

1 **Title: Selfish chromosomal drive shapes recent centromeric histone evolution in monkeyflowers**

2 **Authors:** Findley R. Finseth^{1,2}, Thom C. Nelson¹, Lila Fishman^{1*}

3 **Affiliations:**

4 ¹Division of Biological Sciences, University of Montana, Missoula MT, USA

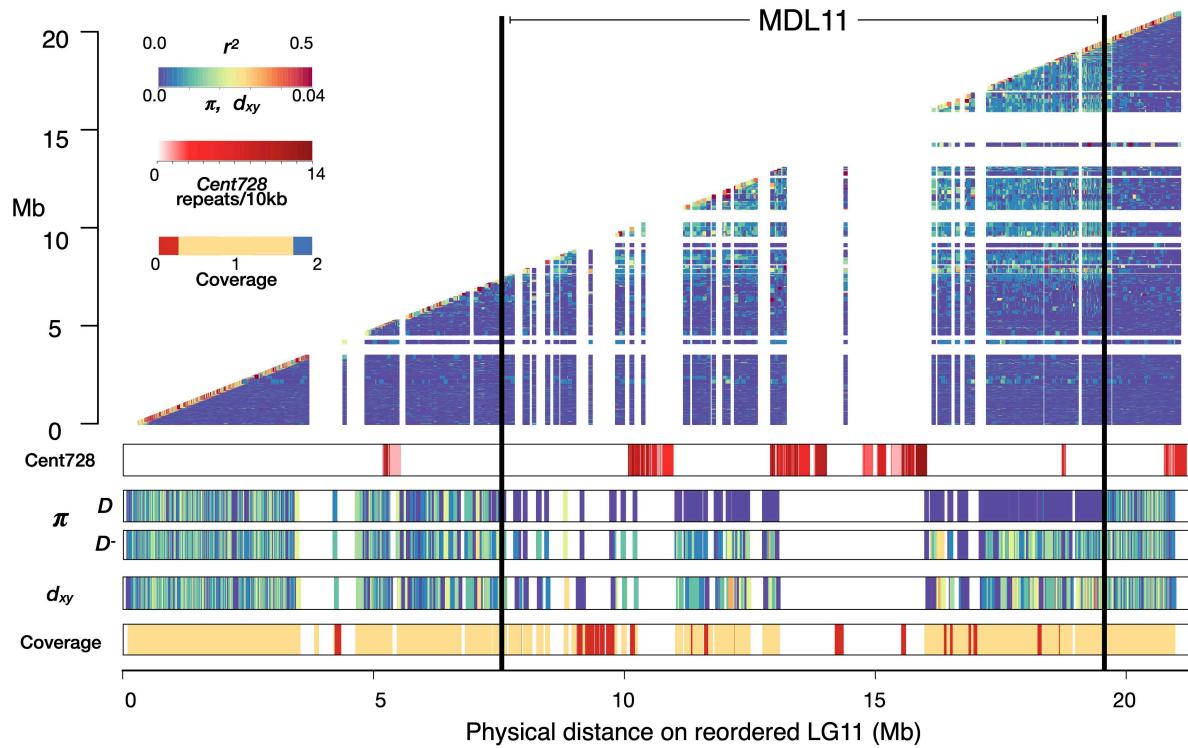
5 ²Keck Science Department, Claremont-McKenna, Scripps, and Pitzer Colleges, Claremont CA, USA

6 ***Correspondence to:** lila.fishman@mso.umt.edu

7 **Abstract:** Under the selfish centromere model, costs associated with female meiotic drive by
8 centromeres select on interacting kinetochore proteins to restore Mendelian inheritance. We directly test
9 this model in yellow monkeyflowers (*Mimulus guttatus*), which are polymorphic for a costly driving
10 centromere (*D*). We show that the *D* haplotype is structurally and genetically distinct and swept to a high
11 stable frequency within the past 1500 years. Quantitative genetic analyses reveal that variation in the
12 strength of drive primarily depends on the identity of the non-*D* centromere, but also identified an unlinked
13 modifier coincident with kinetochore protein Centromere-specific Histone 3 A (CenH3A). CenH3A has
14 also experienced a recent (<1000 years) selective sweep in our focal population, consistent with ongoing
15 interactions with *D* shaping its evolution. Together, our results demonstrate an active co-evolutionary
16 arms race between the DNA and protein components of the meiotic machinery, with important
17 consequences for individual fitness and molecular divergence.

18

19 INTRODUCTION


20 Centromeres, which mediate the conserved and essential processes of chromosomal segregation during
21 eukaryotic mitosis and meiosis, are paradoxically diverse. Centromeric DNA arrays are highly variable in
22 sequence, size, and position, and the protein that epigenetically marks the site of kinetochore assembly,
23 Centromere-specific Histone 3 (CenH3; known as CENP-A in humans), commonly evolves under
24 diversifying selection (Malik and Henikoff 2001; Henikoff et al. 2001; Finseth et al. 2015). The selfish
25 centromere hypothesis (Henikoff et al. 2001; Malik and Henikoff 2002) resolves this paradox by arguing:
26 a) asymmetric female meiosis creates an arena for selection among homologous centromeres for
27 inclusion in the single egg cell, b) female meiotic drive is costly to individuals and c) costs of drive
28 promote suppressive coevolution by CenH3 and other key kinetochore proteins. This model of genetic
29 conflict between the DNA and protein components of centromeres has profound implications for the
30 maintenance of individual fitness variation, the divergence of species, and the evolution of genomes and
31 cellular processes (McLaughlin and Malik 2017; Lampson and Black 2017; reviewed in Kursel and Malik
32 2018). Furthermore, understanding centromere function and evolution directly impact human endeavors
33 from cancer therapies (Zhang et al. 2016) to crop improvement (Ravi and Chan 2010). However, despite
34 recent advances in understanding the molecular biology (Chmátal et al. 2014; Akera et al. 2017) and
35 evolutionary dynamics (Fishman and Kelly 2015) of centromeric drive, evidence for the posited
36 evolutionary arms race between centromere DNA and kinetochore proteins remains largely
37 circumstantial. Here, we directly test the key final step of the centromere drive hypothesis in a flowering
38 plant with an active (and costly) driving centromere.

39 In the yellow monkeyflower, *Mimulus guttatus*, the *D* allele on Linkage Group 11 (LG11) drives through
40 female meiosis against both conspecific (*M. guttatus* *D*-allele; *D*:*D* female transmission ratio = 58:42) and
41 heterospecific (*M. nasutus* *d* allele; *D*:*d* ratio > 98:2) alternative alleles in hybrids (Fishman and Willis
42 2005; Fishman and Saunders 2008). *D* is genetically and cytogenetically associated with dramatically
43 expanded arrays of the *M. guttatus* centromere-specific DNA repeat Cent728 (Fishman and Saunders

44 2008; Melters et al. 2013). Along with near-perfect transmission in heterospecific F₁ hybrids, which is only
45 possible via centromeric drive in Meiosis I (Malik 2005), this association strongly suggests that *D* acts as
46 the functional centromere of LG11. Homozygous costs to both male (pollen viability) and female fertility
47 (seeds per fruit) prevent fixation of *D*, maintaining it at 35-45% in our focal annual Iron Mountain (IM) *M.*
48 *guttatus* population (Oregon Cascades, USA) (Fishman and Saunders 2008; Fishman and Kelly 2015) .
49 Recent genome-wide association mapping of flowering traits in the field found little or no effect of *D* on
50 other fitness components (Troth et al. 2018), confirming that its evolutionary dynamics primarily reflect a
51 balance between selfish female meiotic drive and fertility costs. Because a costly driver at a polymorphic
52 equilibrium generates selection for unlinked suppressor loci (Crow 1991), this population provides the
53 ideal opportunity to assess the consequences of centromeric drive for selection on linked and unlinked
54 genes.

55 RESULTS

56 Comparative linkage mapping demonstrates local suppression of recombination in F₁ hybrids of the IM62
57 *M. guttatus* reference line (*D*) with *D*- and *d* lines (Flagel et al. 2019), suggesting that the *Cent728*
58 expansions associated with *D* are embedded in a chromosomal rearrangement (likely an inversion) that
59 reduces chromosomal pairing or crossing over between alternative haplotypes. Because the *M. guttatus*
60 reference genome sequence was assembled into chromosome-scale scaffolds using a locally non-
61 informative *D* x *D*-linkage map, we generated a corrected LG11 genome order based on a collinear *D* x
62 *D*- map (Table S1) (Flagel et al. 2019). Using this collinear (but likely inverted relative to *D* chromosomes)
63 order, IM inbred lines exhibit a contiguous block of elevated linkage disequilibrium (LD) across the region
64 of LG11 corresponding to the driving *D* haplotype (Meiotic Drive Locus 11 or MDL11: Fig. 1; Fig. S1A;
65 Table S2). This >12 Mb block almost certainly underestimates the true physical extent of MDL11;
66 although this region contains extensive arrays of *Cent728* repeats (Fig. 1), repetitive centromeric and
67 peri-centromeric DNA are likely under-represented in the assembled and mapped genome scaffolds.

Fig. 1. Elevated linkage disequilibrium (r^2) and reduced diversity (π) define a distinct haplotype around expanded *Cent728* repeats associated with female meiotic drive in *Mimulus guttatus*. A heatmap of pairwise estimates of r^2 , plotted by megabases (Mb) on x- and y-axes, illustrates the region of suppressed recombination corresponding to Meiotic Drive Locus 11 (MDL11 in the Iron Mountain (IM) population of *M. guttatus* (N = 34 IM inbred lines). Lower panels (in order from top to bottom) show the chromosome-wide density of putatively centromeric *Cent728* repeats, nucleotide diversity (π) per gene for lines carrying driving *D* (N = 14) and non-driving *D*⁻ haplotypes (N = 20), divergence (d_{xy}) per gene between *D* and *D*⁻ lines, and the ratio of coverage in *D*⁻ lines vs. *D* lines when both are aligned to the *D* reference genome (values near zero indicate likely deletion in *D*⁻ vs. *D*, whereas values near 2 indicate possible duplication).

68
69
70 As predicted by population genetic models (Fishman and Kelly 2015) and previously inferred from a
71 handful of marker sequences (Fishman and Saunders 2008), the sweeping away of genetic variation
72 demonstrates the rapid and recent spread of *D* to intermediate frequency despite substantial individual
73 fitness costs. Across MDL11, *D* lines are essentially invariant whereas *D*⁻ lines are highly variable and
74 both sets of lines exhibit high diversity in flanking regions (Table 1, Fig. 1, Fig. S1). To estimate the age of
75 the recently swept *D* haplotype within the IM population, we counted single nucleotide variants (SNVs) in

76 coding sequence across the region in 13 *D* lines (Supporting Information; Table S3). Over ~256 kb of
77 unambiguously *D* coding sequence we identified 9 single nucleotide variants (SNVs) present in one or
78 more lines. Using mutation rates = 0.2 - 1.5 x 10⁻⁸, following (Brandvain et al. 2014), this accumulation of
79 variation corresponds to 200 - 1497 years (generations) since the sweep with simple population genetic
80 equations (Thomson et al. 2000). Forward simulations with similar parameters find a mean time to
81 common *D* ancestor of 999 years (Supporting Information; Fig. S2).

82 **Table 1. Nucleotide diversity across LG11 in the IM *Mimulus guttatus* population**

Lines ^a	Region ^b	Mean π (SE) ^c	Mean $d_{x,y}$ (SE)	95% CI ^d	N _{genes} ^e
<i>D</i>	MDL11	0.0002 (0.00009)	--	(0.00007 - 0.0004)	219
<i>D</i> -	MDL11	0.0097 (0.0004)	--	(0.0089 - 0.0104)	219
<i>D</i>	Flanking	0.0096 (0.0002)	--	(0.0092 - 0.0100)	855
<i>D</i> -	Flanking	0.0100 (0.0002)	--	(0.0096 - 0.0103)	855
<i>D</i> vs <i>D</i> -	MDL11	--	0.0110 (0.0005)	(0.0102 - 0.0120)	231
<i>D</i> vs <i>D</i> -	Flanking	--	0.0098 (0.0002)	(0.0094 - 0.101)	867

83 ^a14 IM lines with *D* haplotype, 20 IM lines with *D*- haplotype

84 ^b MDL11 = region of LG11 spanning driving *D* haplotype; Flanking = LG11 outside of MDL11

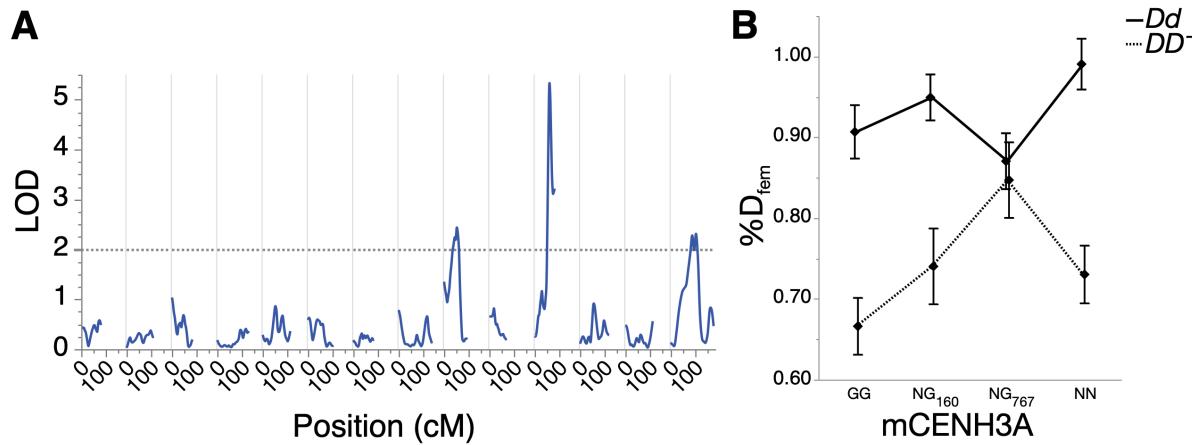
85 ^cNei's diversity per gene per site (Nei and Li 1979)

86 ^d Confidence intervals (CI) generated by resampling the mean without assuming normality (N = 1000)

87 ^eNumber of genes without missing data

88

89 Given the distinctiveness of the *D* haplotype, it is worth considering whether it arose by local mutation,
90 gene flow from another population, or introgression from another species. The *D* haplotype also occurs in
91 at least one other intensively sampled population from the Oregon Cascades (Monnahan and Kelly 2017),
92 suggesting that it may not have arisen by mutation within our focal population. However, both divergence
93 estimates and coalescent models suggest that haplotype associated with drive is unusually extended and
94 common, but not unusual in sequence or origin. Divergence (genic $d_{x,y}$) between *D* and *D*- lines is only
95 marginally higher in the MDL11 region vs. flanking regions (0.011 vs. 0.0098; Table 1, Fig. 1). Further,
96 while trans-specific introgression of other loci has been observed at Iron Mountain (Puzey et al. 2017), it
97 is unlikely to be an initiator of drive in *M. guttatus*. In pairwise coalescent analyses with samples from
98 outside the IM population, the *D* and *D*- haplotypes exhibit similar inferred demographic histories, both

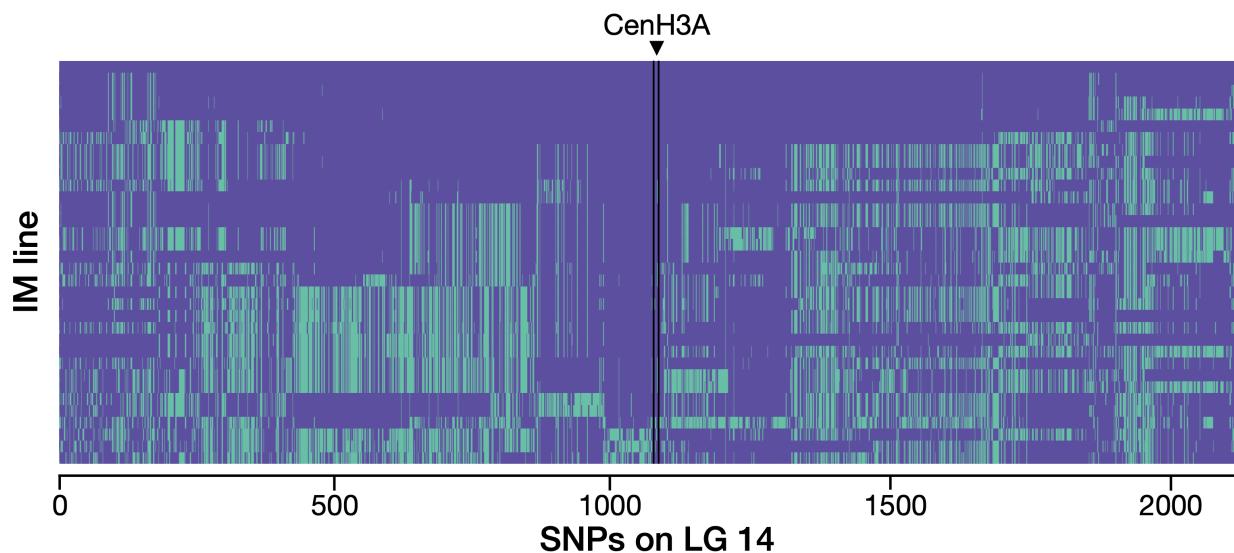

99 inside and outside MDL11 (Fig. S3). Further, consistent with no elevation of $d_{x,y}$ across MDL11 (Table 1),
100 there is no evidence of unusually deep coalescence between the sampled D and D^+ haplotypes.
101 Together, these results suggest that the driving D haplotype arose by structural and sequence mutation
102 within the Northern clade of *M. guttatus* rather than from long-distance migration or interspecific
103 introgression.

104 Given that the MDL11 region includes at least 387 protein-coding genes (Fig. 1, Table S4), it is possible
105 that linked genes enhance female meiotic drive and/or contribute to the substantial costs of D
106 homozygosity. Male meiotic drive factors, such as *Segregation Distorter* in fruit flies, are often associated
107 with rearrangements that genetically link sperm-killing alleles with responder or enhancer genes
108 (Larracuente and Presgraves 2012). Female meiotic drive, on the other hand, involves physical
109 competition between structurally divergent chromosomes and thus does not require differences in gene
110 sequence or expression. However, linked genic enhancers are predicted to accumulate whenever LD is
111 high around any selfish element (Crow 1991). Furthermore, female meiotic drive by a neocentromeric
112 driver in maize requires both a physical knob of heterochromatic satellite DNA and a cluster of kinesin
113 genes, which are locked together within an inversion (Dawe et al. 2018). To assess the opportunity for
114 collusion between driving *Cent728* arrays and linked genes, we surveyed MDL11 for genes with potential
115 meiotic functions (Table S4). Candidates include the sole *M. guttatus* homologue of Nuclear
116 Autoantigenic Sperm Protein (NASP)/Sim3, which was recently identified as the chaperone of plant
117 centromeric histones (Le Goff et al. 2020). In addition, a > 800kb region (45 genes: Migut.K01214-
118 Migut.K1259) exhibiting near-zero sequence coverage in all D^+ lines (Fig. 1, Table S4) contains a
119 homologue of Arginine-Rich Cyclin RCY1, a component of the male-meiosis-essential Cyclin L/CDKG1
120 complex (Zheng et al. 2014). Thus, gene content differences between D and non- D haplotypes may also
121 contribute to drive or its costs. However, because all diagnostic variants are equally associated with
122 meiotic drive within the IM population and in hybrids, we cannot genetically uncouple these potential
123 genic modifiers from the *Cent728* arrays. In the future, genetic editing of target sequences in *Mimulus*
124 may make direct study of their drive-relevant functions possible.

125
126 Centromeric drive sets up a conflict between the driver and genes genome-wide, with components of the
127 kinetochore machinery particularly likely evolutionary interactors. In *Mimulus guttatus*, the striking
128 difference in the strength of drive between heterospecific and conspecific hybrids allows quantitative
129 genetic investigation of this process over long time-scales, while costly drive polymorphism within IM can
130 illuminate it from a population genetic perspective. Thus, we first ask whether unlinked suppressor loci
131 contribute to the relative weakness of conspecific (*DD*; 58:42) vs. heterospecific (*Dd*; 98:2) drive and then
132 examine population genomic patterns of selection at a functional and positional candidate. These
133 approaches are complementary: the quantitative genetic approach casts a broad net to assay
134 accumulated differences between species but cannot distinguish driven co-evolution from other sources
135 of epistasis in hybrids (Fishman and Sweigart 2018; Sweigart et al. 2019), while the population genomics
136 is a single gene-scale snapshot of evolution in action.

137 Centromeric or genic divergence within MDL11 alone (i.e. *M. guttatus D* vs. *M. nasutus d* as competitors
138 with *D*) could govern the strength of transmission ratio distortion in *DD* vs *Dd* heterozygotes. However,
139 *M. nasutus* alleles at unlinked loci may be particularly permissive to drive in *F*₁ hybrids and *M. nasutus*-
140 background nearly isogenic lines (Fishman and Willis 2005). To evaluate these (non-exclusive)
141 alternatives and map any unlinked modifier loci, we generated a three-parent interspecific *F*₂ mapping
142 population by crossing a *Dd* *F*₁ female parent (SF *M. nasutus* x IM160 *M. guttatus*) to a *D-d* *F*₁ male
143 parent (SF x IM767), genotyped the *F*₂ hybrids genome-wide using a reduced-representation sequencing
144 method, and constructed a linkage map (Flagel et al. 2019). As expected, the *Dd* *F*₁ female transmitted
145 only *D* alleles to the next generation, and the *F*₂ hybrids consisted entirely of *Dd* and *DD* individuals (n =
146 88 and 96, respectively). We used the frequency of *D* in selfed-*F*₃ progeny of *F*₂ hybrids (n = 12-16
147 genotyped per family, total N > 2400) to calculate the strength of female meiotic drive (%D_{fem}, assuming
148 male to be Mendelian). Averaged across genetic backgrounds in *F*₂ siblings, *Dd* drive remained
149 dramatically stronger than *DD* drive (mean %D_{fem} = 0.93 vs. 0.73; r² = 0.26; n = 159). Thus, stronger
150 drive against the *M. nasutus d* allele can primarily be ascribed to structural and/or genic divergence in the

151 functionally centromeric MDL11 region. Because *M. nasutus* is a highly selfing species (Brandvain et al.
152 2014), centromeric drive and other forms of genetic conflict should have been relaxed since its split from
153 *M. guttatus* (Burt and Trivers 1998). Thus, beyond the current dynamics of the *D* variant at MDL11, *M.*
154 *nasutus* may have both generally “weak” centromeres and a cellular machinery that is particularly
155 vulnerable to selfish elements.


Fig. 2. The relative strength of conspecific and heterospecific drive depends on the non-driving genotype at MDL11, as well as unlinked modifiers. A. A quantitative trait locus (QTL) scan of transmission ratio distortion in progeny of F₂ hybrids reveals unlinked modifier QTLs on Linkage Groups/Chromosomes (LG) 9 and 14, in addition to the primary effect of MDL11 genotype. **B.** F₂ genotype at CenH3A, which is centered under the LG14 modifier QTL, significantly influences *D* transmission in hybrids. Due to the three-parent crossing scheme (see Methods), there are only two F₂ hybrid genotypes (*DD*- and *Dd*) at MDL11, but four possible CenH3A genotypes: GG (IM160/IM767 *M. guttatus*), NG₁₆₀ (heterozygote with *M. guttatus* allele from IM160 parent), NG₇₆₇ (heterozygote with *M. guttatus* allele from IM767 parent), and NN (*M. nasutus*).

156
157 Despite its predominant effect, genotype at MDL11 could not fully explain variation in the intensity of
158 drive, suggesting that unlinked genetic modifiers also modulate drive in interspecific F₂ hybrids. In our F₂s,
159 *Dd* drive (0.93) was reduced relative to the expectation from F₁s and majority-*M. nasutus* isogenic lines
160 (0.98) (Fishman and Willis 2005), whereas *DD*- drive was substantially elevated relative to our
161 expectation from previous crosses within IM (mean %D_{fem} = 0.73 vs. 0.58) (Fishman and Saunders 2008).
162 A scan for quantitative trait loci (QTLs) affecting *D* transmission detected weak unlinked modifiers on LG9
163 and LG14 (LOD > 2.0; peak r² = 0.09 for both; Fig. 2A). The large confidence intervals (20-50 cM) of

164 these minor QTLs span hundreds of genes, but the LG14 modifier QTL is notably centered over one of
165 the two genes encoding CenH3 in *M. guttatus* and relatives (CenH3A) (Finseth et al. 2015). Because
166 CenH3 proteins are the leading functional candidates for suppression of centromeric drive (Henikoff et al.
167 2001), we further characterized *Dd* and *DD* drive in all four CenH3A genotypes found in our *F*₂ hybrids
168 (G₁₆₀G₇₆₇, NG₁₆₀, NG₇₆₇, and NN as determined by diagnostic marker alleles; N = 150). We see a strong
169 primary effect of MDL11 genotype ($F_{1,3} = 47.20$, $P < 0.00001$) and (marginally) the expected elevation of
170 *D* transmission in *M. nasutus* vs. *M. guttatus* CenH3A homozygotes across both MDL11 genotypic
171 classes (Least Squares Means comparison: $P = 0.059$; Fig. 2B). In addition, CenH3A and MDL11
172 genotypes interacted non-additively ($F = 3.91$, $P < 0.01$), with *DD* drive becoming as strong as *Dd* drive
173 exclusively in NG₇₆₇ heterozygotes (Fig. 2B). Although the CenH3A allele from IM767 does not enhance
174 conspecific drive when paired with a second *M. guttatus* allele, as in (Scoville et al. 2009), this allelic
175 interaction intriguingly mirrors transgenic experiments transferring CenH3s among widely divergent plant
176 species. In that work, *Arabidopsis* plants expressing homozygous maize CenH3 produce viable offspring
177 when selfed, but engineered maize-*Arabidopsis* CenH3 heterozygotes exhibit zygotic mis-segregation,
178 aneuploidy, and inviability (Maheshwari et al. 2015). This apparent underdominance implies uniquely
179 negative interactions between distinct versions of CenH3 during cell division. Similarly, our results
180 suggest that sensitivity of meiosis to mismatch between (some) heterospecific CenH3 alleles, on top of
181 the posited role for mismatch between CenH3 and centromeric DNA (Henikoff et al. 2001), may unmask
182 drive or cause reproductive breakdown in hybrids.

183 While quantitative genetic modification of drive by linked and unlinked genes in *M. nasutus* x *M. guttatus*
184 hybrids likely reflects evolution in both species, the spread of *D* (with its costs) specifically predicts
185 signatures of recent selection on interacting loci within the Iron Mountain *M. guttatus* population. We
186 examined the two centromeric histones, as they are primary functional candidates for antagonistic co-
187 evolution with costly *D* chromosomes and CenH3A is a candidate modifier in the mapping. Strikingly, an
188 8-gene region centered on CenH3A (Migut.N01552-Migut.N01559) exhibits a near-complete selective
189 sweep at IM (Fig. 3, Fig. S4), whereas CenH3B shows no signatures of local selection (Finseth et al.

190 2015; Puzey et al. 2017). The CenH3A region is an outlier in within-population nucleotide diversity
191 (mean π : 0.00232, $P < 0.017$) and has a significantly skewed site frequency spectrum (mean Tajima's D:
192 -0.838, $P < 0.017$, Fig. S4B), but exhibits typical inter-population diversity ($P > 0.05$ in all comparisons;
193 Table S5). These signatures, along with elevated linkage disequilibrium (Fig. 3), indicate a recent local
194 selective sweep rather than widespread purifying selection.

Fig. 3. The genomic region around CenH3A exhibits a recent selective sweep in the Iron Mountain *Mimulus guttatus* population, consistent with evolution in response to the spread of costly *D* chromosomes. For each of 34 IM lines, single nucleotide polymorphisms (SNPs) across a 496 kilobase (kb) region flanking CenH3A are coded according to whether they match (purple) or differ (green) from IM1054, which bears one of the most common CenH3A-flanking haplotypes. The arrowhead and lines mark the location of CenH3A. The seven haplotypes were assigned manually and are detailed in Table S6; for visual resolution around CenH3A, the longest haplotype (> 620kb) was truncated.

195 To age the CenH3A selective sweep relative to that of *D*, we considered two scenarios. First, if the 23.9
196 kb low-diversity region immediately around the gene decayed (from single whole-chromosome haplotype)
197 following the introduction of a novel mutation now near fixation, the selective sweep at IM occurred 627-
198 4178 years ago, depending on the local recombination rate (Methods). However, strong haplotype
199 structure extending across a substantially larger flanking region around CenH3A (Fig. 3) suggests that
200 novel selection likely favored an existing variant found on multiple genetic backgrounds. Seven distinct

201 long-range haplotypes of CenH3A were represented by two or more lines (Table S6), and the length of
202 the two most common haplotypes (168.5 and 254.4 kilobases, respectively) supports a more recent

203 response to novel selection (range 53 - 722 years ago; Methods). Of course, the history of selection on
204 CenH3A may be far more complex than either of these scenarios. CenH3 sequences routinely exhibit the
205 recurrent positive selection detected by measures of long-term molecular evolution (Finseth et al. 2015),
206 and *D* may not be the only selfish centromere exerting selection in *M. guttatus* (or even at Iron Mountain).
207 Nonetheless, the timescale of either scenario is consistent with the hypothesis that the recent spread of *D*
208 to intermediate frequency (with attendant or subsequent fertility costs) sparked selection on CenH3A
209 variation.

210
211
212

DISCUSSION

213 Overall, our results demonstrate that genic factors can modify the strength of centromeric drive and that
214 the recent spread of a selfish chromosome has plausibly driven local evolution of a key kinetochore
215 protein in a wild plant. This supports models in which centromeres routinely drive through asymmetric
216 female meiosis, with fitness consequences that select for compensation by other components of the
217 segregation machinery. However, we note that all three steps of the centromere drive model occur
218 simultaneously in our focal population of *Mimulus guttatus* only because *D* carries recessive costs that
219 generate balancing selection (Fishman and Kelly 2015; Hall and Dawe 2018) and thus provide time for
220 the rise and spread to fixation of even weak suppressor mutations (Crow 1991). This point is underlined
221 by the finding that the CenH3A selective sweep at IM likely involved a standing variant found on multiple
222 haplotypic backgrounds, and thus did not require that a modifier mutation fortuitously hit the small
223 sequence target of core meiotic proteins. Although recessive costs of drive may be a direct consequence
224 of meiotic conflict between driving centromeres, rearrangements that suppress recombination around
225 them may slow the dynamics by creating opportunities for both costly hitchhikers and linked enhancers.
226 Thus, centromeric drive and kinetochore protein coevolution, and their consequences for individuals,
227 populations, and species, may be often be intertwined with the processes that shape the evolution of
228 chromosome structure more broadly.

229

230 **METHODS**

231 **Genome sequencing, alignment, read mapping, and data filtering protocols**

232 Whole genome re-sequence data (fastqs, Illumina reads) were obtained from the Sequence Read Archive
233 (SRA) for 34 Iron Mountain (IM) inbred lines and four lines (AHQT, DUN, LMC24, and MAR3) from distant
234 populations (Flagel et al. 2014; Lee et al. 2016; Puzey et al. 2017). We generated new sequence data for
235 two additional plants (one inbred line, one F₁) derived from Iron Mountain. For the newly sequenced
236 lines, DNA was extracted from fresh tissue using a modified CTAB-chloroform extraction protocol
237 dx.doi.org/10.17504/protocols.io.bgv6jw9e. New genomic libraries were prepared following the Nextera
238 tagmentation protocol and sequenced on the Illumina NextSeq platform (Illumina NextSeq paired-end, 150
239 bp reads; Illumina Inc., San Diego, USA), as described in (Case et al. 2016). All samples and their
240 populations of origin, MDL11 haplotype call, and source are detailed in Table S2. Note that IM712 was
241 only included in linkage disequilibrium (LD) and depth of coverage analyses.

242

243 All sequences were quality- and adapter-trimmed with Trimmomatic version 0.35 (Bolger et al. 2014) and
244 aligned to the *M. guttatus* v2 reference genome (www.Phytozome.jgi.doe.gov) using bwa mem version
245 0.7.15 with default parameters (Li and Durbin 2009) . Reads with mapping qualities less than 29 were
246 filtered out with SAMtools v 1.3 (Li et al. 2009) and duplicate reads were removed (Picard tools v 1.119;
247 <http://broadinstitute.github.io/picard>). We used the Genome Analysis Toolkit (GATK) to re-align around
248 indels and call variant sites with the Unified Genotyper tool, following GATK's Best Practice
249 recommendations (McKenna et al. 2010; DePristo et al. 2011). Datasets were restricted to bi-allelic
250 positions within genes using vcfTools v0.1.12b (Danecek et al. 2011), indels were removed, and sites
251 covered by less than three reads per line were converted to missing data. For the highly inbred IM lines
252 (mean H_{OBS} per individual = 0.041, SD = 0.01), we removed sites with any heterozygous genotype calls.
253 For population genomic analyses, sites with genotype calls from at least 10 individuals were retained and
254 genes with fewer than 150 retained sites were removed. Comparisons between IM and lines from distant
255 populations (AHQT, DUN, LMC24, and MAR3) were restricted to sites retained in the IM population.

256

257 **Characterization of the MDL11 region**

258 **Scaffold re-ordering** — For analyses of sequence variation on LG11, we used a physical map based on
259 the re-ordering of *M. guttatus* v1 scaffolds in a collinear (*D* x *D*) IM767 x Point Reyes *M. guttatus* F₂
260 mapping population (Holeski et al. 2014; Flagel et al. 2019). In this mapping, v1 scaffolds were re-
261 positioned, split, and inverted to optimize the genetic map, while retaining sequence and gene-annotation
262 information for each v1 segment from the v2 assembly. In addition, we included the large (> 3 Mb) gene-
263 poor v1 scaffold_10 in the MDL11 region (Table S1), as it was placed there in v2 (and is clearly part of
264 the *D* haplotype block in visual examination of Illumina-read alignments), but was lost from later genetic
265 maps due to low genotyping quality in this repetitive region (Flagel et al. 2019). Mapped v1 scaffold
266 sequences were extracted from the v2 reference genome and reordered into a new FASTA file based on
267 their genetic coordinates. All gene sequences between contiguous genetically-mapped 100kb v1
268 segments were included in LD analyses (making them conservative; 1,188 genes), but divergent genes
269 that were clearly not part of the MDL11 haplotype block (likely due to local mis-assembly) were excluded
270 in remaining analyses unless specified (1,104 genes included; Table S4).

271

272 **Localization of *Cent728* satellite repeats and analyses of gene content** — We used the Basic Local
273 Alignment Search Tool (BLAST) (Altschul et al. 1990) of the consensus nucleotide sequence of *Cent728*
274 (Fishman and Saunders 2008) to localize copies of the putative centromeric repeat on the re-ordered
275 LG11. To survey for gene content differences (copy number variation; CNV) between *D* and *D*- individuals
276 across LG11, we used deviations in read depth following (Nelson et al. 2018). We allowed sites to have
277 missing data and relaxed the read coverage per line criteria for these analyses. We used vcftools
278 v0.1.12b (Danecek et al. 2011) to obtain read depth for each exonic site (excluding indels, heterozygous
279 sites, and sites with more than two alleles), standardized values by the individual's chromosome-wide
280 median for such sites, and calculated an average standardized read depth for each gene. Genes were
281 excluded as likely misassembled or repetitive if *D* individuals had standardized coverage values < 0.5 or
282 > 3, or if they were identified as chloroplast-nuclear transfers or nongenic mis-annotations in (Nelson et

283 al. 2018). On LG11, 1,344 genes were retained. D : D coverage ratios were used to categorize genes as
284 likely deleted (0 – 0.25; red), duplicated (1.75 – 2.0; blue), or not likely duplicated or deleted (0.25 - 1.75;
285 tan; Fig. 1).

286

287 **Linkage disequilibrium, nucleotide diversity, and site frequency spectrum**—To estimate linkage
288 disequilibrium across LG11, we used vcftools version 1.12a (Danecek et al. 2011) to calculate the
289 squared correlation coefficient between genotypes (r^2) for SNP pairs ($N = 49,595$ genic SNPs at IM).
290 Average r^2 across all polymorphic sites was then calculated for each gene pair ($N = 1,475$ genes).
291 Second, we explored haplotype structure by calculating the proportion of SNPs per gene on LG11 that
292 matched the IM62 reference for each sequenced line. For the haplotype structure analyses, we coded
293 genes with fewer than seven polymorphic sites genotyped as missing data ($N = 1,064$ genes included).
294 Average within-population nucleotide diversity (π) per gene, as well as $d_{x,y}$ between D and D - lines, was
295 calculated in R using PopGenome (Pfeifer et al. 2014), based on (Nei and Li 1979), and divided by the
296 number of sites per gene. Calculations were performed separately for IM lines with D and D - haplotypes,
297 and values were averaged over MDL11 and flanking regions, respectively, in each. Genes inside MDL11
298 are listed in Table S4; all other genes were considered to be in flanking regions. Confidence intervals
299 were generated in the Hmisc package of R, version 4.1-1, by performing 1000 bootstrap re-samplings of
300 the means without replacement (Harrell 2018).

301

302 **Origin and age** — To infer the demographic history of the MDL11 region, we applied pairwise
303 sequentially Markovian coalescent (PSMC) analyses as implemented by (Li and Durbin 2011). Following
304 (Brandvain et al. 2014), we created pseudo-diploids by combining haploid genomes from two inbred lines
305 for estimation of pairwise coalescence and effective population size through time. To place D in context,
306 we used two non-IM D - lines with distinct evolutionary affinities: a coastal perennial individual derived from
307 the Southern *M. guttatus* clade (DUN) and an annual representing the Northern *M. guttatus* clade (MAR),
308 to which IM also belongs (Brandvain et al. 2014), as well as D (IM62) and D - (IM767) IM lines. For this
309 analysis, bams were first made as described in (Case et al. 2016). Pseudo-diploids were then created by

310 making fasta files using the consensus sequence of each bam and merging the two consensus
311 sequences using the seqtk toolset (<https://github.com/lh3/seqtk>) with a quality threshold of 20. We
312 performed 100 bootstrap replicates for each pairwise comparison. To perform the bootstraps, we applied
313 the splitfa tool from the PSMC package to break the pseudo-diploids into non-overlapping chunks. The
314 segmented genome then served as input for 100 separate PSMC analyses with the –b option.
315 Coalescent analyses were performed separately for chromosomal locations within MDL11 and in flanking
316 regions (Table S4).

317

318 Because *D* is non-recombining with alternative alleles, we used mutation alone (rather than haplotype
319 structure or a mix) to age it. First, to estimate the time since most recent common ancestor (t) for the *D*
320 haplotype, we counted the number of segregating sites in 13 IM lines (IM62, IM115, IM116, IM138,
321 IM1145, IM239, IM502, IM657, IM664, IM742, IM909, IM922, IM1054, excluding IM549 due to low
322 coverage; Table S3). We restricted this analysis to exonic sites where alignments are more reliable
323 (Puzey et al. 2017). We excluded heterozygous sites and entire genes with >5 heterozygous exon sites,
324 as these generally represent stacked copy number variants or other instances of incorrect alignment,
325 which can also produce (apparently) homozygous SNPs.

326

327 To estimate the age of the swept *D* haplotype, we used both simple calculations (the Thomson estimator;
328 Thomson et al. 2000) and forward simulations using a range of mutation rates (0.2×10^{-8} - 1.5×10^{-8}),
329 following(Brandvain et al. 2014). The Thomson estimator tends to underestimate time to the most recent
330 common ancestor, as it does not include the initial spread of the focal haplotype to high frequency
331 (Thomson et al. 2000); however, this is not a major concern given the short time to equilibrium frequency
332 expected for driving *D* (Fishman and Kelly 2015). We also simulated mutation accumulation on a
333 nonrecombining chromosome using the simulation software SLiM 2.6 The *D* haplotype contains a total of
334 256,867 nucleotide positions for which we have high-confidence genotype calls. We therefore simulated a
335 population of nonrecombining chromosomes of length 256,867 bp that begins as a small founder
336 population (n = 20 chromosomes) and grows exponentially by 10% per generation to a stable size of

337 either 50,000 chromosomes (89 generations of growth) or 500,000 chromosomes (113 generations). We
338 sampled 13 chromosomes per generation and counted the number of observed segregating sites in the
339 sample. Simulations ended and the generation number was recorded when 9 segregating sites were
340 observed. We performed simulations over a range of per-base mutation rates to correspond to
341 population-scaled mutation rates ($4N\mu$) of 0.001 (1×10^{-8} per generation for 50,000 chromosomes, 1×10^{-9}
342 for 500,000 chromosomes), which is well below observed π at Iron Mountain, to 0.01, which is similar to π
343 at IM (Puzey et al. 2017). Simulation results are plotted in Fig. S2.

344

345 **Genetic mapping of loci underlying interspecific differences in vulnerability to *D* drive**

346 **Crossing design** — To test for unlinked modifiers of LG11 *D* drive, we inter-crossed heterospecific *Dd*
347 (SF *M. nasutus* x IM160) and *Dd* (SF *M. nasutus* x IM767) F_1 hybrids to form an F_2 mapping population.
348 Because the SF x IM160 F_1 (*Dd*) was used as the female parent, we expected these F_2 s to all be *Dd* or
349 *DD* (no *dd*, due to near-complete drive in the female *Dd* parent). Thus, we can examine the strength of
350 heterospecific (*Dd*) and conspecific (*DD*) drive in a segregating F_2 background and map any major loci
351 that modulate their expression. F_2 individuals were grown in a greenhouse at the University of Montana
352 under standard long-day growth conditions for *M. guttatus*, and DNA was extracted from leaf tissue for
353 genotyping using our standard 96-well CTAB-chloroform protocol
354 (dx.doi.org/10.17504/protocols.io.bgv6jw9e). We then categorized individuals as *DD* (conspecific drive
355 heterozygote) or *Dd* (heterospecific drive heterozygote) using the diagnostic marker Lb5a (Fishman and
356 Saunders 2008).

357

358 **Phenotyping** — To characterize the strength of drive (the phenotype) in F_2 s, we hand self-pollinated 1-5
359 flowers per individual and collected the resultant selfed seeds. Some F_2 hybrids set no seed, in part due
360 to the segregation of known hybrid sterility factors (Sweigart et al. 2006) in this cross. For each selfed F_3
361 seed family, we then planted 16 cells of a 96 well flat with 2 seeds each (or fewer if we did not have 32
362 viable seeds), and then thinned (and/or transplanted) to 16 per family. F_3 plants were harvested as
363 rosettes for DNA extraction and genotyping at diagnostic markers. Overall, we planted 250 progenies,

364 and obtained 221 families (*Dd*; n = 101, *DD*; n = 120) with at least 8 progeny successfully genotyped.
365 For each progeny set, we estimated the strength of female meiotic drive (%D_{fem}), assuming no distortion
366 through male function (*Dd* expected > 0.98, *DD* expected = 0.58). This approach is not as precise as
367 isolating female meiotic drive by hand-backcrossing F₂s as dams (with prior emasculation in the bud)
368 (Fishman and Willis 2005; Fishman and Saunders 2008), but selfing was more tractable for the large
369 number of small-flowered F₂s involved.

370

371 **Linkage and quantitative trait locus (QTL) mapping** — We constructed a linkage map of the F₂
372 population (n = 184 total genotyped; 91 included in linkage mapping set) using multiplex shotgun
373 genotyping (MSG) to generate low-coverage genome sequence (Andolfatto et al. 2011). The GOOGA
374 pipeline (Flagel et al. 2019) was used to assign genotype probabilities to 100kb windows of the *M.*
375 *guttatus* reference genome (v1 scaffolds; www.Phytozome.jgi.doe.gov) and order them into linkage
376 groups corresponding to the 14 chromosomes of the *M. guttatus* and *M. nasutus* genomes, as well as
377 previous linkage maps of this interspecific cross (Fishman et al. 2001; 2014). As previously described
378 (Flagel et al. 2019), this approach corrects numerous ordering errors in the v2 chromosome-scale
379 assembly of *M. guttatus*, while also allowing use of the v2 annotation through assignment of each 100kb
380 v1 segment to its corresponding v2 segment. This process resulted in 1,836 physically and genetically
381 mapped window-based markers.

382

383 For QTL mapping, we used the posterior probabilities generated by GOOGA (Flagel et al. 2019) to make
384 hard genotype calls for each 100kb genome window. Windows were assigned to one of the three fully
385 informative genotypes (*M. guttatus* homozygote, *M. nasutus* homozygote, or heterozygote) if that
386 genotype had a probability > 0.8. Windows that did not meet this criterion were called as missing. To
387 verify that our genome-wide genotyping approach was effective, we tested for concordance between
388 MDL11 windows and our D-diagnostic marker, excluding several individuals (likely contaminated during
389 the MSG protocol and/or low coverage) where genotypes did not match. For QTL mapping of potential
390 modifier loci, we restricted analyses to F₂ individuals whose value of %D_{fem} was based on 12 or more F₃

391 progeny, and who had <50% missing data (most much lower; N = 130). We scanned for QTLs underlying
392 %D_{fem} using the interval mapping function in WinQTLCart (Wang et al. 2005), with marker-based D
393 genotype as a binary co-factor. We used a generous significance threshold of LOD = 2.5 (p < 0.05) for
394 the initial scan.

395
396 To characterize the LG14 modifier QTL, we made an exon-primed marker (mCenH3A; Table S7) that
397 identified all three parental alleles of CenH3A – N from SF *M. nasutus*, G₁₆₀ from IM160 and G₇₆₇ from
398 IM767 – based on length polymorphisms generated by intronic insertions and deletions. The two IM *M.*
399 *guttatus* alleles were distinguished by a 1 basepair indel in the second intron. Because the crossing work
400 pre-dated the sequencing of many inbred IM lines and the IM160 line was later lost, only an IM160 x
401 IM767 F₁ individual was available to sequence (Table S2). However, it is apparent that the IM160 allele of
402 CenH3A happened to be unusually divergent, with >22 Single Nucleotide Polymorphisms (SNPs) and/or
403 indels in introns and UTRs, one synonymous SNP in Exon 1, and one nonsynonymous SNP in Exon 4
404 (part of the rapidly evolving N-terminal tail) relative to both the reference and IM767. We genotyped
405 mCenH3A in 150 F₂s with >12 progeny contributing to their %D_{fem} phenotype, and tested for effects of the
406 four possible genotypes (NN, NG₁₆₀, NG₇₆₇, and G₁₆₀ G₇₆₇) using a two-way analysis of variance with
407 mCENH3A genotype, MDL11 genotype, and their interaction as factors (SAS Institute 2018).

408

409 **Population genomics of CenH3A**

410 Average pairwise nucleotide diversity (π) per site per gene and Tajima's D per gene were calculated for
411 genes on LG14 (N = 2703) in R using PopGenome (Pfeifer et al. 2014), with the same parameters as for
412 the analyses of LG11. CENH3A (Migut.N01557) resides in an 8-gene region of low diversity
413 (Migut.N01552 – N01559; π < 0.005 in IM), which was also one of only 41 windows containing
414 monophyletic-within-IM outliers in a previous study of selective sweeps at IM (Puzey et al. 2017). To
415 further test whether such an extensive block of diversity reduction was extreme, we conducted
416 permutations (N = 500) by calculating mean π for randomly chosen contiguous blocks of 8 genes along

417 LG14. Confidence intervals were generated in the Hmisc package of R, version 4.0-2, by performing
418 1000 bootstrap re-samplings of the means without replacement (Harrell 2018).

419

420 To test whether diversity reduction around CenH3A at IM reflected low overall diversity, we also
421 computed nucleotide diversity between samples from IM and distant populations, using the same
422 approach as above. Calculations were performed sequentially between all IM lines and one other line
423 (AQHT, DUN, MAR3, and LMC24), and confidence intervals generated as described above.

424

425 We visualized haplotype structure surrounding CenH3A using R version 3.5.0. Exonic SNPs on LG14
426 were phased using Beagle 4 (Browning and Browning 2007) and the haplotypes surrounding CenH3A
427 (scaffold positions 13,500,000-14,000,000) were converted to a matrix using a custom Python script
428 (vcf2selscan.py). We included one haplotype per inbred line and plotted allelic states at each SNP
429 relative to the IM1054 haplotype in R. Haplotypes were identified manually and their lengths are detailed
430 in Table S6.

431

432 To estimate the age of the CenH3A sweep from the length of surrounding haplotypes, we followed the
433 approach of (Sweigart and Flagel 2015), using a range of local recombination rates (150kb-1000kb/cM
434 based on LG14 genetic maps). Because we have a broad distribution of haplotype lengths, we calculated
435 ages using the shortest shared core segment (24 kb), as well as the longest, shortest, and mean
436 haplotype lengths (Table S6). The latter bookend the age of the shift in selection from 24 years (longest,
437 least recombination) to 722 years (shortest, most recombination). Because we do not currently have
438 resolution to more finely estimate intra-population recombination, the key variable, we did not forward
439 simulate this apparent sweep from standing variation.

440

441 **Confirmation of *D* vs. *D* gene content differences**

442 Coverage differences between *D* and *D* lines at IM indicate that a 45-gene region is a) deleted in *D*-
443 relative to the (ancestral) *D* reference, b) inserted in *D* relative to ancestral *D* or c) so divergent that few

444 or no reads from the *D* haplotype map to the *D* reference. The third alternative is unlikely, as exonic
445 reads from across the species complex and beyond map well to exonic sequences in the IM62 reference
446 (Brandvain et al. 2014; Garner et al. 2016). To further rule out this possibility, we designed an exon-
447 primed, intron-spanning, length polymorphic PCR marker in the RCY1 homolog Migut.K01228/
448 Migut.K01229 (mK1229; Table S7). This marker also amplifies a fragment from a second RCY1 gene on
449 LG10 (Migut.J00575), which acts as a positive control for amplification of the sample. We genotyped 120
450 wild-derived greenhouse-grown IM outbred plants using touchdown PCR amplification of fluorescently-
451 tagged fragments sized with capillary electrophoresis on an ABI 3130 Genetic Analyzer (Fishman and
452 Willis 2005). A 173bp fragment from Migut.K01229 segregated as a presence/absence polymorphism in
453 perfect association with our standard MDL11 diagnostic marker for the IM population (Lb5a), while the
454 180bp band from Migut.J00575 was present in all individuals. This pattern (along with the low coverage
455 shown in Fig. 1) suggests that the *D* plants do indeed lack sequence in this region.

456 **ACKNOWLEDGMENTS**

457 We thank A. L. Sweigart, J. K. Kelly, A. Kern, and P. Ralph for helpful discussions, A.L. Sweigart, D.
458 Crowser, A. Stathos, and K. Anderson for assistance with data collection, and L. Flagel, J.K. Kelly, J. H.
459 Willis and J. H. Puzey for sharing sequence datasets. Funding: Supported by NSF grants DEB-0846089,
460 DEB-1457763, and OIA-1736249 to L.F. and by Keck Science Department start-up funds to F.R.F.

461 **AUTHOR CONTRIBUTIONS**

462 F.R.F., T.C.N. and L. F. collected the data, conducted the analyses, and wrote the paper.

463 **COMPETING INTERESTS**

464 Authors declare no competing interests.

465 **DATA AND MATERIALS AVAILABILITY**

466 The sequence data for all lines analyzed are available at the NCBI Sequence Read Archive as
467 accessions listed in Table S2. Genotype-phenotype data will be archived on Dryad.

468 **REFERENCES**

469 Akera, T., L. Chmátal, E. Trimm, K. Yang, C. Aonbangkhen, D. M. Chenoweth, C. Janke, R. M. Schultz,
470 and M. A. Lampson. 2017. Spindle asymmetry drives non-Mendelian chromosome segregation. *Science*
471 358:668–672. American Association for the Advancement of Science.

472 Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search
473 tool. *J. Mol. Biol.* 215:403–410.

474 Andolfatto, P., D. Davison, D. Ereyilmaz, T. T. Hu, J. Mast, T. Sunayama-Morita, and D. L. Stern. 2011.
475 Multiplexed shotgun genotyping for rapid and efficient genetic mapping. *Genome Res.* 21:610–617.

476 Bolger, A. M., M. Lohse, and B. Usadel. 2014. Trimmomatic: a flexible trimmer for Illumina sequence
477 data. *Bioinformatics* 30:2114–2120.

478 Brandvain, Y., A. M. Kenney, L. Flagel, G. Coop, and A. L. Sweigart. 2014. Speciation and introgression
479 between *Mimulus nasutus* and *Mimulus guttatus*. *PLoS Genetics* 10:e1004410.

480 Browning, S. R., and B. L. Browning. 2007. Rapid and accurate haplotype phasing and missing-data
481 inference for whole-genome association studies by use of localized haplotype clustering. *Am. J. Hum.*
482 *Genet.* 81:1084–1097.

483 Burt, A., and R. Trivers. 1998. Selfish DNA and breeding system in flowering plants. *Proc. R. Soc. Lond B*
484 265:141–146.

485 Case, A. L., F. R. Finseth, C. M. Barr, and L. Fishman. 2016. Selfish evolution of cytonuclear hybrid
486 incompatibility in *Mimulus*. *Proc. R. Soc. Lond B* 283:20161493. The Royal Society.

487 Chmátal, L., S. I. Gabriel, G. P. Mitsainas, J. Martínez-Vargas, J. Ventura, J. B. Searle, R. M. Schultz,
488 and M. A. Lampson. 2014. Centromere strength provides the cell biological basis for meiotic drive and
489 karyotype evolution in mice. *Curr. Biol.* 24:2295–2300.

490 Crow, J. F. 1991. Why is Mendelian segregation so exact? *Bioessays* 13:305–312. Wiley Online Library.

491 Danecek, P., A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo, R. E. Handsaker, G. Lunter,
492 G. T. Marth, S. T. Sherry, G. McVean, R. Durbin, 1000 Genomes Project Analysis Group. 2011. The
493 variant call format and VCFtools. *Bioinformatics* 27:2156–2158.

494 Dawe, R., E. G. Lowry, J. I. Gent, M. C. Stitzer, K. W. Swentowsky, D. M. Higgins, J. Ross-Ibarra, J. G.
495 Wallace, L. B. Kanizay, M. Alabady, W. Qiu, K.-F. Tseng, N. Wang, Z. Gao, J. A. Birchler, A. E. Harkess,
496 A. L. Hodges, and E. N. Hiatt. 2018. A Kinesin-14 motor activates neocentromeres to promote meiotic
497 drive in maize. *Cell* 173:1–30. Elsevier Inc.

498 DePristo, M. A., E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire, C. Hartl, A. A. Philippakis, G. del
499 Angel, M. A. Rivas, M. Hanna, A. McKenna, T. J. Fennell, A. M. Kernytsky, A. Y. Sivachenko, K.
500 Cibulskis, S. B. Gabriel, D. Altshuler, and M. J. Daly. 2011. A framework for variation discovery and
501 genotyping using next-generation DNA sequencing data. *Nature Genet.* 43:491–498.

502 Finseth, F. R., Y. Dong, A. Saunders, and L. Fishman. 2015. Duplication and Adaptive Evolution of a Key
503 Centromeric Protein in *Mimulus*, a Genus with Female Meiotic Drive. *Mol. Biol. Evol.* 32:2694–2706.

504 Fishman, L., A. J. Kelly, E. Morgan, and J. H. Willis. 2001. A genetic map in the *Mimulus guttatus* species
505 complex reveals transmission ratio distortion due to heterospecific interactions. *Genetics* 159:1701–1716.

506 Fishman, L., and A. L. Sweigart. 2018. When two rights make a wrong: the evolutionary genetics of plant
507 hybrid incompatibilities. *Annu. Rev. Plant Biol.* 69:701–737.

508 Fishman, L., and A. Saunders. 2008. Centromere-associated female meiotic drive entails male fitness
509 costs in monkeyflowers. *Science* 322:1559–1562.

510 Fishman, L., and J. H. Willis. 2005. A novel meiotic drive locus almost completely distorts segregation in
511 *Mimulus* (monkeyflower) hybrids. *Genetics* 169:347–353.

512 Fishman, L., and J. K. Kelly. 2015. Centromere-associated meiotic drive and female fitness variation in
513 *Mimulus*. *Evolution* 69:1208–1218.

514 Fishman, L., J. H. Willis, C. A. Wu, and Y. W. Lee. 2014. Comparative linkage maps suggest that fission,
515 not polyploidy, underlies near-doubling of chromosome number within monkeyflowers (*Mimulus*;
516 Phrymaceae). *Heredity* 112:562–568.

517 Flagel, L. E., B. K. Blackman, L. Fishman, P. J. Monnahan, A. Sweigart, and J. K. Kelly. 2019. GOOGA: A
518 platform to synthesize mapping experiments and identify genomic structural diversity. *PLoS Comput. Biol.*
519 15:e1006949.

520 Flagel, L. E., J. H. Willis, and T. J. Vision. 2014. The standing pool of genomic structural variation in a
521 natural population of *Mimulus guttatus*. *Genome Biol Evol* 6:53–64.

522 Garner, A. G., A. M. Kenney, L. Fishman, and A. L. Sweigart. 2016. Genetic loci with parent-of-origin
523 effects cause hybrid seed lethality in crosses between *Mimulus* species. *New Phytol.* 211:319–331.

524 Hall, D. W., and R. Dawe. 2018. Modeling the evolution of female meiotic drive in maize. *G3* 8:123–130.
525 *G3: Genes, Genomes, Genetics*.

526 Harrell, F. E., Jr. 2018. Hmisc: Harrell Miscellaneous, R Package 4.1-1.

527 Henikoff, S., K. Ahmad, and H. Malik. 2001. The centromere paradox: stable inheritance with rapidly
528 evolving DNA. *Science* 293:1098–1102.

529 Holeski, L. M., P. Monnahan, B. Koseva, N. McCool, R. L. Lindroth, and J. K. Kelly. 2014. A high-
530 resolution genetic map of yellow monkeyflower identifies chemical defense QTLs and recombination rate
531 variation. *G3* 4:813–821. Genetics Society of America.

532 Kursel, L. E., and H. Malik. 2018. The cellular mechanisms and consequences of centromere drive. *Curr.*
533 *Opin. Cell Biol.* 52:58–65.

534 Lampson, M. A., and B. E. Black. 2017. Cellular and molecular mechanisms of centromere drive. *Cold*
535 *Spring Harb. Symp. Quant. Biol.* 82:249–257.

536 Larracuente, A. M., and D. C. Presgraves. 2012. The selfish Segregation Distorter gene complex of
537 *Drosophila melanogaster*. *Genetics* 192:33–53.

538 Le Goff, S., B. N. Keçeli, H. Jeřábková, S. Heckmann, T. Rutten, S. Cotterell, V. Schubert, E. Roitinger, K.
539 Mechtler, F. C. H. Franklin, C. Tatout, A. Houben, D. Geelen, A. V. Probst, and I. Lermontova. 2020. The
540 H3 histone chaperone NASPSIM3 escorts CenH3 in *Arabidopsis*. *Plant J* 101:71–86. John Wiley & Sons,
541 Ltd.

542 Lee, Y. W., L. Fishman, J. K. Kelly, and J. H. Willis. 2016. A segregating inversion generates fitness
543 variation in yellow monkeyflower (*Mimulus guttatus*). *Genetics* 202:1473–1484. *Genetics*.

544 Li, H., and R. Durbin. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform.
545 *Bioinformatics* 25:1754–1760.

546 Li, H., and R. Durbin. 2011. Inference of human population history from individual whole-genome
547 sequences. *Nature* 475:493–496. Nature Publishing Group.

548 Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, 1000
549 Genome Project Data Processing Subgroup. 2009. The Sequence Alignment/Map format and SAMtools.
550 *Bioinformatics* 25:2078–2079.

551 Maheshwari, S., E. H. Tan, A. West, F. C. H. Franklin, L. Comai, and S. W. L. Chan. 2015. Naturally
552 occurring differences in CENH3 affect chromosome segregation in zygotic mitosis of hybrids. *PLoS*
553 *Genetics* 11:e1004970. Public Library of Science.

554 Malik, H. 2005. *Mimulus* finds centromeres in the driver's seat. *Trends Ecol. Evol.* 20:151–154.

555 Malik, H., and S. Henikoff. 2001. Adaptive evolution of Cid, a centromere-specific histone in *Drosophila*.
556 *Genetics* 157:1293–1298.

557 Malik, H., and S. Henikoff. 2002. Conflict begets complexity: the evolution of centromeres. *Curr. Opin.*
558 *Genet. Dev.* 12:711–718.

559 McKenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella, D. Altshuler,
560 S. Gabriel, M. Daly, and M. A. DePristo. 2010. The Genome Analysis Toolkit: a MapReduce framework
561 for analyzing next-generation DNA sequencing data. *Genome Res.* 20:1297–1303.

562 McLaughlin, R. N., and H. Malik. 2017. Genetic conflicts: the usual suspects and beyond. *J. Exp. Biol.*
563 220:6–17.

564 Melters, D. P., K. R. Bradnam, H. A. Young, N. Telis, M. R. May, J. G. Ruby, R. Sebra, P. Peluso, J. Eid,
565 D. Rank, J. Fernando Garcia, J. L. Derisi, T. Smith, C. Tobias, J. Ross-Ibarra, I. Korf, and S. W. L. Chan.
566 2013. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into
567 centromere evolution. *Genome Biol.* 14:R10.

568 Monnahan, P. J., and J. K. Kelly. 2017. The genomic architecture of flowering time varies across space
569 and time in *Mimulus guttatus*. *Genetics* 206:1621–1635. *Genetics*.

570 Nei, M., and W. H. Li. 1979. Mathematical model for studying genetic variation in terms of restriction
571 endonucleases. *Proc. Nat. Acad. Sci. USA* 76:5269–5273. National Academy of Sciences.

572 Nelson, T. C., P. J. Monnahan, M. K. McIntosh, K. Anderson, E. M. Waltz, F. R. Finseth, J. K. Kelly, and
573 L. Fishman. 2018. Extreme copy number variation at a tRNA ligase gene affecting phenology and fitness
574 in yellow monkeyflowers. *Mol Ecol* 107:321. John Wiley & Sons, Ltd (10.1111).

575 Pfeifer, B., U. Wittelsbürger, S. E. Ramos-Onsins, and M. J. Lercher. 2014. PopGenome: an efficient
576 Swiss army knife for population genomic analyses in R. *Mol. Biol. Evol.* 31:1929–1936.

577 Puzy, J. R., J. H. Willis, and J. K. Kelly. 2017. Population structure and local selection yield high
578 genomic variation in *Mimulus guttatus*. *Mol Ecol* 26:519–535.

579 Ravi, M., and S. W. L. Chan. 2010. Haploid plants produced by centromere-mediated genome
580 elimination. *Nature* 464:615–618.

581 SAS Institute. 2018. JMP version 14. SAS Institute, Cary, NC.

582 Scoville, A. G., Y. W. Lee, J. H. Willis, and J. K. Kelly. 2009. Contribution of chromosomal polymorphisms
583 to the G-matrix of *Mimulus guttatus*. *New Phytol.* 183:803–815.

584 Sweigart, A. L., and L. E. Flagel. 2015. Evidence of natural selection acting on a polymorphic hybrid
585 incompatibility locus in *Mimulus*. *Genetics* 199:543–554.

586 Sweigart, A. L., L. Fishman, and J. H. Willis. 2006. A simple genetic incompatibility causes hybrid male
587 sterility in *Mimulus*. *Genetics* 172:2465–2479.

588 Sweigart, A. L., Y. Brandvain, and L. Fishman. 2019. Making a murderer: the evolutionary framing of
589 hybrid gamete-killers. *Trends Genet.* 35:245–252.

590 Thomson, R., J. K. Pritchard, P. Shen, P. J. Oefner, and M. W. Feldman. 2000. Recent common ancestry
591 of human Y chromosomes: evidence from DNA sequence data. *Proc. Nat. Acad. Sci. USA* 97:7360–
592 7365.

593 Troth, A., J. R. Puzey, R. S. Kim, J. H. Willis, and J. K. Kelly. 2018. Selective trade-offs maintain alleles
594 underpinning complex trait variation in plants. *Science* 361:475–478.

595 Wang, S., C. J. Basten, and Z.-B. Zeng. 2005. Windows QTL Cartographer 2.5. Dept. of Statistics, North
596 Carolina State Univ.

597 Zhang, W., J.-H. Mao, W. Zhu, A. K. Jain, K. Liu, J. B. Brown, and G. H. Karpen. 2016. Centromere and
598 kinetochore gene misexpression predicts cancer patient survival and response to radiotherapy and
599 chemotherapy. *Nature Comm.* 7:12619.

600 Zheng, T., C. Nibau, D. W. Phillips, G. Jenkins, S. J. Armstrong, and J. H. Doonan. 2014. CDKG1 protein
601 kinase is essential for synapsis and male meiosis at high ambient temperature in *Arabidopsis thaliana*.
602 *Proc. Nat. Acad. Sci. USA* 111:2182–2187.

603

604