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Abstract 

Microsatellite instability (MSI) is a critical phenotype of cancer genomes and an FDA-recognized 
biomarker that can guide treatment with immune checkpoint inhibitors. Recent work has 
demonstrated that next-generation sequencing data can be used to identify samples with MSI-
high phenotype. However, low tumor purity, as frequently observed in routine clinical samples, 
poses a challenge to the sensitivity of existing algorithms. To overcome this critical issue, we 
developed MiMSI, an MSI classifier based on deep neural networks and trained using a dataset 
that included low tumor purity MSI cases in a multiple instance learning framework. On a 
challenging yet representative set of cases, MiMSI showed higher sensitivity (0.940) and auROC 
(0.988) than MSISensor(sensitivity: 0.57; auROC: 0.911), an open-source software previously 
validated for clinical use at our institution using MSK-IMPACT large panel targeted NGS data.  
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Introduction 

Microsatellite instability (MSI) is the phenotypic measure of deficiencies in the DNA mismatch 
repair (MMR) machinery, resulting in varying lengths of deletions and insertions in microsatellites. 
Microsatellites are short, tandemly repeated DNA sequences, and in patients with an MSI-high 
(MSI-H) phenotype, these regions exhibit significant errors due to replication slippage. The Food 
and Drug Administration (FDA) has approved pembrolizumab, an immune checkpoint inhibitor, 
for patients with MSI-H and/ or MMR-deficient (MMR-D) cancers of any histology 1,2. Thus, reliable 
and robust testing strategies for MSI/MMR status are critical for clinical management of patients 
with metastatic cancer. Traditional tools that allow screening of MSI status include MSI 
polymerase chain reaction (PCR) and/or MMR immunohistochemistry (IHC) testing but their 
application for pan-cancer screening including cancer types with a much lower prevalence of MSI 
than colorectal and endometrial cancer have raised concerns regarding cost-effectiveness and 
optimal resource and tissue utilization. Given that clinical comprehensive genomic profiling using 
targeted NGS panels is now being used more widely to inform treatment decisions in patients with 
advanced solid cancers, the advantages of also extracting MSI status from these data are 
apparent. We recently validated and implemented MSISensor as a way of identifying MSI status 
in patients who are undergoing next-generation sequencing (NGS) testing at Memorial Sloan 
Kettering Cancer Center (MSKCC) using MSK-IMPACT, an FDA-authorized targeted tumor 
sequencing panel 335. While this enabled a comprehensive and prospective MSI analysis across 
a wide array of tumor types, certain features of the clinical samples and the algorithm prevented 
us from reliably identifying all MSI-H patients. Because MSISensor calculates a distribution of the 
number of deletions in a given microsatellite region and compares the tumor and the matched 
normal distributions, samples with low tumor purity may lead to false negatives. Further we 
observed samples with low sequence coverage also suffer from false negative results. Finally, 
the presence of an 8indeterminate9 category (MSISensor scores between 3 & 10, 3.8% of all 
samples tested), leads to complexities in patient management and the need for orthogonal testing 
with use of additional tissue resources. 

The utility of supervised deep learning in classifying genomic data and results has been 
demonstrated by a number of somatic and germline variant callers based on deep learning 
methods 638. These prior genomic applications of deep learning methodologies have relied on 
labelled training data and are thus fully supervised. This existence of a true label for every 
datapoint makes learning in a fully-supervised manner computationally feasible. For MSI 
classification, the ground truth label is not at the individual genomic location as with the labels for 
individual variants.  Rather, the label is for the entire sample and is based on a variety of testing 
modalities as previously mentioned. Here, we describe a new computational tool for accurately 
classifying MSI status using NGS data, called MiMSI (Multiple-instance MSI, pronounced <My-
MSI=). Our method utilizes a deep multiple instance learning model rather than traditional 
statistical modeling methods to achieve greater sensitivity while retaining specificity9.  
  

Results 

Model development 
We utilized multiple instance learning (MIL), a weakly supervised machine learning methodology  
to develop an MSI classifier. With MIL, a broad label is applied to a collection of multiple individual 
data points, called instances, rather than to each instance individually 10. This problem 
formalization is evident in many machine learning applications in medicine and has since been 
combined with deep convolutional methods to form highly performant models 11313. In formulating 
the MSI classification as a MIL problem, we consider each microsatellite region in a patient sample 
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to be an instance and each patient sample to be our 8bag9, or collection of instances. Ground truth 
MSI status exists at the bag level due to the orthogonal PCR and MMR-IHC testing performed for 
each case in our training and validation datasets. Therefore, we can compute the loss function 
and training accuracy for each sample without requiring the accurate classification of each 
individual microsatellite region. Optimizing the loss function across all the samples in our training 
dataset allows us to build a final model to predict the MSI status of subsequent test samples. 
  
The end-to-end classification pipeline (Figure 1a) starts with converting the aligned NGS reads 
at each microsatellite site for both the tumor and matched normal sample into a vector 
representation. The model predicts a single probability that the sample is MSI by (i) calculating a 
feature representation for each microsatellite vector for a sample, (ii) averaging all microsatellite 
representations into a sample level embedding and (iii) utilizing a sigmoid classification layer on 
the preceding sample embedding to determine the final probability of MSI status (Figure 1b). The 
first stage of the model is a deep convolutional neural network (CNN) designed to extract a feature 
embedding for each microsatellite vector in a given sample. The network (eFigure 1) is based on 
a ResNet architecture, employing residual connections after each pair of convolutional layers. 
These residual connections allow the network to combine both high-level and low-level features 
learned at varying levels in the network into one cohesive feature embedding at the final stages 
14. The feature embeddings established by the network for each of the microsatellite loci are then 
averaged into a sample-level embedding. This final sample-level embedding is passed through 
the last stage of the network where we utilize a sigmoid classifier to predict the likelihood of MSI 
occurrence in a given sample. 
  

 
Figure 1. MiMSI model design and performance metrics A. Schematic representation of 
converting sequencing reads in a given genomic region into vector representation. Reference sequence 
along with mapping qualities and CIGAR strings for each read is used in the vectorization after 
downsampling. The set of vectors for a given sample are passed through the model (see eFigure 1). B. 
Study cohort used for both training the model and testing the performance. C. Distribution of MSISensor 
scores for samples with orthogonal testing performed. D. Area under the receiver operator curve (auROC) 
analysis of the test cohort analyzed with MSISensor and MiMSI at 4 different downsampled coverage levels 
(100X, 200X, 300X, and 400X). E. MSISensor scores and MiMSI probabilities for the test cohort. Colors 
indicate the orthogonal test status. 
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MiMSI Performance Compared to Orthogonal Testing  
To train and validate the performance of MiMSI, we created a dataset, deliberately including cases 
where MSISensor had failed to identify the MSI status due to low tumor purity and coverage, and 
for which orthogonal MSI-PCR and MMR IHC data is available (n = 458, Supplementary Table 
1). (Figure 1c). We trained the model using 321 samples with four different down-sampled 
coverage values when creating instance vectors: 100, 200, 300 and 400X, to normalize the 
coverage  inequality between the tumor and the matched blood sample (Figure 1d, see 
Methods). Next, 137 previously unseen cases were used as a test set to compute the accuracy, 
sensitivity, specificity, and area under the receiver operator curve (auROC) metrics (Figure 1e, 
Table 1). MSISensor demonstrated a lower auROC (0.91), as we specifically selected cases that 
were challenging for MSISensor. Performance of MiMSI was highest with 100X and 200X models 
(auROC: 0.99 for both) and degraded with increased coverage. At higher coverages, down-
sampling reduced the average number of loci used in training and testing (eTable 1). Both the 
100X and 200X models demonstrated similar performance metrics, however, confidence intervals 
(CI) derived from performing random downsampling ten times showed 200X has less variation 
due to down-sampling (eFigure 2) therefore we used the 200X model for the rest of the analyses 
in this manuscript. Further, we used a score of 0.5 as a cut-off threshold to determine MSS vs 
MSI-H cases with MiMSI and classified any case for which the 95% CIs crossed the 0.5 boundary 
as MSI-indeterminate (MSI-ind). 
 
Table 1 Performance metrics for MSISensor and MiMSI 

Method Accuracy auROC Sensitivity Specificity 

MSISensor 0.805 0.911 0.571 0.985 

MiMSI 100X 0.934 0.988 0.879 0.986 

MiMSI 200X 0.963 0.987 0.940 0.986 

MiMSI 300X 0.920 0.985 0.848 0.986 

MiMSI 400X 0.788 0.898 0.697 0.873 

 

 
Within the test dataset, we found a total of four indeterminate cases (two MSS and two MSI-H by 
orthogonal testing) and three discrepant cases (Figure 2). Amongst the discrepant cases, 
Sample_26194 was a colon adenocarcinoma with 303 somatic mutations detected and classified 
as MSI-H by MiMSI but MSS by orthogonal testing with IHC/PCR. Mutational signature analysis 
attributed 72% of the mutations to the deficiency of DNA polymerase-· (POLE) resulting from an 
exonuclease domain mutation (V411L). 15% of the mutations were attributable to MMR deficiency 
and there was a nonsense mutation in MSH2 (E580*), suggesting the possibility of a smaller clone 
with MMR phenotype that was either not clear during IHC review or MSH2 expression was 
retained 15. The two other discrepant cases were MSS by MiMSI score but MSI-H by orthogonal 
IHC/PCR. Sample_26600 was a uterine endometrioid carcinoma (UEC) with only three single 
nucleotide variants (SNVs) identified with a median variant allele frequency (VAF) of. 6.6%. The 
other sample, Sample_4731, was also a UEC with 224 SNVs and a median VAF of 7.7%. The 
low VAF of the mutations in these two samples suggest the tumor purity of these samples might 
be below the limit of detection. 
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Figure 2. Mutational signature analysis for discrepant cases. Bar chart showing the fraction of 
mutations explained by a given mutation signature: mismatch-repair deficiency (MMR: Red); error-prone 
DNA Polymerase · (POLE: grey) and concurrent MMR and POLE (blue). All other signatures are shown in 
light grey. TMB indicates the total number of mutations normalized by the genomic region covered by a 
given MSK-IMPACT panel version5. Due to low number of mutations (less than 14), we did not perform 
signature analysis for samples Sample_26600 and Sample_8865. Orthogonal testing is MMR IHC or MSI 
PCR.  

 
Amongst MiMSI indeterminate and the orthogonally MSS cases, Sample_15557 was a UEC with 
over 500 mutations identified with only 5 indels. Mutation signature analysis showed 52% of the 
mutations were attributable to concurrent deficiencies in proficient DNA replication by POLE and 
MMR system (Figure 2) 16. The other case, Sample_8865, was a uterine clear cell carcinoma with 
only 5 mutations identified. Amongst the orthogonally MSI-H cases, Sample_33499 was an 
endometrial cancer case with 27 mutations identified, with a median VAF of 5% suggesting a very 
low tumor purity. In this instance, mutation signature analysis showed 90% of the mutations 
contributing to MMR deficiency. Sample_19411 was also a UEC with 16 mutations with low tumor 
purity, where the mutations signature analysis showed 77% of the mutations contributing to MMR 
deficiency. In both instances, signature analysis of mutation contexts could help clarify the MiMSI 
indeterminate cases.  
 
We further performed sample dilution experiments to determine the sensitivity of MiMSI to 
changes in tumor purity, and to compare its performance at low purity with MSISensor (eTable 
2). We diluted a tumor DNA sample from an MSI-H case validated by MSI PCR with successive 
amounts of normal DNA from matched FFPE normal tissue and evaluated the sequencing data 
with both MSISensor and MiMSI. The MSISensor score decreased from its original value of 36.7 
as tumor purity decreased, however it remained indicative of an MSI-H phenotype until the final 
dilution of 6%. At that point MSISensor lacked sufficient signal to score the case above our MSI-
H threshold of 10. MiMSI, however, classified the sample as highly likely to be MSI-H, even at the 
lowest dilution point. 
 
Importance of number of microsatellite sites processed 
Since vector data generated over the microsatellite sites are used for the prediction of MSI-H 
phenotype, we investigated how the number of loci used in analysis affects the outcomes. We 
randomly downsampled the microsatellite loci used in the test cohort and asked how MiMSI 
classifications change (Figure 3). As the number of loci used decreased, the confidence intervals 
of the samples analyzed increased, which led to an increase in the number of MSI-Ind cases. 
Rate of MSI-Ind cases increased from 2% (1,000 sites used) to 27% (100 sites used) 
demonstrating that the number of sites used is an important factor in classifying cases properly.  
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Figure 3. Downsampling microsatellite loci used in classification. MiMSI classification 
results after randomly downsampling microsatellite loci used for the classifier.  
 
 
Analysis of tumors without a matched control 
While MiMSI was trained using a patient-matched normal control sample, there are instances 
where a matched control may not be available. In order to assess MiMSI9s ability to classify cases 
in a tumor-only mode, we reanalyzed the samples in the test cohort using an unrelated normal 
sample (Figure 4a). We observed that while the majority of the orthogonally MSS cases had 
scores < 0.5, orthogonally MSI-H cases had scores < 0.5 as well leading to false negative (FN) 
calls. We hypothesized that ethnicity differences between the tumors and the normal comparator 
used could lead to FNs. Therefore, we also tested a pooled blood control (an equimolar mixture 
of 10 blood samples) as comparator (Figure 4b). The results were similar to single unmatched 
normal comparator suggesting ethnicity may not be the reason for FNs. We noted that the majority 
of FNs in this setting were tumors of low tumor purity where MiMSI might be leveraging data from 
matched normal sample to increase its sensitivity. Therefore, we suggest users be cautious in 
interpreting the results and maybe want to apply different thresholds to reduce the false negative 
results. 
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Figure 4. Tumor-only analysis of test cohort. Test cohort was analyzed using three different 
pooled normal samples.  

 
 
Comparison of MiMSI with MSISensor 
After validating the results of MiMSI, we set out to investigate MMR-D phenotype across a large 
variety of cancer types (n = 86) by analyzing 44,724 tumor samples sequenced with the MSK-
IMPACT assay. Comparison of MiMSI results with MSISensor showed overall 91% concordance 
for cases identified as MSS and MSI-H with both methods (Figure 5, Table 2). Moreover, MiMSI 
reduced the number of samples in the MSI-Ind category identified by MSISensor from 3.8% 
(n=1,689) to 3.2% (n=1,422). 
   
Table 2 Comparison of MiMSI and MSISensor results 

  MSISensor 

  MSS MSI-Ind MSI-H 

MiMSI 

MSS 39,173 1,388 52 

MSI-Ind 1,327 89 6 

MSI-H 455 212 998 
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Figure 5. Global comparison of MiMSI results with MSISensor. Comparison of MSISensor 
scores and MiMSI probability scores (95% CI) for a cohort of 44,724 tumor samples 

Discussion 

Here, we describe a novel algorithm for MSI classification caller which uses vectorized NGS reads 
at microsatellite loci and is extensible to multiple DNA capture types. Given the importance of 
correctly identifying the MSI status in clinical cohorts, and the fact that low tumor purity is common 
in formalin-fixed paraffin-embedded specimens, we believe MiMSI will be a valuable addition to 
clinical analysis pipelines for comprehensive genomic profiling. 
  
Detecting MSI-H status is crucial for the management of cancer patients: it is predictive of Lynch 
syndrome regardless of the primary tumor as well as predictive of response to immune checkpoint 
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inhibition17. However, current DNA based methods often have limited technical sensitivity in many 
MSI-H samples as these tumor samples typically show increased levels of tumor-infiltrating 
lymphocytes or a 8Crohn9s-like9 lymphocytic reaction, which can sharply reduce tumor purity (i.e. 
the proportion of all cells in the biopsy that are tumor cells). To date, MMR IHC is the only tumor 
purity agnostic method to screen for MSI-H status, but it requires separate material which cannot 
be used for other predictive tests (such as sequencing). We show that MiMSI can be used 
concurrently with NGS assays performed on low tumor purity cases, decreasing the need for 
additional follow up IHC tests required with MSISensor. Further, we show MiMSI can detect MSI-
H phenotype that occurs concurrently with other genomic lesions such as exonuclease domain 
mutations in POLE, where the MSI phenotype may not be clearly apparent. Finally, MMR IHC has 
a sensitivity of approximately 94% results can show false-retained MMR protein patterns with 
pathogenic missense mutations, removing an indication for treatment with immune checkpoint 
inhibition and points to the need for sensitive testing methods15. 
 
The application of a deep learning-based classifier to NGS data allows us to infer MSI status with 
greater sensitivity than prior statistical methods, especially in situations where the sample has low 
tumor content or sequencing produces many low coverage regions. Since these traditional 
statistical methods rely on the difference in distributions between the tumor and normal sample 
they are sensitive to sequencing issues or sample quality issues. Our proposed model is trained 
utilizing a dataset composed of samples with varied levels of coverage, purity, and sequencing 
quality, resulting in a more resilient classifier. Additionally, the deep nature of our model means 
that it is able to classify against multiple levels of features derived from the aligned sequencing 
results, rather than just a set of hand-chosen features such as the number of deletions observed. 
 
The results demonstrate that a deep multiple instance learning approach can be utilized to infer 
abnormalities in NGS data, even when that data is weakly labeled. Microsatellite instability is one 
such application; however, this method is applicable to other classification tasks as well. As NGS 
assays become more prevalent in clinical diagnostics methods like MiMSI allow us to identify 
MMR deficient and MSI-H cases during sequencing rather than as a separate IHC or PCR test. 
Furthermore, MiMSI can be utilized across many cancer types, raising the probability that 
additional MSI cases can be identified in tumor types where MSI testing isn9t typically performed 
or MMR deficiency isn9t commonly observed.   
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Methods 

Clinical data generation 
Prospective clinical sequencing data from 44,724 samples (40,064 patients) based on MSK-
IMPACT panel 4 were used with MSKCC Institutional Review Board approval. MSISensor(v0.2) 
was used in the clinical analysis pipeline. MSISensor scores between 0 and 3 were considered 
MSS, between 3 and 10 were considered MSI-Ind and scores greater than were considered MSI-
H 3. Based on our analytical validation, for samples with tumor content less than 20% MSI 
classification based on MSISensor is not reported.  
 
Converting NGS Data to Vectors 
The intermediate file from which variant analysis is typically performed in NGS is the alignment 
file (BAM/SAM). The format of the alignment file is not conducive for implementation of deep 
learning algorithms involving a convolutional neural network (CNN) approach.  Thus, we internally 
developed a program that efficiently converts the known microsatellite regions of the genome to 
three-dimensional vector representations of fixed sizes.   
  
Each microsatellite region in the alignment file for both the tumor and normal sample is read 
utilizing pySAM, a python-based SAMtools reader. An individual vector for every site above a 
coverage threshold is generated by compiling a list of the aligned reads that completely span 
each given microsatellite region. Each aligned read is subsequently converted into a two-
dimensional vector of size L x 3, where L is the length of the microsatellite region on the reference 
sequence and three is the number of data points extracted from the alignment file at each base. 
These three channels are the CIGAR string value, the mapping quality, and a binary integer 
representing the reverse strand mapping. 
  
The generated single-read vectors are concatenated to form a three-dimensional region-level 
representation with dimensions C x L x 3, where C is the required coverage at the interested 
region. In order to achieve the standard input size the CNN requires we downsample the coverage 
to the desired cutoff threshold for the first dimension. In our experiments we used coverage cutoffs 
of 50, 100, 150 and 200. The downsample process is random as to avoid bias from sorting of the 
alignment file in our model.  Because the microsatellite regions vary in size and the model requires 
fixed dimensions, we introduced zeroes on the edges of the vectors for microsatellite regions that 
are smaller than 40 bp.  This is referred to as zero-padding. This process results in C x 40 x 3 
vectors for both the matched tumor and normal samples at each microsatellite locus. With the 
assumption that comparison between tumor and normal is necessary, we stacked the two vectors 
together, achieving a 2C x 40 x 3 vector for every microsatellite region in the patient9s genome. 
Due to coverage variability across various regions, the number of microsatellite vectors varies by 
patient. Our final input for training and testing the model is an N x 2C x 40 x 3 vector for each 
patient sample, where N refers to the number of microsatellite vectors generated for the particular 
patient sample. 
  
MiMSI Model Architecture 
MiMSI9s architecture (eFigure 2) can be separated into two main components. The first portion 
of the model creates an instance-level feature embedding for every microsatellite site, and the 
second calculates a bag-level embedding on which we calculate our final MSI prediction. 
  
The instance-level model is based on ResNet-18, an 18-layer deep convolutional neural network 
that has performed well in various image-based classification tasks18. The original ResNet-18 
architecture was adapted in order to accommodate the small size of our microsatellite vectors 
and to support a multiple instance learning approach. Compared to the 18-layer ResNet-18, 
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MiMSI was built with 12 layers, and we downsampled the image twice over the course of the 
forward pass rather than at every residual connection. In each standard convolution layer a kernel 
size of 3 x 3 is utilized, with zero padding and a stride of 1. In the downsampling convolutions the 
kernel size, padding and stride are 3 x 3, 0, and 2 respectively. The stride is increased to 2 in 
order to downsample the vector by a factor of 2x. 
  
The output of the final residual block in the instance-level model is fed into a fully connected linear 
layer to create an N x 512 vector representation of the sample, where N is the number of 
microsatellite loci. This collection of instance-level feature embeddings is further processed in the 
second portion of the model, which combines the instances into a bag-level score. We calculate 
the mean over the N microsatellite sites to form a bag-level embedding of 1 x 512. The final 
prediction of MSI status is calculated via a sigmoid layer on the preceding bag-level embedding. 
The final output of the model is a probability of MSI status, which we threshold at .5 in order to 
achieve our final binary classification of MSS vs MSI-H. 
  
Dataset 
Our training and validation datasets consisted of 458 cases for which we had orthogonal MMR 
IHC or MSI PCR testing. These cases were a combination of cases from internal validation 
cohorts as well as 24 cases that were labeled as exceptionally difficult based on purity, coverage, 
or MMR status. The ground truth labels were determined via IHC or PCR testing for MMR-d and/or 
MSI status. MSI cases were given a ground truth label of one, while MSS cases were labeled 
zero. Our training dataset was a subset of 321 of the full 458 labeled cases. The training dataset 
contained a total of 189 MSS cases and 132 MSI-H cases. The remaining 137 cases were kept 
unseen from the model and used as our test dataset.  
  
Training and Validating the Model 
The model is trained by minimizing the binary cross entropy loss function across the training 
dataset of 321 cases. The loss function is given by:  
 

����	 = 	2(����(�+) 	+	(1 2 �)���(1 2 �+	)) 
 
The model was optimized using the Adam algorithm with multiple learning rates and weight decay 
and the model with the highest accuracy on the testing set was chosen18. In our experiments we 
found the best performing learning rate and weight decay to be .0001 and .0005 respectively. The 
model was trained for 60 epochs, and initialized with random weights. The batch size was set at 
one, meaning that each epoch was one pass through every sample in the training dataset. 
  
To validate our model we tested an unseen dataset of 137 cases, of which 72 were MSS and 65 
were MSI-H, and we report our metrics against those held out samples. To compare performance 
against MSISensor we ran the tool against the same 137 cases utilizing the default parameters. 
  
Downsampling Effects on Accuracy 
Evaluation on our held-out test set indicated that the 100x and 200x coverage models were the 
best performing models. However, given that MSK-IMPACT is a targeted, deep sequencing assay 
with average coverage close to 600x we conducted further analysis to quantify the effects of 
randomly downsampling reads down to these lower coverage levels before inputting the 
generated vectors into our model. Each case in the test set cohort was randomly downsampled 
to 100 and 200 reads 10 times each, giving us 10 replicates of each tumor/normal sample to input 
into the trained 100x and 200x models, respectively. Each replicate was evaluated using its 
corresponding model resulting in 10 predictions, which we used to create 95% confidence 
intervals for each of the 137 samples at both coverage levels. Comparing these confidence 
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intervals, the 200x model empirically demonstrated more stable predictions (eFigure 2). The 
average length of a prediction9s confidence interval was .044 for the 200x model, compared to 
.06 for the 100x model. Also, less confidence intervals overlapped our prediction threshold of .5 
when using the 200x model. This is particularly important for our application, since a confidence 
interval that overlaps our threshold effectively creates an <Indeterminate= case. Based on our 
initial goal of limiting indeterminate cases and to ensure the reproducibility of our predictions we 
opted to utilize 10 downsampled replicates at 200x with the higher coverage model to analyze our 
full cohort of approximately 45,000 MSK-IMPACT samples and to compare concordance with 
MSIsensor. 
  
Error, Sensitivity and Specificity 
A case with an MSISensor score of more than 10 was considered MSI-H, while a case with a 
score between 3 and 10 was considered Indeterminate, and a score less than 3 was considered 
MSS.  A case with a probability of MSI-H less than .5 by MiMSI was considered an MSS 
classification, while a score greater than or equal to .5 was considered MSI-H. 
  
Error Rate (E), Sensitivity (TPR)  and specificity (TNR)  were calculated according to the following 
formulas: 
 

�	 = 	
(��	 + 	��)

(��	 + 	��	 + 	��	 + 	��)
 

���	 = 	
��

(��	 + 	��)
 

���	 = 	
��

(�� + ��)
 

  
For calculating MSISensor accuracy we considered a case a true negative if MSISensor returned 
a score less than 3 for a case confirmed MSS by PCR/IHC, or a true positive if MSISensor 
returned a score greater than 10 for a case confirmed MSI-H by PCR/IHC. A case was considered 
a false negative if MSISensor classified a case Indeterminate or MSS and it was determined to 
be MSI-H by orthogonal testing, and a false positive if MSISensor classified a case MSI-H that 
was classified MSS by PCR/IHC. The Receiver Operating Characteristic (ROC) and Precision 
Recall plots were built utilizing the functionality in the open source scikit learn package, and we 
calculated the Area Under the Receiver Operating Characteristic (auROC) from this package as 
well. 
  
Concordance with MSISensor on the MSK-IMPACT Cohort 
The MSK-IMPACT cases were analyzed with the default parameters of MSISensor and 
subsequently classified by the MiMSI model after training and validating on the dataset described 
above. We retained the same cutoffs for MSS, Indeterminant, and MSI-H for MSISensor cases 
as utilized in training and validating the model above. We defined a concordant case as one where 
(1) both MSISensor and MiMSI classified the sample as MSS or (2) both MiMSI and MSISensor 
classified the sample as MSI-H. Any other combination of classifications from MSISensor and 
MiMSI were treated as a discordant result. 
 
Mutational signature analysis 
Mutational signatures were determined as described before 6 
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Code Availability 
The code developed and used in these experiments has been made freely available under version 
3 of the GNU General Public License (GPLv3). The software along with the fully trained model is 
hosted at https://github.com/mskcc/mimsi 
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Extended Data and Figures 

Extended Table 1. Average number of sites utilized for each coverage downsampling analysis 
by MiMSI in the testing cohort. Minimum and maximum numbers used are shown in 
parentheses 
 

Coverage Avg # of sites (min-max) 

100X 932 (424-1412) 

200X 670 (190-1027) 

300X 494 (74-816) 

400X 363 (26-723) 
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Extended Table 2. MiMSI and MSISensor analysis of dilution series. Tumor purity was 
calculated using FACETS.  
 

Sample 
Dilution 

Tumor 
Purity 

MiMSI 
Score 

(95% CI) 

MiMSI 
Score 

LCI UCI MiMSI 
Classification 

MSISensor 
Score 

MSISensor 
Classification 

1 0.7 1  
(1-1) 

1.00 1.00 1.00 MSI-H  36.7 MSI-H  

0.5 0.35 1  
(1-1) 

1.00 1.00 1.00 MSI-H  34.48 MSI-H  

0.25 0.175 0.99  
(0.99-1) 

0.99 0.99 1.00 MSI-H  26.86 MSI-H  

0.12 0.088 0.98  
(0.98-0.99) 

0.98 0.98 0.99 MSI-H  17.07 MSI-H  

0.06 0.044 
 

0.72  
(0.58-0.85) 

0.72 0.58 0.85 MSI-H  8.21 Ind 
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Extended Figure 1 
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Extended Figure 2 Range of MiMSI probability scores for each sample across 10 replicates 
with 100X (A) and 200X (B) downsampling 
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Supplementary Data 
Supplementary Table 1. Characteristics of the samples used as training and test datasets 
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