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ABSTRACT

Plant small RNAs are a diverse and complex set of molecules, ranging in length from 21
to 24 nt, involved in a wide range of essential biological processes. High-throughput
sequencing is used for the discovery and quantification of small RNAs. However, several
biases can occur during the preparation of small RNA libraries, especially using low input
RNA. We used two stages of maize anthers to evaluate the performance of seven
commercially-available methods for small RNA library construction, using different RNA
input amounts. We show that when working with plant material, library construction
methods have differing capabilities to capture small RNAs, and that different library
construction methods provide better results when applied to the detection of microRNAs,
phasiRNAs, or tRNA-derived fragment. We also observed that ligation bias occurs at both

ends of miRNAs and phasiRNAs, suggesting that the biased compositions observed in
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small RNA populations, including nonstoichiometric levels of phasiRNAs within a locus,

may reflect a combination of biological and technical influences.

INTRODUCTION

Small RNAs (sRNAs) are short non-coding molecules, ranging from 20 to 24 nt in length,
with critical functions in all aspects of plant development and responses to the
environment. High-throughput sequencing of sRNA libraries (sSRNA-seq) is considered
the most efficient way to accomplish sRNA discovery and quantify their abundances.
Briefly, the process consists of a two-step DNA and RNA adapter ligation in which first
the 3’ and then the 5’ adapters are ligated to the sRNAs, followed by retrotranscription
and PCR amplification steps. These results in a dsDNA molecule comprised of an sRNA
flanked by two adapter sequences (Figure 1). However, several issues can occur during
library construction including (1) adapter ligation bias, (2) adapter dimerization, and (3)
low RNA input amounts. Adapter ligation bias is due to sequence-derived differences in
the efficiency of ligating one or both adapters(1). Several approaches have been
developed to address this bias, such as the inclusion of degenerate ends in one or both
adapters, the use of a single adapter for both 3’ and &’ ligation, (taking advantage of
intramolecular ligation efficiency), and even complete removal of the adapter ligation step
by substituting sSRNA polyadenylation. The second major issue during library preparation
is adapter dimer formation. This is caused by the generation of an adapter-adapter
molecule, with no sRNA insert, and it results in a loss of sequencing depth. This can be
avoided by removing excess 3’ adapter molecules after the first ligation and/or performing
a library size selection after PCR amplification, using beads or polyacrylamide gels. The
third major issue is the use of low amounts of RNA as starting material, often driven by
the necessity of doing single cell and low input transcriptomics to study multicellular
organisms with a high heterogeneity and complexity. This can result in inefficient adapter

ligation and a low complexity library.

In the last few years, several studies have focused on determining the most reliable,
commercial methods for sSRNA quantification (2—6). However, although informative, none

of these studies used plant samples as input material. In this study, we focus on plant
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biological samples that are highly complex and include several different types of sSRNAs.
Based on their biogenesis pathways, plant sSRNAs are divided into two main categories:
microRNAs (miRNAs) and short-interfering RNAs (siRNAs). miRNAs derive from a self-
complementary, single-stranded RNA, while siRNAs derive from an RNA molecule made
double-stranded by an RNA-dependent RNA polymerase (7-9). siRNAs are further
divided into several categories, with phased siRNAs (phasiRNAs) arguably the most-
studied subset and recently shown to be essential elements in plant reproduction (10—
12). A second type of siRNAs, heterochromatic siRNAs, comprise the majority of SRNAs

in some species and are mainly involved in silencing of repetitive elements.

Maize anthers, the male reproductive organ, are an optimal source of SRNAs for this type
of analysis as they produce substantial quantities of all of these sSRNA classes. They are
also one of the richest sources of phasiRNAs, including both 21- and 24-nt classes, shown
to be important for the correct regulation of anther development. The development of
maize anthers has been well characterized and thus it is an ideal model for studies of
reproductive sRNAs (10, 13). Maize anthers have a unique pattern of SRNA expression;
during the premeiotic stage, 21-nt phasiRNAs accumulate, triggered by miR2118. The
later, meiotic anthers are enriched in 24-nt phasiRNAs, triggered by miR2275.

In this study, we used two different tissues from premeiotic (PMA) and meiotic (MA) maize
anthers to evaluate the performance of seven different commercially available sRNA-seq

methods of library construction.

MATERIAL AND METHODS

Biological material and RNA extraction

Anther samples were collected from 4- to 5-week-old W23 maize plants grown controlled
conditions in greenhouses with temperatures of 28°C/22°C, relative humidity of
50%/60%, and a photoperiod of 16 h/8 h (day/night). Two developmental stages were

dissected, the premeiotic anther stage consisting of spikelets with 0.2 to 0.7 mm anthers,
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and the meiotic anther stage consisting of 1.5 mm anthers. Samples were flash frozen in

liquid nitrogen and kept at -80°C until further processing.

Total RNA was isolated using the Plant RNA Reagent (Thermo Fisher, cat #12322012).
Briefly, samples were ground in a liquid nitrogen-frozen mortar and pestle. Then, the cold
mortar with the powdered tissue was transferred to a chemical safe hood and 1 ml of
Plant RNA Reagent was added directly in the mortar. The sample was ground with the
reagent for another 20 sec and then collected with a 1ml micropipette and transferred to
a 2 ml nuclease-free microcentrifuge tube. The remaining steps for the RNA extraction
were followed as described previously (14). More details are available in Supplemental

table 1 and Supplemental methods.

Small RNA library generation and sequencing

All sRNA libraries were generated following the manufacturers’ instructions. A
summarized workflow can be seen in Figure 1. Additionally, we performed a final step of
size selection using 6% polyacrylamide gels as described in Mathioni et al., 2017 (14). All
samples were sequenced using lllumina HiSeq 2500 at the University of Delaware DNA
Sequencing & Genotyping Center at the Delaware Biotechnology Institute. Additional

details can be found in Supplemental Methods.

Data analysis and visualization

The sRNA sequencing libraries were trimmed for adaptors using Trimmomatic v0.32 (15)
with the following options -phred33; -threads 10; ILLUMINACLIP:4:30:10; LEADING:3;
TRAILING:3; SLIDINGWINDOW:4:10; MINLEN: 18. Sequence quality was assessed
using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Clean reads
were aligned to the B73 Maize genome version 4 (16) using the software Bowtie2
(Langmead and Salzberg, 2012). For miRNA analyses, the latest version of miRBase
(v22; (17)) was used. For phasiRNAs, the PHAS loci published in Zhai et al. (2015) were
used. The genome coordinates for the most abundant PHAS loci are included in

Supplemental table 2. All alignments for sSRNA counts were performed using Bowtie2
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(18). Differential accumulation of sRNAs was calculated using DESeq2 software (19).
Data visualization was performed using R studio (20). In general, ggplot2 (21) and
gridExtra (22) packages were used for plotting, and RColorBrewer was used for color
schemes. Correlation plots were generated using the corrplot package (23). UpSet plots

were generated using UpSetR pakage (24).

RESULTS

Library composition varies by method for distinct subsets of small RNAs

We isolated RNA from two different pools of maize anthers at premeiotic (PMA) and
meiotic (MA) stages (see methods) and we generated small RNA (sRNA) libraries using
different commercial kits. We utilized seven kits from six vendors, named as follows, with
full details in the methods section: TruSeq, NEBNext, NEXTFlex v2, NEXTFlex v3,
RealSeq, SMARTer, and TriLink. We performed three technical replicates of each library,
for both PMA and MA stages, and for each input amount of RNA (see Table 1 below). All
libraries were sequenced using the same Illumina HiSeq 2500 instrument, and to a similar
depth (Supplemental Figure 1 — left boxplot). All the libraries were independently
processed and mapped to the B73 maize genome v4 (25). We obtained similar mapping
percentages for all libraries (Supplemental Figure 1); all subsequent analyses utilized

these mapped reads.

Size distribution is often used to analyze and evaluate the quality of SRNA libraries. We
assessed two different components for each size: the total read abundance and the
number of distinct counts. The latter component collapses together all the reads that have
the same sequence and counts them as one, thus reflecting the diversity of reads. sRNAs
are 20 to 24 nucleotide (nt) in size and their accumulation varies depending on tissue
identity and species. Maize anthers are known to accumulate a high number of 24 nt
sRNAs (26). When comparing the different library construction methods, we observed
that TruSeq, NEBNext, NextfFlex and RealSeq generated a similar size distribution, with

a predominant peak at 24 nt and a secondary peak at 21 nt, while SMARTer and TriLink
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generated a flatter distribution (Figure 2). This is due to the high abundance of structural
RNAs present in these methods (see below). In PMA anthers, TruSeq and RealSeq
methods demonstrated the highest peak at 24 nt, while both NEXTFlex methods yielded
higher peaks at 21 and 22 nt. However, in MA anthers, we observed the opposite; both
NEXTFlex methods demonstrated a higher peak at 24 nt and smaller peaks at 22 and 23
nt. This suggests that each kit yields a specific profile and captures diversity in a variable

manner, potentially dependent on intrinsic properties of the sRNAs.

We observed a few differences when looking at the abundance of the different types of
sRNAs present in each library method. SMARTer and TriLink methods present a higher
percentage of structural RNAs (tRNAs, rRNAs and nuclear RNAs), and a big decrease in
reads that map to PHAS loci. TruSeq presents a higher number of reads mapping to
miRNAs, and TruSeq, NEBNext, NEXTFlex and RealSeq are similar in terms of the

number of reads mapping to PHAS loci.

Library complexity depends on the method and starting amounts

To evaluate each library method, we generated sRNA libraries using different amounts of
input RNA, ranging from 1 ng to 1000 ng. We then analyzed the number of miRNAs and
PHAS loci identified by each library method and input, as a measure of library complexity
(Figure 3). For this study, we focused our analysis on the 325 miRNAs included in the last
release of miRbase (17) and the 463 21-nt and 176 24-nt PHAS loci identified in Zhai et
al. (2015), and considered that 1 read was sufficient for an sRNA to be considered
present. We observed that the number of PHAS loci is more consistent between the
different conditions, compared to miRNAs. This is probably due to the fact that for
miRNAs, we are comparing a single sRNA, and for PHAS loci we are comparing a set of

sRNAs that map across the entire phasiRNA-producing locus.

We first evaluated each commercial method using the recommended starting amount
(Figure 3 — star labeled samples). We obtained the maximum complexity using NEXTFlex
v2 with 1000 ng of starting material and performing size selection, followed by RealSeq

with 100 ng, and NEXTFlex v3 with 1000 ng. However, as one of the aims of this study
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was to identify reliable methods for low input libraries, we considered low input libraries
of 10 ng or 1 ng, and for both PMA and MA tissues, we obtained the maximum complexity
using the RealSeq method. It is worth to note that the vast majority of miRNAs were
identified in all the different construction methods, regardless of the initial RNA input
amount. The results of overlapping miRNAs identified in each method with different RNA

input quantities are displayed in Supplemental Figure 2.

We also wanted to assess whether different starting amounts would capture different
miRNAs. We analyzed the percentage of identified miRNAs that overlap when comparing
the different conditions of each method (Supplemental Figure 3). The RealSeq method
had the highest overlap between recommended input and low input samples, reaching
80% or more in both tissues. Other methods, like NEBNext, were not far from this overlap
percentage, reaching 65% and 75%, respectively, in meiotic and premeiotic anthers.
However, we observed lower than expected overlap between low and high input samples
for NEXTFlex (~50%), SMARTer (~63%) and TriLink (~26%).

We conclude that if the starting amount of material is not limiting, NEXTFlex or RealSeq
methods provided adequate complexity. However, when working with low amounts of

RNA, RealSeq was the only method that preserved high levels of complexity.

Adapter ligation bias occurs at both ends of the miRNAs

To assess the ligation bias of each kit, we analyzed the nucleotide composition for each
position of the miRNAs identified by each method, using samples prepared with the RNA
input amount recommended by the manufacturer (Figure 4). We focused on the
nucleotide composition of the first and last nucleotides, since this will determine the
composition at all other positions. We observed that even if most of the identified miRNAs
in each kit contained a U/T in their 5’ end, differences still exist between kits. The two
extremes are represented by the TruSeq method, that identifies almost exclusively
miRNAs with a 5’ U/T, and TriLink, that yields a higher diversity, including miRNAs with a
U/T, G, or A as a 5 end. Concerning the 3’ end, we observed a higher diversity than in
the 5 end. While the TruSeq method mostly identifies miRNAs starting with a C,
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NEXTFlex kits mostly identify miRNAs with a G at the 3’ end. In most of the methods,
miRNAs with an A at the 3’ end are almost completely absent. We repeated the same
analysis using only the samples prepared using 1 ng of input RNA and obtained the exact
same results. These observed differences might be one of the principal reasons for the

quantitative differences observed between Kits.

PhasiRNA accumulation is extremely variable at all levels

PhasiRNAs are a heterogeneous group of sRNAs, either 21- or 24-nt long, generated
from double-stranded RNAs in sequential phases or cycles (27). Due to their high
variability of 5’ and 3’ nucleotides, phasiRNAs are less subject to bias in adapter ligation.
To evaluate the ability of each method to capture phasiRNAs, we analyzed their
accumulation using samples prepared with the RNA input amount recommended by the
manufacturer. We then selected the most abundant 21- and 24-nt producing PHAS loci
and studied the accumulation of each phasiRNA (labeled as “cycle” in Figure 5). We
observed that phasiRNA accumulation is extremely variable when comparing between
kits (Supplemental Figure 4, Supplemental table 2). As described before (28, 29), most
phasiRNAs from a single PHAS locus accumulate to diverse levels (Supplemental Figure
4, Supplemental table 2). The biogenesis of phasiRNAs by processive activity of Dicer
should yield phasiRNA duplexes from a given locus in stoichiometrically equal levels; yet,
of tens of thousands of reproductive phasiRNAs only a small proportion are abundant and
observed in nonstoichiometric abundances within a PHAS locus (28). This variation may
be attributed to stabilization by loading in AGO proteins or interactions with targets. We
observed that the abundance of each phasiRNA is largely dependent on the method used
for library construction. For example, in Figure 5, we represent the abundance of two 21-
and two 24-nt PHAS loci. We observed that the most abundant phasiRNA for each of
these PHAS loci varies for each method. For the two 21-nt phasiRNAs, the most abundant
cycles are 8 and 7, 1 and 2, 10 and 3, and 6 and 19, for NEBNext, NEXTFlex, RealSeq
and TruSeq respectively. For the 24-nt PHAS loci, we observed similar variation in the
accumulation patterns; in this case, the most abundant phasiRNAs were in positions 10
and 5,17 and 5, 16 and 8, and 17 and 12, for NEBNext, NEXTFlex, RealSeq and TruSeq
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respectively. It is worth noting that the two other methods evaluated in this study, TriLink
and SMARter, barely detected any phasiRNAs.

To assess whether this variability is influenced by bias in adapter ligation, we analyzed
the nucleotide composition of phasiRNAs captured by each method, assessing the
proportion of each nucleotide at each position (Figure 6, Supplemental Figure 5). We
observed that the majority of methods capture 21-nt phasiRNAs with a cytidine (C) and
24-nt phasiRNAs with an adenosine (A) in their 5" end (Figure 6 A). However, using the
RealSeq method, more than 60% and 80% of the captured 21-nt and 24-nt phasiRNAs,
respectively, had an adenosine (A) in their 5 end. We also observed a second bias in
position 19 for 21-nt phasiRNAs (Figure 6A). As described previously (30), the 19%
position presents a depletion of adenosine (A), that is independent of the method used
for library construction. However, this depletion was not observed in any position in 24-nt
phasiRNAs (Figure 6B, Supplemental Figure 5B). Additionally, the SMARTer method
displayed a strong depletion of adenosine (A) at the 3’ end on both 21- and 24-nt
phasiRNAs. We hypothesize that this 3’ end depletion might be due to the polyadenylation
process used during library construction. These observed technical biases are consistent

between replicates, and independent of the RNA amount used as input.

RealSeq, TruSeq and NEXTFlex demonstrate the most similar expression profiles

To assess the correlation in the abundance of miRNAs and phasiRNAs, we used the
Spearman’s rank correlation coefficient to compare the relative position of each
observation within the variable. When examining sRNA abundances, a correlation of 100
indicates that the same sRNAs are ranked in the exact same positions when comparing
two different methods. We calculated the correlation matrices for both types of samples,
premeiotic anthers (Figure 7, upper plots) and meiotic anthers (Figure 7, lower plots), and
for miRNAs (Figure 7A) and PHAS loci (Figure 7B). When comparing different samples
within each method, most of the kits had a high correlation coefficient. This indicates that
all methods of library preparation yielded highly reproducible results for mature miRNAs
and PHAS loci summed abundances, even if the individual phasiRNA abundances are

highly variable across PHAS loci. However, regardless of the type of tissue or the type of
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sRNA analyzed, RealSeq had the highest correlation coefficient, between 94% and
100%. All RealSeq samples also had a high correlation coefficient with all other methods
when using samples prepared with the RNA input amount recommended by the
manufacturer, indicated in the figure with an asterisk, especially with NEXTFlex and

TruSeq methods.

Another way that we assessed the impact of the library preparation methods on
expression profiles was to analyze the differentially accumulated (DA) miRNAs between
premeiotic and meiotic anthers. We used the DeSeq2 package to calculate the DA of
mMiRNAs using samples prepared with the RNA input amount recommended by the
manufacturer. We plotted the results as a heatmap (Figure 8) and we observed that most
of the methods produce a similar DA pattern, including one block of miRNAs down-
regulated (1) and one block up-regulated (Il), in meiotic versus premeiotic anthers. We
also observed that the clustering analysis grouped RealSeq, NEXTFlex v2 and TruSeq
as the most similar methods, confirming the results obtained using correlation plots.

Identified tRFs are variable in size and origin between methods

In the last few years, the focus of SRNAs has moved from mainly miRNAs to all kinds of
sRNAs. tRNA-derived fragments (tRFs) play essential roles in genome protection and
transposon movement (31, 32), although the mechanism by which tRFs function is not
fully known. For the purpose of this study, we considered tRFs from 19- to 24-nt, that map
to tRNAs. The various library construction methods we studied revealed variable tRF
accumulation patterns (Figure 9). TriLink detected the highest number of tRFs with a high
majority of reads as 23 nt long, and derived from alanine (Ala) coding tRNAs. RealSeq
and NEXTFlex v3 also detected high amounts of tRFs, mostly derived from leucine (LEU)
and glutamic acid (GLU) tRNAs. The size of the identified tRFs was also extremely
variable. RealSeq, TruSeq and NEBNext identified mostly 24-nt long tRFs while
NEXTFlex 2 and TriLink identified mainly 23 nt tRFs. This extremely high variability of
detected tRFs could contribute to why their function and mode of action remains

unknown.
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The size and origin of hc-siRNAs is consistent between methods

Heterochromatic siRNAs (hc-siRNAs) play an important role in transposable element
silencing, stress responses and genome stability via transcriptional regulation of gene
expression by RNA-directed DNA methylation (32). For the purpose of this study, we
considered hc-siRNAs to be any sRNA from 21- to 24-nt long that maps to transposable
elements. Due to the repetitive nature of hc-siRNAs, it is impossible to know the exact
origin of each read; for that reason, we decided to group the hc-siRNAs by TE

superfamilies.

We observed that all library construction methods had a similar accumulation pattern for
TE-derived sRNAs, and that most of the hc-siRNAs originated from Copia, Gypsy or other
LTR retrotransposons and were 24-nt in length (Figure 10). However, we observed
differences in the abundance of hc-siRNAs and found that RealSeq, TruSeq and
NEXTFlex methods detected more hc-siRNAs reads per million (RPM). In contrast,
SMARTer and TriLink methods were only able to detect 20-30% of the hc-siRNAs reads
compared to other methods (Figure 10).

DISCUSSION

It is known from both our work and prior studies (2—6) that several biases occur during
the construction of sRNA libraries. In this study, we compared the accumulation of four
different types of sRNAs in plant material using seven commercially available library
construction methods. We demonstrated that ligation bias exists when using plant
samples, independent of the starting RNA input amount. This is primarily caused by
differences in adapter ligation efficiency. The two maijor factors playing a role in ligation
efficiency are the secondary structure of the RNA, and the specific end nucleotides

present in each RNA molecule.

We also observed strong differences in the nucleotide composition of the 5 end of

phasiRNAs, mainly for 21-nt phasiRNAs, depending on the library construction method.
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This type of bias has been observed previously in sequencing data (30, 33), and attributed
to a preference of an Argonaute — that is, a relevant biological bias. However, our results
suggest that this bias might also be technical in nature, influenced by the library
construction method. Thus, the previously-observed nonstoichiometric abundances
measured across several thousand of maize and rice PHAS loci and tens of thousands
reproductive phasiRNAs (28) likely reflects a combination of biological and technical

factors.

We conclude that each library construction method might be more or less adequate,
depending on the RNA of interest, but that some methods work better for specific SRNAs.
NEXTFlex, RealSeq and TruSeq are able to detect a higher number of reads for
microRNAs and phasiRNAs. However, for abundant RNAs like ribosomal RNAs and
transfer RNAs, TriLink and SMARTer libraries are enriched in these categories.
Alternatively, for studies focused on nucleolar RNAs, we observed a slight enrichment in
these when using TriLink. We also observed smaller differences in the accumulation of
hc-siRNAs when comparing construction methods; this is probably due to the repetitive

and diverse nature of these sRNAs.

In recent years, many new and different methods for sRNA library construction are
commercially available. Most of these new protocols aim to more accurately reflect SRNA
composition by focusing on reducing one identified bias, while leaving other biases
unaddressed. While preparing this manuscript, a new method based on randomized splint
ligation was published that involves a double-stranded adapter with a short, single-
stranded degenerate extension (34). Other strategies have been developed to ensure
absolute normalization of the sRNA library. For example, it has been proposed to use
single-stranded RNA 5" monophosphate and 2'-O-methyl oligonucleotides as spike-ins for
plant samples (35). In our opinion, and based on the results described here, the new
approaches might be combined to provide a new library construction method that
addresses all known biases, and thus provide a more reliable picture of the sRNA

population in plants. This would ideally include a circular adapter, with four degenerated
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nucleotides at each end, while using an artificial spike-in added to the RNA before library

construction.
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TABLES

Table 1: Summary of libraries included in this study. * indicates the recommended
amount from the manufacturer. Three technical replicates were always used for each

condition. Libraries were constructed in parallel for premeiotic anthers and meiotic

anthers.
Type of RNA Amount of RNA as starting material
Method Total Size-selected | 1000ng | 100 ng | 10 ng 1ng
RNA RNA
TruSeq 2x3 2x3 2x6* - - -
NEBNext 2x6 - 2x3* - - 2x3
NEXTFlex 2x3 2x3 2x6"* - - -
2
NEXTFlex 2x6 - 2x3* - - 2x3
3
RealSeq 6x3 - - 2x3* 2x3 2x3
SMARTer 2x6 - 2x3* - - 2x3
TriLink 6x3 - 2x3* - 2x3 2x3
Total 96 96
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Supplemental Table 1. List of the small RNA library preparation kits tested in this study.

Company Kit Cat. # Approach

lllumina TruSeq Small RNA Library | RS-200-0012 | Adapter ligation
Prep

Bioo Scientific NEXTFlex™ Small RNA-seq | 5132-03 Adapter 4N-ends
"
NEXTFlex™ Small RNA-seq | 5132-05 Adapter 4N-ends
v3

TriLink CleanTag™ Small RNA| L-3206 Chemically-

Biotechnologies | Library Prep modified

adapters

New England | NEBNext® Small RNA| E7300S Adapter ligation

BioLabs Library Prep

Clontech SMARTer smRNA-Seq 635029 Ligation-free

Somagenics RealSeq®-AC miRNA | 500-00048 Circular adapter
Library Kit

Supplemental Table 2. Genome coordinates of the most abundant 21- and 24nt PHAS

loci
Type ID Chromosome Coordinate Strand
21-PHAS | PHAS_ 01| 2 141966025 c
21-PHAS | PHAS 02 | 1 164855798 c
21-PHAS | PHAS 03| 2 55560458 c
21-PHAS | PHAS 04 | 4 5591406 c
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21-PHAS | PHAS_05 3571530
21-PHAS | PHAS_06 21678443
21-PHAS | PHAS_07 151055912
21-PHAS | PHAS_08 161445681
21-PHAS | PHAS_09 42512376
21-PHAS | PHAS_10 180276272
21-PHAS | PHAS_11 289764604
21-PHAS | PHAS_12 164154608
21-PHAS | PHAS_13 22976471
21-PHAS | PHAS_14 23007048
21-PHAS | PHAS_15 288678320
21-PHAS | PHAS_16 54625972
21-PHAS | PHAS_17 141451182
24-PHAS | PHAS_01 73307216
24-PHAS | PHAS_02 14576300
24-PHAS | PHAS_03 210452582
24-PHAS | PHAS_04 7689031
24-PHAS | PHAS_05 162150273

19



https://doi.org/10.1101/2020.09.14.296616
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.14.296616; this version posted September 15, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

24-PHAS | PHAS 06 | 1 185480423
24-PHAS | PHAS_07 | 1 179386787
24-PHAS | PHAS_08 | 1 179381407
24-PHAS | PHAS_ 09| 4 4710308
24-PHAS | PHAS_10| 5 217208612
24-PHAS | PHAS_11| 10 71847137
24-PHAS | PHAS_12| 4 4630713
24-PHAS | PHAS_13| 10 74515334
24-PHAS | PHAS_14| 6 31982093
24-PHAS | PHAS_15| 10 74790963
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FIGURE LEGENDS

Figure 1: Workflow overview of the small RNA library preparation process. The
general workflow is displayed as a vertical linear representation. Each step that is specific

to a kit is displayed as a bubble.

Figure 2: Size distribution of small RNAs mapping to the maize genome. For each
plot, the x axis indicates the sRNA size (in nucleotides) and the y axis indicates the
abundance (in percentage of the total number of reads), for the upper panel and distinct
counts (in percentage of the total number of reads) for the lower panel. A Pre meiotic

anthers, B Meiotic anthers.

Figure 3: Library complexity depends on the method and starting amounts. The x
axis indicates the sample, including the library preparation method and the amount of
RNA used as starting material, and the y axis indicates the number of small RNAs

identified. The samples labeled with a
manufacturer. A miRNAs, B PHAS loci.

used the amount recommended by the

Figure 4: Adapter ligation bias occurs at both ends of the miRNAs. Each bar plot
represents one position of the miRNA. For each plot, the x-axis indicates the library
construction method, and the y-axis indicates the frequency of each nucleotide, in
percentage. The data here represented includes the average of three technical replicates,
using only the manufacturer's recommended starting amount. Composition was plotted

using FastQC output.

Figure 5: PhasiRNA accumulation is extremely variable at the levels of the PHAS
locus, phasiRNAs, and kits. For each plot, the x-axis indicates one cycle number
(corresponding to each mature phasiRNA), and the vy-axis corresponds to the
accumulative abundance in all kits, in reads per ten million (RP10M). For more details,

see Supplemental Figure 4.

Figure 6: PhasiRNA accumulation is extremely variable at the levels of the PHAS
locus, phasiRNAs, and kits. Each bar plot represents one position of the 21- (A) and

24-nt phasiRNAs (B), respectively. For each plot, the x-axis indicates the library
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construction method, and the y-axis indicates the frequency of each nucleotide, in
percentage. The data here represented includes the average of premeiotic and meiotic
anthers, with three technical replicates each. Composition was plotted using FastQC
output. For simplification, only the four first and last positions are represented. For more

details, see Supplemental Figure 5.

Figure 7: The correlation of small RNA abundances is variable across library
construction methods. For each plot, the upper and lower halves (above and below the
diagonal) indicate the percentage of correlation in numeric values and pie charts,
respectively. The upper panels correspond to premeiotic anthers (PMA) and the bottom
panels correspond to meiotic anthers (MA). The name of each sample indicates the
method used for library preparation and the amount of RNA used as starting material. A.
microRNAs and B. PHAS loci.

Figure 8: Differentially accumulated miRNAs of PMA compared to MA were
consistent across most methods. The heatmap included differentially accumulated
miRNAs for each construction method, comparing premeiotic anthers (PMA) to meiotic
anthers (MA). The data represented here includes the average of three technical
replicates, using only the manufacturer's recommended starting amount. Statistically

significant comparisons (p-value < 0,05) are indicated with a “*”.

Figure 9: Identified tRFs are variable in size and origin between methods. Bar plot
showing the size and origin of identified tRNA-derived fragments (tRFs). The x axis
represents the amino acid of origin of each tRF, and the y axis represents the abundance
in reads per million (RPM). The asterisk (x axis) indicates that for scaling purposes,
alanine-derived tRFs are represented in reads per 10 million instead of reads per million.
We also included information of the different sizes of each tRFs (from 19- to 24-nt) in

different colors, as indicated in the color key.

Figure 10: The size and origin of hcsiRNAs is consistent, independently of the
method. Bar plot showing the size and origin of identified heterochromatic siRNAs (hc-
siRNAs). The x axis represents the transposable element (TE) of origin of each hc-siRNA,

and the y axis represents the abundance in reads per million (RPM). We also included
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information on the size of each hc-siRNA (from 21- to 24-nt) in different colors, indicated

in the color key.
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SUPPLEMENTAL FIGURE LEGENDS

Supplemental Figure 1. General mapping statistics of sRNA libraries. A Premeiotic
anther samples. B Meiotic anther samples. The eight boxplots show the sample variation
for the total number of reads, genome mapped reads (in reads per million RPM), and the
abundance (in RPM) of each feature (including miRNAs, PHAS loci, rRNAs, snRNAs &
snoRNAs, transposable elements and tRNAs) for each different library construction
method. For each plot, the x-axis represents the construction methods, and the y-axis

represents the abundance.

Supplemental Figure 2: Overlap miRNA identification for each library method and
RNA input amount. UpSet plots representing the overlap of identified miRNAs for each
library construction and RNA input amount. Labelled in red are the miRNAs that were

identified in all the different conditions. A Premeiotic anthers, B Meiotic anthers.

Supplemental Figure 3: Overlap in miRNA identification for different methods,
comparing different amounts of starting material. Venn diagrams representing the

overlap of identified miRNAs using all the different conditions for each method.

Supplemental Figure 4A: Accumulation profiles of the most abundant 21-nt
phasiRNAs in each method. For each plot, the x-axis indicates one cycle number
(corresponding to each mature phasiRNA), and the y-axis corresponds to the

accumulative abundance in all kits, in reads per ten million (RP10M).

Supplemental Figure 4B: Accumulation profiles of the most abundant 24-nt
phasiRNAs in each method. For each plot, the x-axis indicates one cycle number
(corresponding to each mature phasiRNA), and the y-axis corresponds to the

accumulative abundance in all kits, in reads per ten million (RP10M).

Supplemental Figure 5A: Nucleotide composition of 21-nt phasiRNAs. Each bar plot
represents one position of the 21-nt phasiRNAs. For each plot, the x-axis indicates the
library construction method, and the y-axis indicates the frequency of each nucleotide, in

percentage. The data here represented includes the average of premeiotic and meiotic
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anthers, with three technical replicates each. Composition was plotted using FastQC

output.

Supplemental Figure 5B: Nucleotide composition of 24-nt phasiRNAs. Each bar plot
represents one position of the 24-nt phasiRNAs. For each plot, the x-axis indicates the
library construction method, and the y-axis indicates the frequency of each nucleotide, in
percentage. The data here represented includes the average of premeiotic and meiotic
anthers, with three technical replicates each. Composition was plotted using FastQC

output.
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workflow is displayed as a vertical linear representation. Each step that is specific to a kit is
displayed as a bubble.
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Figure 2: Size distribution of small RNAs mapping to the maize genome. For each plot, the x
axis indicates the sRNA size (in nucleotides) and the y axis indicates the abundance (in
percentage of the total number of reads), for the upper panel and distinct counts (in percentage of
the total number of reads) for the lower panel. A Premeiotic anthers, B Meiotic anthers.
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https://doi.org/10.1101/2020.09.14.296616
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.14.296616; this version posted September 15, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Nucleotide composition in identified mMiRNAs

100 f——f--— II Illl - I N LRl
75
50
i Ill
100 ——= — __—_ — -
9 . . I I .Il . . .l-ll. Base
~ 75
Q N~
o
S 50 c
=
& e
o} 25 I
L I | -
o= S -
CRNOOEX TCEAOOTEX CRNNMOEXY TCEANOOEX TEAOOEX CRNOOTEX ORERNOOEX
$5>,>,3|“-’.5 SESSS8E SESSERE g§>,>,gﬁ.5 SESSZEE £ESS 88 $ES° 88
SZxx=0EJd TZ xx=2EJd TZxx=2Ed TZxx=0Ed TZxx=Ed TZxx=Ed TZxx=0CKJ
MO OSLE CMOOSLE CMOOSLTE CMOO S S Moo SgL s Moo Sg S Mmoo Sg s
FEgE8E” Flcgésr Flge8sr Fligcésr rilge8sr Fllgeésr Fligeésr
Z2xx @ Zxx 0 Z2xx 0 Z2xx 0 Z2xx @ Zxx 0 Z2xx 0
o Wi W W o W W
zz zz zz zz zz zz zz

Figure 4: Adapter ligation bias occurs at both ends of the miRNAs. Each bar plot
represents one position of the miRNA. For each plot, the x-axis indicates the library
construction method, and the y-axis indicates the frequency of each nucleotide, in
percentage. The data here represented includes the average of three technical replicates,
using only the manufacturer's recommended starting amount. Composition was plotted
using FastQC output.
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Figure 5: PhasiRNA accumulation is extremely variable at the levels of the PHAS
locus, phasiRNAs, and kits. For each plot, the x-axis indicates one cycle number
(corresponding to each mature phasiRNA), and the y-axis corresponds to the accumulative
abundance in all kits, in reads per ten million (RP10M). For more details, see
Supplemental Figure 4.


https://doi.org/10.1101/2020.09.14.296616
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.14.296616; this version posted September 15, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

2

T --“I I i

50+

Wl

bl

19

18
100 r——
g e

A 1

4
U

3
IO ‘

20

Frequency (%)

21
II" II|I||||III I
50
ool
0

B 1

|||m|...||\|; i\||||||||m|I i
21 292 23
i ||||III|IIIII|I|

S5 88383 2"P8 §37883°8P8 808 83828 e PR g e
SOLO0OLEL FLOL P OOLO00LOL FLOL B OOLO00LOL FLOL B

4
I

24
T

R
00LO00KL0L FLOL ©

2 3
W]

Frequency (%)

bt 24 < S
TET] | TTETT I
<<§<<<§<§§§“<§Z< §§§<<<é<§5§“<§$< g
i grs grgnr Mrgrrigron grasy s Fra ittt
TLEE P OrE VLA et B AR
FURTEE B IR SRS B o g o
VOZMONX0GN 0L 5T 0oZmoN X0en 0L s Sy © 0200 O X
) 0>05 8Nz c o 0>0>8ZNLOE=C 0 0@ o>0>
$ u E.L ghSPEES o U oelIPEES 00 S w
98 zoxErom2r FI of zwxEx&om y F3 9f o® zmex
N2 TNoxo o = N2 “Noxo wong = N2 N2 TRoxo
- OFlE oS O OFlE © s (2 - ElE
F e = r FoEE
- » - 2 o -
6 2z 6 Bz b 6 2z
2 3 2 3 3 2§
= F = F e
5 5 i
z z  Method z

Nucleotide [l A c W BT

Figure 6: PhasiRNA accumulation is extremely variable at the levels of the PHAS
locus, phasiRNAs, and kits. Each bar plot represents one position of the 21- (A) and
24-nt phasiRNAs (B), respectively. For each plot, the x-axis indicates the library
construction method, and the y-axis indicates the frequency of each nucleotide, in
percentage. The data here represented includes the average of premeiotic and meiotic
anthers, with three technical replicates each. Composition was plotted using FastQC
output. For simplification, only the four first and last positions are represented. For more
details, see Supplemental Figure 5.
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Figure 7: The correlation of small RNA abundances is variable across library
construction methods. For each plot, the upper and lower halves (above and below the
diagonal) indicate the percentage of correlation in numeric values and pie charts,
respectively. The upper panels correspond to premeiotic anthers (PMA) and the bottom
panels correspond to meiotic anthers (MA). The name of each sample indicates the method
used for library preparation and the amount of RNA used as starting material. A. microRNAs
and B. PHAS loci.
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Figure 8: Differentially accumulated miRNAs of PMA compared to MA were
consistent across most methods. The heatmap included differentially accumulated
miRNAs for each construction method, comparing premeiotic anthers (PMA) to meiotic
anthers (MA). The data represented here includes the average of three technical
replicates, using only the manufacturer's recommended starting amount. Statistically
significant comparisons (p-value < 0,05) are indicated with an asterisk.


https://doi.org/10.1101/2020.09.14.296616
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.14.296616; this version posted September 15, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

TruSeq NEBNext NEBNext NEXTflex_v2 | | NEXTflex_v3
1000ng 1ng 1000ng 1000ng 1ng
40001
30001
20001
1000 1
0_!.,._-;._,_..-_-- -l B o la =B E m W ,I__I,-, PRl F!_!-_ o -!._- i I [ INFSRENR] IRRFYAEN |
NEXTflex_v3 RealSeq RealSeq RealSeq SMARTer
1000ng 1ng 10ng 100ng 1ng
4000+
s
£ 3000
3
& 2000
e
c
3
< 1000
0_!__1_,!_,, W | e W N |l__- ERRENIN " I 'REN I!___ ] e W e Il___ INRARIN TAFS IFTARANNNAFINRRARR]
SMARTer TriLink TriLink TriLink e = 5
1000ng 1ng 10ng 1000ng
4000
30001 Size
19nt
2000+ 20nt
B 2t
1000+ B 2
B 2
oM smma  _ w W eE ol B INREPRCN TRRAMYI N TN IR A . 24nt

tRNA superfamily

Figure 9: Identified tRFs are variable in size and origin between methods. Bar plot
showing the size and origin of identified tRNA-derived fragments (tRFs). The x axis
represents the amino acid of origin of each tRF, and the y axis represents the abundance in
reads per million (RPM). The asterisk (x axis) indicates that for scaling purposes, alanine-
derived tRFs are represented in reads per 10 million instead of reads per million. We also
included information of the different sizes of each tRFs (from 19- to 24-nt) in different colors,
as indicated in the color key.
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Figure 10: The size and origin of hcsiRNAs is consistent, independently of the
method. Bar plot showing the size and origin of identified heterochromatic siRNAs (hc-
siRNAs). The x axis represents the transposable element (TE) of origin of each hc-siRNA,
and the y axis represents the abundance in reads per million (RPM). We also included
information on the size of each hc-siRNA (from 21- to 24-nt) in different colors, indicated in
the color key.
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Supplemental Figure 1. General mapping statistics of sRNA libraries. A Premeiotic anther
samples. B Meiotic anther samples. The eight boxplots show the sample variation for the total
number of reads, genome mapped reads (in reads per million RPM), and the abundance (in
RPM) of each feature (including miRNAs, PHAS loci, rRNAs, snRNAs & snoRNAs, transposable
elements and tRNAs) for each different library construction method. For each plot, the x-axis
represents the construction methods, and the y-axis represents the abundance.
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Supplemental Figure 2. Overlap miRNA identification for each library method and
RNA input amount. UpSet plots representing the overlap of identified miRNAs for each
library construction and RNA input amount. Labelled in red are the miRNAs that were
identified in all the different conditions. A Pre-meiotic anthers, B Meiotic anthers.
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Supplemental Figure 3. Overlap in miRNA identification for different methods, comparing
different amounts of starting material. Venn diagrams representing the overlap of identified
miRNAs using all the different conditions for each method.
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Supplemental Figure 4A. Accumulation profiles of the most abundant 21-nt
phasiRNAs in each kit. For each plot, the x-axis indicates one cycle number
(corresponding to each mature phasiRNA), and the y-axis corresponds to the accumulative
abundance in all kits, in reads per ten million (RP10M).
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Supplemental Figure 4B. Accumulation profiles of the most abundant 24-nt
phasiRNAs in each kit. For each plot, the x-axis indicates one cycle number
(corresponding to each mature phasiRNA), and the y-axis corresponds to the
accumulative abundance in all kits, in reads per ten million (RP10M).
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Supplemental Figure 5A. Nucleotide composition of 21-nt phasiRNAs. Each bar
plot represents one position of the 21-nt phasiRNAs. For each plot, the x-axis
indicates the library construction method, and the y-axis indicates the frequency of
each nucleotide, in percentage. The data here represented includes the average of
premeiotic and meiotic anthers, with three technical replicates each. Composition was
plotted using FastQC output.
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Supplemental Figure 5B. Nucleotide composition of 24-nt phasiRNAs. Each bar plot
represents one position of the 24-nt phasiRNAs. For each plot, the x-axis indicates the
library construction method, and the y-axis indicates the frequency of each nucleotide, in
percentage. The data here represented includes the average of premeiotic and meiotic
anthers, with three technical replicates each. Composition was plotted using FastQC
output.
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Supplemental Methods

Library preparation details

lllumina - TruSeq Small RNA Library Preparation Kit

This kit takes advantage of the natural structure of miRNAs, which have a 5’-phosphate and a 3'-
hydroxyl group originated after processing of the precursor miRNAs. In summary, the protocol is
based on the ligation of adapters to the 3’ and 5’ ends, respectively, followed by the synthesis of
the first strand and PCR amplification with addition of barcodes allowing for multiplexing. For this
kit, two amounts of input RNA were used: 1 ug of total RNA was used directly, and 2 ug of total
RNA were used for 20 to 30 nt small RNA size selection on a 15% Urea TBE Polyacrylamide gel
(Supplemental Table 1) as described previously (14). Thirteen PCR cycles were used for both

RNA input amounts. The final cDNA libraries were size selected on 6% PAGE gels.

Somagenics - RealSeq™ miRNA Library Kit

This kit uses a single adapter-based approach with subsequent circularization, to reduce
incorporation bias. Three amounts of input RNA were used: 100 ng, 10 ng and 1 ng of total RNA
was used directly. The libraries were PCR amplified with 13, 16 and 19 cycles, respectively and

were size selected on 6% PAGE gels.

Bioo Scientific - NEXTflex™ Small RNA-seq v2 and v3 Kits

This kit uses an adapter-based approach in which adapters with randomized bases at the ligation
junctions are used to reduce ligation-associated bias. For the NEXTflex™ v2 kit, two amounts of
input RNA were used: 1 ug of total RNA was used directly, and 2 ug of total RNA were used for
20-30 nt sRNA size selection on a 15% Urea TBE Polyacrylamide gel (Supplemental Table 1).
The libraries were PCR amplified with 18 and 12 cycles, respectively, and both were size selected
on 6% PAGE gels. For the NEXTflex™ v3, two amounts of input RNA were used: 1 ng and 1 ug
of total RNA were used directly for library construction. The libraries were PCR amplified with 25
and 12 cycles, respectively. The libraries constructed with the 1 ng total RNA were size selected
on 6% PAGE gels, and those prepared with 1 yg were size selected using the NEXTflex™

Cleanup Beads.
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TriLink Biotechnologies - CleanTag™ Small RNA Library Prep Kit

This kit uses chemically modified adapters for reduced formation of adapter dimers. For this Kkit,
three amounts of input RNA were used: 1 ng, 10 ng, and 1 yg (Supplemental Table 1). The small
RNA library preparation was performed following the manufacturer’s protocol. The libraries were
PCR amplified with 21, 18, and 12 cycles, respectively. The final libraries were size selected using
AMPure XP Purification Beads (Beckman Coulter, cat. # A63881) following the manufacturer’s

protocol.

New England BioLabs (NEB) - NEBNext® Small RNA Library Prep Kit

In this kit, the 3’ adapter ligation to small RNAs is followed by a step to anneal the primer for
reverse transcription. After this step, 5 adapter ligation occurs, followed by the reverse
transcription and final PCR amplification. Two total RNA input amounts were tested with this Kkit,
1 ng and 1 ug. Although the lowest input amount recommended by the manufacturer is 100 ng,
for comparison purposes, we tested 1 ng of total RNA as the lowest input amount for this kit. The
final libraries were size selected using AMPure XP Purification Beads (Beckman Coulter, cat. #

A63881) as per the manufacturer’s instructions.

Clontech - SMARTer smRNA-Seq Kit

This kit uses the Clontech’s proprietary SMART (switching mechanism at the 5 end of RNA
template) technology, which first polyadenylates small RNAs, and then followed by ligation-free
steps, adds the oligo dT primer containing the 3’ adapter. When the specific reverse transcriptase
reaches the 5’ end of each template, it adds non-template nucleotides (usually three nucleotides)
which are bound by an LNA oligo (SMART smRNA Oligo). Then, when the reverse transcriptase
switches the template, it uses the LNA oligo as template to add the 5’ adapter. Indexes are added
in the next step when the final library is PCR amplified. The total RNA input amounts tested for
this kit are 1 ng and 1 ug (Supplemental Table 1). The number of PCR cycles used for each total
RNA input amount tested was 17 and 8 cycles, respectively. The final libraries were size selected
using AMPure XP Purification Beads (Beckman Coulter, cat. # A63881) as per the manufacturer’s

instructions.
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