences had predicted probabilities less than 0.1. This
indicates that the model has a 90% confidence about the classification of the 88% of the cellular
stress sentences.

41


https://doi.org/10.1101/2020.09.17.297358
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.17.297358; this version posted June 8, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Supplementary Figure 3.

chrna7 and stress

9 sentences in 6 studies

Sentence(s) describing systemic stress (classified using a deep learning model):

1. Of these genes, some are critical genes involved in learning and memory, such as cdk5 and chrna?,
indicating effects of chronic unpredictable stress on zZebrafish memory. PMID: 20718621

2. For duplications, we found that increased expression of CHRNAY mRMA is associated with higher
expression of nACHhR specific and resident ER chaperones, indicating increased ER stress.
PMID:29129316

3. Stress induced IR protection was absent in Chrna? knockout (a7nACHR /) mice and greatly reduced
by destroying or transiently inhibiting C1. PMID:28288124

4. The present study examined the association between genetic variation in the nicotinic receptor gene
family (CHRNAZ, CHRMA3, CHRNA4, CHRNAS, CHRNAG, CHRNAT, CHRNAS, CHRMNALD, CHRNBZ,
CHRNEZ, CHRNB4) and the occurrence of postiraumatic stress disorder (PTSD). PMID:26184988

5. Therefore, the o nicotinic acetylcholine receptor gene (CHRMNAT) may be associated with cortisol
stress response. PMID:21073885

6. Polymorphisms in the CHRNAT promoter were associated with lower cortisol levels after a small
laboratory stress. PMID: 21073885

7. Qur findings also show that although the child's CHRNAT genotype affects stress response, the
maternal genotype has a stronger influence on cortisol release after stress in male offspring.
PMID:21073885

Sentence(s) describing celluar stress (classified using a deep learning model):

1. Interestingly, we showed that deletions in KLF13 and CHRNAT influenced the expression of genes
belonging to the same immune/inflammatory and oxidative stress signaling pathways. PMID: 25370694

2. More interestingly, we show that pathways related to immunefinflammatory response and oxidative
stress signaling are affected by the deletion of KFL13 and CHRNAT. PMID: 253706594

Supplementary Figure 3 : One output page in GeneCup displaying sentences retrieved when
querying chrna7 against the keyword stress. The sentences describing stress are classified
according to its relation to systemic stress or cellular stress by a convolutional neural network.
GeneCup retrieved 9 sentences containing chrna7 and stress from 6 studies. Among them, 7
sentences in 5 studies are predicted as a systemic stress sentence and 2 sentences in 1 study
are predicted as cellular stress sentences.
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Supplementary Table 1. Mini ontology for addiction related concepts

Category Keywords Terms

addiction addiction, addictive, compulsive, drug-abuse, escalation,
punishment

aversion aversion, aversive, conditioned taste aversion, CTA
dependence dependence
intoxication binge, intoxication

Addiction
relapse craving, drug seeking, reinstatement, relapse, seeking
reward conditioned place preference, CPP, drug reinforced, hedonic,

ICSS, incentive, instrumental response, intracranial
self-stimulation, operant, reinforcement, reinforcing, reward,
self-administered, self-administration

sensitization sensitization

withdrawal withdrawal

accumbens acbc, acbs, accumbal, accumbens, core, Nacc, NacSh, shell
amygdala amy, amygdala, bla, cea, cha

cortex cerebral, cingulate, cortex, cortico limbic, corticolimbic,

corticostriatal, infralimbic, insula, insular, mPFC, orbitofrontal,
pfc, prefrontal, prelimbic, prl, vmpfc

habenula habenula, lhb, mhb
Brain
hippocampus ca1l, ca3, dentate gyrus, dhpc, hip, hipp, hippocampal,
hippocampus, subiculum, vhipp, vhpc
hypothalamus hypothalamic, hypothalamus, LHA, paraventricular nucleus,
PVN
striatum basal ganglia, caudate, globus pallidus, GPI, putamen, STR,

striatal, striatum

VTA limbic, mesoaccumbal, mesoaccumbens, mesolimbic,
midbrain, pvta, ventral tegmental, vta

alcohol acamprosate, alcohol, alcoholic, alcoholics, alcoholism,
antabuse, campral, disulfiram, ethanol, naltrexone, revia,
vivitrol

amphetamine AMPH, amphetamine, METH, methamphetamine

benzodiazepine adinazolam, alprazolam, benzodiazepine, benzos, brotizolam,
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Drugs

chlordiazepoxide, climazolam, clobazam, clonazepam,
clorazepate, diazepam, estazolam, flunitrazepam,
flurazepam, halazepam, librium, loprazolam, lorazepam,
lormetazepam, midazolam, nimetazepam, nitrazepam,
normison, oxazepam, prazepam, temazepam, triazolam,
valium, xanax

cannabinoid

acylethanolamines, cannabichromene, cannabidiol,
cannabigerol, cannabinoid, cannabinoids, cannabinol,
cannabis, cannabivarin, cesamet, drobinal, dronabinol,
endocannabinoid, endocannabinoids, epidiolex, JWH-018,
JWH-122, JWH-250, marijuana, marinol, nabilone,
Oleoylethanolamide, palmitoylethanolamide,
phytocannabinoid, rimonabant, SR141716, SR144528,
syndros, tetrahydrocannabinol, tetrahydrocannabivarin, thc,
thc-9

cocaine

cocaine

nicotine

nicotine, smoker, smokers, smoking, tobacco

opioid

buprenorphine, codeine, fentanyl, heroin, hycodan,
hydrocodone, hydromorphone, kadian, kratom, methadone,
morphine, naloxone, opioid, opioids, oxycodone, oxycontin,
percocet, suboxone, tramadol, ultram, vicodin

psychedelics

ayahuasca, ecstasy, ibogaine, ketamine, LSD, lysergic acid
diethylamide, MDMA, mescaline,
methylenedioxymethamphetamine, N-methoxybenzyl,
NBOMe, NBOMes, peyote, psilocybin, psychedelic,
psychedelics

Molecular
function

neuroplasticity

boutons, epsc, epsp, IPSC, IPSP, long term depression, long
term potentiation, LTD, LTP, mIPSC, neurite, neurogenesis,
neuroplasticity, plasticity, synaptic

neurotransmission

5-ht, acetylcholine, cholinergic, DAergic, dopamine,
dopaminergic, GABA, GABAergic, glutamate, glutamatergic,
muscarinic, neuropeptide, neuropeptides, neurotransmission,
nicotinic, serotonergic, serotonin

signalling

glycosylation, phosphorylation, signaling, signalling, kinase,
binding, signal transduction, second messengers, cGMP,
cAMP

transcription

histone, hypermethylation, hypomethylation, methylation,
ribosome, transcription

anxiety

anxiety, anxious

autism

autism, autistic

bipolar

bipolar disorder
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Psychiatric
diseases

compulsive

compulsive, obsessive

depression

depression, depressive, major depressive disorder, MDD

impulsivity

5-CSRTT, 5-choice task, delay discounting, delay exposure,
delay intolerance, delayed reward, delay task, five choice
serial reaction time task, impulsive, impulsivity, premature
responding

schizophrenia

schizophrenia

Cell

neuron

adrenergic neuron, adrenergic neurons, cholinergic neuron,
cholinergic neurons, dopaminergic neuron, dopaminergic
neurons, gabaergic neuron, gabaergic neurons, glutamatergic
neuron, glutamatergic neurons, GnRH neuron, GnRH
neurons, interneuron, interneurons, monoaminergic neuron,
monoaminergic neurons, medium spiny neuron, medium
spiny neurons, motor neuron, motor neurons, neuronal cell,
neuronal cells, nitrergic neuron, nitrergic neurons,
noradrenergic neuron, noradrenergic neurons, projection
neuron, projection neurons, pyramidal neuron, pyramidal
neurons, SENsory neuron, Sensory neurons, serotonergic
neuron, serotonergic neurons, somatostatin neuron,
somatostatin neurons, neuron, neurons, excitatory neuron,
excitatory neurons, inhibitory neuron, inhibitory neurons,
corticospinal neuron, corticospinal neurons, dopamine
neuron, dopamine neurons, D1 neuron, D1 neurons, afferent
neuron, afferent neurons, efferent neuron, efferent neurons,
serotonin neuron, serotonin neurons, cortical neuron, cortical
neurons, hippocampal neuron, hippocampal neurons, DA
neuron, DA neurons, CNS neuron, CNS neurons, cortex
neuron, cortex neurons, mesencephalic neuron,
mesencephalic neurons, orexin neuron, orexin neurons,
catecholaminergic neuron, catecholaminergic neurons, striatal
neuron,striatal neurons

astrocyte

astrocyte, astrocytes, astrocytic, astroglia, astroglial

microglia

microglia, microglial

endothelium

endothelium, endothelial cell, endothelial cells

oligodendrocyte

oligodendrocyte, oligodendrocytes

Stress

PTSD

PTSD, post-traumatic stress, post-traumatic stress symptoms,
post-traumatic stress disorder

stress

distress, psychological trauma, stress
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Supplementary Table 2. Most studied addiction related genes and their aliases

GENE NAME ALIAS

FOS AP 1, C FOS, CFOS, FOS PROTO ONCOGENE, AP 1 TRANSCRIPTION
FACTOR SUBUNIT

BDNF ANONZ2, BRAIN DERIVED NEUROTROPHIC FACTOR, BULN2

TH DYT14, DYT5B, TYROSINE HYDROXYLASE, TYROSINEHYDROXYLASE

OPRM1 LMOR, M OR 1, MOR1, OPIOID RECEPTOR MU 1, OPRM

CNR1 CNRS1, PROTOCADHERIN ALPHA CLUSTER, COMPLEX LOCUS

DRD2 D2DR, DOPAMINE RECEPTOR D2

CREB1 CAMP RESPONSIVE ELEMENT BINDING PROTEIN 1, CREB, CREB 1

SLC6A4 5 HTT, 5 HTTLPR, 5HTT, SHTTLPR, HSERT, OCD1, SERT, SERT1, SOLUTE
CARRIER FAMILY 6 MEMBER 4

TNF TNF ALPHA, TNFA, TNFALPHA, TNFSF2, TNLG1F, TUMOR NECROSIS
FACTOR

CYP2B6 CPB6, CYP2B, CYP2B7, CYP2B7P, CYPIIB6, CYTOCHROME P450 FAMILY 2
SUBFAMILY B MEMBER 6, EFVM, [IB1, P450

NPY NEUROPEPTIDE Y, NEUROPEPTIDEY, PYY4

GRM5 GLUTAMATE METABOTROPIC RECEPTOR 5, GPRC1E, MGLU5, MGLURS,
PPP1R86

GRIN2B EIEE27, GLUN2B, GLUTAMATE IONOTROPIC RECEPTOR NMDA TYPE
SUBUNIT 2B, HNR3, MRD6, NMDAR2B, NR2B

HTR1A 5 HT 1A, 5 HT1A, 5 HYDROXYTRYPTAMINE RECEPTOR 1A, 5HT1A, 5HT1A,
ADRB2RL1, ADRBRL1, PFMCD

GRIA1 GLUA1, GLUH1, GLUR1, GLURA, GLUTAMATE IONOTROPIC RECEPTOR
AMPA TYPE SUBUNIT 1, HBGR1

ALDH2 ALDEHYDE DEHYDROGENASE 2 FAMILY MEMBER, ALDH E2, ALDHE2,
ALDHI, ALDM

HTR2A 5 HT2A, 5 HYDROXYTRYPTAMINE RECEPTOR 2A, 5HT2A, HTR2

CRHR1 CORTICOTROPIN RELEASING HORMONE RECEPTOR 1, CRF R, CRF R 1,
CRF R1, CRF1, CRFR, CRFR 1, CRFR1, CRH R 1, CRH R1, CRHR, CRHR1L

GRM2 GLUR2, GLUTAMATE METABOTROPIC RECEPTOR 2, GPRC1B, MGLU2,
MGLUR2
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CHRNAS5 CHOLINERGIC RECEPTOR NICOTINIC ALPHA 5 SUBUNIT, LNCR2

IL6 BSF 2, BSF2, IFN BETA 2, IFNB2, IL 6, INTERLEUKIN 6, INTERLEUKING

comMT CATECHOL O METHYLTRANSFERASE, HEL S 98N

PDYN ADCA, PENKB, PRODYNORPHIN, SCA23

FAAH1 FAAH 1, FATTY ACID AMIDE HYDROLASE, PSAB

NPS NEUROPEPTIDE S

MAPK3 ERK 1, ERK1, ERT2, HS44KDAP, HUMKER1A, MITOGEN ACTIVATED PROTEIN
KINASE 3, P44 ERK1, P44 MAPK, P44ERK1, P44ERK1, P44MAPK, P44MAPK,
PRKM3

FOSB AP 1, FOSB PROTO ONCOGENE, AP 1 TRANSCRIPTION FACTOR SUBUNIT,
G0S3, GOS3, GOSB

CRH CORTICOTROPIN RELEASING HORMONE, CRH1

TLR4 ARMD10, CD284, TLR 4, TOLL LIKE RECEPTOR 4

GRIA2 GLUA2, GLUR 2, GLUR B, GLUR K2, GLUR2, GLUR2, GLURB, GLURB,
GLURK2, GLUTAMATE IONOTROPIC RECEPTOR AMPA TYPE SUBUNIT 2,
HBGR2

CYP2A6 CPAB, CYP2A, CYP2A3, CYPIIAG, CYTOCHROME P450 FAMILY 2 SUBFAMILY A
MEMBER 6, P450C2A, P450PB

HTR2C 5HT1C, 5 HT2C, 5 HTR2C, 5 HYDROXYTRYPTAMINE RECEPTOR 2C, 5HT1C,
5HT2C, 5HTR2C, HTR1C

ADH1B ADH2, ALCOHOL DEHYDROGENASE 1B CLASS |, BETA POLYPEPTIDE, HEL
S 117

DRD4 D4DR, DOPAMINE RECEPTOR D4

ARC ACTIVITY REGULATED CYTOSKELETON ASSOCIATED PROTEIN, ARG3.1,
HARC

MAOA BRNRS, MAO A, MONOAMINE OXIDASE A

CYP2E1 CPE1, CYP2E, CYTOCHROME P450 FAMILY 2 SUBFAMILY E MEMBER 1, P450
J, P450C2E, P450J

SLC1A2 EAAT2, EIEE41, GLT 1, GLT1, HBGT, SOLUTE CARRIER FAMILY 1 MEMBER 2

GRIN2A EPND, FESD, GLUN2A, GLUTAMATE IONOTROPIC RECEPTOR NMDA TYPE
SUBUNIT 2A, NMDAR2A, NR2A

POMC OBAIRH, PROOPIOMELANOCORTIN

SLCG6A3 DAT1, PKDYS, PKDYS1, SOLUTE CARRIER FAMILY 6 MEMBER 3
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NGF BETA NGF, BETANGF, HSAN5, NERVE GROWTH FACTOR, NGFB

DBH DOPAMINE BETA HYDROXYLASE, ORTHYP1

PENK PENK A, PENKA, PROENKEPHALIN

HTR1B 5HT 1B, 5 HT 1D BETA, 5 HT1B, 5 HT1DB, 5 HYDROXYTRYPTAMINE
RECEPTOR 1B, 5HT1B, 5HT1DB, HTR1D2, HTR1DB

JUN AP 1, C JUN, CJUN, CJUN, JUN PROTO ONCOGENE, AP 1 TRANSCRIPTION
FACTOR SUBUNIT

CASP3 CASPASE 3, CASPASE3, CPP32, CPP32B, SCA 1, SCA1

CHRNA3 BAIPRCK, CHOLINERGIC RECEPTOR NICOTINIC ALPHA 3 SUBUNIT, LNCR2,

NACHRAS3, PAOD2

NEUROTENSIN | NMN 125, NMN125, NT/N, NTS1

NTRK2 EIEES58, GP145 TRKB, GP145TRKB, NEUROTROPHIC RECEPTOR TYROSINE
KINASE 2, OBHD, TRK B, TRKB, TRKB

CAMK2G CALCIUM/CALMODULIN DEPENDENT PROTEIN KINASE Il GAMMA, CAMK,
CAMK I, CAMKG, CAMKII, MRD59

TRPV1 TRANSIENT RECEPTOR POTENTIAL CATION CHANNEL SUBFAMILY V
MEMBER 1

CYP2D6 CPD6, CYP2D, CYP2D7AP, CYP2D7BP, CYP2D7P2, CYP2D8P2, CYP2DLA1,

CYPIID6, CYTOCHROME P450 FAMILY 2 SUBFAMILY D MEMBER 6, P450 DB1,
P450C2D, P450DB1

CORT CORTISTATIN, CST 14, CST 17, CST 29, CST14, CST17, CST29

GFAP ALXDRD, GLIAL FIBRILLARY ACIDIC PROTEIN

GABRA2 EIEE78, GAMMA AMINOBUTYRIC ACID TYPE A RECEPTOR SUBUNIT ALPHA2

EGR1 AT225, EARLY GROWTH RESPONSE 1, G0S30, KROX 24, KROX24, NGFI A,
NGFIA, TIS8, ZIF 268, ZIF268, ZNF225

NOS1 BNOS, IHPS1, N NOS, NC NOS, NCNOS, NITRIC OXIDE SYNTHASE 1, NNOS,
NNOS

ANKK1 ANKYRIN REPEAT AND KINASE DOMAIN CONTAINING 1, PKK2, SGK288

CYP3A4 CP33, CP34, CYP3A, CYP3A3, CYPIIIA3, CYPIIIA4, CYTOCHROME P450
FAMILY 3 SUBFAMILY A MEMBER 4, NF 25, NF25, P450C3, P450PCN1

PCDHA4 CNR1, CNRN1, CRNR1, PCDH ALPHA4, PCDHALPHA4, PROTOCADHERIN
ALPHA 4

IL10 CSIF, GVHDS, IL 10, IL10A, INTERLEUKIN 10, INTERLEUKIN10, TGIF
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MTOR FRAP, FRAP1, FRAP2, MECHANISTIC TARGET OF RAPAMYCIN KINASE,
RAFT1, RAPT1

TRH PRO TRH, PROTRH, THYROTROPIN RELEASING HORMONE

CHRNB4 CHOLINERGIC RECEPTOR NICOTINIC BETA 4 SUBUNIT

GRM1 GLUTAMATE METABOTROPIC RECEPTOR 1, GPRC1A, MGLU1, MGLUR1,
PPP1R85, SCA44, SCAR13

GDNF ATF1, ATF2, GLIAL CELL DERIVED NEUROTROPHIC FACTOR, HFB1 GDNF,
HFB1GDNF, HSCR3

DRD1 DADR, DOPAMINE RECEPTOR D1, DRD1A

GRIN1 GLUN1, GLUTAMATE IONOTROPIC RECEPTOR NMDA TYPE SUBUNIT 1,
MRD8, NDHMSD, NDHMSR, NMD R1, NMDA1, NMDAR1, NMDR1

BCHE BCHED, BUTYRYLCHOLINESTERASE, CHE1, CHE2

CCL2 C C MOTIF CHEMOKINE LIGAND 2, GDCF 2, GDCF2, HC11, HSMCR30, MCAF,
MCP 1, MCP1, SCYA2, SMC CF, SMCCF

ADH1C ADH3, ALCOHOL DEHYDROGENASE 1C CLASS |, GAMMA POLYPEPTIDE

WARS1 GAMMA 2, GAMMA2, HMNS9, IFI53, IFP53, TRYPTOPHANYL TRNA
SYNTHETASE 1, WARS

ADH4 ADH 2, ADH2, ALCOHOL DEHYDROGENASE 4 CLASS I, PI POLYPEPTIDE,
HEL S 4

PTGS2 COX 2, COX2, GRIPGHS, HCOX 2, HCOX2, PGG/HS, PGHS 2, PGHS2, PHS 2,

PHS2, PROSTAGLANDIN ENDOPEROXIDE SYNTHASE 2

HDAC9 HD7B, HDAC, HDAC7, HDAC7B, HDAC9B, HDAC9FL, HDRP, HISTONE
DEACETYLASE 9, MITR

RTN4 NBLA00271, NBLA10545, NOGO, NSP CL, NSPCL, RETICULON 4,
RETICULON4, RTN X, RTN4 A, RTN4 B1, RTN4 B2, RTN4 C, RTN4A, RTN4B1,
RTN4B2, RTN4C, RTNX

PPP1R1B DARPP 32, DARPP32, PROTEIN PHOSPHATASE 1 REGULATORY INHIBITOR
SUBUNIT 1B

PPARA HPPAR, NR1C1, PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR
ALPHA, PPAR, PPARALPHA

BAX BCL2 ASSOCIATED X, APOPTOSIS REGULATOR, BCL2L4

OPRK1 KOR 1, KOR 1, KOR1, OPIOID RECEPTOR KAPPA 1, OPRK

DRD3 D3DR, DOPAMINE RECEPTOR D3, ETM1, FET1

BCL2 BCL 2, BCL2, BCL2 APOPTOSIS REGULATOR, PPP1R50
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HOMER1 HOMER, HOMER SCAFFOLD PROTEIN 1, HOMER1A, HOMER1B, HOMER1C,
SYN47, VES 1, VES1

EGFR EPIDERMAL GROWTH FACTOR RECEPTOR, ERBB, ERBB1, HER1, MENA,
NISBD2, PIG61

ACHE ACEE, ACETYLCHOLINESTERASE CARTWRIGHT BLOOD GROUP, ARACHE,
N ACHE, NACHE

ADORA2A A2AR, ADENOSINE A2A RECEPTOR, ADORA2, RDC8

ABCB1 ABC20, ATP BINDING CASSETTE SUBFAMILY B MEMBER 1, CD243, CLCS,
GP170, MDR1, P GP, PGY1

MGLL HU K5, HUK5, MAGL, MONOGLYCERIDE LIPASE, MONOGLYCERIDELIPASE

CDK5 CYCLIN DEPENDENT KINASE 5, LIS7, PSSALRE

PSENEN ACNINV2, MDS033, MSTP064, PEN 2, PEN2, PRESENILIN ENHANCER,
GAMMA SECRETASE SUBUNIT

SH2D3C CHAT, NSP3, PR0O34088, SH2 DOMAIN CONTAINING 3C, SHEP1

IL1B IL 1, IL1 BETA, IL1BETA, IL1BETA, IL1F2, INTERLEUKIN 1 BETA

CHAT CHOACTASE, CHOLINE O ACETYLTRANSFERASE, CMS1A, CMS1A2, CMS6

CCL4 ACT2, AT744.1, C C MOTIF CHEMOKINE LIGAND 4, G 26, HC21, LAG 1, LAGT,
MIP 1 BETA, MIP1B, MIP1B1, SCYA2, SCYA4

CALCA CALC1, CALCITONIN RELATED POLYPEPTIDE ALPHA, CGRP, CGRP ALPHA,
CGRP |, CGRP1, CGRPALPHA, CGRPI

S100A12 CAAF1, CAGC, CGRP, MRP 6, MRP6, S100 CALCIUM BINDING PROTEIN A12

OPRD1 DOR1, OPIOID RECEPTOR DELTA 1, OPRD

JUNB AP 1, JUNB PROTO ONCOGENE, AP 1 TRANSCRIPTION FACTOR SUBUNIT

GSTM1 GLUTATHIONE S TRANSFERASE MU 1, GST1, GSTM1 1, GSTM11, GSTM1A

1A, GSTM1A1A, GSTM1B 1B, GSTM1B1B, GTH4, GTM1, H B, MU 1
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