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Abstract 

Computational investigations of learning and decision making suggest that systematic deviations to 

adaptive behavior may be the incidental outcome of biological constraints imposed on neural 

information processing. In particular, recent studies indicate that range adaptation, i.e., the 

mechanism by which neurons dynamically tune their output firing properties to match the changing 

statistics of their inputs, may drive plastic changes in the brain9s decision system that induce systematic 

deviations to rationality. Here, we ask whether behaviorally-relevant neural information processing 

may be distorted by other incidental, hard-wired, biological constraints, in particular: Hebbian 

plasticity. One of our main contributions is to propose a simple computational method for identifying 

(and comparing) the neural signature of such biological mechanisms or constraints. Using ANNs (i.e., 

artificial neural network models) and RSA (i.e., representational similarity analysis), we compare the 

neural signatures of two types of hard-wired biological mechanisms/constraints: namely, range 

adaptation and Hebbian plasticity. We apply the approach to two different open fMRI datasets 

acquired when people make decisions under risk. In both cases, we show that although peoples' 

apparent indifferent choices are well explained by biologically-constrained ANNs, choice data alone 

does not discriminate between range adaptation and Hebbian plasticity. However, RSA shows that 

neural activity patterns in bilateral Striatum and Amygdala are more compatible with Hebbian 

plasticity. Finally, the strength of evidence for Hebbian plasticity in these structures predicts inter-

individual differences in choice inconsistency. 
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Introduction 

Why do we overreact to emotional stimuli? Why are our judgments plagued with errors and biases? 

Why do we engage in behaviors whose consequences may be detrimental? That the brain's biology is 

to blame for all kinds of cognitive and/or behavioural flaws is not a novel idea (Buschman et al., 2011; 

Marois and Ivanoff, 2005; Miller and Buschman, 2015; Ramsey et al., 2004). However, providing 

neuroscientific evidence that a hard-wired biological constraint shapes and/or distorts the way the 

brain processes information is not an easy task. This is because whether the brain deviates from how 

it should process a piece of information is virtually unknown. In this work, we show how one may use 

multivariate analysis of fMRI data to identify the neural signature of incidental, hard-wired, biological 

constraints on behaviorally-relevant neural information processing. 

Over the past two decades, cognitive neuroscience has involved much effort into developing 

computational means to understand how the brain processes information. In particular, the 

computational neuroscience of perception, learning, and decision making has now reached a stage of 

maturity, both in terms of its methods and models and in terms of the reproducibility of the ensuing 

results. For example, neuroscientific evidence that basal ganglia encode the reward prediction error 

that enables reinforcement learning (i.e., learning from reward feedbacks) has been found repetitively 

in monkeys (Fiorillo et al., 2003; Schultz et al., 1997) and humans (Abler et al., 2006; Diederen et al., 

2016; Garrison et al., 2013). From a methodological standpoint, this line of study is remarkable for two 

reasons. First, it highlights the importance of behavioral measurements for understanding how the 

brain processes information. This shifts the scientific question from identifying how the brain encodes 

incoming information (e.g., cues and feedbacks) to assessing how it uses this information to produce 

behavioral responses. Second, its theoretical basis is derived from formal computational models of 

learning originating from research in the field of artificial intelligence and robotics (Dayan and Daw, 

2008; Sutton and Barto, 1998). This provides a formal reference point for interpreting neural signals in 
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terms of neural computations, i.e., intermediary steps in neural information processing geared towards 

producing adapted behavioral responses.  

Taken in isolation, none of these two aspects is particularly novel. Retrospectively, the focus on brain-

behavior relationships is the hallmark of behavioral neuroscience. And computational neuroscience 

already had enabled deep quantitative insights for understanding the neural code of perceptual and 

motor systems, providing unprecedented empirical evidence for, e.g., population coding (Averbeck et 

al., 2006; Georgopoulos et al., 1986), predictive coding (Bastos et al., 2012; Hosoya et al., 2005) or 

efficient coding (Barlow, 1961; Lewicki, 2002). But in combination, these two aspects allow one to 

understand how brain computations eventually shape non-trivial behavior. This has typically be done 

in two different ways. On the one hand, one may look for neural evidence of cognitive mechanisms 

that provide candidate explanations for observed behavioral deviations to normative theories. For 

example, this approach has placed the putative distortions of prospective loss perceptions that drive 

irrational risk attitudes on a firm neuroscientific footing (Martino et al., 2006, 2010; Tom et al., 2007). 

Critically, this line of work typically also demonstrates the relevance of neural data for understanding 

inter-individual differences w.r.t. the magnitude of behavioral distortions. For example, it was shown 

that those people who exhibit a strong optimism bias are those people whose encoding of 

disappointing prediction errors (in the right frontal gyrus) was the weakest (Sharot, 2011; Sharot et al., 

2011). On the other hand, one may disclose non-trivial behavioral consequences of the computational 

properties of neural information processing. For example, it was shown that the brain9s reliance on 

efficient coding induced systematic biases in both perceptual and value-based decisions (Louie and 

Glimcher, 2012; Polanía et al., 2019; Soltani et al., 2012; Wei and Stocker, 2015; Zimmermann et al., 

2018). The irony here is that efficient coding is the brain9s optimal solution to the problem of building 

reliable cognitive representations under limited neural resources (Barlow, 1961; Simoncelli and 

Olshausen, 2001). In brief, this series of work provides evidence for the impact of biological constraints 

on behaviorally-relevant information processing.  
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One critical insight here was that efficient coding induces plastic changes in the brain9s decision system 

that was incidental, i.e., they were not instrumental to the decision task (Conen and Padoa-Schioppa, 

2019). More precisely, the encoding of value in OFC neurons was shown to obey a ubiquitous, hard-

wired, biological constraint, namely: range adaptation (Burke et al., 2016; Cox and Kable, 2014; Elliott 

et al., 2008; Kobayashi et al., 2010; Padoa-Schioppa, 2009). Range adaptation is the mechanism by 

which neurons dynamically tune their output firing properties to match the changing statistics of their 

inputs, hence implementing efficient coding under the constraint of bounded neural activation range 

(Brenner et al., 2000; Laughlin, 1981; Wark et al., 2007). Although a major breakthrough in decision 

neuroscience, these studies suffer from two methodological weaknesses. First, they rely on a 

normative reference model that describes how the brain should process behaviorally-relevant 

information, whose computational properties are altered by range adaptation. In turn,  neuroscientific 

evidence for range adaptation is mostly indirect because it relies on validating its corollary 

consequence in terms of value distortions (e.g., divisive normalization), rather than identifying its 

neural signature (but see Zimmermann et al., 2018). Second, other alternative computational 

mechanisms that may make qualitatively similar predictions are ignored. In particular, one may argue 

that many forms of plasticity may, in principle, induce dynamic changes in the brain9s decision circuits 

that may eventually be confounded with range adaptation. A ubiquitous and ever-persistent example 

of this is Hebbian synaptic plasticity (Hebb, 1950), which is central to, e.g., development and recovery 

from injury (Fox and Stryker, 2017; Martens et al., 2015; Turrigiano, 2017). A plethora of 

electrophysiological studies have established its many variants, including, but not limited to, spike-

timing dependent plasticity and long-term potentiation/depression (Fox and Stryker, 2017; Lisman, 

2017; Shouval et al., 2010; Zenke and Gerstner, 2017). Critically, Hebbian plasticity does not reduce to 

range adaptation, and one may reasonably ask which of these two hard-wired mechanisms is the most 

constraining for behaviorally-relevant neural information processing.  

This work is a first step towards solving the two above issues. In brief, we propose a computational 

method for identifying (and comparing) the neural signature of biological mechanisms or constraints 
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on behaviorally-relevant neural information processing. We bypass the issue of defining a normative 

reference model for neural information processing by fitting ANNs (i.e., artificial neural network 

models) to behavioral data, with and without incidental, hard-wired, constraints. Here, we consider 

two types of hard-wired biological mechanisms: namely, range adaptation and Hebbian plasticity. We 

then evaluate the evidence for or against biologically-constrained ANNs using a variant of RSA (i.e., 

representational similarity analysis), because it exploits detailed multivariate information in the data 

while being robust to nuisance model misspecifications (Diedrichsen and Kriegeskorte, 2017; 

Diedrichsen et al., 2020; Kriegeskorte, 2008). We apply the approach to two different open fMRI 

datasets acquired when people make decisions under risk (Botvinik-Nezer et al., 2019). In what follows, 

we describe our methodological approach and evaluate its statistical properties with numerical Monte-

Carlo simulations. We then report the results of the ensuing analysis of concurrent behavior and fMRI 

data. Finally, we discuss our results in light of the existing literature and highlight potential weaknesses 

and perspectives. 
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Methods 

Biologically-constrained artificial neural networks for behavioral data 

Artificial Neural Networks or ANNs provide essentially attempt to decompose a possibly complex form 

of information processing in terms of a combination of very simple computations performed by 

connected 'units', which are a mathematical abstraction of neurons. Here, we take inspiration from a 

growing number of studies that use ANNs as descriptive models of neural information processing, 

whose relative biological realism is to be gauged with neuroimaging data (Güçlü and Gerven, 2015; 

Kietzmann et al., 2017, 2019; Kriegeskorte and Golan, 2019). 

We consider behavioral paradigms akin to decision tasks, whereby subjects need to process some 

(experimentally controlled) behaviourally-relevant information   ( )(1) (2), ,..., un
u u u uý  to provide a 

response r . In what follows, we will focus on a value-based decision-making task, whereby 

participants have to accept or reject a risky gamble composed of a 50% chance of winning a gain G and 

a 50% chance of losing L, i.e., u  is composed of 2
u

n ý  input features:  ,u G Lý . In brief, we assume 

that people9s behavioral response y  is the output of a neural network that processes the input, i.e.: 

ø ù,
ANN

r g u  , where   are unknown ANN parameters and ø ùANN
g  is the ANN9s input-output 

transformation function. So-called "shallow" ANNs effectively reduce  ø ùANN
g  to a combination of 

neural units organized in a single hidden layer. Here, we rather rely on ANNs with two hidden layers. 

As will be more apparent below, this will facilitate the introduction of Hebbian plasticity 

mechanisms/constraints. 

We assume that each input feature 
( )i
t

u  is encoded into the activity of neurons 

( , )( ,1) ( ,2) ( , ), ,..., ,..., xi ni i i j

t t t t
x x x xù ùû û  of its dedicated "input layer", where 

x
n  is the number of input neurons 

per input. What we mean here is that the neuron j  in the input layer i  responds to 
( )i
t

u  as follows: 
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ø ù( , ) ( ) ( , )
1 ,i j i i j

t t
x f u ñý   (1) 

where ø ù1f  is the activation function of neural units that compose the ANN's input layer. Collectively, 

the activity vector ( , )

1,..., x

i j

t j n
x

ý
ù ùû û  forms a representation of the input   

( )i
t

u  in the form of a population 

code. 

Critically, we consider activation functions that are bounded, i.e., either a sigmoid or a pseudo-gaussian 

mapping of inputs (see below): 

ø ù

ø ù ø ù

ø ù

2

2
, exp

,

1
,

1 exp

Gauss

sigmoid

u
f u

f u or

f u
u

ý
ñ

ó

ñ

ñ
ý÷
ó

ü ö öÿ ÷ ÷ÿ ÷ ÷
ø øÿ

ÿý ý
ÿ
ÿ

ö öÿ  ÷ ÷ÿ ø øþ

 (2) 

where 1.5434÷   is a scaling constant that we introduce for mathematical convenience (see 

Appendix 1). The parameters  ( , ) ( , ) ( , ),i j i j i jñ ý óý  capture the idiosyncratic properties of the neuron 

j  in the input layer i  (e.g., its firing rate threshold 
( , )i jý  and the pseudo-variance parameter 

( , )i jó ). 

Note that, when inputs u  fall too far away from ý  (say outside a 22 ó  range), both these 

activation functions saturate, i.e., they produce non-discriminable outputs (close to 0 or 1). In other 

words, the pseudo-variance parameter defines the range of inputs over which units incur no 

information loss. As we will see below, range adaptation effectively tunes these activation functions 

to minimize information loss. 

Then the output of the input layers is passed to the <integration layer= 
( )(1) (2) ( ), ,..., ,..., znk

t t t t
z z z zù ùû û , i.e., 

the neuron k  of the integration layer responds to 
1,...,( , )

1,...,

u

x

i n
i j

t j n
x

ý

ý
ù ùû û  as follows: 

( ) ( , , ) ( , ) ( )
2

1 1

,
u xn n

k i j k i j k

t t

i j

z f C x ö
ý ý

ö ö
ý ÷ ÷

ø ø
õõ   (3) 
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where 
( , , )i j k

C  is the connection weight from the neuron j  in the input layer i  to the neuron k  of the 

integration layer, and 
( )kö  capture idiosyncratic properties of the integration neuron k . For simplicity, 

we restrain our analysis to 
z x

n ný  . 

The behavioral response 
t

r  at time or trial t  is then read out from the integration layer as follows: 

( ) ( )

1

,
zn

k k

sigmot t

k

id
r f W z 

ý

ö ö
 ÷ ÷

ø ø
õ  

(4) 

where the 
( )k

W  can be thought of as connection weights to another system that would implement 

the decision into an action (.e.g., the motor system). 

Taken together, Equation 1-3-4 define the ANN9s input-output transformation function, when no 

further biological constraint is introduced (see below): 

ø ù ø ù(0) ( ) ( , , ) ( ) ( , )

1
2

1
1

( )

1

, , , ,
u xz n nn

k i j k i i j k

ANN t tsigm

i j

oid

k

g u f W f C f u ñ ö 
ý ý ý

ö öö ö
÷ ÷÷ ÷÷ ÷ø øø ø
õ õõ  (5) 

where   lumps all ANN parameters together, i.e.:  , , , ,W C ñ ö  , and  1,2i
f   are either gaussian 

or sigmoid. A schematic summary of the ANN9s double-layer structure is shown in Figure 1 below. 
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Figure 1: Structure of the 'default' artificial neural network. Behaviorally-relevant input features first enter the 'input' layer, 

which then sends its multiple outputs to the 'integration' layer. Finally, a behavioral response is produced from the multiple 

outputs of the 'integration' layer. See the main text for mathematical notations. 

Although, strictly speaking, this ANN includes one form of biological constraint (cf. bounded units9 

activation functions), we will refer to it as the 8default9 or 8non-constrained9 ANN. Note that, provided 

there are enough neurons in input and integration layers, this ANN architecture can capture any value 

function defined on the multidimensional input space. However, it cannot capture behavioral 

hysteresis effects, whereby previous decisions may change the network's response to behaviorally-

relevant information. This is why we now introduce range adaptation and Hebbian plasticity. 

 

Recall that range adaptation is a mechanism by which neurons maximize the contrast of their output 

activity over the natural range of their inputs. Given that we used sigmoid or pseudo-gaussian 

activation functions (cf. Equation 2), range adaptation adaption then reduces to a learning rule on 2f  

8s pseudo-variance parameters, which are now time-dependent variables and seek to maximize the 

transmitted information, i.e., the discriminability of the outputs (see Appendix 1 for details):  
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( ) ( ) ( ( , , ) ( , )

1 1

) ( )
1

u xn n
i j k i jk k k k

t t RA

j

tt

i

C xó ó  ý ó
ý ý



ö ö
 ÷ ÷÷ ÷

ø
ý  

ø
õõ  (6) 

where 
RA

  is the learning rate of range adaptation. Equation 6 effectively matches pseudo-variance 

parameters ó  with the variability of the recent history of each units9 inputs. In turn, units9 activation 

functions are sampled over a range where their output activity does not saturate.  

Now the two-layers structure of the ANN also enables explicit modeling of Hebbian plasticity. More 

precisely, the Hebbian adaption rule will strengthen the connection between input and integration 

units that co-vary. This recapitulates the <fire together, wire together= rule:   

ø ù
ø ù

( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , ) ( )
1

i j k i j k i j k

t t

i j k i j k i j k

t t H t t H

C c s

x z

û

û û  ü

ý

ý  
 (7) 

where 
( , , )i j k

c  and 
( , , )i j k

t
û  are the static and dynamic components of between-layers connection 

weights, respectively, 
H

  is the Hebbian learning rate and 
H
ü  is covariance threshold. Equation 7 

reinforces a connection weight whenever the product of the corresponding units' outputs exceeds the 

threshold 
H
ü . 

At the limit when learning rates tend to zero ( 0
RA

   or 0
H

  ), the constrained ANNs exhibit no 

plastic change, i.e., they become indistinguishable from the above 'default' ANN. Otherwise, both 

range adaptation and Hebbian plasticity constraints make the ANN9s trial-by-trial response a function 

of the recent history of inputs to the network. In both cases, learning rates effectively control the 

amount of plastic changes that modified ANNs will exhibit. Importantly, behavioral distortions and/or 

neural activity patterns that will be induced with these two types of plastic changes may be different. 

In other terms, Hebbian plasticity and range adaptation are unlikely to capture similar forms of 

behavioral and/or neural hysteresis effects. We will comment on the computational properties of 

Equations 6 and 7 in the Discussion section. Importantly, no normative model exists that can be used 

as a reference point to set the amount of plastic change that the decision network should exhibit. But 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.08.287714doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.08.287714
http://creativecommons.org/licenses/by/4.0/


one can use observed peoples' behavioral responses to evaluate how much plastic changes the 

decision network actually does exhibit. Here, we rely on established variational Bayesian model 

inversion techniques to perform probabilistic parameter estimation (Daunizeau, 2017; Friston et al., 

2007). To mitigate the impact of local optima, we use a twofold strategy. First, we concurrently fit the 

behavior trial series together with its rolling mean and variance (over a sliding temporal window whose 

width we set to 5 trials). Second, we use a hierarchical group-level mixed-effects approach that 

constrains subject-specific parameter estimates with estimated group statistics (Daunizeau, 2019). The 

priors on the ANNs' model parameters for the ensuing parametric 'empirical Bayes' approach are 

summarized in Table 1 below. 

Parameter Distributions Rational 

Pseudo-gaussian 

mean/ Sigmoid center 
( , ) 0.25

, 
11

j

x

i

x

j

n n
ý

ö ö
÷ ÷ø  ø

 
Homogenous paving of 

inputs 

Pseudo-gaussian 

initial standard 

deviation 

( , )
0

0.5 0.5
| |  with ,

1 1
x

i j

x
n n

ó ñ ñ
ö ö

ý ÷ ÷ ø ø
 

Overlapping pseudo-

gaussian 

Initial connection 

weights 
( , , ) 1 1

,i j k

x x

c
n n

ö ö
÷ ÷
ø ø

 Inputs averaging 

Range adaptation 

learning rate 
ø ù with 2

e
,

1

1
3

RA ñ ñý 


 
Gradual, stable 

learning 

Hebbian-plasticity 

learning rate 
ø ù w

1

1
i  3,2

e
th

Hebb ñ ñ
ý   

Gradual, stable 

learning 

Hebbian plasticity 

threshold 
ø ù with

1

1
 ,1

e
1

H ñü ñ
ý   

Comparable to the 

average product of two 

bounded units 

Hebbian initial 

strength 
ø ù( , , )

0

1

1
 with 0,0 5

e
.i j k

ñû ñ
ý  

The middle point 

between full and null 

strength 

Table 1: Parameters' priors for biologically-constrained ANNs.  

Note that all our behavioural analyses are performed using the VBA academic freeware (Daunizeau et 

al., 2014). 
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Assessing the neural signature of candidate biological constraints using RSA 

From a statistical perspective, Equations 6 and 7 provide extra degrees of freedom when fitting the 

modified ANN to behavioural choices, when compared to the 'no-constraint' ANN. This means that one 

would expect behavior to be better explained with range adaptation and/or Hebbian constraints, 

irrespective of whether these constraints are realistic determinants of behavior or not. This is why it is 

critical to cross-validate behavioral analyses with neural data. This can be done because once fitted to 

behavioral data our modified ANN models make specific trial-by-trial predictions of neural activity 

patterns  ,
t t

x z  that can be compared to multivariate neural signals. Here, we have chosen to rely on 

a modified representational similarity analysis (Kriegeskorte, 2008), which possesses the following 

properties: 

÷ It is simple (at least from a statistical standpoint). 

÷ It is robust to assumptions regarding the relationship between modeled and empirical neural 

time series. In particular, it is not confounded by nonlinearities and/or by dimensionality 

differences. These, in fact, are known virtues of RSA (Diedrichsen and Kriegeskorte, 2017; 

Friston et al., 2019). 

÷ It extracts multivariate information from empirical neural signals that is orthogonal to linear 

combinations of behaviorally-relevant inputs and behavioral responses. This is necessary (i) 

to provide analysis results that are orthogonal to previous mass-univariate analyses, and (ii) 

to prevent statistical biases towards models that best explain behavioral data. 

In brief, RSA consists of evaluating the statistical resemblance between model-based and data-based 

'representational dissimilarity matrices' or RDMs, which we derive as follows. Let Y  be the 
y t

n n  

multivariate time series of (modeled or empirical) neural activity, where 
y

n  and 
t

n  are the number of 

units and trials, respectively. Note that, for model-based RDMs, 'units' mean artificial elementary units 

in ANNs, whereas for data-based RDMs, 'units' mean either neurons (cf. electrophysiology) or voxels 
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(fMRI). First, we orthogonalize Y  with respect to potential confounding sources of between-trial 

variability, i.e.: ø ùø ù1

t

T T

n
Y Y I X XX X


  , where X  is the 

c t
n n  confounds matrix. Here, the 

set of confounds typically include a constant term, behaviorally-relevant inputs u  , and behavioral 

responses r . Second, we standardize neural time series by zscoring over trials. Now let 
Y

D  be the 

ensuing 
t t

n n  between-trials Euclidean distance matrix: 

2,1 1,

2,1 2,

,1 ,2

, ' ( ) ( )
'

1

0

0

0

Y

T

Y Y

T

Y Y

Y

T T

Y Y

n
t t i i

Y t t

i

D D

D D
D

D D

D Y Y
ý

ù ù
ú ú
ú úý
ú ú
ú ú
ú úû û

ý õ

  (8) 

The matrix element 
, 't t

Y
D  thus measures the dissimilarity of neural patterns of activity between trial t  

and trial 't , having removed trial-by-trial variations that can be explained as linear combinations of 

behaviorally-relevant inputs and behavioral responses. We define the ensuing RDM as the lower-left 

triangular part of 
Y

D . 

In what follows, model-based RDMs are derived using the integration layer of our modified ANNs (i.e. 

1 1, ,...,
t

T

ANN nY z z zù ùý û û ), after having fitted the corresponding model parameters to behavioral 

responses. Data-based RDMs are derived from the fMRI time series. Here, 
fMRI

Y  is obtained by 

deconvolving BOLD time series from the hemodynamic response function with a Dirac delta or stick 

basis function set that is time-locked to trial events (Dale, 1999). RSA then proceeds with the statistical 

comparison of 
ANNY

D  and 
fMRIYD . In line with recent methodological developments of RSA, we first bin 

RDMs into 20 quantiles and then compute the Pearson correlation ø ù,ANN fMRIcorr RDM RDMò ý  

between the binned RDMs. Group-level statistical significance of RDMs' correlations can be assessed 
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using one-sample t-tests on the group mean of Fischer-transformed RDM correlation coefficients ò  

(see below).  Figure 2 below recapitulates the ensuing ANN-RSA approach. 

 

Figure 2: Summary data-analysis pipeline of the ANN-RSA approach. First, trial-by-trial profiles of the ANN's response to 

behaviourally-relevant inputs (in the integration layer) are estimated. Second, corresponding trial-by-trial multivariate 

patterns of fMRI activity are extracted in each ROI of interest. Third, corresponding model-based and fMRI-based RDM are 

derived, whose correlation ρ serves as the RSA summary statistics (which then enters subsequent statistical significance 

testing). 

Note that our ANN-RSA approach does not a priori favor more complex ANNs (i.e., ANNs with more 

parameters). When fitted to behavioral data, more complex ANNs (i.e., those that include range 

adaptation or Hebbian plasticity) are expected to yield greater explanatory power. The RDM 

correlation ò  exhibits no such bias, however. This is because, once fitted to behavioural data, 

estimated ANN activity patterns and their ensuing RDMs have no degree of freedom whatsoever. In 

particular, this means that default (non-constrained) ANNs may show a greater RDM correlation than 

ANNs that include range adaptation or Hebbian plasticity. In turn, this enables a simple statistical 

procedure for comparing candidate models based on group-level comparisons of RDM correlations 

(see below). 
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Note on statistical testing and model comparison 

Recall that our model space is factorial, with two orthogonal modeling factors: (i) our factor of interest 

has three 'levels': no constraint, range adaptation or Hebbian plasticity, and (ii) our factor of no interest 

has two 'levels': sigmoid versus pseudo-gaussian neural activation functions. This means that we will 

be comparing 2x3=6 models. When assessing the statistical significance of the ensuing model 

comparison, we will be using a variant of composite null testing. Let 
'm

m
p  be the p-value associated 

with the elementary pairwise comparison of model m  and 'm , whose null hypothesis is 

( , ')
0 ':m m

m m
H ò ò , where 

m
ò  is the corresponding Fisher-transformed RDM correlation (

'm

m
p  can be 

evaluated using paired t-tests on RDM correlations). For each model  1,6m , we ask whether its 

RDM correlation is the highest among the candidate models. This induces the following composite null 

hypothesis:
( )
0 '

'
: maxm

m m
m

H ò ò . The maximum p-value statistics 
'

'
max m

m m
m

p pý  yields a valid test of 

the composite null hypothesis, though not necessarily maximally efficient (Wasserman, 2004). Because 

( )
0

m
H  is the conjunction of elementary pairwise null hypotheses 

( , ')
0

m m
H , we refer to this approach as 

<conjunctive null testing=. 

One may also want to evaluate the statistical significance of the comparison of RDM correlations across 

levels of our factor of interest, irrespective of our factor of no interest. The corresponding null 

hypothesis involves a disjunctive/conjunctive combination of elementary null hypotheses. For 

example, if one wants to test whether range adaptation has a significantly higher RDM correlation than 

Hebbian or default (no-constraint) ANNs, the corresponding null hypothesis 
( )
0

RA
H  is defined as: 

 

 

, '
' ,

( )
0

, '
' ,

max

:

max

RA Gauss m
m RA sigmoid

RA

RA sigmoid m
m RA Gauss

H AND

ò ò

ò ò





ü
ÿÿ
ý
ÿ ÿþ

  (9) 
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The following p-value then yields a valid statistical test of 
( )
0

RA
H :     

   
' '

' , ' ,
2 min max , maxm m

RA m m
m RA sigmoid m RA Gauss

p p p
 

ù ùý  ú úû û
  (10) 

By design, the ensuing <disjunctive/conjunctive= approach cannot conclude about the underlying 

activation functions, i..e. it does not discriminate between sigmoid and pseudo-gaussian functional 

forms. However, it pools evidence over levels of our factor of no interest, which eventually improves 

statistical power. This is a frequentist -and simpler- variant of so-called "family inference" in Bayesian 

model comparison (Penny et al., 2010), where one marginalizes over modeling factors of no interest, 

effectively trading statistical power against inference resolution. We will see a direct demonstration of 

the disjunctive/conjunctive approach below. 

 

fMRI study of risk attitudes: experimental design 

In this work, we compare the neural evidence for candidate biological constraints (range adaptation 

versus Hebbian plasticity) on behaviorally-relevant neural information processing using a re-analysis 

of the NARPS dataset (Botvinik-nezer et al., 2019), openly available on openneuro.org (Poldrack et al., 

2013). This dataset includes two studies, each of which is composed of a group of 54 participants who 

make a series of decisions made of 256 risky gambles. On each trial, a gamble was presented, entailing 

a 50/50 chance of gaining an amount G of money or losing an amount L. As in Tom et al. (2007), 

participants were asked to evaluate whether or not they would like to play each of the gambles 

presented to them (strongly accept, weakly accept, weakly reject or strongly reject). They were told 

that, at the end of the experiment, four trials would be selected at random: for those trials in which 

they had accepted the corresponding gamble, the outcome would be decided with a coin toss, and for 

the other ones -if any-, the gamble would not be played. In the first study (hereafter: "equal range" 
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group), participants decided on gambles made of gain and loss levels that were sampled from the same 

range (G and L varied between 5 and 20 $). In the second study (hereafter: the "equal indifference" 

group), gain levels scaled to double the loss levels (L varied between 5 and 20$, and G varied between 

10 and 40$). In both studies, all 256 possible combinations of gains and losses were presented across 

trials, which were separated by 7 seconds on average (min 6, max 10).  

MRI scanning was performed on a 3T Siemens Prisma scanner. High-resolution T1w structural images 

were acquired using a magnetization prepared rapid gradient echo (MPRAGE) pulse sequence with the 

following parameters: TR = 2530 ms, TE = 2.99 ms, FA = 7, FOV = 224 × 224 mm, resolution = 1 × 1 × 1 

mm. Whole-brain fMRI data were acquired using echo-planar imaging with multi-band acceleration 

factor of 4 and parallel imaging factor (iPAT) of 2, TR = 1000 ms, TE = 30 ms, flip angle = 68 degrees, in-

plane resolution of 2X2 mm 30 degrees of the anterior commissure-posterior commissure line to 

reduce the frontal signal dropout, with a slice thickness of 2 mm and a gap of 0.4 mm between slices 

to cover the entire brain. See https://www.narps.info/analysis.html#protocol for more details. Data 

preprocessing included standard realignment and movement correction steps. Note that we excluded 

5 participants from the 'equal-range' group because the misalignment between functional and 

anatomical scans could not be corrected. No spatial smoothing was applied. 

Previous mass-univariate analyses of these datasets, including a recent study of the analysis variability 

among multiple research groups (Botvinik-nezer et al., 2019), provided evidence for the implication of 

multiple brain systems in response to either gains and/or losses, in particular: the ventromedial 

prefrontal cortex or vmPFC, the dorsolateral prefrontal cortex or dlPFC, the anterior cingulate cortex 

or ACC, the posterior cingulate cortex or PCC, the Amygdala, the Striatum and the Insula. Given the 

anatomo-functional variability of these regions, we opted for a multiple ROI analysis. Using the 

NeuroQuery website (Dockès et al., 2020), we selected spatial maps based on the following 12 terms: 

vmPFC, dlPFC, ACC, dACC, PCC, Amygdala, Striatum, and Insula. We also included primary motor and 

primary visual cortices, which serve as sensory/motor control regions. Then we took the 2000-th 
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strongest voxels, excluded those that belonged to clusters smaller than 200 voxels, smooth the 

resulting map, filter out white matter overlaps, and kept the 200 strongest voxels of each remaining 

clusters. This procedure yielded 18 approximately spherical ROIs spanning both hemispheres, which 

are shown in Figure 3 below. 

 

Figure 3: Regions of interest. Control ROIs: Motor left, median, and right (blue), Visual left, median, right (yellow). ROIs of 

interest: PCC, ACC and dACC (green), vmPFC and dlPFC left and right (red), Insula left and right (orange), Amygdala left and 

right, and Striatum left and right (purple). 

In each ROI, we regressed trial-by-trial activations with SPM through a GLM that included one stick 

regressor for each trial (at the time of the gamble presentation onset), which was convolved with the 

canonical HRF. To account for variations in hemodynamic delays, we added the basis function set 

induced by the HRF temporal derivative (Hopfinger et al., 2000). To correct for movement artifacts, we 

also included the six head movement regressors and their squared values. We then extracted the 256 

trial-wise regression coefficients in each voxel of each ROI. Finally, we orthogonalized the resulting 

fMRI trial series w.r.t. gains, losses, and choices, zscored them and computed the 18 ROI-specific RDMs. 
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Results 

 

Assessing expected model confusion using numerical Monte-Carlo simulations 

Prior to presenting our fMRI analyses, we ought to provide evidence that our combined ANN-RSA 

approach exhibits the statistical robustness that is required for a reliable interpretation of results. In 

particular, one may ask whether the approach is robust to modeling assumptions regarding (i) the 

(necessarily underestimated) dimensionality of ANNs that process behaviorally-relevant information, 

and (ii) the form of units9 activation functions (cf. sigmoid versus pseudo-gaussian). More precisely, we 

ask whether the approach discriminates between the three candidate biological mechanisms of 

interest (range adaptation, Hebbian plasticity, and 8default9), even when the data are generated with 

higher-dimensional ANNs. We thus performed a series of Monte-Carlo simulations that recapitulates 

the design of the fMRI experiment. 

We considered a decision task that requires the integration of two inputs  (1) (2),u u uý  that vary 

randomly across 256 trials. We simulated six series of datasets, corresponding to the 2x3=6 alternative 

modified ANN models described above. Each dataset was composed of 20 virtual subjects whose trial-

by-trial behavior and neural responses were generated under an ANN with sets of either 
x

n ý  20, 30, 

or 50 neural units. We allowed for inter-individual variability, derived from sampling ANN parameters 

under their respective prior probability density functions (cf. Table 1). Each simulated dataset was then 

analyzed using the ANN-RSA approach described above. In brief, each behavioral trial series was fitted 

with the 2x3 candidate ANNs, and the resulting estimated neural activity profiles were compared to 

simulated neural activity profiles using our modified RSA. Importantly, fitted ANNs contained smaller 

sets of 
x

n ý  10 units. For each dataset, we then compared models using conjunctive null testing. We 

repeat this procedure 50 times and keep track of all positive tests (with a 5% significance level). The 
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upper panel of Figure 4 shows the frequency of positive conjunctive testing for all candidate models 

for each type of simulated data. 

 

Figure 4: Robustness of the ANN-RSA approach: Monte-Carlo simulations. In what follows, so-called "generative" ANNs 

were used to simulate data. They can be of 2x3=6 sorts: pseudo-Gaussian/sigmoid 'default' ANNs, pseudo-Gaussian/sigmoid 

range adaptation ANNs, and pseudo-Gaussian/sigmoid Hebbian ANNs. Each of these sorts of ANNs had three possible 

dimensions with sets of 
x

n ý  20, 30, or 50 units. In contrast, "analyzing" ANNs only included sets of 
x

n ý  10 units. Upper 

panel: confusion matrix of the conjunctive testing approach. The rate at which each "analyzing" ANN (y-axis) exhibits 

significantly higher RDM correlations than other models, for each "generative" ANNs (x-axis) is color-coded. The three 

alternative dimensions of "generative" ANNs are presented side to side, from left to right. Lower panel: confusion matrix of 

the disjunctive/conjunctive approach. Same format, except that the y-axis now shows candidate mechanisms. 

First, note that the conjunctive approach exhibits almost no model confusion. More precisely, the 

maximum frequency of a model selection error is about 10% (generative ANN = pseudo-gaussian ANN 

with Hebbian plasticity and 30 units, analyzing ANN= pseudo-gaussian ANN). However, its statistical 

power is variable (from about 92% ±2% on average for all sigmoid ANNs to about 31% ±25% on average 

for all pseudo-gaussian ANNs). In other words, the conjunctive testing approach may be too 

conservative in detecting the correct ANN. Second, the dimensionality of generative ANNs seems to 

have almost no impact on statistical power. In other words, the relatively small dimensionality of 

analyzing ANNs (when compared to generative ANNs) does not seem to impair the method9s ability to 

detect the correct underlying mechanism. 
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Now the lower panel of Figure 4 shows the frequency of positive disjunctive/conjunctive testing for 

the three types of biological mechanisms (no constraint, range adaptation, or Hebbian plasticity) for 

each type of simulated data. One can see that model confusion is similar to the conjunctive approach 

above. However, statistical power is much improved, in particular for detecting range adaptation (94% 

±7% on average). Here again, the dimensionality of generative ANNs seems to have no impact on 

statistical power. 

In conclusion, the ANN-RSA approach is robust to violations of modeling and statistical assumptions, 

including the low dimensionality of analyzing ANNs or the distribution of test statistics. In particular, 

this implies that, if a candidate mechanism eventually reaches statistical significance using the 

disjunctive/conjunctive approach, then we can safely infer that it is a more likely explanation of fMRI 

activity patterns than other candidate mechanisms. 

 

Behavioural analyses 

Each participant's choice sequence data were fitted with the six candidates ANNs, as well as with a 

simple logistic model. We used sets of 
x

n ý  4 units and normalized the gain and loss levels by their 

averaged sum before feeding them to the input layer. The latter logistic model is the typical agnostic 

modeling choice in decision paradigms of this kind and was used to measure loss aversion in a previous 

study relying on the same behavioral design (Tom et al., 2007). Here, it will serve as a reference model 

for evaluating the predictive power of ANNs. Each group was fitted independently through the VBA 

empirical Bayes procedure. All summary statistics of these behavioural analyses are provided in Tables 

1 and 2 of the Appendix. Figure 5 below summarizes the fit accuracy of the seven models for the 'equal 

range' group. 
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Figure 5: Behavioral results: 'equal range' group. Left panel: mean percentage of variance explained in trial-by-trial choices 

± one standard error of the mean (y-axis) is shown for each candidate model (x-axis: from left to right: logistic reference 

model, pseudo-Gaussian default ANN, sigmoid default ANN, pseudo-Gaussian range adaptation ANN, sigmoid range 

adaptation ANN, pseudo-Gaussian Hebbian ANN and sigmoid Hebbian ANN). Right panel: The average rate of prediction 

error (y-axis) is plotted as a function of gambles' expected gain (i.e., G-L, x-axis) for each candidate model (same color code 

as left panel). Note that the indifference point (maximal prediction error) seems to be biased towards positive expected 

gains. 

First, one can see that all candidate ANNs perform much better than the simple (reference) logistic 

model. In fact, they all exhibit a significantly higher percentage of explained variance (all p<10-5). It 

turns out that most of the fit improvement lies around the indifference point, where gains and losses 

balance out (cf. right panel of Figure 4). Around that point (i.e., within the [-1,4] interval of expected 

utility), the logistic reference model necessarily makes unreliable predictions and yields an average 

error rate of about 12.2% to 14.6%. In comparison, ANNs seem to be able to reduce the apparent 

randomness in participants' choices, even around the indifference point. This is clearly the case for the 

model that achieves the lowest average error rate (about 6.3% to 7.0%): namely: the 'pseudo-gaussian 

Hebbian' ANN. A likely explanation here is that Hebbian plasticity may effectively change, in a 

deterministic but nonlinear manner, the network response to repetitions of -otherwise indifferent- 

gambles. In turn, seemingly random choices may be, at least partially, predicted from the history of 

past network inputs. This may be taken as evidence against the range adaptation mechanism, which 

exploits qualitatively similar history-dependent effects to find predictors of peoples' choices around 

the indifference point. However, it is difficult to conclude from behavioral data alone, because there 

is no strong statistical evidence that the 'pseudo-gaussian Hebbian' ANN has better explanatory power 
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than the 'pseudo-gaussian range adaptation' ANN, which is the next best model in terms of behavioral 

fit accuracy (average R2 difference = 0.1% ± 5.6%, p=0.43). 

Figure 6 below presents the results of the same analysis for the 'equal indifference' group. 

 

Figure 6: Behavioral results: 'equal indifference' group. Same format as Figure 5. 

In brief, the same observations can be made, i.e., the behavioral analysis replicates on this second 

study. In particular, here again, the 'pseudo-gaussian Hebbian' ANN achieves an average error rate of 

about 6.4% to 9.2% around the indifference point but shows no significant difference in explanatory 

power with the next best model (average R2 difference = 1.6% ± 15.1%, p=0.22). 

At this stage, one would conclude that although biologically-constrained ANNs seem to provide clear 

improvements over simple statistical behavioural models, behavioral data alone does not clearly 

discriminate between candidate underlying biological mechanisms/constraints. 

 

FMRI analyses 

We now aim at identifying the neural signature of candidate biological mechanisms/constraints that 

may determine people's choice sequences. 
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To begin with, we simply ask whether any candidate model actually explain multivariate fMRI time 

series in any ROI that we included in our analysis. Figure 7 below summarizes the ANN-RSA analysis, in 

terms of the group-average RDM correlations ò  for each pair of candidate model and ROI ('equal 

range' group). Table 3 in the Appendix provides the ensuing p-value of RDM correlations' group-level 

statistical significance (H0: 0ò  , one-sided t-test). Note that instead of using units activity, we 

computed the RDM of the logistic model from the gain and loss levels weighted by the regression 

coefficients, and orthogonalized from the subject9s choices only. 

 

Figure 7: FMRI results: 'equal range' group. Left: group means RDM correlations are shown for each candidate model (x-

axis, from left to right: logistic reference model, pseudo-Gaussian default ANN, sigmoid default ANN, pseudo-Gaussian 

range adaptation ANN, sigmoid range adaptation ANN, pseudo-Gaussian Hebbian ANN, and sigmoid Hebbian ANN) and 

each ROI (y-axis, from top to bottom: left motor, medial motor, right motor, left visual, medial visual, right visual, PCC, 

dorsal ACC, ACC, left DLPFC, right DLPFC, vmPFC, left Insula, right Insula, left Amygdala, right Amygdala, left ventral 

Striatum, right ventral Striatum). Right: group-level p-values of the disjunctive/conjunctive approach to comparing 

candidate mechanisms are shown for each mechanism (x-axis, for left to right: 'default', range adaptation, and Hebbian 

plasticity) and each ROI (y-axis, same order as left panel). 

One can see that non-Hebbian models exhibit very small RDM correlations when compared to Hebbian 

models. Also, the RDM correlations of all models (including Hebbian models) are very weak in control 

(visual and motor) ROIs. More precisely, no model reaches statistical significance in control regions 

when correcting for multiple comparisons (all p>0.0008, Bonferroni-corrected threshold=0.00046). In 
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fact, only RDM correlations of Hebbian ANNs reach statistical significance, and only in right DLPFC 

(pseudo-Gaussian: p=0.0004, sigmoid: p=0.0004), left insula (pseudo-Gaussian: p=0.0004, sigmoid: 

p<10-4), left amygdala (pseudo-Gaussian trend: p=0.0006, sigmoid: p=0.0001), right amygdala (pseudo-

Gaussian: p<10-4, sigmoid: p<10-4), left striatum (pseudo-Gaussian: p<10-4, sigmoid: p<10-4) and right 

striatum (pseudo-Gaussian: p=0.0001, sigmoid: p=0.0002). 

We then compared Hebbian plasticity to other biological mechanisms of interest using 

disjunctive/conjunctive testing, whose ensuing p-values are shown in Figure 7 (right panel Bonferroni-

corrected threshold=0.0028). We found that the comparison of RDM correlations reached statistical 

significance in bilateral Striatum (left Striatum: p=0.0003, right Striatum: p=0.001) and in the right 

Amygdala (p=0.0006). In control ROIs, no comparison of RDM correlations achieves statistical 

significance (all p>0.1, uncorrected). Furthermore, the RDM correlations of range adaptation are never 

significantly higher than those of other models (all p>0.095, uncorrected). 

Figure 8 below summarizes the results of the same analysis for the 'equal indifference' group (Table 4 

in the Appendix provides the ensuing p-value of RDM correlations). 
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Figure 8: FMRI results: 'equal indifference' group. Same format as Figure 7. 

In brief, results remarkably replicate the 'equal range' study. Here again, the RDM Hebbian plasticity 

reaches statistical significance in the left Striatum (pseudo-Gaussian: p=0.0004, sigmoid: p<10-4), right 

Striatum (pseudo-Gaussian: p=0.0001, sigmoid: p<10-4), left amygdala (pseudo-Gaussian trend: 

p=0.002, sigmoid: p<10-4) and right Amygdala (pseudo-Gaussian: p=0.0002, sigmoid: p<10-4). We note 

that here, the RDM correlations of sigmoid-Hebbian ANNs reach statistical significance in all other ROIs 

except in the medial visual cortex (all p<10-4). Notably, the RDM correlations of Hebbian ANNs are only 

significantly higher than other mechanisms of interest in bilateral Striatum (left Striatum: p=0.0018, 

right Striatum: p=0.0006). However, there is a trend in bilateral Amygdala (left/right Amygdala: 

p=0.0076). In control ROIs, no model comparison achieves statistical significance, and the RDM 

correlations of range adaptation are never statistically higher than those of other mechanisms. 

 

At this stage, one may safely conclude that Hebbian plasticity is a more likely explanation for fMRI 

activity patterns during risky decisions than range adaptation (or the default, non-constrained, 

biological scenario). But is Hebbian plasticity impairing or enabling adaptive behavior? Numerical 
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simulations on fitted Hebbian ANNs show that reducing Hebbian learning rates 
H

  (keeping all other 

estimated parameters the same) altered the decisions' sensitivity to small gains and high losses, 

effectively increasing loss aversion. But computational investigations of this sort cannot tell us whether 

and how people's behavior change when their brain activity displays more Hebbian-ness, i.e., when it 

becomes more similar to predictions from Hebbian ANNs. We thus ask whether inter-individual 

differences in Hebbian-ness may explain inter-individual differences in behavior, in particular: choice 

inconsistency. We define the Hebbian-ness of fMRI activity patterns in terms of the increase in neural 

evidence for the Hebbian ANN when compared to the default (non-constrained) ANN. Let 
2
m

R  be the 

percentage of explained variance in the fMRI RDM using the model m  (in each ROI). We then measure 

Hebbian-ness using the following pseudo F-score: 
2 2
Hebb default

R R . We define choice inconsistency in 

terms of the number of choices that contradict the logistic reference model, once it has been fitted to 

behavioral data. This effectively measures the rate of decisions, close to a subject9s subjective 

indifference point, that contradicts its average preference. We then regress choice inconsistency 

against Hebbian-ness in bilateral Striatum and Amygdala concurrently (independently for both sigmoid 

and pseudo-gaussian ANNs). Figure 9 below summarizes this analysis for both groups of participants. 
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Figure 9: Analysis of inter-individual variability. Upper-left panel: measured (x-axis) and predicted (y-axis) rates of choice 

inconsistency are plotted against each other for the 'equal range' group (each dot is a participant). Lower-left panel: same 

as above, for the 'equal indifference' group. Upper-right panel: the normalized regression weight estimates (y-axis) are 

shown for each corresponding ROI (x-axis, from left to right: left Amygdala, right Amygdala, left ventral Striatum, right 

ventral Striatum), for both pseudo-gaussian (red) and sigmoid (yellow) Hebbian ANNs. Lower-right panel: same as above, for 

the 'equal indifference' group.  

One can see that, when using pseudo-gaussian ANNs, Hebbian-ness does not predict inter-individual 

differences in choice inconsistency ('equal range' group: p=0.22, 'equal indifference' group: p=0.37, 

omnibus F-test). However, when using sigmoid ANNs, inter-individual differences in choice 

inconsistency can be predicted from fMRI measures of Hebbian-ness ('equal range' group: p=0.044, 

'equal indifference' group: p=0.012, omnibus F-test). Now whether Hebbian-ness facilitates or hinders 

choice consistency seems to depend upon where in the brain it is measured. More precisely, increasing 

Hebbian-ness in the left amygdala decreases choice inconsistency ('equal range' group: p=0.019, 'equal 

indifference' group trend: p=0.057), whereas (right-)striatal Hebbian-ness increases it ('equal range' 

group trend: p=0.18, 'equal indifference' group: p=0.026). We note that Hebbian-ness in the right 

Amygdala and left Striatum does not seem to have a robust effect on choice inconsistency, since 
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statistical significance is reached only for the 'equal indifference' group (right Amygdala: p=0025, left 

Striatum: p=0.0036), but not for the 'equal range' group (right amygdala: p=0.97, left Striatum: p=0.85). 
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Discussion 

In this work, we identify the neural signature of candidate biological constraints and/or mechanisms 

that may shape or distort neural information processing. Rather than using normative models of 

behavior, we quantify the (potentially idiosyncratic) impact of biological constraints by fitting 

constrained ANNs to people9s behavioral responses. We then use RSA to compare the estimated neural 

activity profiles to multivariate fMRI signals. Using numerical Monte-Carlo simulations, we 

demonstrate that the ensuing ANN-RSA approach is robust to modeling and statistical assumptions of 

no interest. We then show, on two independent fMRI studies, that (i) seemingly indifferent choices in 

risky gambles are partially determined by range adaptation and/or Hebbian plasticity, (ii) multivariate 

activity in Striatum and Amygdala during choice is better explained by Hebbian plasticity than with 

range adaptation, and (iii) the Hebbian-ness of striatum and amygdala activity profiles predicts inter-

individual differences in choice inconsistency.  

From a methodological standpoint, our main contribution is to show how to quantify the neural 

evidence for or against incidental, hard-wired, biological constraints on behaviorally-relevant 

information processing. With this aim, we retain the simplicity of established 8model-based9 fMRI 

approaches (Borst et al., 2011; O9Doherty et al., 2007), which proceed by cross-validating the 

identification of hidden computational determinants of behavior with neural data. In addition, we 

leverage the flexibility of ANNs and RSA to extend the breadth of empirical questions that can be 

addressed using dual computational/behavioural means. 

In particular, this enables us to quantify the statistical evidence for neurophysiological mechanisms 

that are difficult –if not impossible- to include in computational models that are defined at Marr9s 

algorithmic level (McClamrock, 1991), e.g., normative models of behavior (as derived from, e.g., 

learning or decision theories) and/or cognitive extensions thereof. Hebbian plasticity is a paradigmatic 

example of what we mean here. Recall that it was initially proposed as an explanation -at the neural 

or Marr's implementational level- for learning, memory, and sensory adaptation (Hebb, 1950). Since 
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then, Hebbian-like synaptic plasticity that serves well-defined computational purposes of this sort has 

been superseded by theoretical frameworks that transcend the three Marr's analysis levels, e.g., the 

"Bayesian brain" hypothesis (Aitchison and Lengyel, 2017; Doya et al., 2007; Friston, 2012). But hard-

wired biological mechanisms of this sort may not always be instrumental to the cognitive process of 

interest. In turn, it may be challenging to account for incidental biological disturbances of neural 

information processing, when described at the algorithmic level. A possibility here is to conceive of 

these disturbances as some form of random noise that perturbs cognitive computations (Drugowitsch 

et al., 2016; Wyart and Koechlin, 2016). That these stochastic scenarios remain agnostic about the 

underlying (most likely hard-wired and deterministic) biological processes is both their strength and 

their weakness. 

Of course, the field has been using neural network models of behavior for decades (Deco et al., 2013; 

Frank, 2006; Jocham et al., 2012; Rigoux and Daunizeau, 2015; Wang, 2008). However, existing models 

are typically difficult to generalize beyond the empirical frame within which they have been derived. 

This is because model-based predictions typically rely on many assumptions that are specific to the 

neural circuit and/or the cognitive process of interest. In contrast, we take inspiration from recent 

theoretical work promoting the advantages of pairing ANNs with RSA (Kriegeskorte and Diedrichsen, 

2016, 2019), and search for neural evidence buried in multivariate patterns of brain activity while 

marginalizing over modeling assumptions of no interest. The aim here is to keep the modeling simple 

and protect the ensuing statistical inference from quantitative assumptions that have no theoretical 

or empirical support (cf., e.g., ANN dimensionality and/or sigmoid versus pseudo-gaussian activation 

functions). Although the numerical simulations we present here tend to validate our statistical 

treatment, we think that this kind of problem is more flexibly solved using the so-called 'family 

inference' in the context of Bayesian model comparison (Penny et al., 2010). In brief, the family 

inference is an optimal method for pooling statistical evidence over modeling factors of no interest 

and has proven both specific and sensitive in the context of large model spaces (Penny and Ridgway, 
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2013). This would be most likely needed when extending the set of candidate biological constraints 

and/or when studying their interactions (see below).  

A related point is the issue of defining which data feature(s) is eventually compared to model 

predictions. By construction, RSA assumes that candidate scenarios can be faithfully evaluated in terms 

of their ability to predict the trial-to-trial similarity/dissimilarity of multivariate (fMRI) patterns of 

neural activity. At the very least, this discards potentially relevant information, e.g., voxels' spatial 

location and peri-stimulus dynamics are lost (Kriegeskorte and Diedrichsen, 2016). Whether and how 

one may improve the statistical efficiency and robustness of RSA are unresolved issues (Diedrichsen 

and Kriegeskorte, 2017; Diedrichsen et al., 2020; Friston et al., 2019; Kriegeskorte and Diedrichsen, 

2019). In our context, this has two practical consequences. First, we used control sensory and motor 

ROIs to demonstrate the anatomo-functional specificity of our inference. Problematic here is the fact 

that we relied on negative results (in control ROIs), which may follow from the limited statistical 

efficiency of RSA. In the context of classical mass-univariate approaches, the issue of comparing 

different brain regions is known to be bound to many intricate confounds (Henson, 2006). How these 

interact with the statistical properties of RSA is virtually unknown. Second, one may question the way 

we defined our set of confounds when deriving the ANN and fMRI RDMs. More precisely, we removed 

trial-by-trial variations that can be explained by linear combinations of inputs and outputs. This is 

important if one is to (i) draw inferences that are orthogonal to linear univariate event-related fMRI 

analyses, and (ii) prevent a bias towards models that fit behavior best. Note that the latter issue is 

critical for our definition of Hebbian-ness, whose inter-individual variations may otherwise be driven 

by statistical artifacts that grow with behavioral atypicality. The obvious cost of this conservative 

strategy is in terms of information loss. Although our results are qualitatively unchanged when 

excluding inputs and outputs from the set of confounds (not shown), this may not always be the case. 

In our opinion, addressing these sorts of issues may require the development of more sophisticated 

computational approaches that can treat behavioral and neural data in a statistically symmetrical 
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manner (Rigoux and Daunizeau, 2015; Turner et al., 2013, 2016, 2019). We intend to pursue this type 

of approach in subsequent publications. 

At this point, and given the above limitations, we acknowledge that our neuroscientific claim is quite 

modest. In brief, our results support Hebbian plasticity as a valid alternative to range adaptation in the 

context of risky gambles. That we eventually identify the Striatum and the Amygdala to be specifically 

involved in this context is well aligned with the existing literature. On the one hand, the ventral 

Striatum is known to encode value and risk (Schultz et al., 2008), and the tendency to opt for a risky 

choice increases with the magnitude of the striatal response to risk (Christopoulos et al., 2009; Kuhnen 

and Knutson, 2005). In fact, the same experimental protocol as we use here ('equal indifference' range) 

already served to demonstrate that the differential striatal responses to losses and gains drive inter-

individual variations in loss aversion (Tom et al., 2007). On the other hand, it was also shown that the 

prospect of a possible loss might activate Amygdala, which would trigger a cautionary brake on 

behavior that facilitates loss aversion (Martino et al., 2006, 2010). How ventral Striatum and Amygdala 

eventually interact with each other to determine loss aversion is unknown, and the present study does 

not resolve this debate. In line with recent studies of hysteretic effects in the brain's decision system 

(Conen and Padoa-Schioppa, 2019; Rangel and Clithero, 2012; Soltani et al., 2012), we rather focus on 

seemingly indifferent and/or inconsistent choices, which remain otherwise unexplained. The present 

results illustrate how neuroimaging can be used to directly test whether candidate hard-wired, 

incidental, biological constraints may impact on behavior: in this case, the hysteretic effects of range 

adaptation and/or Hebbian plasticity. Hebbian plasticity, but not range adaptation, was observed in 

both brain systems that were previously shown to regulate loss aversion. Retrospectively, however, 

many other candidate mechanisms may, in principle, explain such hysteretic effects, e.g., homeostatic 

plasticity (Fox and Stryker, 2017; Pezzulo et al., 2015; Toyoizumi et al., 2014; Turrigiano, 2017). To what 

extent seemingly indifferent and/or inconsistent choices may eventually be explained away with these 

and/or similar biological constraints is an open and challenging issue.   
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Appendix 1: range adaptation 

In what follows we provide the mathematical derivation of equation (6) of the main text. 

Let *ó  be the value of the pseudo-variance parameter ó  that maximizes the derivative of a given 

ANN unit activation function w.r.t. to its inputs, i.e.:    

,

* arg max
u

f

uó
ó

ó ö
ý

ö
 (A1) 

where f   is the activation function of neural units in the ANN (cf. Equation 2), and we have dropped 

unit indices for mathematical convenience. 

Range adaptation proceeds by modifying the pseudo-variance parameter in the direction of *ó , with 

a step size that is controlled by the learning rate 
RA

 , i.e.:    

ø ù1 *
t t RA t

ó ó  ó ó ý     (A2) 

Setting 1
RA

 ü  ensures that the pseudo-variance parameter integrates the history of past inputs 

when adapting its range of activation. 

Let us first focus on pseudo-gaussian activation functions. Without loss of generality, we will drop the 

time index and use a centred input u u ýý  . The first derivative of the activation function is given 

by:  

,
2 2

,

2
expGauss

u

f u u

u ý ó ó ó
ö ö öý ÷ ÷ö ø ø

 (A3) 

 

Range adaptation proceeds by maximizing Equation A3 with respect to ó , which reduces to finding 

the zero of the mixed partial derivative of 
Gauss

f :  
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(A4) 

Since ó  is positive, the maximum of Equation A3 is simply given by 
*

u uó ýý ý  . Inserting the 

expression for 
*ó  into Equation A2 then provides the following learning rule:  

ø ù1t t RA t t
uó ó  ý ó ý      (A5) 

Noting the input to the integration layer is given by 
( , , ) ( , )

1 1

u xn n

i j k i j

t

i j

C x
ý ý
õõ  eventually yields Equation 6 of 

the main text. 

 

Let us now focus on sigmoid activation functions. In this case, we use the following change of variable: 

ø ù*u u ý ÷ý  , where ÷  is the arbitrary scaling factor of the sigmoid activation function (cf. Equation 

2). We will see that it is possible to set  such that the range adaptation learning rule is identical for 

both pseudo-gaussian and sigmoid activation functions. 

It is trivial to show that the first and mixed partial derivative of the sigmoid activation function are 

given by:  
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ø ù ø ù
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 (A6) 

Finding the zero of the mixed partial derivative reduces to solving  ( 1) ( 1)y
y e y

    with /y u óý

. There is no analytical closed form solution to this equation, but a numerical approach yields 

* 1.5434y   . Since ó  is positive, the solution is simply given by 
* 1.5434*y uuó ý ÷ý  ý . 

Setting 1.5434÷ ý  then simplifies the solution to 
*

uó ýý  , which thus provides the same learning 

rule as Equation A3 above.  
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Appendix 2: fMRI results statistics 

In what follows, we provide summary statistics of our ANN-based behavioural and fMRI analyses. Table 

1 gives the mean percentage of explained behavioral variance (R2) and it standard deviation (across 

participants) for each model, for both groups. Table 2 gives the mean R2 difference between each ANN 

model and the reference logistic model, its standard deviation, and the resulting p-value (H0: no R2 

difference, dof=53), for both groups. Table 3 gives the p-value of RDM correlations for each model and  

each ROI (H0: 0ò  , one-sided t-test, dof=53), in the 'equal' range' group. Table 4 gives the p-value of 

RDM correlations for each model and  each ROI (H0: 0ò  , one-sided t-test, dof=53), in the 'equal 

indifference' group. In all tables, statistical significance is highlighted in green (with the appropriate 

threshold correction for multiple comparisons). 

 

 'equal range' 'equal indifference' 

 mean std mean std 

logistic 0.7789 0.1049 0.7367 0.1273 

G-ANN 0.8451 0.0784 0.8831 0.0866 

S-ANN 0.8374 0.0793 0.7845 0.1166 

G-RA-ANN 0.8636 0.0682 0.7937 0.1822 

S-RA-ANN 0.8402 0.0878 0.8409 0.1094 

G-H-ANN 0.8621 0.085 0.867 0.1673 

S-H-ANN 0.8527 0.0623 0.8225 0.127 

Table 1: Mean R2 and its standard deviation for each model, for both groups. 

 

 'equal range' 'equal indifference' 

 mean std p-value mean std p-value 

G-ANN 0.0662 0.0939 5.00E-06 0.1463 0.0748 3.00E-20 

S-ANN 0.0586 0.0446 1.00E-12 0.0477 0.0311 6.00E-16 

G-RA-ANN 0.0847 0.0725 6.00E-11 0.0569 0.1884 1.53E-02 

S-RA-ANN 0.0614 0.0363 4.00E-16 0.1041 0.0669 4.00E-16 

G-H-ANN 0.0832 0.0601 3.00E-13 0.1302 0.167 3.00E-07 

S-H-ANN 0.0738 0.0841 8.00E-08 0.0857 0.119 2.00E-06 

Table 2: Mean R2 difference and its standard deviation for each ANN model, for both groups. 
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 G-ANN S-ANN G-RA-ANN S-RA-ANN G-H-ANN S-H-ANN 

Motor_L 0.9985 0.9684 0.0056 0.9532 0.0096 0.0455 

Motor_M 0.9909 0.998 0.1474 0.911 0.0022 0.0008 

Motor_R 0.9994 0.9558 0.0335 0.7906 0.0113 0.0195 

Visual_L 0.9978 0.9768 0.01 0.9658 0.0684 0.2107 

Visual_M 0.9146 0.7227 0.0762 0.9782 0.184 0.5914 

Visual_R 0.9458 0.8604 0.0707 0.8023 0.0226 0.0626 

PCC 0.9737 0.9226 0.0644 0.9616 0.0101 0.1186 

dACC 0.9999 0.9868 0.1332 0.7359 0.0017 0.0008 

ACC 0.9996 0.9487 0.2128 0.9518 0.0014 0.0037 

dLPFC_L 0.9856 0.7515 0.0271 0.9953 0.004 0.0082 

dLPFC_R 0.9887 0.7984 0.0034 0.7863 0.0004 0.0004 

vmPFC 0.9999 0.8739 0.1146 0.9821 0.0407 0.0535 

Insula_L 0.9965 0.9485 0.0507 0.9592 0.0004 3.57E-05 

Insula_R 0.9642 0.9376 0.1517 0.9201 0.0052 0.0067 

Amygdala_L 0.9889 0.5912 0.4413 0.983 0.0006 0.0001 

Amygdala_R 0.9773 0.9464 0.2797 0.9175 1.51E-05 9.45E-07 

Striatum_L 0.9986 0.716 0.3392 0.8637 1.86E-05 3.13E-06 

Striatum_R 0.9956 0.9768 0.222 0.9845 0.0001 0.0002 

Table 3: P-value of RDM correlations for each model and each ROI ('equal' range'). 

 

 G-ANN S-ANN G-RA-ANN S-RA-ANN G-H-ANN S-H-ANN 

Motor_L 0.4258 0.9914 0.0784 0.7568 0.1149 1.88E-06 

Motor_M 0.5736 0.9907 0.0324 0.839 0.0066 1.94E-06 

Motor_R 0.6155 0.9975 0.0559 0.6253 0.0336 7.20E-07 

Visual_L 0.6878 0.9954 0.153 0.5337 0.2292 2.41E-05 

Visual_M 0.7691 0.9556 0.0014 0.0344 0.9672 3.22E-03 

Visual_R 0.5845 0.9997 0.0249 0.5964 0.0202 1.22E-06 

PCC 0.2997 0.9995 0.1245 0.6836 0.4924 9.47E-05 

dACC 0.455 0.9998 0.1214 0.8494 0.0097 1.00E-07 

ACC 0.0753 0.9993 0.1022 0.8217 0.0026 6.30E-07 

dLPFC_L 0.051 0.9995 0.0146 0.4022 0.4083 1.94E-04 

dLPFC_R 0.3554 0.9998 0.0249 0.9613 0.0037 8.10E-07 

vmPFC 0.3914 0.9742 0.0148 0.7574 0.1307 6.89E-05 

Insula_L 0.2355 0.9684 0.3209 0.964 0.0009 1.00E-08 

Insula_R 0.3882 0.9999 0.0135 0.8121 0.0171 3.71E-05 

Amygdala_L 0.4186 0.9998 0.3852 0.9786 0.0026 2.00E-08 

Amygdala_R 0.7117 0.9987 0.0353 0.9971 2.00E-04 3.00E-08 

Striatum_L 0.5835 0.9997 0.1023 0.9974 2.00E-04 4.00E-08 

Striatum_R 0.3378 0.9998 0.0955 0.9782 0.0001 3.30E-07 

Table 4: P-value of RDM correlations for each model and each ROI ('equal' indifference). 
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