

1 **Title: Tripartite holobiont system in a vent snail broadens the concept of chemosymbiosis**

2 **Authors:**

3 Yi Yang¹, Jin Sun¹, Chong Chen², Yadong Zhou³, Yi Lan¹, Cindy Lee Van Dover⁴, Chunsheng
4 Wang^{3,5}, Jian-Wen Qiu⁶, Pei-Yuan Qian^{1*}

5 **Affiliations:**

6 ¹ Department of Ocean Science, Division of Life Science and Hong Kong Branch of the
7 Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong
8 Kong University of Science and Technology, Hong Kong, China

9 ² X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15
10 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan

11 ³ Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry
12 of Natural Resources, Hangzhou, China

13 ⁴ Division of Marine Science and Conservation, Nicholas School of the Environment, Duke
14 University, Beaufort, NC, United States

15 ⁵ School of Oceanography, Shanghai Jiao Tong University, Shanghai, China

16 ⁶ Department of Biology, Hong Kong Baptist University, Hong Kong, China

17 **Correspondence to:**

18 Pei-Yuan Qian: boqianpy@ust.hk

19 **Abstract**

20 Many animals inhabiting deep-sea vents are energetically dependent on chemosynthetic
21 endosymbionts, but how such symbiont community interacts with host, and whether other
22 nutritional sources are available to such animals remain unclear. To reveal the genomic basis of
23 symbiosis in the vent snail *Alviniconcha marisindica*, we sequenced high-quality genomes of the
24 host and gill campylobacterial endosymbionts, as well as metagenome of the gut microbiome.
25 The gill endosymbiont has a streamlined genome for efficient chemoautotrophy, but also shows
26 metabolic heterogeneity among populations. Inter- and intra-host variabilities among
27 endosymbiont populations indicate the host poses low selection on gill endosymbionts. Virulence
28 factors and genomic plasticity of the endosymbiont provide advantages for cooperating with host
29 immunity to maintain mutualism and thriving in changing environments. In addition to
30 endosymbiosis, the gut and its microbiome expand the holobiont's utilisation of energy sources.
31 Host-microbiota mutualism contributes to a highly flexible holobiont that can excel in various
32 extreme environments.

33 **Introduction**

34 Since the discovery of deep-sea hydrothermal vents in 1977, many intricate symbioses have been
35 reported between vent-endemic animals and chemoautotrophic microbes. While some
36 crustaceans such as the shrimp *Rimicaris exoculata* (Durand et al., 2015; Petersen et al., 2010)
37 and the squat lobster *Shinkaia crosnieri* (Watsuji et al., 2015) rely on ectosymbionts living on
38 their gills or their chaetae for nutrients, annelids in the family Siboglinidae (Dubilier et al., 2008)
39 and molluscs in several families such as Vesicomyidae and Mytilidae (Dubilier et al., 2008) host
40 endosymbiotic microbes in their bacteriocytes. Due to their intimate relationships with
41 endosymbionts, it is generally accepted that in endosymbiosis the host relies entirely on
42 symbionts for nutrition (Childress and Girguis, 2011; Dubilier et al., 2008).

43

44 *Alviniconcha* is a genus of chemosymbiotic provannid vent snails, with five species distributed in
45 the Pacific Ocean and one in the Indian Ocean (Johnson et al., 2015). Among genera in the
46 superfamily Abyssochrysoidea and those currently assigned to family Provannidae, only
47 *Alviniconcha* and its sister genus *Ifremeria* that live in hydrothermal vents harbour
48 endosymbionts in the gill epithelia (Beinart et al., 2019). Five species of *Alviniconcha* have been
49 reported – four from the Pacific Ocean and one from the Indian Ocean (Johnson et al., 2015).
50 The *Alviniconcha* species from the South Pacific are known to harbour both chemoautotrophic
51 Gammaproteobacteria and Campylobacteria in its gills (Beinart et al., 2019), with the
52 endosymbiont type and relative abundance varying with differences in vent fluid geochemistry
53 (Beinart et al., 2012; Sanders et al., 2013). In contrast, *A. marisindica* from vent fields on the
54 Central Indian Ridge (CIR) hosts a single ribotype of Campylobacterota endosymbionts
55 (Miyazaki et al., 2020). Campylobacterota are abundant in vent habitats and also live as
56 ectosymbionts on polychaete worms, molluscs, and crustaceans (Assié et al., 2016; Campbell et
57 al., 2006; Goffredi, 2010; Watsuji et al., 2015), but do not commonly assume the role of
58 intracellular symbionts. Campylobacterota are capable of oxidising sulfur, formate, and
59 hydrogen to produce energy (Beinart et al., 2019; Miyazaki et al., 2020; Takai et al., 2005), and
60 mostly rely on the reductive tricarboxylic acid cycle (rTCA) for carbon fixation with the
61 exception of a bathymodiolin mussel epibiont possessing a complete Calvin–Benson–Bassham
62 (CBB) cycle (Assié et al., 2020). Depending on the abundance of hydrogen and hydrogen sulfide,

63 the Campylobacterota endosymbiont of *A. marisindica* is capable of shifting between these
64 reduced compounds as its main energy source (Miyazaki et al., 2020).

65

66 Unlike siboglinid tubeworms and clam *Solemya reidi* that have lost their gut (Dubilier et al.,
67 2008), *Alviniconcha* species retained theirs, albeit a much reduced one (Warèn and Bouchet,
68 1993). Dissection revealed soft biogenic substances and mineral grains inside the snail gut,
69 indicating it is functionally active (Suzuki et al., 2005). As *Alviniconcha* hosts endosymbionts in
70 the gill and has a previously overlooked functional gut, it serves as a good model system to tease
71 out the complex host-microbiota interactions that are key to our understanding of the adaptations
72 of these animals to the extreme environments in the deep ocean (McFall-Ngai et al., 2013). Here,
73 we report comprehensive analyses of the holobiont of *Alviniconcha marisindica* from a newly
74 discovered northern Indian Ocean population (Zhou et al., 2019). Through analysing the
75 symbiont genome and transcriptome, we aim to unravel the chemoautotrophic metabolism of the
76 symbionts and their machinery for interaction with host, whether such symbiont populations
77 contain streamlined and heterogeneous genomes that may enable them to utilise diverse
78 substrates effectively, and how genomic plasticity of such populations provide advantages for
79 thriving in their deep-sea habitat and interacting with host to establish symbiosis. Through
80 analysing the host genome and transcriptome, we aim to understand how the host cooperates
81 with symbionts to maintain mutualism and how the host's innate immunity has been remodelled
82 to support the symbiosis. We also test the hypothesis that the gut and its microbiome are likely to
83 provide nutrients that supplement the nutrition provided by the endosymbionts. Through
84 dissecting the complex relations among the host, gill endosymbiont and gut microbiome, our
85 study refine the holobiont concept in chemosymbiotic ecosystems which have enabled many
86 animals to thrive in the extreme hydrothermal vent environments.

87

88 **Results**

89 ***Hologenome assembly and characterisation***

90 The genome of the snail *Alviniconcha marisindica*, sequenced using a hybrid approach, is 829.61
91 Mb in length (N50 = 727.6 kb, genome completeness 96.5%) (Supplementary Table S1 and S2)
92 with 21,456 predicted gene models (79.5% comparatively annotated) (Supplementary Figure
93 S1). Comparative analyses among available lophotrochozoan genomes (n = 26; Figure 1A)

94 reveal a lack of obvious gene family expansion in the *A. marisindica* genome. The *A.*
95 *marisindica* genome encodes 737 unique gene families (6.8%; Figure 1B) when compared with
96 the genomes of a freshwater snail, a vent-endemic chemosymbiont hosting snail in a distant
97 clade, and a scallop. Analyses of these unique genes reveal an enrichment of genes related to
98 oxidoreductases, hydrolases, endocytosis, transporters, and signal transduction (Supplementary
99 Figure S2 A and B). Among the annotated genes, those involved in immune response, substrate
100 transportation, macromolecular digestion, and absorption are highly expressed in the intestinal
101 tissue (Supplementary Figure S2C), indicating active functioning of the *A. marisindica* gut.
102

103 Sequencing a bacterial 16S rRNA gene clone library from the gill tissue revealed over 99%
104 sequence similarity among the clones, confirming the presence of a single endosymbiont
105 phylotype in the bacteriocytes. The campylobacterotal endosymbiont genome is 1.47 Mb in
106 length, located in two scaffolds (98.16% completeness, 0.82% contamination) with 1,429
107 predicted genes, among which 92.65% were successfully annotated (Figure 2A, Supplementary
108 Figure S3A). The campylobacterotal endosymbiont genome, here named *Sulfurovum*
109 *alviniconcha* CR, possesses fewer coding sequences than other available whole genomes within
110 the phylum (Figure 3), but has the highest coding density (97.0%, Table 1) and minimal loss-of-
111 function mutations (Figure 4A), and similar average lengths in coding regions (Supplementary
112 Figure S4A). There are almost no flagellar or chemotaxis genes in this endosymbiont genome.
113 When compared with its four Campylobacterota close relatives (Table 1), *Sulfurovum*
114 *alviniconcha* CR lacks many cell envelope biogenesis and non-essential metabolic genes. For
115 example, genes involved in capsular polysaccharides biogenesis (*cps*), and genes involved in
116 partial Citrate cycle (*ace* and *DLAT*) which is one of the optional from pyruvate to aceyl-coA are
117 missing. *Sulfurovum alviniconcha* CR and its pathogenic relatives lack many DNA-repair genes
118 (Supplementary Figure S5) that will lead to frequent gene loss, mutation, and recombination
119 (Kang and Blaser, 2006; Monack et al., 2004). Nevertheless, *Sulfurovum alviniconcha* CR
120 genome contains 180 unique orthologues when compared with its four Campylobacterota close
121 relatives (Table 1, Figure 4B), including those involved in cell wall/membrane/envelope
122 biogenesis that modify the bacterial surface for immune evasion (e.g. *eptA*), enzymes related to
123 oxidoreductases and translocases that promote energy production and conversion in the
124 endosymbiont (e.g. *putA*), and extracellular proteases secretion enhancing bacterial virulence

125 factors that associated with symbiotic interactions (e.g. *aprE* and *pulD*) (Supplementary Figure
126 S4 B and C). In addition, *Sulfurovum alviniconcha* CR shares many virulence genes with its non-
127 pathogenic (*Sulfurovum* species) and pathogenic (*Helicobacter* and *Campylobacter* species)
128 Campylobacterota relatives, such as bacterial virulence factors haemolysin and MviN/MurJ,
129 intracellular invasion CiaB, and N-linked glycosylation (NLG) with vital roles in infectivity.
130

131 In contrast to harbouring only one dominant phylotype of endosymbiont in the gill, the *A.*
132 *marisindica* gut contains diverse microbiota. Analyses of guts from three snail individuals reveal
133 169 microbial genera from 38 phyla, with a different composition and relative abundance
134 compared to those in gastropods that do not rely energetically on endosymbionts (Aronson et al.,
135 2016; Li et al., 2019). For example, the dominant genus in gut microbes of *A. marisindica* is
136 *Sulfurovum* (Supplementary Figure S3B) – a genus of chemoautotrophic Campylobacterota.
137 *Sulfurovum* is a minor community in the gut of deep-sea bone-eating snail *Rubyspira osteovora*
138 (Aronson et al., 2016) and it is rare in the gut of fresh-water polyphagous snail *Pomacea*
139 *canaliculata* (Li et al., 2019). The multi-taxa associations of gut microbiome in *A. marisindica*
140 exhibit a significant non-random co-occurrence pattern (Figure 2B), indicating the effects of the
141 intestinal microenvironment in shaping microbial community composition. Especially, lactic
142 acid bacteria, vital for maintaining the gut ecological balance (Koleva et al., 2014), account for at
143 least ~2.7% of gut microbes in *A. marisindica*, also shows that the gut microbiome is not
144 contaminants even if they are in low density (2.61–5.57%) in *A. marisindica* (Supplementary
145 Figure S6).

146

147 ***Diversity and metabolism of the gill endosymbiont***

148 Sequencing 23 isolates from 13 host snails (Table 2) reveals a *Sulfurovum alviniconcha* CR core-
149 campylobacterotal genome with 1,001 shared gene families (51.8–73.0% of the predicted
150 orthologues per isolate genome). Thiosulfate oxidation, oxygen reduction, and key reverse TCA
151 cycle genes are present in the core-genome. Each isolate represents a subpopulation, the pan-
152 genome of 23 subpopulations contains 2,783 orthologues, of which 1,475 are isolate-specific,
153 and exhibit high metabolic flexibility, especially along the chemoautotrophic pathways of sulfur
154 metabolism, hydrogen oxidation, and carbon fixation (Supplementary Figure S7). For example,
155 the pan-genome contains hydrogen oxidation genes (*hydABCDE* gene cluster), nitrate reduction

156 genes (*napA* and *napD*), and genes involved in hydrogen sulfide utilisation (*metZ*, catalyses the
157 formation of L-homocysteine from O-succinyl-L-homoserine and hydrogen sulfide). Principal
158 component and phylogenomic analyses on 941 shared single-copy orthologues of 23 isolates
159 show that *Sulfurovum alviniconcha* CR are not clustered by their host individuals
160 (Supplementary Figure S8). Among 23 isolates, selecting 20 isolates from the anterior and
161 posterior gills of 10 host snails (Table 2), 20 *Sulfurovum alviniconcha* CR genomes are obtained
162 with a total of 190 genomic average nucleotide identity (ANI) values ranging from 98.5% to 99.7%
163 (Figure 4C). Nevertheless, these isolates belong to the same phylotype but have 28,448 single-
164 nucleotide polymorphisms (SNPs) among them, indicating a high genetic diversity. Based on the
165 results of genomic ANI and phylogenomic analysis of SNPs, the 20 endosymbiont isolates are
166 classified into five types (Figure 4C) in a panmictic state among the 10 snails, showing that each
167 snail hosts genetically diverse endosymbionts and with different types.

168
169 Analysis of the core metabolic genes of *Sulfurovum alviniconcha* CR genome reveals its
170 chemolithoautotroph capability, especially in anaerobic oxidation of thiosulfate (*sox* genes), but
171 it lacks the sulfide oxidation pathway as indicated by the lack of genes in the *dsrAB* complex.
172 The *sox* multi-enzyme system allows generation of energy from thiosulfate oxidation, and *soxX*-
173 *soxY-soxZ-soxA-soxB* genes are highly expressed (among the top 150) in *Sulfurovum*
174 *alviniconcha* CR (Supplementary Figure S9A). The absence of a sulfate/thiosulfate transporter in
175 *Sulfurovum alviniconcha* CR genome indicates that it can only use thiosulfate from endogenous
176 organic sulfur compounds (Figure 5). A previous study shows the gill tissue of *A. marisindica*
177 from the Kairei hydrothermal site actively consumed environmental sulfide (Miyazaki et al.,
178 2020), which is consistent with *sqr* (25th in transcriptome, Supplementary Figure S9A) and *cysK*
179 genes in the *Sulfurovum alviniconcha* CR genome involving in the conversion of sulfide to
180 polysulfides. In addition, *Sulfurovum alviniconcha* CR lacks the sulfur globule protein genes
181 (*sgp*) for intracellular sulfur storage, indicating this endosymbiont might dependent on
182 intracellular polysulfides for sulfur storage.

183
184 **Host-microbe syntrophic interactions**
185 The tripartite *A. marisindica* holobiont is supported by their tight metabolic complementarity
186 (Figure 5). Both *Sulfurovum alviniconcha* CR and the gut microbiome of the Wocan *A.*

187 *marisindica* possess typical metabolic pathways for synthesising carbohydrates, amino acids, and
188 vitamins/cofactors and transporters for supplying these to the host. *Sulfurovum alviniconcha* CR
189 uses the rTCA cycle to fix carbon and synthesises 20 amino acids and 4 vitamins/cofactors
190 (Supplementary Figure S10A). The gut microbiome as a whole possess biosynthetic pathways
191 for 10 amino acids and 4 vitamins (Supplementary Figure S10A), among them all of the 10
192 amino acids and 2 of the vitamins are shared with *Sulfurovum alviniconcha* CR, but the vitamins
193 thiamine and nicotinate (and its derivative nicotinamide) are unique to the gut microbiome. Four
194 amino acids and eight vitamins/cofactors cannot be synthesised *de novo* by either the symbiont
195 system alone (Supplementary Figure S10B) and their production requires the complementary
196 metabolic pathways of the host and symbionts to collaborate. For example, only *Sulfurovum*
197 *alviniconcha* CR is capable of synthesising tryptophan yet it lacks genes for tryptophan
198 metabolism, whereas the host genome contains the full tryptophan metabolic pathway from
199 tryptophan to quinolinate. The host is further able to use quinolinate as a principal precursor to
200 synthesise nicotinate and nicotinamide (vitamin B3) (Figure 5). Neither the host nor *Sulfurovum*
201 *alviniconcha* CR alone can synthesise thiamine (vitamin B1), and the host lacks the thiamine
202 transporter (*THTR*) for absorbing thiamine extracellularly. However, *Sulfurovum alviniconcha*
203 CR can produce the thiamine phosphate precursor and pass it to the host. Thiamine is then
204 synthesised as indicated by the highly expressed *PHO* that catalysing the conversion of thiamine
205 phosphate to thiamine in the gill (Figure 5 and Supplementary Figure S9B). Similarly, the host
206 cannot synthesise pantothenate but can obtain it from *Sulfurovum alviniconcha* CR in order to
207 synthesise coenzyme A (Figure 5). Fatty acids (FAs) are essential nutrients required by most
208 animals (Pranal et al., 1996). Holo-[carboxylase] serves as a biotin carrier protein and is essential
209 in the biosynthesis of fatty acids in *A. marisindica*. Since only *Sulfurovum alviniconcha* CR can
210 synthesise biotin (Supplementary Figure S10A), *A. marisindica* likely uses biotin derived from
211 its endosymbionts *Sulfurovum alviniconcha* CR. Although *Sulfurovum alviniconcha* CR only
212 possess biosynthetic pathways for saturated FA precursors (Figure 5), they may provide these
213 precursors to the host, which can continue the FA biosynthesis by using the genes *MCH* and
214 *fasN*, both of which are highly expressed in the gills (Figure 5 and Supplementary Figure S9B).
215
216 Neither *Sulfurovum alviniconcha* CR nor gut microbiome alone are able to generate all nutrients
217 needed by the host (Supplementary Figure S10B). For example, the host expresses highly active

218 pathways of pancreatic secretion and bile secretion in addition to metabolic pathways of folate
219 and octadecanoic acid (Figure 5 and Supplementary Figure S9B), among other nutrients that
220 cannot be synthesised by the host or endosymbiont. Numerous genes responsible for key
221 hydrolases that are responsible for breaking down macromolecules, and specialised transport
222 proteins are highly expressed and enriched in the intestine (Supplementary Figure S2C, S11A
223 and S12A). In addition, the gut microbial enzymes include hydrolases (30.6–34.7%) (Dataset
224 S1), transferases (26.7–28.2%), and oxidoreductases (9.6–17.4%). Large amounts of multi-
225 exohydrolase complexes in gut microbiome may promote the host's intestinal nutrient digestion
226 (Supplementary Figure S9C, Table S3). For example, lactic acid bacteria (LAB) in the gut are
227 found to possess a major facilitator, sugar transporters and enzymes for utilising large
228 carbohydrate molecules. The gut microbiome even encodes additional enzymes such as
229 oligoendopeptidase F (*pepF1*) and alginate lyase (*algL*) that can enhance digestion. Importantly,
230 *Campylobacterota* in the gut are chemoautotrophic and found to encode the Sox system and
231 [NiFe]-hydrogenases, and fix carbon with a complete rTCA cycle (Figure 5).

232

233 ***Strategies of symbiosis maintenance***

234 *Sulfurovum alviniconcha* CR lacks genes to assemble surface layer proteins (SLPs) or capsular
235 polysaccharides (CPs). Nevertheless, *Sulfurovum alviniconcha* CR encodes and actively
236 expresses transmembrane signalling receptors, lipid A and its modification (Supplementary
237 Figure S11B). *Sulfurovum alviniconcha* CR does not encode putative virulence-related proteins
238 (*pag*) for Cationic antimicrobial peptides (CAMPs) resistance, but its genome harbours the *eptA*
239 gene (Supplementary Figure S11B) involving in bacterial surface charge modification. In
240 addition, genes encoding various proteases (e.g. subtilisin-like serine proteases) and the type II
241 secretion system (T2SS) are highly expressed in *Sulfurovum alviniconcha* CR (Supplementary
242 Figure S11B), along with Sec and Tat secretory pathways. On the other hand, genes involved in
243 the assembly of bacterial cloaks (CP, SLP), lipopolysaccharide (LPS), and other surface-
244 associated antigens responsible for bacterial adhesion to the intestinal epithelium and activating
245 the complement system (Sára and Sleytr, 2000; Futoma-Koloch, 2016) are found in the gut
246 microbiome. Surface-layer glycoprotein variation in the gut microbiome is evident from the
247 differential expression of S-layer genes, a type of antigenic variation responding to the lytic
248 activity of the host immune system (Supplementary Figure S11B). In the gut microbiome of A.

249 *marisindica*, genes encoding for sialate O-acetylesterase (SIAE) are highly expressed
250 (Supplementary Figure S9C), which indicate their active sialic acid degradation in the gut.
251
252 The host immune system responds differently to *Sulfurovum alviniconcha* CR and the gut
253 microbiome. The gills harbour a much higher abundance of bacteria than the gut (Supplementary
254 Figure S6), but with weaker host immune responses (Figure 6A). Pattern recognition receptors
255 (PRRs) are essential in the host's innate immune system. They can be divided into membrane-
256 bound PRRs and cytoplasmic PRRs. Genes encoding membrane-bound C-type lectin receptors
257 (CLRs) and cytoplasmic RIG-I-like receptors (RLRs) are more active in the intestine than in the
258 gills of host invertebrates (Figure 6A). Toll-like receptors (TLRs) recognise structurally
259 conserved molecules derived from microbes and activate immune responses. Genes encoding an
260 endosomal TLR13 are highly expressed in the gill tissue, similar to the finding in the symbiont-
261 hosting gills of the vent mussel *Bathymodiolus platifrons* (Sun et al., 2017). In the gut, however,
262 membrane-bound TLR2 and TLR6 are more active (Figure 6A). Once the host recognises the
263 symbionts, the gut and gills take different approaches to deal with the invading symbionts. In the
264 gut tissue of *A. marisindica*, the component cascade is activated as indicated by the highly
265 expressed complement component 1 complex (C1) and complement C3 (C3) (Figure 6A and
266 6B). In the gill tissue, genes encoding the signal repressor NF- κ B1 (*NFKB1*), negative regulators
267 (NF- κ B inhibitor zeta (*NFKBIZ*)), and TNFAIP3-interacting protein 1 (*TNIP1*) of NF- κ B
268 response, all of which involved in attenuation of NF- κ B, are highly expressed (Figure 6A).
269 Genes encoding four members of the GiMAP gene family are also highly expressed in the gill
270 tissue (Figure 6A). In addition, genes involved in TNF signalling, the MyD88-independent TLR
271 signalling pathway, and leukocyte differentiation, which related to antimicrobial activity, are
272 enriched in the gills (Supplementary Figure S12B).
273

274 **Discussion**

275 *Sulfurovum alviniconcha* CR has a relatively compact (1.47-Mbp) and streamlined genome. As
276 maintaining the symbionts involves costs (Douglas and Smith, 1983; Meyer and Weis, 2012), the
277 host may prefer a cellularly economised symbiont genome for energetic efficiency (Nicks and
278 Rahn-Lee, 2017). A small endosymbiont genome may also enhance growth efficiency and
279 intracellular competitiveness (Moran, 2002). *Sulfurovum alviniconcha* CR lacks most flagellar or

280 chemotaxis genes like its Campylobacterota close relatives from deep-sea sediments (Inagaki et
281 al., 2004) and mounds (Nakagawa et al., 2007), whereas the Campylobacterota endosymbionts of
282 *Alviniconcha boucheti* from Kilo Moana vent field at the Eastern Lau Spreading Centre has
283 complete flagellar genes but no genes for the chemotactic signaling system (Beinart et al., 2019).
284 The Campylobacterota endosymbionts of *Alviniconcha boucheti* are thought to be motile at free-
285 living stage and such motility machinery could be used for finding a host. In this case, the non-
286 motile *Sulfurovum alviniconcha* CR has a different machinery for adhesion to or interaction with
287 *Alviniconcha marisindica*. Several symbioses have shown that motility and chemotaxis are not
288 indispensable for recruiting symbionts from the environment, for example, some non-motile
289 sulfate-reducing bacteria and methane-producing archaea in marine sediments use adhesins to
290 colonise their host (Orphan et al., 2001; Raina et al., 2019). In addition, low-fidelity repair in the
291 *Sulfurovum alviniconcha* CR genome increase its mutagenic potential, and such genomic
292 plasticity has been found in human/animal pathogenic Campylobacterota (Kang and Blaser,
293 2006; Monack et al., 2004) and deep-sea vent Campylobacterota (Nakagawa et al., 2007),
294 leading to micro-diversity increase that confers a competitive advantages enabling bacteria
295 persist in infections (Kang and Blaser, 2006; Monack et al., 2004) or thriving in ever-changing
296 environments such as deep-sea vents (Nakagawa et al., 2005; Nakagawa et al., 2007). The
297 *Sulfurovum alviniconcha* CR genome has the core of virulence for important animal pathogens,
298 indicating its infectivity. Even if the *Sulfurovum alviniconcha* CR genome lacks many genes, it
299 shows the ability to face with a changing environment, infect the animal host and survive
300 intracellularly.

301
302 The host selectivity of endosymbionts in *Alviniconcha* snails is low when compared to other
303 chemosymbiotic animals such as tubeworms (Beinart et al., 2012; Beinart et al., 2019; Yang et
304 al., 2020) which may harbour a high diversity (even multiple classes) of endosymbionts with
305 different types of metabolism within a single host (Beinart et al., 2012). This probably reflects
306 the combined effect of environment selectivity on the available phylotypes and differences in
307 vent fluid chemistry (Wang et al., 2017). A rarely discussed anatomical characteristic of the gill
308 endosymbionts in the *Alviniconcha* species is that these endosymbionts residing inside
309 bacteriocytes are present in a state between truly intracellular and extracellular (Endow and Ohta,
310 1989). Electron microscopy revealed that the vacuoles in bacteriocytes housing the

311 endosymbionts are exposed to the ambient seawater through duct-like openings (Endow and
312 Ohta, 1989). Considering the aggregated distribution of symbionts near the more exposed, outer
313 surface of the bacteriocytes, the *Alviniconcha* gill symbionts are in a ‘semi-endosymbiotic’
314 condition (Windoffer and Giere, 1997), which likely provides *Alviniconcha* snails with the
315 ability to exchange or reacquire gill symbionts according to the local habitat and environment
316 selectivity through the endocytosis of free-living bacteria. Such ‘semi-endosymbiotic’ condition
317 provides gill endosymbiont populations with heterogeneous genomes regarding metabolic genes
318 along the chemoautotrophic pathways that may enable the utilisation of diverse substrates.
319 *Sulfurovum alviniconcha* CR is capable of anaerobically oxidising thiosulfate and hydrogen. The
320 environmental sulfide is converted to polysulfides in *Sulfurovum alviniconcha* CR and then
321 bacterial organic polysulfides such as sulfur-containing amino acids are degraded to produce
322 intracellular thiosulfate for oxidation to produce cellular energy (Figure 5). This method of
323 sulfide utilisation and storage is different from those seen in many deep-sea holobionts such as in
324 siboglinid tubeworms, where the host haemoglobin binds to and transports the sulfides to
325 endosymbionts for direct oxidation or storage in bacterial sulfur globule proteins (Yang et al.,
326 2020), and in *Bathymodiolus* mussels, where the host oxidise sulfides and provide a reservoir of
327 thiosulfate for the endosymbionts’ oxidation (Ponnudurai et al., 2020). We supposed that the
328 storage of environmental sulfides in *Sulfurovum alviniconcha* CR’s polysulfides and the
329 utilisation of thiosulfate degraded from these intracellular sulfur compounds, is more efficient
330 than those symbionts which use thiosulfate provided by extracellular host tissues.
331
332 The synergistic biosynthesis of nutrients in *A. marisindica* gives the holobiont a capability of
333 nutrient production that is controlled by mutual supply of intermediates between the host and the
334 endosymbionts. Although the semi-endosymbiotic mode of housing the gill endosymbiont
335 provides *Alviniconcha* with the ability to utilise a rather wide array of bacteria as gill
336 endosymbiont (Beinart et al., 2019), it comes at a cost in that some symbiont phylotypes may
337 lack genes for certain syntrophic interactions. Although the digestive tract is substantially
338 reduced in the adult snail (Warèn and Bouchet, 1993), *A. marisindica* has a functioning gut
339 which contains faecal-like black substances suggesting that this snail ingests food by either
340 grazing or filter-feeding like *A. hessleri* from the Mariana Back Arc Basin (Warèn and Bouchet,
341 1993) and *A. marisindica* from the Central Indian Ridge (Suzuki et al., 2005). By supplying

342 genes and functions that are missing in *Sulfurovum alviniconcha* CR and the host, the gut
343 microbiome help ensures the nutritional viability of the holobiont as a whole. For example,
344 *pepF1* and *algL* genes in the gut microbiome that enhance digestion are lacking in the host snail
345 and thus provide direct evidence that the gut microbiota has the potential to fulfil the nutritional
346 demands of the holobiont. Overall, the results show that the gut microbiome has the potential to
347 provide nutrition benefits to the *Alviniconcha* snail, an aspect of symbiosis that has been
348 neglected in previous studies of many deep-sea endosymbiotic holobionts. As the *Alviniconcha*
349 species has a semi-endosymbiotic model of gill symbiosis, the endosymbionts have flexible
350 symbiotic associations with the host, which may at times impose nutritional limits on the
351 holobiont system. In such situations, the gut likely contributes to keep the holobiont functionally
352 versatile, ensuring its thriving in vent fields featuring different geochemical environments and
353 available energy sources.

354

355 *Sulfurovum alviniconcha* CR lacks two common bacterial physical “cloaks” – SLPs and CPs that
356 protect intracellular bacteria from host defences but also being recognised by the host as
357 immunodominant antigens (Zamze et al., 2002; Sára and Sleytr, 2000). The absence of CPs
358 likely helps *Sulfurovum alviniconcha* CR enter host cells (Deghmane et al., 2002) and reduces
359 the risk of polysaccharide recognition by the host immune system (Zamze et al., 2002). In
360 addition, lipid A modification enzymes and surface signal receptors help bacterial pathogens to
361 avoid detection by TLRs (Thakur et al., 2019), this may also apply to *Sulfurovum alviniconcha*
362 CR. CAMPs are key components of the host’s innate immune response (Le et al., 2017; Noore et
363 al., 2013). The presence of the *eptA* gene (Supplementary Figure S11B) involved in surface
364 charge modification implies that *Sulfurovum alviniconcha* CR increases its surface positive
365 charge to repel CAMPs. T2SS enables the transport of various cytoplasmic proteins into
366 extracellular milieu, including bacterial toxins and degradative enzymes such as proteases and
367 lipases. Previous study of tubeworm endosymbionts shows that the endosymbiont may use serine
368 proteases to modulate the host’s immune response by diminishing the function of host signal
369 proteins (Yang et al., 2020). *Sulfurovum alviniconcha* CR may use a similar strategy. Surface
370 antigenic molecules of *Sulfurovum alviniconcha* CR are distinct from the gut microbiome,
371 indicating its host-specific immune-evasion mechanisms. In gut tissues, the mucus layer is the
372 interface between the gut flora and the host, and sialic acids are prominent carbohydrates of the

373 intestinal mucus layer (Schroeder, 2019). Thus sialic acid breakdown of the gut microbiome
374 indicates the way of intestinal bacterial encroachment and survival. Such differences in
375 interaction with the host can lead to the establishment of different animal-microbe associations
376 (Koropatnick et al., 2004).

377

378 Accordingly, the *A. marisindica* host has distinct recognition profiles for *Sulfurovum*
379 *alviniconcha* CR and the gut microbiome (Figure 6A). After being recognised by the host, the
380 invading symbionts will be controlled by the host's different corresponding strategies. The
381 component cascade is activated in the gut which attack the microbe's cell membrane and
382 eliminate microbes to control bacterial infections (Janeway et al., 2001) (Figure 6B). In the gills,
383 potential attenuation of NF- κ B are important as they grant the invaded cells additional protection
384 (Burns et al., 2017; Best et al., 2019), and four members of the GiMAP gene family play critical
385 roles in constraining and compartmentalising pathogens within cells (Weiss et al., 2013; Hunn et
386 al., 2011). In addition, genes responsible for the majority of antimicrobial activity are enriched in
387 the gills (Supplementary Figure S12B). In this case, the gill tissue shows a strong potential to
388 constrain the intracellular symbionts and resist environmental invasion, which also indicate the
389 ability of *Sulfurovum alviniconcha* CR to evade these host antimicrobial activities at the free-
390 living stage. The weak host immune responses in the gills (Figure 6A) indicate *Sulfurovum*
391 *alviniconcha* CR are more adept at evading recognition by the host immune system or inhibiting
392 activation of the host immune system. Overall, the results show that *Sulfurovum alviniconcha*
393 CR may have evolved an immunomodulation mechanism that they modulate the cell's outermost
394 layer and release proteins enabling them to effectively evade recognition by the host immune
395 system. In addition, the semi-intracellular position of *Sulfurovum alviniconcha* CR may allow it
396 to avoid areas of high lysosomal activity in host cells that are part of the host self-defence
397 mechanism (Endow and Ohta, 1989). The balance between the host's immune activity and
398 bacterial counter-defence contributes to the complexity of the persistent symbioses.

399

400 We show, through hologenomic and holotranscriptomic analyses, that the *Alviniconcha*
401 *marisindica* holobiont is more complex than previously recognised, being a tripartite system with
402 the host snail and gill endosymbiont additionally supported by functional gut microbiome. The
403 relative importance of each partner in *A. marisindica* may fluctuate depending on the immediate

404 availability of resources impacting the interplay downstream, as has been shown for other
405 invertebrate symbioses (Morris et al., 2019; Belda et al., 1993). We unravel complex interactions
406 among symbiotic parties in the *A. marisindica* holobiont, which deepen our understanding of the
407 adaptation of many dominant chemosymbiotic holobionts that rely on gill endosymbionts for
408 nutrition and also retain a functional gut, such as *Alviniconcha*'s sister genus *Ifremeria*
409 (Windoffer and Giere, 1997), peltospirid snails (Chen et al., 2018), and *Bathymodiolus* mussels
410 (Page et al., 1991).

411

412 **Materials and Methods**

413 *Sample collection and nucleic acid preparation*

414 *Alviniconcha marisindica* individuals were collected from a water depth of 2,919 m at the
415 Wocan vent site on the Carlsberg Ridge (CR) of the northwestern Indian Ocean (60.53°E,
416 6.36°N) (Supplementary Figure S13). Sampling was conducted using the human occupied
417 vehicle (HOV) *Jiaolong* onboard the research vehicle *Xiangyanghong 9* on March 19, 2017.
418 Snails were placed into an insulated bio-box with a closed lid using a manipulator to minimise
419 changes in water temperature. *Jiaolong* took approximately 2.5 hours to return to deck. Once the
420 snails were onboard the research vessel, all specimens were immediately flash-frozen in liquid
421 nitrogen and then transferred to a -80°C freezer for storage. The morphological observation and
422 molecular taxonomy of snail samples were shown in Supplementary Note 1.

423

424 The frozen snails were thawed in RNAlater® (Invitrogen, USA) on ice, dissected with different
425 tissues fixed separately in RNAlater®, and then prepared for nucleic acid extraction. A single
426 specimen of *Alviniconcha marisindica* from Wocan was used for the holobiont genome assembly.
427 The foot and neck muscles were used for host genomic DNA extraction, and the endosymbiont-
428 harbouring gills were used for endosymbiont DNA extraction. A total of three snail individuals,
429 including the one used for identifying the host genome, were dissected into 7–10 tissue types
430 each with RNA extraction performed on the different tissues. The gills of 10 other individuals
431 were divided into anterior and posterior parts, and the DNA of these 20 parts were extracted
432 separately for metagenome sequencing. The intestines of the three individuals were dissected for
433 total DNA and RNA extraction for the gut microbiome, and the gills of these individuals were
434 also dissected for total RNA extraction (Supplementary Note 1). Genomic DNA (gDNA) was

435 extracted using the E.Z.N.A.® Mollusc DNA Kit (Omega Bio-tek, Georgia, USA) and then
436 purified using Genomic DNA Clean & Concentrator™-10 Kit (Zymo Research, CA, USA)
437 according to the manufacturer's protocol. Total DNA of the gills and that of the intestines were
438 extracted using the same protocol. Total RNA was extracted using Trizol (Invitrogen, USA)
439 from different tissues following the manufacturer's protocol and prepared for RNA-Seq. Nucleic
440 acid quality was evaluated using agarose gel electrophoresis and a BioDrop µLITE (BioDrop,
441 Holliston, MA, US), and nucleic acid concentrations were quantified using a Qubit fluorometer
442 v3.0 (Thermo Fisher Scientific, Singapore).

443

444 *Library construction and sequencing*

445 Genomic DNA was aliquoted and submitted to three sequencing platforms: Illumina, PacBio
446 Sequel, and Oxford Nanopore Technologies (ONT). A library with a 350 bp insert size was
447 constructed from gDNA following the standard protocol provided by Illumina (San Diego, CA,
448 USA). After paired-end sequencing of the library at Novogene (Beijing, China), approximately
449 50 Gb of Illumina NovaSeq reads with a read length of 150 bp were generated. Illumina
450 sequencing of total DNA from the gills and that of total DNA from the intestines were conducted
451 similarly, with approximately 50 Gb of reads generated from each gill sample for endosymbiont
452 genome assembly, approximately 6–8 Gb of reads generated from each of 20 gill filaments for
453 symbiont genetic diversity analysis, and approximately 12 Gb of reads generated from each of
454 three intestine specimens for metagenome analysis (see overview of sequencing data in
455 Supplementary Note 2).

456

457 For preparation of the single-molecule real-time (SMRT) DNA template for PacBio sequencing,
458 the gDNA was sheared into large fragments (10 kb on average) using a Covaris® g-TUBE®
459 device and then concentrated using AMPure® PB beads. DNA repair and purification were
460 carried out according to the manufacturer's instructions (Pacific Biosciences). The blunt adapter
461 ligation reaction was conducted on purified end-repair DNA, and after purification DNA
462 sequencing polymerases became bound to SMRTbell templates. Finally, the library was
463 quantified using a Qubit fluorometer v3.0. After sequencing with the PacBio Sequel System at
464 the Hong Kong University of Science and Technology (HKUST) and Novogene, approximately
465 72 Gb of long reads were generated, with reads less than 4 kb in length discarded.

466

467 For ONT sequencing, a total of 3–5 µg of gDNA were used for the construction of each library
468 following the ‘1D gDNA selecting for long reads (SQK-LSK109)’ protocol from ONT. Briefly,
469 gDNA was repaired and end-prepped as per standard protocol, before it was cleaned up with a
470 0.4× volume of AMPure XP beads. Adapter ligation and clean-up of the cleaned-repaired DNA
471 were performed as per the standard protocol and the purified-ligated DNA was eluted using
472 elution buffer. The DNA library was mixed with sequencing buffer and loading beads before it
473 was loaded onto the SpotON sample port. Finally, sequencing was performed following the
474 manufacturer’s guidelines using the FLO-MIN106 R9.4 flow cell coupled to the MinION™
475 platform (ONT, Oxford, UK). Raw reads were base-called according to the protocol in
476 MinKNOW and written into fastq files, and 9.8□Gb of long reads were generated with reads less
477 than 4Kb discarded. MinION sequencing of total DNA from one gill specimen was conducted
478 using the same procedures, generating 3.5 Gb of reads for endosymbiont genome scaffolding
479 (see details of PacBio and ONT library construction in Supplementary Note 2). Illumina reads
480 from gDNA were used for the genome survey of the Wocan *Alviniconcha marisindica*, and
481 PacBio and ONT reads were used for the genome assembly (Supplementary Note 3).

482

483 For eukaryotic transcriptome sequencing of different tissues, a 250–300 bp insert cDNA library
484 of each tissue was constructed after removing the prokaryotic RNA and sequenced on the
485 Illumina NovaSeq platform at Novogene to produce 150 bp paired-end reads. Since the RNA of
486 gills includes the sequences from both the host and the symbiont, another 250–300 bp insert
487 strand-specific library of each gill specimen was constructed using Ribo-Zero™ Magnetic Kit to
488 sequence both eukaryotic and microbial RNA. Therefore, two sets of transcript sequencing data
489 were produced for the gills, one for both the host and the symbiont, and the other for only the
490 host. The meta-transcriptome sequencing of the intestine was conducted using the same methods.
491 Approximately 5–10 Gb of reads were generated from each tissue.

492

493 *de novo hybrid assembly of the host genome*

494 Trimmomatic v0.39 (Bolger et al., 2014) was used to trim the Illumina adapters and low-quality
495 bases (base quality ≤ 20). The genome size of *A. marisindica* was estimated to be 809.1□Mb
496 using the 17-mer histogram generated (Supplementary Note 3) and the genome heterozygosity

497 was evaluated as 0.88% using GenomeScope (Vurture et al., 2017). Several genome assembly
498 pipelines were applied to assemble the genome with PacBio and ONT reads, including PacBio-
499 only approaches (e.g. minimap2+miniasm (Li, 2016) and wtdbg2 (Ruan and Li, 2019)) and
500 PacBio-ONT hybrid approaches (e.g. MaSuRCA version 3.2.8 (Zimin et al., 2013), FMLRC
501 (Wang et al., 2018) + smartdenovo (Ruan, 2018) and FMLRC (Wang et al., 2018) +wtdbg2
502 (Ruan and Li, 2019)). The detailed settings of each assembly pipeline are shown in
503 Supplementary Note 3.

504

505 A comparison of the assembly statistics of different pipelines (Supplementary Note 3) showed
506 that the FMLRC+wtdbg2 assembly was the best and therefore this assembly was used in the
507 downstream analyses. The assembly was carried out as follows: the ONT reads were
508 concatenated with PacBio reads and error corrected with Illumina reads using FMLRC (Wang et
509 al., 2018). This hybrid error correction method was selected based on previous benchmarking
510 analysis on the available tools using Illumina reads for correction of PacBio/ONT long reads (Fu
511 et al., 2019). The corrected long reads were then assembled using wtdbg2 using the setting “-x
512 preset2” (Ruan and Li, 2019). Bacterial contamination was removed from the assembly using a
513 genome binning method in MetaBAT 2 (Kang et al., 2015) and MaxBin 2.0 (Wu et al., 2016)
514 (Supplementary Note 3). The Illumina reads were mapped to the clean assembly with Bowtie2
515 (Langmead and Salzberg, 2012), and only uniquely mapped reads were retained. The resultant
516 sorted .bam file was used to correct errors in the assembly using Pilon v1.13 (Walker et al.,
517 2014). Two rounds of error correction were performed. Redundant genomic assembled contigs
518 from highly heterozygous regions were then removed using Redundans (Prysycz and Gabaldón,
519 2016) with the settings of “--identity 0.8 --minLength 5000”.

520

521 *Quality check of the assembled host genome*

522 We monitored the genome assembly completeness and redundancy using the metazoan
523 Benchmarking Universal Single-Copy Orthologs (BUSCOs) v4.0.6 pipeline against the
524 Metazoan dataset (Simão et al., 2015). A total of 921 out of the 954 searched BUSCO groups
525 (96.5%) were complete in the assembled genome, and only 2.3% BUSCOs were missing,
526 suggesting a high level of completeness of the *de novo* assembly (Supplementary Table S1).

527 QUAST v5.0.2 (Gurevich et al., 2013) was used to check genome assembly quality with PacBio
528 and ONT reads (Supplementary Table S2).

529

530 *Annotation of the host genome*

531 The Wocan *Alviniconcha* host genome annotation pipeline generally followed a previously
532 published procedure (Sun et al., 2017). Briefly, the repeat content and the transposable elements
533 were predicted and classified using the RepeatMasker pipeline (Smit and Hubley, 2010) which
534 searched against the known repeat library in Repbase and also the species-specific repeat library
535 constructed by RepeatModeler (Supplementary Note 4).

536

537 Two versions of transcriptome assembly, i.e. the *de novo* assembled version and the genome-
538 guided version, were independently assembled using Trinity v2.8.5 (Grabherr et al., 2011) and
539 concatenated. Sequences with similarity over 0.97 were clustered with cd-hit-est (Li and Godzik,
540 2006). Maker v3.0 (Cantarel et al., 2008) was used to annotate the genome. In the first round of
541 Maker annotation, only the transcriptomic evidence was used, and only a gene model with an
542 annotation edit distance (AED) score less than 0.01 (Supplementary Figure S1) and predicted
543 protein length over 200 amino acids was reported. The resultant genome annotation .gff file was
544 used to train another *de novo* gene predictor, Augustus v3.3 (Stanke and Morgenstern, 2005).
545 The gene model with only one exon with an incomplete open reading frame and inter-genic
546 sequences less than 3 Kb was removed. The rest of the *bona-fide* gene models were used to train
547 Augustus. In the second round of Maker, evidence from three different sources, i.e. the
548 transcriptome, proteins from the Swiss-Prot database, and Augustus, were merged using
549 EvidenceModer (Haas et al., 2008). The merged data was also integrated using Maker.

550

551 Gene functions were determined by using BLASTp to align the candidate sequences with NCBI
552 non-redundant (NR) and Swiss-Prot protein databases with the settings of “-eval 1e-5 -
553 word_size 3 -num_alignments 20 -max_hsps 20”. Blast2GO® (Götz et al., 2008) together with
554 EggNOG mapper (Huerta-Cepas et al., 2017) was applied to assign Gene Ontology (GO) terms
555 and clusters of orthologous groups (COGs) to the protein sequences via GO and EggNOG
556 databases. The Kyoto Encyclopedia of Genes and Genomes (KEGG) Automatic Annotation
557 Server (KAAS) (Kanehisa and Goto, 2000) was used to conduct the KEGG pathway annotation

558 analysis via the bidirectional best hit method. The Pfam database was searched using profile
559 hidden Markov models (profile HMMs) (with an e-value of 0.001) to classify the gene families
560 (El-Gebali et al., 2019).

561

562 *Host gene family identification and phylogenomic analysis*

563 A total of 26 lophotrochozoan genomes were analysed for clues to the gene family evolution
564 (Supplementary Note 4). Orthologs among all species were deduced via the OrthoMCL pipeline
565 (Li et al., 2003) with the BLASTp threshold set to 1e-5. Only single-copy genes in at least two-
566 thirds of the taxon sampled (i.e. in at least 18 species) were used in the phylogenetic tree analysis,
567 resulting in 492 orthologous groups. Protein sequences within each orthologue was aligned using
568 MUSCLE with the default settings; spurious sequences and poorly aligned sequences were
569 trimmed using TrimAL v1.4 (Capella-Gutiérrez et al., 2009). The final alignment of each
570 orthologue was concatenated with partition information for the phylogenetic analysis using
571 RAxML v8.2.11 (Stamatakis et al., 2005) with the GTR + Γ model. The MCMCTree v4.7 (Reis
572 and Yang, 2011) was used for tree dating. The root calibration point was set to 590 Ma in
573 MCMCTree, and the LG+ Γ model of evolution was selected. Time frame constraints imposed to
574 calibrate the topology tree generated from RAxML are shown in Supplementary Note 4. The
575 MCMCTree was run for 1.0×10^7 generations, sampling every 1.0×10^3 and discarding 20% of
576 the samples as burn-in. Gene family expansion/contraction analysis was performed using CAFÉ
577 v3.1 (Han et al., 2013). Only a family level with $P < 0.01$ and $P < 0.01$ deduced by the Viterbi
578 method was considered to be expanded or contracted.

579

580 *Microbial metagenome assembly, annotation, and functional analysis*

581 For microbial metagenome assembly of the gill, Trimmomatic v0.39 (Bolger et al., 2014) and
582 FastUniq (Xu et al., 2012) were used to trim the Illumina reads and remove duplicates. The
583 bacterial abundance of gill metagenomic sequences was deduced using Kaiju (Menzel et al.,
584 2016) based on the subset of the NCBI BLAST *nr* database containing all proteins belonging to
585 Archaea, Bacteria, and Viruses. The clean reads were assembled using metaSPAdes v3.13.1
586 (Bankevich et al., 2012) with k-mer sizes of 21, 33, 55, 77, 99, and 127 bp, and the products
587 were pooled. Contigs potentially belonging to the campylobacterotal endosymbiont genome were
588 separated from its host genome using a genome binning method as described in previous studies

589 (Albertsen et al., 2013; Yang et al., 2020) (Supplementary Note 5). A genome of presumably
590 parasitic Mollicutes was removed (Supplementary Figure S3A). Contigs of the endosymbiont
591 genome were further determined using MetaBAT 2 (Kang et al., 2015) and MaxBin 2.0 (Wu et
592 al., 2016), assessed using CheckM v1.1.2 (Parks et al., 2015), and further scaffolded using
593 SSPACE-LongRead v1.1 (Boetzer and Pirovano, 2014) and *npScarf* (Cao et al., 2017) by adding
594 ONT long reads. The newly assembled scaffolds were binned again using the above pipeline.
595 GapFiller v1.10 (Boetzer and Pirovano, 2012) and Gap2Seq v3.1 (Salmela et al., 2016) were
596 used to fill the gaps in the binned endosymbiont genome. CheckM v1.1.2 (Parks et al., 2015) was
597 used to estimate the completeness and potential contamination of the binned genome. Coding
598 sequences (CDS) in the genome of the *Alviniconcha* endosymbiont were predicted and translated
599 using Prodigal v2.6.3 (Hyatt et al., 2010). Gene function annotation of the predicted protein
600 sequences followed the same pipeline as that described above for the host snail (Supplementary
601 Note 5). The protein sequences were annotated based on GO, EggNOG, KEGG and Pfam
602 databases.

603
604 For the gut metagenome assembly, reads were trimmed and duplicates removed as described
605 above. The host's interference in the analysis of intestinal content was minimised by removing
606 reads that were aligned with the host genome using Bowtie2 (Langmead and Salzberg, 2012)
607 before the assembly. The remaining reads were assembled using metaSPAdes v3.13.1
608 (Bankevich et al., 2012) with the same settings as above. The abundance and systematic
609 classification of intestinal metagenomic microbial sequences were carried out using Kaiju
610 (Menzel et al., 2016) (Supplementary Figure 3B and 6B). Network analysis of intestinal
611 microbes was conducted based on their relative abundance. To reduce the complexity of the
612 datasets, relative abundances higher than 0.01% were retained for the construction of the
613 network. All pairwise Spearman's rank correlations were calculated in the R package "picante".
614 Only robust ($r>0.8$ or $r<-0.8$) and statistically significant correlations ($P<0.01$) are shown in the
615 network. Network visualisation and modular analysis were conducted in Gephi v0.9.2. Prodigal
616 v2.6.3 (Hyatt et al., 2010) was used to predict and translate the coding sequences in the intestinal
617 metagenome, and BLASTp was then used to align the candidate sequences with the NCBI NR
618 protein database. The systematic assignment of each protein was imported to MEGAN v5.7.0
619 (Huson et al., 2011) using the lowest common ancestor (LCA) method with the parameters of

620 Min Score 50, Max Expected 0.01, Top Percent 5, and LCA Percent 100. Based on the
621 systematic results, the microbial protein sequences were selected for further gene functional
622 analysis, following the gene annotation pipeline described above. Blast2GO® (Götz et al., 2008)
623 and EggNOG mapper (Huerta-Cepas et al., 2017) were applied to assign GO and COG terms to
624 the intestinal prokaryotic protein sequences. KAAS (Kanehisa and Goto, 2000) was used to
625 annotate the KEGG meta-pathway of intestinal flora using the single-directional best hit (SBH)
626 method. All the annotated information of intestinal flora was in Dataset S2; the potential function
627 and interaction of gut microbiome were shown in Supplementary Note 6.

628

629 *Phylogenomic analysis and genomic comparison of the endosymbiont*

630 A total of 120 single-copy orthologous genes found in all genomes of nine Deltaproteobacteria
631 (outgroup) and 111 campylobacterota representatives by Proteinortho6 (Lechner et al., 2011)
632 (BLAST threshold $E = 1 \times 10^{-10}$) were retained for phylogenomic analysis. Sequences of each
633 orthologue were aligned using MUSCLE and trimmed using TrimAL (Capella-Gutiérrez et al.,
634 2009). The final alignment of each orthologue was concatenated with partition information for
635 the phylogenetic analysis using RaxML v8.2.11 (Stamatakis et al., 2005) with the GTR + Γ
636 model. The gill endosymbiont of the Wocan *Alviniconcha marisindica* was compared with the
637 endosymbiont of *Lamellibrachia* tubeworm (Patra et al., 2016), the epibiont of the giant
638 tubeworm *Riftia pachyptila* (Giovannelli et al., 2016), and two free-living Campylobacterota
639 (Giovannelli et al., 2016; Nakagawa et al., 2007) from deep-sea hot vents (Table 1), which were
640 clustered within the same clade (Figure 3). Whole-genome ANI of orthologous gene pairs shared
641 between two microbial genomes was calculated using fastANI (Jain et al., 2018) with the default
642 settings. A Venn web tool (<http://bioinformatics.psb.ugent.be/webtools/Venn/>) was used to
643 illustrate the shared and unique orthologous genes among the five Campylobacterota
644 representatives (Figure 4b). Orthologous genes only present in the Wocan *A. marisindica*
645 endosymbiont were classified as its unique genes. Orthologous genes that were present in all the
646 other four reference genomes but not in the endosymbiont of *Alviniconcha* were classified as
647 reduced genes (Supplementary Note 7). In addition, an HMM-based approach delta-bitscore
648 (Wheeler et al., 2016) was used to identify loss-of-function mutations in shared orthologous
649 genes of the five Campylobacterota (Dataset S3, Supplementary Note 7).

650

651 In addition to the above genomic comparisons, a total of 23 metagenome sequences were
652 obtained from 13 Wocan *A. marisindica* snails. A genome binning method was used following
653 the pipeline described in previous sections to assemble and extract another 22 endosymbiont
654 genomes and the ANI among these 23 endosymbiont genomes was calculated (Jain et al., 2018)
655 (Table 2 and Supplementary Note 8). The core genome shared across all 23 endosymbiont
656 genomes was obtained using Proteinortho6 (Lechner et al., 2011) (BLAST threshold $E = 1 \times 10^{-10}$).
657 The pan genome including isolate-specific genes were also detected. In addition, we also
658 captured genome-wide variation of endosymbionts by comparing variations present in two parts
659 of the gills (anterior and posterior) in each snail individual, across multiple snails
660 (Supplementary Note 8). Selecting from the above 23 genomes, SNPs among 20 endosymbiotic
661 isolates of the anterior and posterior gills from 10 snail individuals were called by aligning clean
662 high-quality Illumina reads from each gill sample with a complete reference genome using the
663 novel high-accuracy pipeline BactSNP (Yoshimura et al., 2019), in a single step. Pseudo
664 genomes of input isolates were obtained. For each isolate, all contigs in the pseudo genome were
665 concatenated into one sequence and submitted to phylogeny analysis using RaxML v8.2.11
666 (Stamatakis et al., 2005) under the GTR + CAT model.

667

668 *Quantification of gene expression level*

669 For host transcriptome sequencing data, the raw reads of each tissue were trimmed with
670 Trimmomatic v0.39 (Bolger et al., 2014), the gene expression level in each tissue was expressed
671 in transcripts per million (TPM) with Salmon (Patro et al., 2017), and the number of read counts
672 for genes was also included in the quantification results. For meta-transcriptome sequencing data
673 of the symbionts, the same pipeline was followed, with a Salmon index built for the transcripts of
674 symbionts obtained and translated from their genome data. The trimmed reads were then
675 quantified directly against this index and expressed in TPM using Salmon (Patro et al., 2017). In
676 addition, using this quantification method, the gene expression levels of the gills were produced
677 from two sets of RNA sequencing data of the gills (one is a meta-transcriptome dataset including
678 both the host and symbionts, and the other is a eukaryotic transcriptome including only host
679 transcripts). The consistency of gene expression levels for the gills from these two sets of
680 sequencing data also confirmed the accuracy of our transcript-level quantification in the host and
681 its symbionts.

682

683 Differentially expressed genes were determined by DESeq2 using the normalisation method of
684 Loess, a minimum read count of 10, and a paired test ($n = 5$). A gene was considered specifically
685 expressed in a particular tissue based on its expression levels compared across all other tissue
686 types (paired-test method). Genes overexpressed with over twofold changes and false discovery
687 rate (FDR) < 0.05 when compared with other tissue types were considered to be highly expressed
688 (Dataset S4). WEGO (<http://wego.genomics.org.cn/cgi-bin/wego/index.pl>) was used to plot GO
689 annotations of highly expressed genes in the different selected tissues. Statistically
690 overrepresented GO terms in the different tissues were identified through topGO package in R
691 session (Alexa and Rahnenführer, 2009). The GO enrichment network is visualised using the
692 Cytoscape application (Shannon et al., 2003). Differentially expressed genes of different tissues
693 were shown in Supplementary Note 9.

694

695 *Data availability*

696 All raw sequencing data generated in the present study are available from NCBI via the
697 accession numbers SRR11781614–SRR11781681, and BioSample accessions SAMN14907812–
698 SAMN14907827. The data generated in the present study have been deposited in the NCBI
699 database as BioProject PRJNA632343. All software commands used in the host genome
700 assembly are given in the Supplementary Information. The assembled transcriptome, predicted
701 transcripts, and proteins are openly available from Dryad (DOI: XXX).

702

703 **References**

- 704 1. Alexa A, Rahnenführer J (2009). Gene set enrichment analysis with topGO. *Bioconductor*
705 *Improvements* **27**. [10.18129/B9.bioc.topGO](https://doi.org/10.18129/B9.bioc.topGO)
- 706
- 707 2. Albertsen M, Hugenholtz P, Skarszewski A, Nielsen KL, Tyson GW, & Nielsen PH (2013).
708 Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of
709 multiple metagenomes. *Nature biotechnology* **31**: 533. <https://doi.org/10.1038/nbt.2579>
- 710

- 711 3. Aronson HS, Zellmer AJ, Goffredi SK (2016). The specific and exclusive microbiome of the
712 deep-sea bone-eating snail, *Rubyspira osteovora*. *FEMS Microbiology Ecology* **93**: fiw250.
713 <https://doi.org/10.1093/femsec/fiw250>
- 714
- 715 4. Assié A, Borowski C, van der Heijden K, Raggi L, Geier B, Leisch N, Schimak MP, Dubilier
716 N, Petersen JM (2016). A specific and widespread association between deep-sea *Bathymodiolus*
717 mussels and a novel family of Epsilonproteobacteria. *Environmental Microbiology Reports* **8**:
718 805–813. <https://doi.org/10.1111/1758-2229.12442>
- 719
- 720 5. Assié A, Leisch N, Meier DV, Gruber-Vodicka H, Tegetmeyer HE, Meyer-Dierks A, Kleiner M,
721 Hinzke T, Joye S, Saxton M, Dubilier N (2020). Horizontal acquisition of a patchwork Calvin
722 cycle by symbiotic and free-living Campylobacterota (formerly Epsilonproteobacteria). *The
723 ISME Journal* **14**: 104–122. <https://doi.org/10.1038/s41396-019-0508-7>
- 724
- 725 6. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM,
726 Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV (2012). SPAdes: a new genome assembly
727 algorithm and its applications to single-cell sequencing. *Journal of Computational Biology* **19**:
728 455–477. <https://doi.org/10.1089/cmb.2012.0021>
- 729
- 730 7. Beinart RA, Luo C, Konstantinidis KT, Stewart FJ, Girguis PR (2019). The bacterial
731 symbionts of closely related hydrothermal vent snails with distinct geochemical habitats show
732 broad similarity in chemoautotrophic gene content. *Frontiers in Microbiology* **10**: 1818.
733 <https://doi.org/10.3389/fmicb.2019.01818>
- 734
- 735 8. Beinart RA, Sanders JG, Faure B, Sylva SP, Lee RW, Becker EL, Gartman A, Luther GW,
736 Seewald JS, Fisher CR, Girguis PR (2012). Evidence for the role of endosymbionts in regional-
737 scale habitat partitioning by hydrothermal vent symbioses. *Proceedings of the National Academy
738 of Science* **109**: E3241–E3250. <https://doi.org/10.1073/pnas.1202690109>
- 739

- 740 9. Belda C, Lucas J, Yellowlees D (1993). Nutrient limitation in the giant clam-zooxanthellae
741 symbiosis: effects of nutrient supplements on growth of the symbiotic partners. *Marine Biology*
742 **117**: 655–664. <https://doi.org/10.1007/BF00349778>
- 743
- 744 10. Best KT, Lee FK, Knapp E, Awad HA, Loiselle AE (2019). Deletion of NFKB1 enhances
745 canonical NF-κB signaling and increases macrophage and myofibroblast content during tendon
746 healing. *Scientific reports* **9**: 1–11. <https://doi.org/10.1038/s41598-019-47461-5>
- 747
- 748 11. Boetzer M & Pirovano W (2012). Toward almost closed genomes with GapFiller. *Genome*
749 *Biology* **13**, R56. <https://doi.org/10.1186/gb-2012-13-6-r56>
- 750
- 751 12. Boetzer M & Pirovano W (2014). SSPACE-LongRead: scaffolding bacterial draft genomes
752 using long read sequence information. *BMC bioinformatics* **15**: 211.
753 <https://doi.org/10.1186/1471-2105-15-211>
- 754
- 755 13. Bolger AM, Lohse M & Usadel B (2014). Trimmomatic: a flexible trimmer for Illumina
756 sequence data. *Bioinformatics* **30**: 2114–2120. <https://doi.org/10.1093/bioinformatics/btu170>
- 757
- 758 14. Burns JA, Zhang H, Hill E, Kim E, Kerney R (2017). Transcriptome analysis illuminates the
759 nature of the intracellular interaction in a vertebrate-algal symbiosis. *eLife* **6**: e22054.
760 <https://doi.org/10.7554/eLife.22054.001>
- 761
- 762 15. Campbell BJ, Engel AS, Porter ML, Takai K (2006). The versatile ε-proteobacteria: key
763 players in sulphidic habitats. *Nature Reviews Microbiology* **4**: 458.
764 <https://doi.org/10.1038/nrmicro1414>
- 765
- 766 16. Cantarel BL, Korf I, Robb SM, Parra G, Ross E, Moore B, Holt C, Alvarado AS, Yandell M
767 (2008). MAKER: an easy-to-use annotation pipeline designed for emerging model organism
768 genomes. *Genome research* **18**: 188–196. <http://www.genome.org/cgi/doi/10.1101/gr.6743907>
- 769

- 770 17. Cao MD, Nguyen SH, Ganesamoorthy D, Elliott AG, Cooper MA, Coin LJ (2017).
771 Scaffolding and completing genome assemblies in real-time with nanopore sequencing. *Nature*
772 *Communications* **8**: 1–10. <https://doi.org/10.1038/ncomms14515>
- 773
- 774 18. Capella-Gutiérrez S, Silla-Martínez JM & Gabaldón T (2009). trimAl: a tool for automated
775 alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* **25**, 1972–1973.
776 <https://doi.org/10.1093/bioinformatics/btp348>
- 777
- 778 19. Chen C, Linse K, Uematsu K, Sigwart JD (2018). Cryptic niche switching in a
779 chemosymbiotic gastropod. *Proceedings of the Royal Society B: Biological Sciences* **285**:
780 20181099. <https://doi.org/10.1098/rspb.2018.1099>
- 781
- 782 20. Childress J, Girguis PR (2011). The metabolic demands of endosymbiotic chemoautotrophic
783 metabolism on host physiological capacities. *Journal of Experimental Biology* **214**: 312–325.
784 <https://doi.org/10.1242/jeb.049023>
- 785
- 786 21. Deghmane AE, Giorgini D, Larribe M, Alonso JM, Taha MK (2002). Down□regulation of
787 pili and capsule of *Neisseria meningitidis* upon contact with epithelial cells is mediated by CrgA
788 regulatory protein. *Molecular microbiology* 43: 1555–1564. <https://doi.org/10.1046/j.1365-2958.2002.02838.x>
- 790
- 791 22. Douglas A, Smith D (1983). The cost of symbionts to their host in green hydra.
792 *Endocytobiology II* 631–648. <https://doi.org/10.1515/9783110841237>
- 793
- 794 23. Dubilier N, Bergin C, Lott C (2008). Symbiotic diversity in marine animals: the art of
795 harnessing chemosynthesis. *Nature Reviews Microbiology* **6**: 725.
796 <https://doi.org/10.1038/nrmicro1992>
- 797
- 798 24. Durand L, Roumagnac M, Cueff-Gauchard V, Jan C, Guri M, Tessier C, Haond M, Crassous
799 P, Zbinden M, Arnaud-Haond S, Cambon-Bonavita MA (2015). Biogeographical distribution of
800 *Rimicaris exoculata* resident gut epibiont communities along the Mid-Atlantic Ridge

- 801 hydrothermal vent sites. *FEMS Microbiology Ecology* **91**: fiv101.
802 <https://doi.org/10.1093/femsec/fiv101>
- 803
- 804 25. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson
805 LJ, Salazar GA, Smart A, Sonnhammer EL (2019). The Pfam protein families database in 2019.
806 *Nucleic acids research* **47**: D427–D432. <https://doi.org/10.1093/nar/gky995>
- 807
- 808 26. Endow K, Ohta S (1989). The symbiotic relationship between bacteria and a mesogastropod
809 snail, *Alviniconcha hessleri*, collected from hydrothermal vents of the Mariana Back-Arc Basin.
810 *Bulletin of Japanese Society of Microbial Ecology* **3**: 73–82.
811 <https://doi.org/10.1264/microbes1986.3.73>
- 812
- 813 27. Fu S, Wang A, Au KF (2019). A comparative evaluation of hybrid error correction methods
814 for error-prone long reads. *Genome biology* **20**, 26. <https://doi.org/10.1186/s13059-018-1605-z>
- 815
- 816 28. Futoma-Kołoch B (2016). Immune response against bacterial lipopolysaccharide. *Journal of*
817 *Molecular Immunology* **2**: 105. <https://dx.doi.org/10.4172/jmi.1000e106>
- 818
- 819 29. Giovannelli D, Chung M, Staley J, Starovoytov V, Le Bris N, Vetriani C (2016). *Sulfurovum*
820 *riftiae* sp. nov., a mesophilic, thiosulfate-oxidizing, nitrate-reducing chemolithoautotrophic
821 epsilonproteobacterium isolated from the tube of the deep-sea hydrothermal vent polychaete
822 *Riftia pachyptila*. *International journal of systematic and evolutionary microbiology* **66**, 2697–
823 2701. <https://doi.org/10.1099/ijsem.0.001106>
- 824
- 825 30. Goffredi SK (2010). Indigenous ectosymbiotic bacteria associated with diverse hydrothermal
826 vent invertebrates. *Environmental Microbiology Reports* **2**: 479–488.
827 <https://doi.org/10.1111/j.1758-2229.2010.00136.x>
- 828
- 829 31. Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón
830 M, Dopazo J, Conesa A (2008). High-throughput functional annotation and data mining with the
831 Blast2GO suite. *Nucleic Acids Research* **36**, 3420–3435. <https://doi.org/10.1093/nar/gkn176>

- 832
- 833 32. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L,
834 Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, Palma Fd,
835 Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N & Regev A (2011). Full-length
836 transcriptome assembly from RNA-Seq data without a reference genome. *Nature biotechnology*
837 **29**, 644. <https://doi.org/10.1038/nbt.1883>
- 838
- 839 33. Gurevich A, Saveliev V, Vyahhi N & Tesler G. QUAST: quality assessment tool for genome
840 assemblies. *Bioinformatics* **29**, 1072–1075 (2013). <https://doi.org/10.1093/bioinformatics/btt086>
- 841
- 842 34. Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, White O, Buell CR, Wortman JR
843 (2008). Automated eukaryotic gene structure annotation using EvidenceModeler and the
844 Program to Assemble Spliced Alignments. *Genome biology* **9**, R7. <https://doi.org/10.1186/gb-2008-9-1-r7>
- 845
- 846
- 847 35. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, Von Mering C, Bork P
848 (2017). Fast genome-wide functional annotation through orthology assignment by eggNOG-
849 mapper. *Molecular biology and evolution* **34**, 2115-2122.
- 850 <https://doi.org/10.1093/molbev/msx148>
- 851
- 852 36. Hunn JP, Feng CG, Sher A, Howard JC (2011). The immunity-related GTPases in mammals:
853 a fast-evolving cell-autonomous resistance system against intracellular pathogens. *Mammalian
854 genome* **22**: 43–54. <https://doi.org/10.1007/s00335-010-9293-3>
- 855
- 856 37. Huson DH, Mitra S, Ruscheweyh HJ, Weber N & Schuster SC (2011). Integrative analysis of
857 environmental sequences using MEGAN4. *Genome Research* **21**, 1552–1560.
- 858 <http://www.genome.org/cgi/doi/10.1101/gr.120618.111>
- 859
- 860 38. Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ (2010). Prodigal:
861 prokaryotic gene recognition and translation initiation site identification. *BMC Bioinformatics* **11**,
862 119. <https://doi.org/10.1186/1471-2105-11-119>

- 863
- 864 39. Inagaki F, Takai K, Nealson KH & Horikoshi K (2004). *Sulfurovum lithotrophicum* gen. nov.,
865 sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the epsilon-Proteobacteria isolated
866 from Okinawa Trough hydrothermal sediments. *International journal of systematic and*
867 *evolutionary microbiology* **54**, 1477–1482. <https://doi.org/10.1099/ijss.0.03042-0>
- 868
- 869 40. Jain C, Rodriguez-R LM, Phillip AM, Konstantinidis KT & Aluru S (2018). High
870 throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. *Nature*
871 *communications* **9**, 1–8. <https://doi.org/10.1038/s41467-018-07641-9>
- 872
- 873 41. Janeway CA Jr, Travers P, Walport M, Shlomchik MJ (2001). "The complement system and
874 innate immunity." In *Immunobiology: The Immune System in Health and Disease. 5th edition*.
875 Garland Science. <https://www.ncbi.nlm.nih.gov/books/NBK27100/>
- 876
- 877 42. Johnson SB, Warén A, Tunnicliffe V, Dover CV, Wheat CG, Schultz TF, Vrijenhoek RC
878 (2015). Molecular taxonomy and naming of five cryptic species of *Alviniconcha* snails
879 (Gastropoda: Abyssochrysoidea) from hydrothermal vents. *Systematics and Biodiversity* **13**:
880 278–295. <https://doi.org/10.1080/14772000.2014.970673>
- 881
- 882 43. Kanehisa M & Goto S (2000). KEGG: Kyoto Encyclopedia of Genes and Genomes. *Nucleic*
883 *Acids Research* **28**, 27–30. <https://doi.org/10.1093/nar/28.1.27>
- 884
- 885 44. Kang DD, Froula J, Egan R & Wang Z (2015). MetaBAT, an efficient tool for accurately
886 reconstructing single genomes from complex microbial communities. *PeerJ* **3**, e1165.
887 <https://doi.org/10.7717/peerj.1165>
- 888
- 889 45. Kang J, Blaser MJ (2006). Bacterial populations as perfect gases: genomic integrity and
890 diversification tensions in *Helicobacter pylori*. *Nature Reviews Microbiology* **4**:826–836.
891 <https://doi.org/10.1038/nrmicro1528>
- 892

- 893 46. Koleva Z, Dedov I, Kizheva J, Lipovanska R, Moncheva P, Hristova P (2014). Lactic acid
894 microflora of the gut of snail *Cornu aspersum*. *Biotechnology & Biotechnological Equipment* **28**:
895 627–634. <https://doi.org/10.1080/13102818.2014.947071>
- 896
- 897 47. Koropatnick TA, Engle JT, Apicella MA, Stabb EV, Goldman WE, McFall-Ngai MJ (2004).
898 Microbial factor-mediated development in a host-bacterial mutualism. *Science* **306**: 1186–1188.
899 <https://doi.org/10.1126/science.1102218>
- 900
- 901 48. Langmead B & Salzberg SL (2012). Fast gapped-read alignment with Bowtie 2. *Nature methods* **9**: 357. <https://doi.org/10.1038/nmeth.1923>
- 903
- 904 49. Le CF, Fang CM, Sekaran SD (2017). Intracellular targeting mechanisms by antimicrobial
905 peptides. *Antimicrobial agents and chemotherapy* **61**: e02340–02316.
906 <https://doi.org/10.1128/AAC.02340-16>
- 907
- 908 50. Lechner M, Findeiß S, Steiner L, Marz M, Stadler PF, Prohaska SJ (2011). Proteinortho:
909 detection of (co-)orthologs in large-scale analysis. *BMC Bioinformatics* **12**: 124.
910 <https://doi.org/10.1186/1471-2105-12-124>
- 911
- 912 51. Li H (2016). Minimap and miniasm: fast mapping and de novo assembly for noisy long
913 sequences. *Bioinformatics* **32**: 2103–2110. <https://doi.org/10.1093/bioinformatics/btw152>
- 914
- 915 52. Li L, Stoeckert CJ, Roos DS (2003). OrthoMCL: identification of ortholog groups for
916 eukaryotic genomes. *Genome research* **13**: 2178–2189.
917 <http://www.genome.org/cgi/doi/10.1101/gr.1224503>
- 918
- 919 53. Li LH, Lv S, Lu Y, Bi DQ, Guo YH, Wu JT, Yue ZY, Mao GY, Guo ZX, Zhang Y, Tang YF
920 (2019). Spatial structure of the microbiome in the gut of *Pomacea canaliculata*. *BMC*
921 *Microbiology* **19**: 273. <https://doi.org/10.1186/s12866-019-1661-x>
- 922

- 923 54. Li W, Godzik A (2006). Cd-hit: a fast program for clustering and comparing large sets of
924 protein or nucleotide sequences. *Bioinformatics* **22**: 1658–1659.
925 <https://doi.org/10.1093/bioinformatics/btl158>
926
- 927 55. Menzel P, Ng KL, Krogh A (2016). Fast and sensitive taxonomic classification for
928 metagenomics with Kaiju. *Nature Communications* **7**: 11257.
929 <https://doi.org/10.1038/ncomms11257>
930
- 931 56. Meyer E, Weis VM (2012). Study of cnidarian-algal symbiosis in the “omics” age. *The*
932 *Biological Bulletin* **223**: 44–65. <https://doi.org/10.1086/692718>
933
- 934 57. McFall-Ngai M, Hadfield MG, Bosch TC, Carey HV, Domazet-Lošo T, Douglas AE,
935 Dubilier N, Eberl G, Fukami T, Gilbert SF, Hentschel U, King N, Kjelleberg S, Knoll AH,
936 Kremer N, Mazmanian SK, Metcalf JL, Nealon K, Pierce NE, Rawls JF, Reid A, Ruby EG,
937 Rumpho M, Sanders JG, Tautz D, Wernegreen JJ (2013). Animals in a bacterial world, a new
938 imperative for the life sciences. *Proceedings of the National Academy of Sciences* **110**: 3229–
939 3236. <https://doi.org/10.1073/pnas.1218525110>
940
- 941 58. Miyazaki J, Ikuta T, Watsuji TO, Abe M, Yamamoto M, Nakagawa S, Takaki Y, Nakamura
942 K, Takai K (2020). Dual energy metabolism of the Campylobacterota endosymbiont in the
943 chemosynthetic snail *Alviniconcha marisindica*. *The ISME Journal* **14**: 1273–1289.
944 <https://doi.org/10.1038/s41396-020-0605-7>
945
- 946 59. Monack D, Mueller A, Falkow S (2004). Persistent bacterial infections: the interface of the
947 pathogen and the host immune system. *Nature Reviews Microbiology* **2**: 747–765.
948 <https://doi.org/10.1038/nrmicro955>
949
- 950 60. Moran NA (2002). Microbial minimalism: genome reduction in bacterial pathogens. *Cell* **108**:
951 583–586. [https://doi.org/10.1016/S0092-8674\(02\)00665-7](https://doi.org/10.1016/S0092-8674(02)00665-7)
952

- 953 61. Morris LA, Voolstra CR, Quigley KM, Bourne DG, Bay LK (2019). Nutrient availability and
954 metabolism affect the stability of coral–symbiodiniaceae symbioses. *Trends in microbiology* **27**:
955 678–689. <https://doi.org/10.1016/j.tim.2019.03.004>
- 956
- 957 62. Nakagawa S, Takai K, Inagaki F, Hirayama H, Nunoura T, Horikoshi K, Sako Y (2005).
958 Distribution, phylogenetic diversity and physiological characteristics of epsilon- \square Proteobacteria
959 in a deep- \square sea hydrothermal field. *Environmental Microbiology* **7**:1619–1632.
960 <https://doi.org/10.1111/j.1462-2920.2005.00856.x>
- 961
- 962 63. Nakagawa S, Takaki Y, Shimamura S, Reysenbach AL, Takai K, Horikoshi K (2007). Deep-
963 sea vent ε -proteobacterial genomes provide insights into emergence of pathogens. *Proceedings
964 of the National Academy of Sciences* **104**: 12146–12150.
965 <https://doi.org/10.1073/pnas.0700687104>
- 966
- 967 64. Nicks T, Rahn-Lee L (2017). Inside out: Archaeal ectosymbionts suggest a second model of
968 reduced-genome evolution. *Frontiers in Microbiology* **8**: 384.
969 <https://doi.org/10.3389/fmicb.2017.00384>
- 970
- 971 65. Noore J, Noore A, Li B (2013). Cationic antimicrobial peptide LL-37 is effective against
972 both extra-and intracellular *Staphylococcus aureus*. *Antimicrobial agents and chemotherapy* **57**:
973 1283–1290. <https://doi.org/10.1128/AAC.01650-12>
- 974
- 975 66. Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF (2001). Methane-
976 consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. *Science*
977 **293**:484–487. <https://doi.org/10.1126/science.1061338>
- 978
- 979 67. Page HM, Fiala-Medioni A, Fisher CR, Childress JJ (1991). Experimental evidence for filter-
980 feeding by the hydrothermal vent mussel, *Bathymodiolus thermophilus*. *Deep Sea Research Part
981 A. Oceanographic Research Papers* **38**: 1455–1461. [https://doi.org/10.1016/0198-0149\(91\)90084-S](https://doi.org/10.1016/0198-0149(91)90084-S)
- 982
- 983

- 984 68. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015). CheckM: assessing
985 the quality of microbial genomes recovered from isolates, single cells, and metagenomes.
986 *Genome research* **25**: 1043–1055. <http://www.genome.org/cgi/doi/10.1101/gr.186072.114>
987
- 988 69. Patra AK, Cho HH, Kwon YM, Kwon KK, Sato T, Kato C, Kang SG, Kim SJ (2016).
989 Phylogenetic relationship between symbionts of tubeworm *Lamellibrachia satsuma* and the
990 sediment microbial community in Kagoshima Bay. *Ocean Science Journal* **51**: 317–332.
991 <https://doi.org/10.1007/s12601-016-0028-6>
992
- 993 70. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C (2017). Salmon provides fast and
994 bias-aware quantification of transcript expression. *Nature Methods* **14**: 417–419.
995 <https://doi.org/10.1038/nmeth.4197>
996
- 997 71. Petersen JM, Ramette A, Lott C, Cambon-Deacone MA, Zbinden M, Dubilier N *et al.*
998 (2010). Dual symbiosis of the vent shrimp *Rimicaris exoculata* with filamentous gamma- and
999 epsilonproteobacteria at four Mid-Atlantic Ridge hydrothermal vent fields. *Environmental
1000 Microbiology* **12**: 2204–2218. <https://doi.org/10.1111/j.1462-2920.2009.02129.x>
1001
- 1002 72. Ponnudurai R, Heiden SE, Sayavedra L, Hinzke T, Kleiner M, Hentschker C, Felbeck H,
1003 Sievert SM, Schlueter R, Becher D, Schweder T. Comparative proteomics of related symbiotic
1004 mussel species reveals high variability of host–symbiont interactions. *The ISME Journal* 2020;
1005 **14**: 649–656. <https://doi.org/10.1038/s41396-019-0517-6>
1006
- 1007 73. Pranal V, Fiala-Médioni A, Guezennec J (1996). Fatty acid characteristics in two symbiotic
1008 gastropods from a deep hydrothermal vent of the West Pacific. *Marine ecology progress series*
1009 **142**: 175–184. <https://doi.org/10.3354/meps142175>
1010
- 1011 74. Prysucz LP, Gabaldón T (2016). Redundans: an assembly pipeline for highly heterozygous
1012 genomes. *Nucleic acids research* **44**: e113–e113. <https://doi.org/10.1093/nar/gkw294>
1013

- 1014 75. Raina JB, Fernandez V, Lambert B, Stocker R, Seymour JR (2019). The role of microbial
1015 motility and chemotaxis in symbiosis. *Nature Reviews Microbiology* **17**: 284–294.
1016 <https://doi.org/10.1038/s41579-019-0182-9>
1017
1018 76. Reis Md, Yang Z (2011). Approximate likelihood calculation on a phylogeny for Bayesian
1019 estimation of divergence times. *Molecular Biology and Evolution* **28**: 2161–2172.
1020 <https://doi.org/10.1093/molbev/msr045>
1021
1022 77. Ruan J (2018). SMARTdenovo: Ultra-fast de novo assembler using long noisy reads. Github
1023 Available at: <https://github.com/ruanjue/smартdenovo> [Accessed January 10, 2019].
1024
1025 78. Ruan J, Li H (2019). Fast and accurate long-read assembly with wtdbg2. *Nature Methods*, 1–
1026 4. <https://doi.org/10.1038/s41592-019-0669-3>
1027
1028 79. Salmela L, Sahlin K, Mäkinen V, Tomescu AI (2016). Gap filling as exact path length
1029 problem. *Journal of Computational Biology* **23**: 347–361.
1030 <https://doi.org/10.1089/cmb.2015.0197>
1031
1032 80. Sanders JG, Beinart RA, Stewart FJ, Delong EF, Girguis PR (2013). Metatranscriptomics
1033 reveal differences in in situ energy and nitrogen metabolism among hydrothermal vent snail
1034 symbionts. *The ISME Journal* **7**: 1556–1567. <https://doi.org/10.1038/ismej.2013.45>
1035
1036 81. Sára M, Sleytr UB (2000). S-layer proteins. *Journal of bacteriology* **182**: 859–868.
1037 <https://doi.org/10.1128/JB.182.4.859-868.2000>
1038
1039 82. Schroeder BO (2019). Fight them or feed them: how the intestinal mucus layer manages the
1040 gut microbiota. *Gastroenterology Report (Oxford)* **7**: 3–12.
1041 <https://doi.org/10.1093/gastro/goy052>
1042

- 1043 83. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov, EM (2015). BUSCO:
1044 assessing genome assembly and annotation completeness with single-copy orthologs.
1045 *Bioinformatics* **31**: 3210–3212. <https://doi.org/10.1093/bioinformatics/btv351>
1046
1047 84. Smit AFA, Hubley R (2008). RepeatModeler/RepeatModeler. <http://www.repeatmasker.org/>
1048
1049 85. Stamatakis A, Ludwig T, Meier H (2005). RAxML-III: a fast program for maximum
1050 likelihood-based inference of large phylogenetic trees. *Bioinformatics* **21**: 456–463.
1051 <https://doi.org/10.1093/bioinformatics/bti191>
1052
1053 86. Stanke M, Morgenstern B (2005). AUGUSTUS: a web server for gene prediction in
1054 eukaryotes that allows user-defined constraints. *Nucleic acids research* **33**, W465–W467.
1055 <https://doi.org/10.1093/nar/gki458>
1056
1057 87. Sun J, Zhang Y, Xu T, Zhang Y, Mu H, Zhang Y *et al.* (2017). Adaptation to deep-sea
1058 chemosynthetic environments as revealed by mussel genomes. *Nature Ecology & Evolution* **1**:
1059 1–7. <https://doi.org/10.1038/s41559-017-0121>
1060
1061 88. Suzuki Y, Sasaki T, Suzuki M, Nogi Y, Miwa T, Takai K, Nealson KH, Horikoshi K (2005).
1062 Novel chemoautotrophic endosymbiosis between a member of the Epsilonproteobacteria and the
1063 hydrothermal-vent gastropod *Alviniconcha* aff. *hessleri* (Gastropoda: Provannidae) from the
1064 Indian Ocean. *Applied and Environmental Microbiology* **71**: 5440–5450.
1065 <https://doi.org/10.1128/AEM.71.9.5440-5450.2005>
1066
1067 89. Takai K, Campbell BJ, Cary SC, Suzuki M, Oida H, Nunoura T, Hirayama H, Nakagawa S,
1068 Suzuki Y, Inagaki F, Horikoshi K (2005). Enzymatic and genetic characterization of carbon and
1069 energy metabolisms by deep-sea hydrothermal chemolithoautotrophic isolates of
1070 Epsilonproteobacteria. *Applied and Environmental Microbiology* **71**: 7310–7320.
1071 <https://doi.org/10.1128/AEM.71.11.7310-7320.2005>
1072

- 1073 90. Thakur A, Mikkelsen H, Jungersen G (2019). Intracellular pathogens: host immunity and
1074 microbial persistence strategies. *Journal of immunology research* **2019**: 1356540.
1075 <https://doi.org/10.1155/2019/1356540>
- 1076
- 1077 91. Vulture GW, Sedlazeck FJ, Nattestad M, Underwood CJ, Fang H, Gurtowski J, Schatz MC
1078 (2017). GenomeScope: fast reference-free genome profiling from short reads. *Bioinformatics* **33**:
1079 2202–2204. <https://doi.org/10.1093/bioinformatics/btx153>
- 1080
- 1081 92. Walker BJ, Abeel T, Shea T, Priest M, Abouellil A, Sakthikumar S, Cuomo CA, Zeng Q,
1082 Wortman J, Young SK, Earl AM (2014). Pilon: an integrated tool for comprehensive microbial
1083 variant detection and genome assembly improvement. *PLoS One* **9**.
1084 <https://doi.org/10.1371/journal.pone.0112963>
- 1085
- 1086 93. Wang JR, Holt J, McMillan L, Jones CD (2018). FMLRC: Hybrid long read error correction
1087 using an FM-index. *BMC bioinformatics* **19**: 50. <https://doi.org/10.1186/s12859-018-2051-3>
- 1088
- 1089 94. Wang Y, Han X, Petersen S, Frische M, Qiu Z, Li H, Li H, Wu Z, Cui R (2017). Mineralogy
1090 and trace element geochemistry of sulfide minerals from the Wocan Hydrothermal Field on the
1091 slow-spreading Carlsberg Ridge, Indian Ocean. *Ore Geology Reviews* **84**: 1–19.
1092 <https://doi.org/10.1016/j.oregeorev.2016.12.020>
- 1093
- 1094 95. Warèn A, Bouchet P (1993). New records, species, genera, and a new family of gastropods
1095 from hydrothermal vents and hydrocarbon seeps. *Zoologica Scripta* **22**: 1–90.
1096 <https://doi.org/10.1111/j.1463-6409.1993.tb00342.x>
- 1097
- 1098 96. Watsuji TO, Yamamoto A, Motoki K, Ueda K, Hada E, Takaki Y, Kawagucci S, Takai K
1099 (2015). Molecular evidence of digestion and absorption of epibiotic bacterial community by
1100 deep-sea crab *Shinkaia crosnieri*. *ISME J* **9**: 821–831. <https://doi.org/10.1038/ismej.2014.178>
- 1101
- 1102 97. Weiss Y, Forêt S, Hayward DC, Ainsworth T, King R, Ball EE, Miller DJ (2013). The acute
1103 transcriptional response of the coral *Acropora millepora* to immune challenge: expression of

- 1104 GiMAP/IAN genes links the innate immune responses of corals with those of mammals and
1105 plants. *BMC genomics* **14**: 400. <https://doi.org/10.1186/1471-2164-14-400>
- 1106
- 1107 98. Wheeler NE, Barquist L, Kingsley RA, Gardner PP (2016). A profile-based method for
1108 identifying functional divergence of orthologous genes in bacterial genomes. *Bioinformatics* **32**:
1109 3566–3574. <https://doi.org/10.1093/bioinformatics/btw518>
- 1110
- 1111 99. Windoffer R, Giere O (1997). Symbiosis of the hydrothermal vent gastropod *Ifremeria*
1112 *nautillei* (Provannidae) with endobacteria-structural analyses and ecological considerations.
1113 *Biological Bulletin* **193**: 381–392. <https://doi.org/10.2307/3593152>
- 1114
- 1115 100. Wu YW, Simmons BA, Singer SW (2016). MaxBin 2.0: an automated binning algorithm to
1116 recover genomes from multiple metagenomic datasets. *Bioinformatics* **32**: 605–607.
1117 <https://doi.org/10.1093/bioinformatics/btv638>
- 1118
- 1119 101. Xu H, Luo X, Qian J, Pang X, Song J, Qian G, Chen J, Chen S (2012). FastUniq: a fast de
1120 novo duplicates removal tool for paired short reads. *PLoS One* **7**: e52249.
1121 <https://doi.org/10.1371/journal.pone.0052249>
- 1122
- 1123 102. Yang Y, Sun J, Sun Y, Kwan YH, Wong WC, Zhang Y, Xu T, Feng D, Zhang Y, Qiu JW,
1124 Qian PY (2020). Genomic, transcriptomic, and proteomic insights into the symbiosis of deep-sea
1125 tubeworm holobionts. *The ISME journal* **14**: 135–150. <https://doi.org/10.1038/s41396-019-0520-y>
- 1126
- 1127
- 1128 103. Yoshimura D, Kajitani R, Gotoh Y, Katahira K, Okuno M, Ogura Y, Hayashi T, Itoh T
1129 (2019). Evaluation of SNP calling methods for closely related bacterial isolates and a novel high-
1130 accuracy pipeline: BactSNP. *Microbial genomics* **5**: e000261.
1131 <https://doi.org/10.1099/mgen.0.000261>
- 1132
- 1133 104. Zamze S, Martinez-Pomares L, Jones H, Taylor PR, Stillion RJ, Gordon S, Wong SY
1134 (2002). Recognition of bacterial capsular polysaccharides and lipopolysaccharides by the

1135 macrophage mannose receptor. *Journal of Biological Chemistry* **277**: 41613–41623.

1136 <https://doi.org/10.1074/jbc.M207057200>

1137

1138 105. Zhou Y, Chen C, Sun Y, Watanabe HK, Zhang R, Wang C (2019). *Amphisamytha*
1139 (Annelida: Ampharetidae) from Indian Ocean hydrothermal vents: Biogeographic implications.

1140 *Deep-Sea Research Part I: Oceanographic Research Papers* **154**: 103148.

1141 <https://doi.org/10.1016/j.dsr.2019.103148>

1142

1143 106. Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, Yorke JA (2013) The MaSuRCA
1144 genome assembler. *Bioinformatics* **29**: 2669–2677. <https://doi.org/10.1093/bioinformatics/btt476>

1145

1146 **Acknowledgements**

1147 This work was supported by grants from the China Ocean Mineral Resources Research and
1148 Development Association (DY135-E2-1-03), the Hong Kong Branch of Southern Marine
1149 Science and Engineering Guangdong Laboratory (Guangzhou) (SMSEGL20SC01), the Southern
1150 Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0409), and
1151 the Major Basic and Applied Basic Research Projects of Guangdong Province
1152 (2019B030302004-04) awarded to P.Y.Q., and the National Natural Science Foundation of
1153 China (NSFC) (grant no. 91951201). Thank Ms Pui Shuen (Joyce) Wong at BioCRF, HKUST
1154 for her assistance in PacBio sequencing. Alice Cheung edited the final version of the paper.

1155

1156 **Competing interests**

1157 The authors declare no competing interests.

1158

1159 **Author Contributions**

1160 PYQ conceived the project. YY and JS designed the experiments. YZ and CW collected the
1161 *Alviniconcha* snails. CC dissected specimens. YY performed DNA extraction, RNA extraction,
1162 Nanopore and PacBio sequencing, gene expression and metabolic pathway analyses of the
1163 symbionts and the host *Alviniconcha* snail. YY performed genome assemblies, phylogenetic and
1164 genomic comparative analyses of the symbionts. JS performed genome assembly, phylogenetic
1165 and gene family analyses of the host *Alviniconcha* snail. JS and YY performed genome

1166 annotation of the host *Alviniconcha* snail. YY checked bacteria contamination, performed
1167 genomic comparative and the remaining analyses of the host *Alviniconcha* snail. YY prepared
1168 the figures and tables and drafted the manuscript. CC, JS, LY, CVD, JWQ and PYQ contributed
1169 to manuscript editing.
1170
1171

1172 **Figure Legends**

1173 **Figure 1. Genomic comparisons and gene family analyses across Lophotrochozoa. (A)**

1174 Genome-based phylogeny of selected taxa showing the position of *Alviniconcha marisindica*
1175 among lophotrochozoans and divergence times among molluscan lineages. Error bars indicate 95%
1176 confidence levels. **(B)** Venn diagram depicting unique and shared gene families among four
1177 lophotrochozoan genomes.

1178

1179 **Figure 2. Gill endosymbionts and intestinal microbiome of *Alviniconcha marisindica* from**

1180 **the Wocan vent field. (A)** Circle diagram showing an overview of genome information of the
1181 binned endosymbiont based on COG annotation. **(B)** Correlation-based network of intestinal
1182 bacteria genera (relative abundance $\geq 0.5\%$) from three *A. marisindica* individuals. The network
1183 analysis displays the intra-associations within each sub-community and inter-associations
1184 between sub-communities. Node size is proportional to the number of connections (i.e. degree of
1185 connectivity). Connection between nodes represents strong (Spearman correlation
1186 efficiency >0.8 (yellow) or <-0.8 (blue)) and significant (p -value <0.01) correlation. The same
1187 colour of nodes shows their highly modularised (clustered) property within the network.

1188

1189 **Figure 3. Genome-based phylogeny of campylobacterota representatives.** The position of

1190 the *Alviniconcha marisindica* endosymbiont among Campylobacterota belongs to the family
1191 Sulfurovaceae and marked in red. Nine delta-proteobacterial species are used to root the tree.
1192 Different lifestyles of the selected taxa are indicated by squares of different colours (purple: free-
1193 living, red: endosymbiont, yellow: epibiont, and green: pathogen/other). The right histogram
1194 indicates the size of each genome. The colour of a column represents the size range (grey: >2.0
1195 Mb, dark blue: <2.0 and ≥ 1.5 Mb, red: <1.5 Mb). The line chart in orange indicates the number
1196 of coding sequences (CDS) of each genome. Circles of different colours are used to indicate
1197 different ranges of GC content in % (red: ≥ 38.0 , yellow: ≥ 33.0 and <38.0 , green: ≥ 28.0 and
1198 <33.0 , black: <28.0). The genome size of the *A. marisindica* endosymbiont is the smallest among
1199 whole genomes within the phylum, and its GC content is slightly lower than those of the four
1200 closest relatives in the same clade.

1201

1202 **Figure 4. Genomic comparisons and gene family analyses of the Wocan *Alviniconcha***
1203 ***marisindica* endosymbiont and four closely related members of Campylobacterota. (A)** The
1204 loss-of-function genes of the *A. marisindica* endosymbiont shown in different COG categories
1205 obtained via pairwise comparison with genomes of the other four Campylobacterota members.
1206 The histogram on the left presents the result of comparing the *A. marisindica* endosymbiont with
1207 the other four campylobacterotal bacteria. The *A. marisindica* endosymbiont has significantly
1208 fewer mutated genes than do the references. **(B)** Venn diagram depicting unique and shared gene
1209 families among the five campylobacterotal genomes. **(C)** SNP-based phylogeny on the whole-
1210 genome level of 20 endosymbiotic isolates from 10 *A. marisindica* individuals showing the inter-
1211 and intra-individual relationships of *A. marisindica* endosymbionts. The genomic ANIs among
1212 these 20 isolates obtained via pairwise comparisons are shown in the heat map. The number in
1213 the name of each isolate represents the host individual, and the capital A and B represent the
1214 anterior and posterior parts of the gills, respectively.

1215
1216 **Figure 5. Overview of metabolic pathways of the *Alviniconcha marisindica* holobiont from**
1217 **the Wocan vent field.** Metabolic pathways of different organisms including the gill
1218 endosymbiont, intestinal microbiome, and the *A. marisindica* host are presented in different
1219 colours (blue: gill endosymbiont, red: *A. marisindica* host, orange: intestinal microbiome, and
1220 grey: missing genes/pathways). Similarly, metabolites from different sources are also shown in
1221 different colours (blue: from gill endosymbiont, red: from *A. marisindica* itself, and orange: from
1222 intestinal food or microbiome). The compensation mechanism is revealed by the host's
1223 collaborating with its symbionts to synthesise nutrients or their mutually using important
1224 metabolic intermediates. The combination of endogenous and exogenous energy sources is
1225 shown here to explain the adaptive mechanism of the entire *A. marisindica* holobiont.

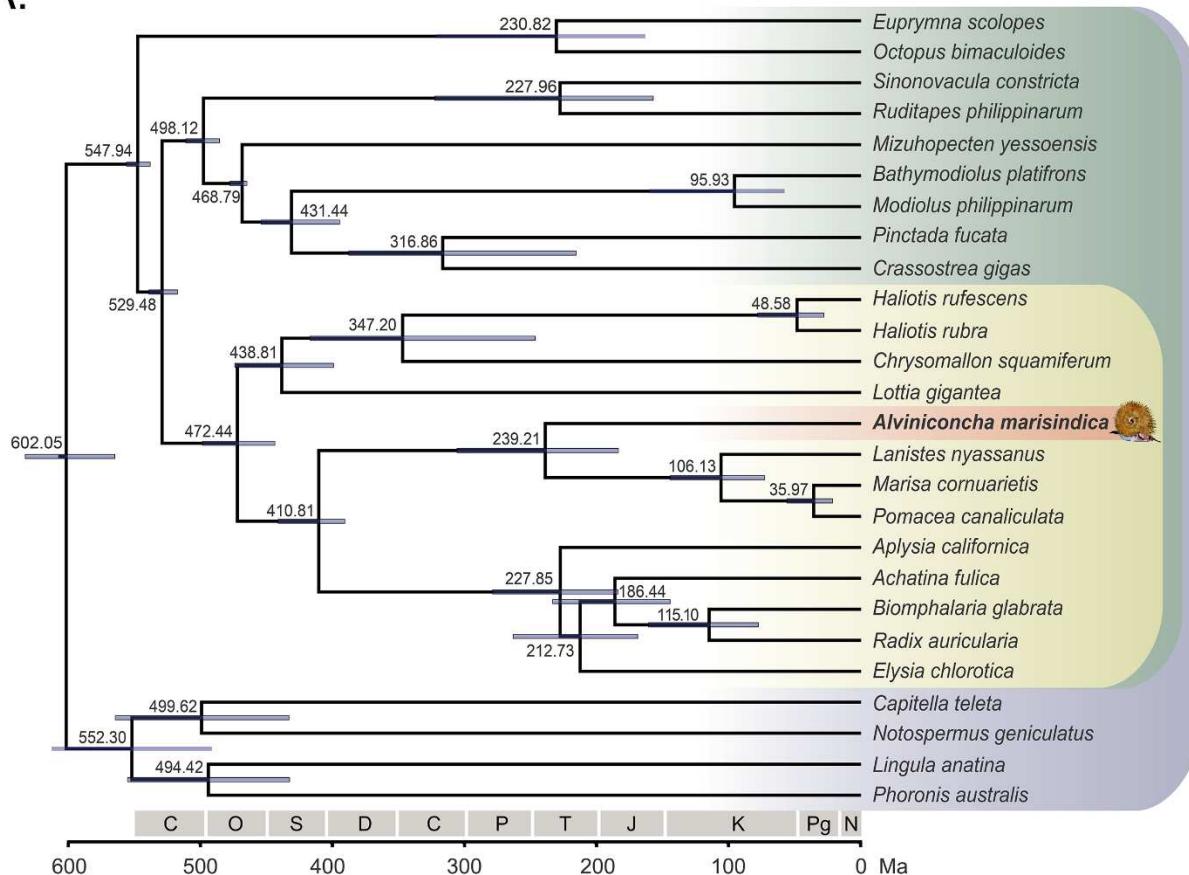
1226
1227 **Figure 6. Symbiosis constraints of the *Alviniconcha marisindica* holobiont. (A)** Heat map of
1228 the transcriptional activity of genes involved in host innate immunity in the foot, neck, mantle,
1229 intestine, and gill tissues showing distinct immune-expression profiles regulated by the two types
1230 of symbionts in the *A. marisindica* snail. Each grid in the heat map represents an identified gene.
1231 The colour represents the gene expression level (based on normalised TPM values of the selected
1232 tissues). The annotated gene names and their functional classifications are listed on the top side.

1233 (B) Symbiosis model of the *A. marisindica* holobiont with two different symbiotic constraints
1234 and interactions with the external environment. All pattern recognition receptors (PRRs) and
1235 pathogen-associated molecular patterns (PAMPs) shown here are identified from the genome and
1236 transcriptome data. SLPs, surface layer proteins; LPS, lipopolysaccharide; CPS, capsular
1237 polysaccharides; SIAE, sialate O-acetylerase; PGRPs, peptidoglycan recognition proteins;
1238 TLRs, toll-like receptors; C1q, complement component 1q; T2SS, type II secretion system.
1239

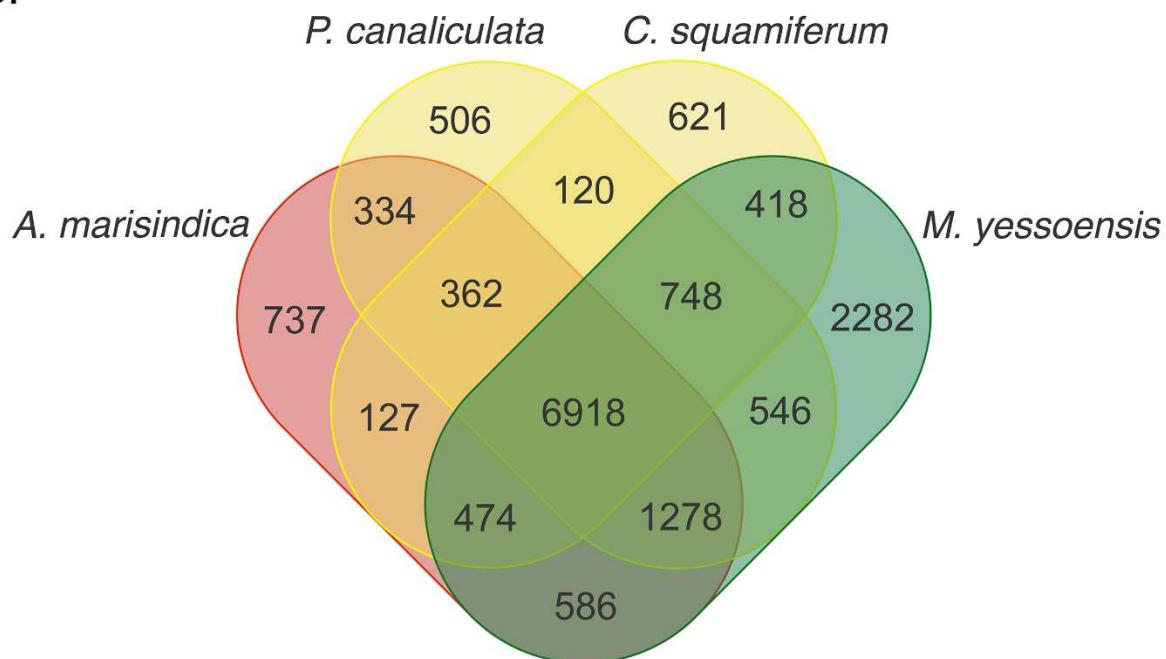
1240 **Table 1.** Comparison of general genomic features of *Sulfurovum alviniconcha* CR and references.

Name	<i>Lamellibrachia satsuma</i>	<i>Sulfurovum lithotrophicum</i>	<i>Sulfurovum riftiae</i>	<i>Sulfurovum</i> sp. NBC37-1	<i>Sulfurovum alviniconcha</i> CR
INSDC	JQIX00000000.1	CP011308.1	LNKT00000000.1	AP009179.1	—
Size (Mb)	2.00	2.22	2.37	2.56	1.47
GC (%)	39.7	44.3	45.6	43.9	37.1
Protein	1,852	2,148	2,317	2,481	1,386
tRNA	37	44	45	44	40
Gene	2,019	2,227	2,432	2,583	1,429
Percentage coding (%)	91.7	96.5	95.3	96.1	97.0
Pseudogene	126	23	62	46	—
Habitat	Trophosome	Sediments	Tube	Sulfide mound	Gills
Depth (m)	~112	1,033	2,500	1,000	2,919

1241 Genome data — *Sulfurovum alviniconcha* CR: this study; the endosymbiont of *Lamellibrachia*
1242 *satsuma*: Patra AK et al., 2016; *Sulfurovum lithotrophicum*: Inagaki F et al., 2004; *Sulfurovum*
1243 *riftiae*: Giovannelli et al., 2016; *Sulfurovum* sp. NBC37-1: Nakagawa et al., 2007.

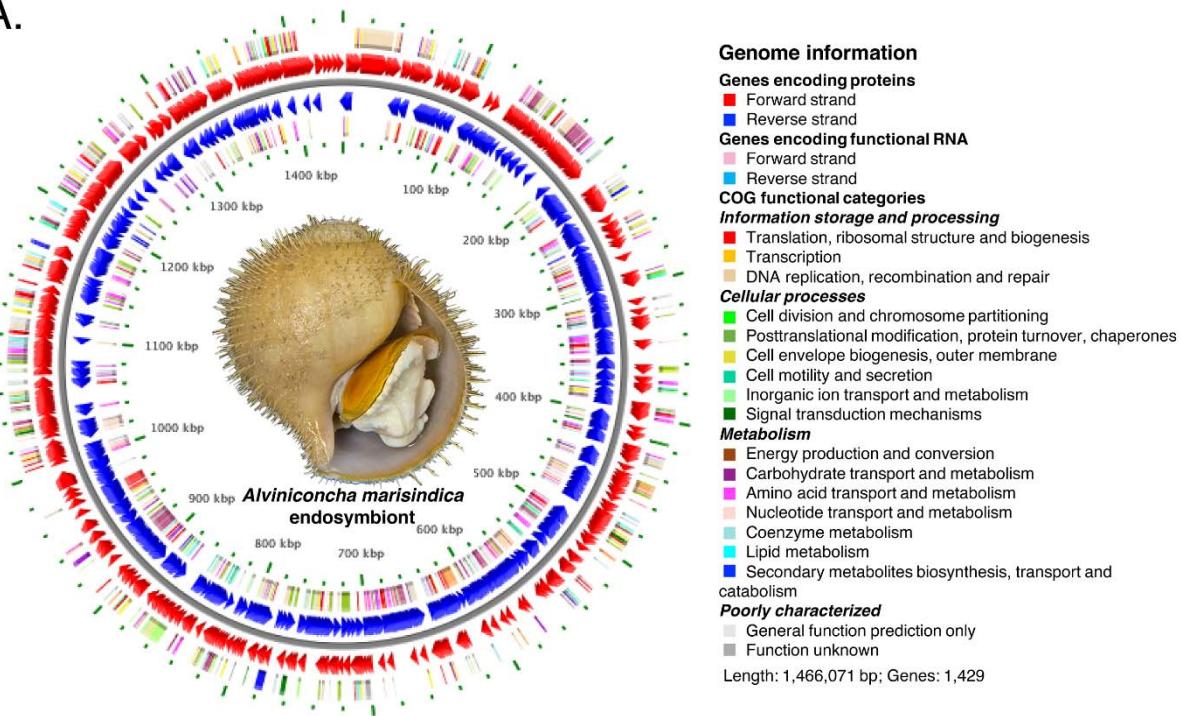

1244

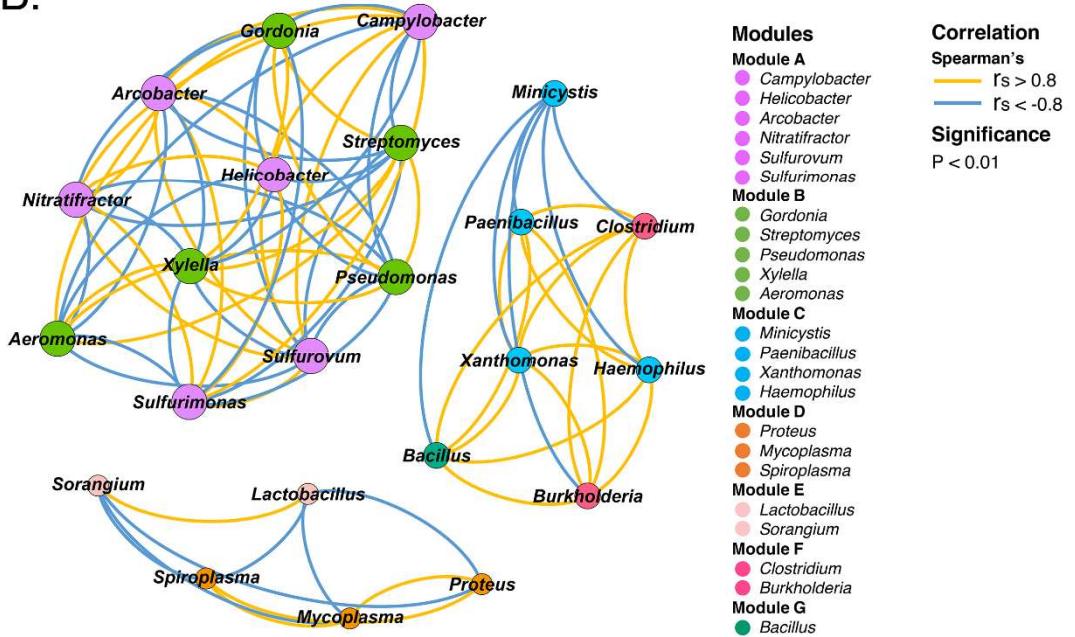
1245 **Table 2.** General genomic features of the binned endosymbionts of *Alviniconcha marisindica*
 1246 extracted from 23 metagenome datasets of gill filaments.


Individual	Sample No.	Gill part	Genome size (Mb)	Contig No.	GC (%)	CDS	Completeness (%)	Contamination (%)
38I-DV129-2	1	random	1.47	2	37.09	1,386	98.16	0.82
38I-DV129-3	2	random	1.31	153	37.49	1,396	96.11	3.89
38I-DV129-16	3	random	1.33	77	37.41	1,384	96.31	1.43
38I-DV129-14-1	4-B	posterior	1.76	298	37.77	1,734	99.18	2.25
	4-A	anterior	1.75	291	37.49	1,745	99.18	2.66
38I-DV129-14-2	5-B	posterior	1.55	126	37.71	1,524	98.36	2.05
	5-A	anterior	1.85	257	37.44	1,816	99.59	3.69
38I-DV129-19-1	6-B	posterior	1.75	306	37.82	1,722	99.18	1.30
	6-A	anterior	1.39	62	37.25	1,394	98.77	1.43
38I-DV129-19-2	7-B	posterior	1.72	149	37.66	1,676	99.18	1.23
	7-A	anterior	1.76	288	37.67	1,759	98.77	0.82
38I-DV129-20	8-B	posterior	1.55	172	37.92	1,525	97.95	2.46
	8-A	anterior	1.60	207	37.64	1,612	98.57	2.87
38I-DV131-1	9-B	posterior	1.46	176	37.79	1,493	98.36	1.23
	9-A	anterior	1.58	143	37.76	1,540	97.95	2.05
38I-DV131-3	10-B	posterior	1.43	134	37.59	1,445	97.95	2.05
	10-A	anterior	1.55	138	37.77	1,528	98.77	2.05
38I-DV131-8	11-B	posterior	1.45	109	37.45	1,541	97.54	2.46
	11-A	anterior	1.53	117	37.83	1,484	98.77	1.64
38I-DV131-9-1	12-B	posterior	1.38	59	37.25	1,409	97.95	0.61
	12-A	anterior	1.55	143	38.00	1,499	97.13	1.23
38I-DV131-9-2	13-B	posterior	1.39	68	37.81	1,430	98.16	1.02
	13-A	anterior	1.43	154	37.31	1,438	97.54	2.25

1247

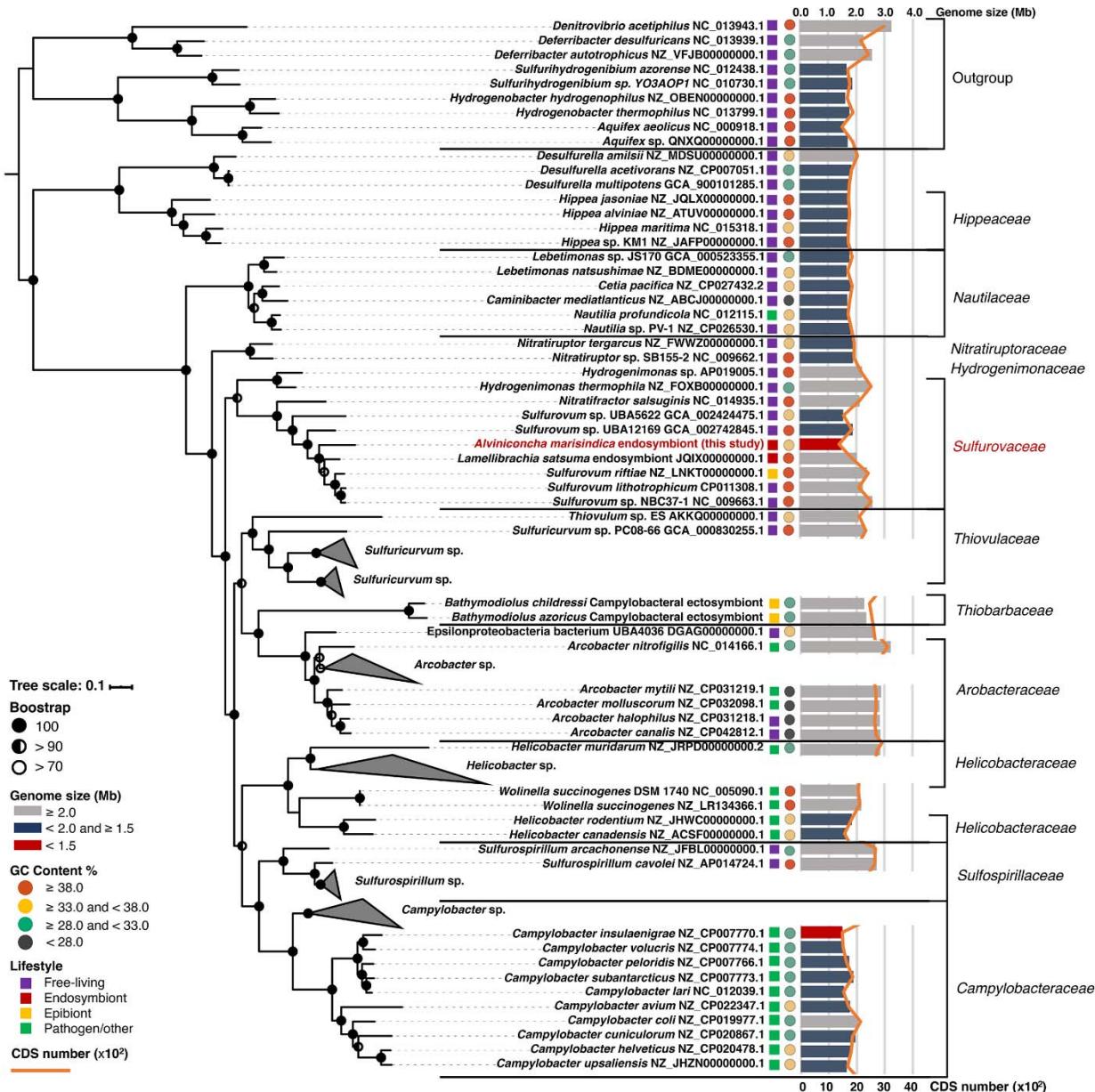
A.


B.

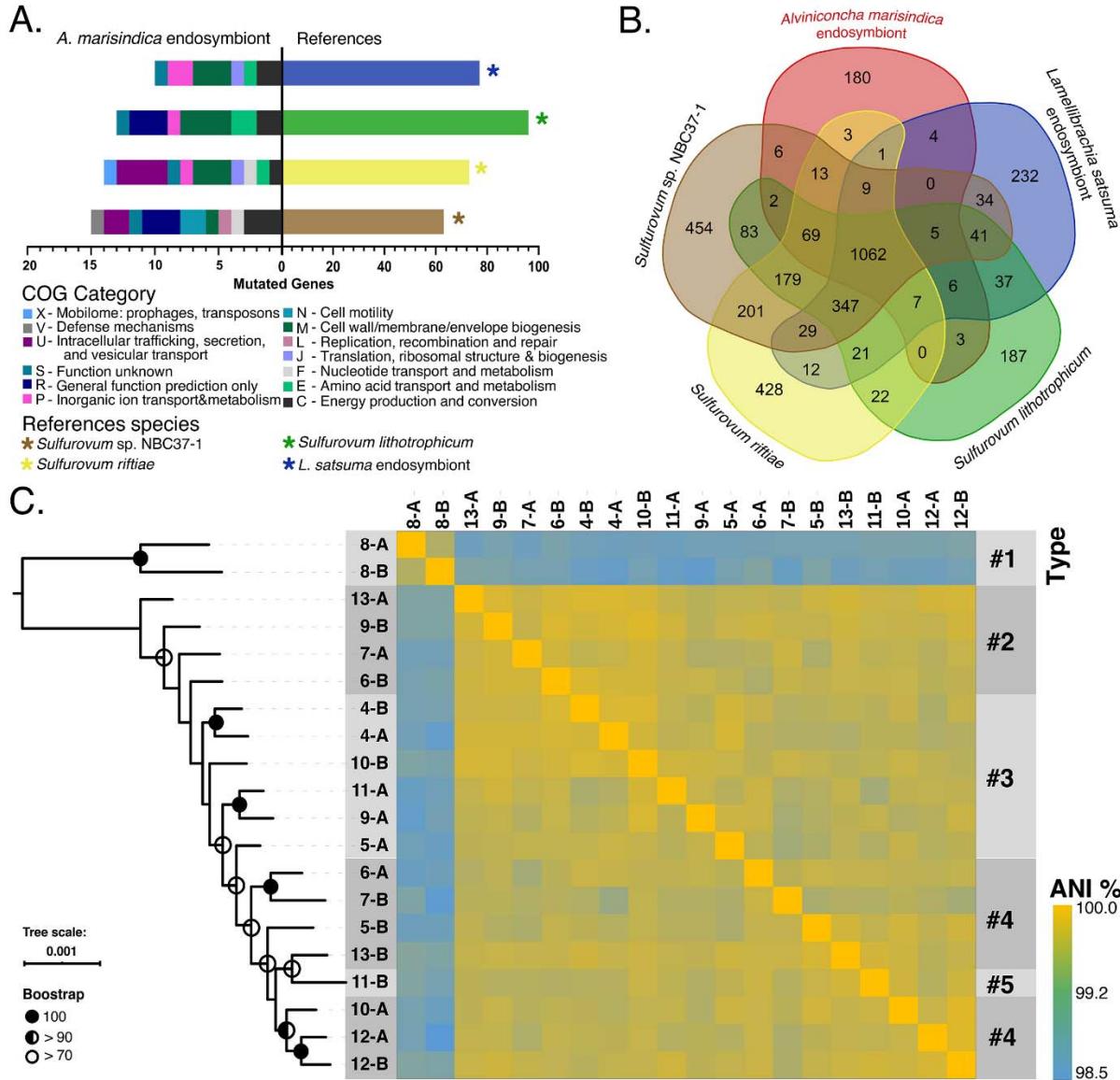

1248

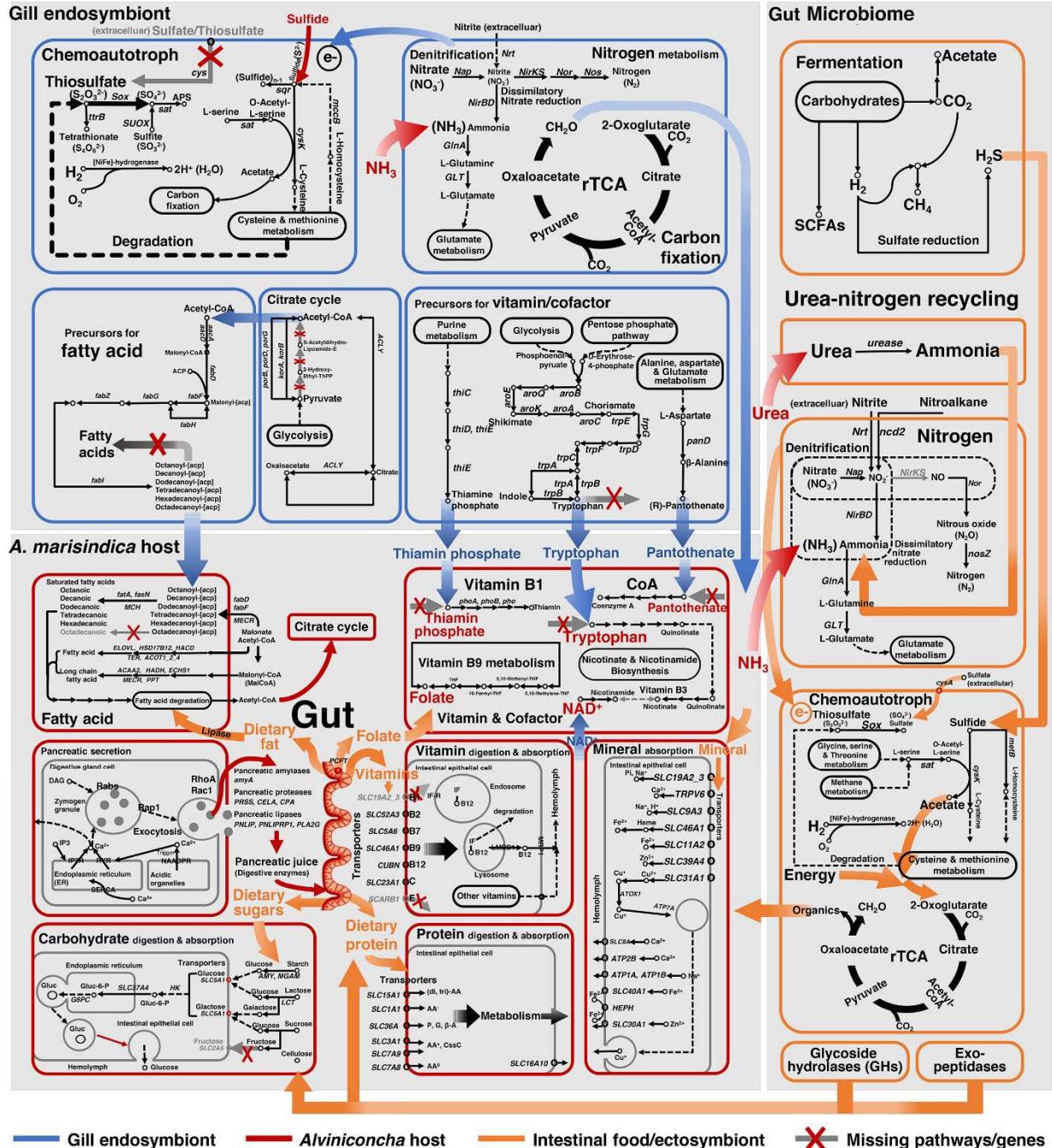
1249 Figure 1.

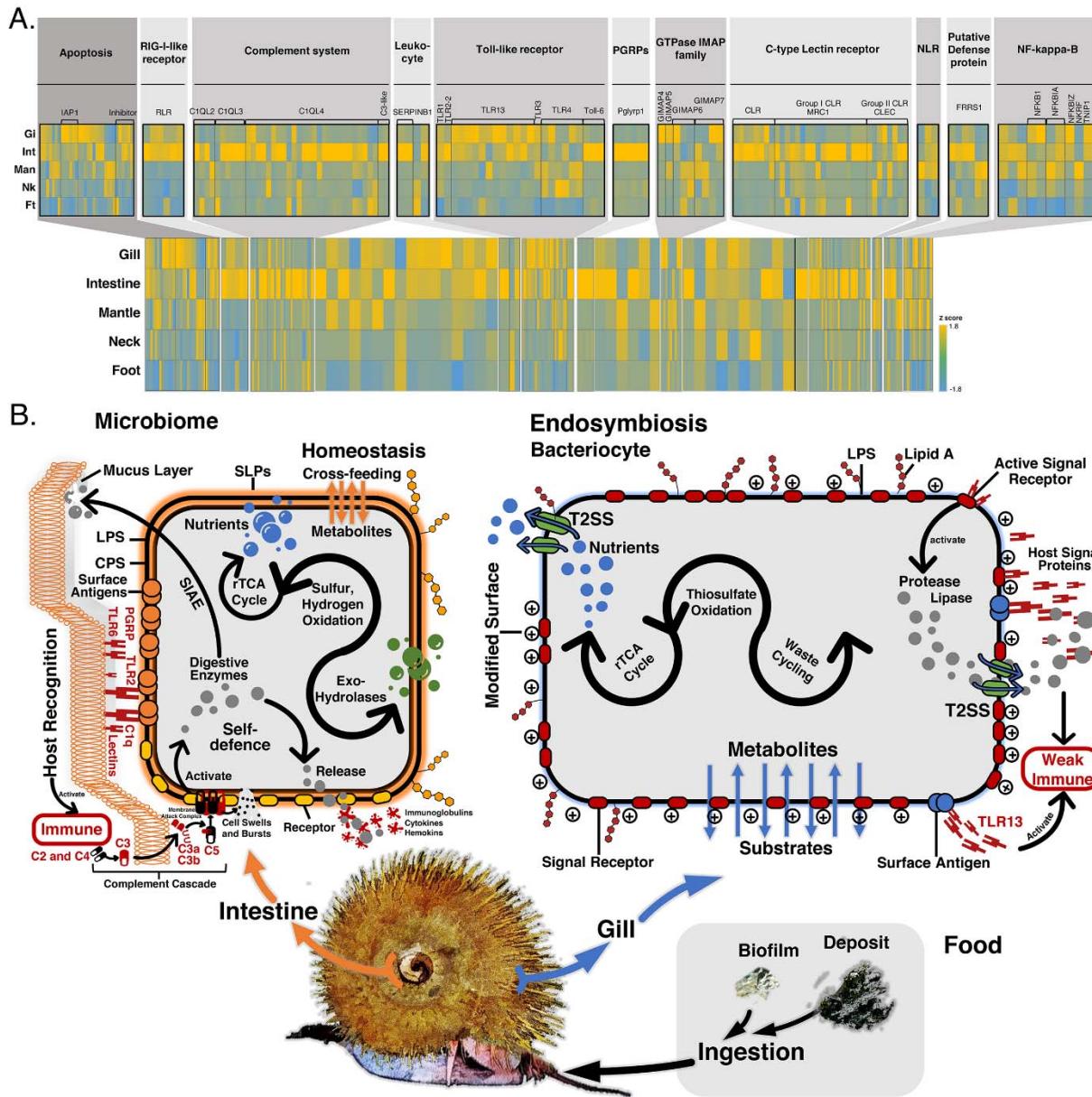
A.



B.


1250


1251 Figure 2.



1252

1253 Figure 3.

1258

1259 Figure 6.