bioRxiv preprint doi: https://doi.org/10.1101/2020.09.08.287714; this version posted September 9, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Blaming blunders on the brain: can indifferent choices

be driven by range adaptation or synaptic plasticity?

Jules Brochard'?3, Jean Daunizeau®??

1 Sorbonne Université, Paris, France
?Institut du Cerveau, Paris, France

* INSERM UMR S1127

Address for correspondence:

Jean Daunizeau

Motivation, Brain, and Behavior Group

Paris Brain Institute

47, boulevard de I'Hopital, 75013, Paris, France
Tel: +33 1572747 19

E-mail: jean.daunizeau@gmail.com

Keywords: fMRI, representational similarity analysis, artificial neural networks, decision, risk.


https://doi.org/10.1101/2020.09.08.287714
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.08.287714; this version posted September 9, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Abstract

Computational investigations of learning and decision making suggest that systematic deviations to
adaptive behavior may be the incidental outcome of biological constraints imposed on neural
information processing. In particular, recent studies indicate that range adaptation, i.e., the
mechanism by which neurons dynamically tune their output firing properties to match the changing
statistics of their inputs, may drive plastic changes in the brain’s decision system that induce systematic
deviations to rationality. Here, we ask whether behaviorally-relevant neural information processing
may be distorted by other incidental, hard-wired, biological constraints, in particular: Hebbian
plasticity. One of our main contributions is to propose a simple computational method for identifying
(and comparing) the neural signature of such biological mechanisms or constraints. Using ANNs (i.e.,
artificial neural network models) and RSA (i.e., representational similarity analysis), we compare the
neural signatures of two types of hard-wired biological mechanisms/constraints: namely, range
adaptation and Hebbian plasticity. We apply the approach to two different open fMRI datasets
acquired when people make decisions under risk. In both cases, we show that although peoples'
apparent indifferent choices are well explained by biologically-constrained ANNs, choice data alone
does not discriminate between range adaptation and Hebbian plasticity. However, RSA shows that
neural activity patterns in bilateral Striatum and Amygdala are more compatible with Hebbian
plasticity. Finally, the strength of evidence for Hebbian plasticity in these structures predicts inter-

individual differences in choice inconsistency.
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Introduction

Why do we overreact to emotional stimuli? Why are our judgments plagued with errors and biases?
Why do we engage in behaviors whose consequences may be detrimental? That the brain's biology is
to blame for all kinds of cognitive and/or behavioural flaws is not a novel idea (Buschman et al., 2011;
Marois and Ivanoff, 2005; Miller and Buschman, 2015; Ramsey et al., 2004). However, providing
neuroscientific evidence that a hard-wired biological constraint shapes and/or distorts the way the
brain processes information is not an easy task. This is because whether the brain deviates from how
it should process a piece of information is virtually unknown. In this work, we show how one may use
multivariate analysis of fMRI data to identify the neural signature of incidental, hard-wired, biological

constraints on behaviorally-relevant neural information processing.

Over the past two decades, cognitive neuroscience has involved much effort into developing
computational means to understand how the brain processes information. In particular, the
computational neuroscience of perception, learning, and decision making has now reached a stage of
maturity, both in terms of its methods and models and in terms of the reproducibility of the ensuing
results. For example, neuroscientific evidence that basal ganglia encode the reward prediction error
that enables reinforcement learning (i.e., learning from reward feedbacks) has been found repetitively
in monkeys (Fiorillo et al., 2003; Schultz et al., 1997) and humans (Abler et al., 2006; Diederen et al.,
2016; Garrison et al., 2013). From a methodological standpoint, this line of study is remarkable for two
reasons. First, it highlights the importance of behavioral measurements for understanding how the
brain processes information. This shifts the scientific question from identifying how the brain encodes
incoming information (e.g., cues and feedbacks) to assessing how it uses this information to produce
behavioral responses. Second, its theoretical basis is derived from formal computational models of
learning originating from research in the field of artificial intelligence and robotics (Dayan and Daw,

2008; Sutton and Barto, 1998). This provides a formal reference point for interpreting neural signals in


https://doi.org/10.1101/2020.09.08.287714
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.08.287714; this version posted September 9, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

terms of neural computations, i.e., intermediary steps in neural information processing geared towards

producing adapted behavioral responses.

Taken in isolation, none of these two aspects is particularly novel. Retrospectively, the focus on brain-
behavior relationships is the hallmark of behavioral neuroscience. And computational neuroscience
already had enabled deep quantitative insights for understanding the neural code of perceptual and
motor systems, providing unprecedented empirical evidence for, e.g., population coding (Averbeck et
al., 2006; Georgopoulos et al., 1986), predictive coding (Bastos et al., 2012; Hosoya et al., 2005) or
efficient coding (Barlow, 1961; Lewicki, 2002). But in combination, these two aspects allow one to
understand how brain computations eventually shape non-trivial behavior. This has typically be done
in two different ways. On the one hand, one may look for neural evidence of cognitive mechanisms
that provide candidate explanations for observed behavioral deviations to normative theories. For
example, this approach has placed the putative distortions of prospective loss perceptions that drive
irrational risk attitudes on a firm neuroscientific footing (Martino et al., 2006, 2010; Tom et al., 2007).
Critically, this line of work typically also demonstrates the relevance of neural data for understanding
inter-individual differences w.r.t. the magnitude of behavioral distortions. For example, it was shown
that those people who exhibit a strong optimism bias are those people whose encoding of
disappointing prediction errors (in the right frontal gyrus) was the weakest (Sharot, 2011; Sharot et al.,
2011). On the other hand, one may disclose non-trivial behavioral consequences of the computational
properties of neural information processing. For example, it was shown that the brain’s reliance on
efficient coding induced systematic biases in both perceptual and value-based decisions (Louie and
Glimcher, 2012; Polania et al., 2019; Soltani et al., 2012; Wei and Stocker, 2015; Zimmermann et al.,
2018). The irony here is that efficient coding is the brain’s optimal solution to the problem of building
reliable cognitive representations under limited neural resources (Barlow, 1961; Simoncelli and
Olshausen, 2001). In brief, this series of work provides evidence for the impact of biological constraints

on behaviorally-relevant information processing.
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One critical insight here was that efficient coding induces plastic changes in the brain’s decision system
that was incidental, i.e., they were not instrumental to the decision task (Conen and Padoa-Schioppa,
2019). More precisely, the encoding of value in OFC neurons was shown to obey a ubiquitous, hard-
wired, biological constraint, namely: range adaptation (Burke et al., 2016; Cox and Kable, 2014; Elliott
et al., 2008; Kobayashi et al., 2010; Padoa-Schioppa, 2009). Range adaptation is the mechanism by
which neurons dynamically tune their output firing properties to match the changing statistics of their
inputs, hence implementing efficient coding under the constraint of bounded neural activation range
(Brenner et al., 2000; Laughlin, 1981; Wark et al., 2007). Although a major breakthrough in decision
neuroscience, these studies suffer from two methodological weaknesses. First, they rely on a
normative reference model that describes how the brain should process behaviorally-relevant
information, whose computational properties are altered by range adaptation. In turn, neuroscientific
evidence for range adaptation is mostly indirect because it relies on validating its corollary
consequence in terms of value distortions (e.g., divisive normalization), rather than identifying its
neural signature (but see Zimmermann et al., 2018). Second, other alternative computational
mechanisms that may make qualitatively similar predictions are ignored. In particular, one may argue
that many forms of plasticity may, in principle, induce dynamic changes in the brain’s decision circuits
that may eventually be confounded with range adaptation. A ubiquitous and ever-persistent example
of this is Hebbian synaptic plasticity (Hebb, 1950), which is central to, e.g., development and recovery
from injury (Fox and Stryker, 2017; Martens et al., 2015; Turrigiano, 2017). A plethora of
electrophysiological studies have established its many variants, including, but not limited to, spike-
timing dependent plasticity and long-term potentiation/depression (Fox and Stryker, 2017; Lisman,
2017; Shouval et al., 2010; Zenke and Gerstner, 2017). Critically, Hebbian plasticity does not reduce to
range adaptation, and one may reasonably ask which of these two hard-wired mechanisms is the most

constraining for behaviorally-relevant neural information processing.

This work is a first step towards solving the two above issues. In brief, we propose a computational

method for identifying (and comparing) the neural signature of biological mechanisms or constraints
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on behaviorally-relevant neural information processing. We bypass the issue of defining a normative
reference model for neural information processing by fitting ANNs (i.e., artificial neural network
models) to behavioral data, with and without incidental, hard-wired, constraints. Here, we consider
two types of hard-wired biological mechanisms: namely, range adaptation and Hebbian plasticity. We
then evaluate the evidence for or against biologically-constrained ANNs using a variant of RSA (i.e.,
representational similarity analysis), because it exploits detailed multivariate information in the data
while being robust to nuisance model misspecifications (Diedrichsen and Kriegeskorte, 2017;
Diedrichsen et al., 2020; Kriegeskorte, 2008). We apply the approach to two different open fMRI
datasets acquired when people make decisions under risk (Botvinik-Nezer et al., 2019). In what follows,
we describe our methodological approach and evaluate its statistical properties with numerical Monte-
Carlo simulations. We then report the results of the ensuing analysis of concurrent behavior and fMRI
data. Finally, we discuss our results in light of the existing literature and highlight potential weaknesses

and perspectives.
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Methods

Biologically-constrained artificial neural networks for behavioral data

Artificial Neural Networks or ANNs provide essentially attempt to decompose a possibly complex form
of information processing in terms of a combination of very simple computations performed by
connected 'units', which are a mathematical abstraction of neurons. Here, we take inspiration from a
growing number of studies that use ANNs as descriptive models of neural information processing,
whose relative biological realism is to be gauged with neuroimaging data (Giicli and Gerven, 2015;

Kietzmann et al., 2017, 2019; Kriegeskorte and Golan, 2019).

We consider behavioral paradigms akin to decision tasks, whereby subjects need to process some
(experimentally controlled) behaviourally-relevant information u = {u“),u(z),...,u(”")} to provide a

response 7. In what follows, we will focus on a value-based decision-making task, whereby

participants have to accept or reject a risky gamble composed of a 50% chance of winning a gain G and
a 50% chance of losing L, i.e., u is composed of n, = 2 input features: u = {G,L} . In brief, we assume

that people’s behavioral response y is the output of a neural network that processes the input, i.e.:

=g, (u,S), where ¢ are unknown ANN parameters and g,y (0) is the ANN’s input-output

transformation function. So-called "shallow" ANNs effectively reduce & ,yv (0) to a combination of

neural units organized in a single hidden layer. Here, we rather rely on ANNs with two hidden layers.
As will be more apparent below, this will facilitate the introduction of Hebbian plasticity

mechanisms/constraints.

We assume that each input feature uf” is encoded into the activity of neurons

[xf””,xf"z),...,xt(””,...,xf”"-*):' of its dedicated "input layer", where n_ isthe number of input neurons

(i)

. as follows:

per input. What we mean here is that the neuron j in the input layer i responds to u
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) 0 i)
= f (. 647) (1)
where f, (-) is the activation function of neural units that compose the ANN's input layer. Collectively,

(i

in the form of a population

the activity vector [xf””] ' forms a representation of the input u

j=l,...n,
code.
Critically, we consider activation functions that are bounded, i.e., either a sigmoid or a pseudo-gaussian

mapping of inputs (see below):

fGauss (”,g)éexp —%
f(u79): or (2)
1

fsi moid (u’ 0) é
’ 1+exp(7/’u_uj
O

where ¥ =1.5434 is a scaling constant that we introduce for mathematical convenience (see

Appendix 1). The parameters 8"/ = {y(i’j) , O'(i’j)} capture the idiosyncratic properties of the neuron

J inthe input layer i (e.g., its firing rate threshold ,u“‘” and the pseudo-variance parameter o*"/’).

Note that, when inputs u fall too far away from 1 (say outside a iZ\/EO' range), both these
activation functions saturate, i.e., they produce non-discriminable outputs (close to 0 or 1). In other
words, the pseudo-variance parameter defines the range of inputs over which units incur no
information loss. As we will see below, range adaptation effectively tunes these activation functions

to minimize information loss.

Then the output of the input layers is passed to the “integration layer” [zf”, zt(z),..., zt(k),..., zf”f) ] ,i.e.,

. i=1
the neuron k of the integration layer responds to [xf"“]l. as follows:
=

=l,...,n

i=1 j=1

g =1, [ZZC“‘"””xf“%qﬁ“”] G)
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where C“/* is the connection weight from the neuron j in the input layer i to the neuron k of the

integration layer, and ¢(k) capture idiosyncratic properties of the integration neuron k . For simplicity,
we restrain our analysisto n_=n_ .

The behavioral response 7, at time or trial ¢ is then read out from the integration layer as follows:

O (k) (k) @
I’; z‘fsigmoid ZW Zt U

k=1
where the W can be thought of as connection weights to another system that would implement

the decision into an action (.e.g., the motor system).

Taken together, Equation 1-3-4 define the ANN’s input-output transformation function, when no
further biological constraint is introduced (see below):

g/(Aol\)/N (ut’lg) é fsigmoid iw(k)fZ Zic(i’j,k)f‘l (ut(i)’g(i’j) )’¢(k) s U (5)
k=1

i=l j=1
where & lumps all ANN parameters together, i.e.: & = {W, C,0, ¢,U} ,and fie{u} are either gaussian

or sigmoid. A schematic summary of the ANN’s double-layer structure is shown in Figure 1 below.
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behaviorally-relevant input layers integration behavioral
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Figure 1: Structure of the 'default’ artificial neural network. Behaviorally-relevant input features first enter the 'input' layer,
which then sends its multiple outputs to the 'integration’ layer. Finally, a behavioral response is produced from the multiple
outputs of the 'integration' layer. See the main text for mathematical notations.

Although, strictly speaking, this ANN includes one form of biological constraint (cf. bounded units’
activation functions), we will refer to it as the ‘default’ or ‘non-constrained’ ANN. Note that, provided
there are enough neurons in input and integration layers, this ANN architecture can capture any value
function defined on the multidimensional input space. However, it cannot capture behavioral
hysteresis effects, whereby previous decisions may change the network's response to behaviorally-

relevant information. This is why we now introduce range adaptation and Hebbian plasticity.

Recall that range adaptation is a mechanism by which neurons maximize the contrast of their output

activity over the natural range of their inputs. Given that we used sigmoid or pseudo-gaussian

activation functions (cf. Equation 2), range adaptation adaption then reduces to a learning rule on f,

‘s pseudo-variance parameters, which are now time-dependent variables and seek to maximize the

transmitted information, i.e., the discriminability of the outputs (see Appendix 1 for details):


https://doi.org/10.1101/2020.09.08.287714
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.08.287714; this version posted September 9, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

nld n.\’
*) _ 5k (k) () (i) )
=0, R, x| |u — E E C"x " -0 (6)

o, t

t+1
i=1l j=1

where «,, is the learning rate of range adaptation. Equation 6 effectively matches pseudo-variance

parameters 0 with the variability of the recent history of each units’ inputs. In turn, units’ activation

functions are sampled over a range where their output activity does not saturate.

Now the two-layers structure of the ANN also enables explicit modeling of Hebbian plasticity. More
precisely, the Hebbian adaption rule will strengthen the connection between input and integration

units that co-vary. This recapitulates the “fire together, wire together” rule:

Ct(w,k) = b (Kt(l'j’k) )

(7)

@, ).k) (05 )5k) (i,j) (k)
K =K tay (xz % _/,LH)

C(i’j’k) and K(i’j’k)

where p

are the static and dynamic components of between-layers connection
weights, respectively, «,, is the Hebbian learning rate and A, is covariance threshold. Equation 7

reinforces a connection weight whenever the product of the corresponding units' outputs exceeds the

threshold A4, .

At the limit when learning rates tend to zero (&, — 0 or ;; — 0), the constrained ANNs exhibit no

plastic change, i.e., they become indistinguishable from the above 'default' ANN. Otherwise, both
range adaptation and Hebbian plasticity constraints make the ANN’s trial-by-trial response a function
of the recent history of inputs to the network. In both cases, learning rates effectively control the
amount of plastic changes that modified ANNs will exhibit. Importantly, behavioral distortions and/or
neural activity patterns that will be induced with these two types of plastic changes may be different.
In other terms, Hebbian plasticity and range adaptation are unlikely to capture similar forms of
behavioral and/or neural hysteresis effects. We will comment on the computational properties of
Equations 6 and 7 in the Discussion section. Importantly, no normative model exists that can be used

as a reference point to set the amount of plastic change that the decision network should exhibit. But
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one can use observed peoples' behavioral responses to evaluate how much plastic changes the
decision network actually does exhibit. Here, we rely on established variational Bayesian model
inversion techniques to perform probabilistic parameter estimation (Daunizeau, 2017; Friston et al.,
2007). To mitigate the impact of local optima, we use a twofold strategy. First, we concurrently fit the
behavior trial series together with its rolling mean and variance (over a sliding temporal window whose
width we set to 5 trials). Second, we use a hierarchical group-level mixed-effects approach that
constrains subject-specific parameter estimates with estimated group statistics (Daunizeau, 2019). The
priors on the ANNs' model parameters for the ensuing parametric 'empirical Bayes' approach are

summarized in Table 1 below.

Parameter Distributions Rational
Pseudo-gaussian G Vs J 0.25 Homogenous paving of
mean/ Sigmoid center H n,+1'n +1 inputs
Pseudo-gaussian .
i . 05 0.5 -
initial standard o) = 0| with 0 ~ N[ T lj Overlap;ﬁ:ssgiap:eudo
deviation notlont &
Initial connection (irj.k) I 1 .
N =, —
weights n Inputs averaging
R i 1 . I |
ange a'daptatlon ay, = __ with @~ N(—3, 2) Gradua ,.stab e
learning rate 1+e7? learning
. _ . . 1 .
Hebblan. plasticity Uy = __ with 6 ~ N(—3,2) Gradual,.stable
learning rate ¢ 1+e7? learning

I h
Hebbian plasticity Comparable to the

A, = with 8 ~ N (-1,1 average product of two
threshold "o lee ( ) bounded units
e The middle point
N 1 .
Hebbian initial K‘é”"'k) =—— with o0~ N(0,0.S) between full and null

strength

I+e strength

Table 1: Parameters' priors for biologically-constrained ANNSs.

Note that all our behavioural analyses are performed using the VBA academic freeware (Daunizeau et

al., 2014).
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Assessing the neural signature of candidate biological constraints using RSA

From a statistical perspective, Equations 6 and 7 provide extra degrees of freedom when fitting the
modified ANN to behavioural choices, when compared to the 'no-constraint' ANN. This means that one
would expect behavior to be better explained with range adaptation and/or Hebbian constraints,
irrespective of whether these constraints are realistic determinants of behavior or not. This is why it is
critical to cross-validate behavioral analyses with neural data. This can be done because once fitted to

behavioral data our modified ANN models make specific trial-by-trial predictions of neural activity
patterns {xl, Zt} that can be compared to multivariate neural signals. Here, we have chosen to rely on

a modified representational similarity analysis (Kriegeskorte, 2008), which possesses the following

properties:

e Itissimple (at least from a statistical standpoint).

e |tis robust to assumptions regarding the relationship between modeled and empirical neural
time series. In particular, it is not confounded by nonlinearities and/or by dimensionality
differences. These, in fact, are known virtues of RSA (Diedrichsen and Kriegeskorte, 2017;
Friston et al., 2019).

e It extracts multivariate information from empirical neural signals that is orthogonal to linear
combinations of behaviorally-relevant inputs and behavioral responses. This is necessary (i)
to provide analysis results that are orthogonal to previous mass-univariate analyses, and (ii)

to prevent statistical biases towards models that best explain behavioral data.

In brief, RSA consists of evaluating the statistical resemblance between model-based and data-based
'representational dissimilarity matrices' or RDMs, which we derive as follows. Let Y be the n,xn,
multivariate time series of (modeled or empirical) neural activity, where n, and n, are the number of

units and trials, respectively. Note that, for model-based RDMs, 'units' mean artificial elementary units

in ANNs, whereas for data-based RDMs, 'units' mean either neurons (cf. electrophysiology) or voxels
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(fMRI). First, we orthogonalize Y with respect to potential confounding sources of between-trial
-1
variability, i.e.. Y (—Y(In —XT(XXT) X), where X is the n,xn, confounds matrix. Here, the

set of confounds typically include a constant term, behaviorally-relevant inputs u# , and behavioral

responses 7. Second, we standardize neural time series by zscoring over trials. Now let D, be the

ensuing n, xn, between-trials Euclidean distance matrix:

o D - DJf

b - D' 0 D}’

Y . . .
: L @)
D' Dl?* o0

Iy

Dy =Y

i=1

(i) (i)
Y-y

The matrix element D;"' thus measures the dissimilarity of neural patterns of activity between trial ¢
and trial ¢', having removed trial-by-trial variations that can be explained as linear combinations of
behaviorally-relevant inputs and behavioral responses. We define the ensuing RDM as the lower-left

triangular part of D, .

In what follows, model-based RDMs are derived using the integration layer of our modified ANNs (i.e.
T
Yoo = [szp---’zn,] ), after having fitted the corresponding model parameters to behavioral

responses. Data-based RDMs are derived from the fMRI time series. Here, YfMRI

is obtained by
deconvolving BOLD time series from the hemodynamic response function with a Dirac delta or stick

basis function set that is time-locked to trial events (Dale, 1999). RSA then proceeds with the statistical

comparison of DYANN and Dyw . In line with recent methodological developments of RSA, we first bin

RDMs into 20 quantiles and then compute the Pearson correlation p = corr(RDM RDM

ANN » fMRI )

between the binned RDMs. Group-level statistical significance of RDMs' correlations can be assessed
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using one-sample t-tests on the group mean of Fischer-transformed RDM correlation coefficients p

(see below). Figure 2 below recapitulates the ensuing ANN-RSA approach.

RDM anpy

trial 1 trial 2 trial ¢ trial n;

"= = "7 2 @R
rIlll

=

p = corr(RDM apn, RDMpgyr)

%

fMRI multi-voxel time series trial 1 trial 2 lrlal t trial n; RDMggy

Figure 2: Summary data-analysis pipeline of the ANN-RSA approach. First, trial-by-trial profiles of the ANN's response to
behaviourally-relevant inputs (in the integration layer) are estimated. Second, corresponding trial-by-trial multivariate
patterns of fMRI activity are extracted in each ROI of interest. Third, corresponding model-based and fMRI-based RDM are
derived, whose correlation p serves as the RSA summary statistics (which then enters subsequent statistical significance
testing).

Note that our ANN-RSA approach does not a priori favor more complex ANNs (i.e., ANNs with more
parameters). When fitted to behavioral data, more complex ANNs (i.e., those that include range
adaptation or Hebbian plasticity) are expected to yield greater explanatory power. The RDM

correlation o exhibits no such bias, however. This is because, once fitted to behavioural data,

estimated ANN activity patterns and their ensuing RDMs have no degree of freedom whatsoever. In
particular, this means that default (non-constrained) ANNs may show a greater RDM correlation than
ANNs that include range adaptation or Hebbian plasticity. In turn, this enables a simple statistical
procedure for comparing candidate models based on group-level comparisons of RDM correlations

(see below).
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Note on statistical testing and model comparison

Recall that our model space is factorial, with two orthogonal modeling factors: (i) our factor of interest
has three 'levels': no constraint, range adaptation or Hebbian plasticity, and (ii) our factor of no interest
has two 'levels': sigmoid versus pseudo-gaussian neural activation functions. This means that we will

be comparing 2x3=6 models. When assessing the statistical significance of the ensuing model
comparison, we will be using a variant of composite null testing. Let pn"f be the p-value associated
with the elementary pairwise comparison of model m and m', whose null hypothesis is

H{"™™ :p <p. ., where p isthe corresponding Fisher-transformed RDM correlation ( p” can be

evaluated using paired t-tests on RDM correlations). For each model m € [1,6] , we ask whether its
RDM correlation is the highest among the candidate models. This induces the following composite null

hypothesis: H\" : p, # max p,.. The maximum p-value statistics p, =max p”" yields a valid test of
m' m'

the composite null hypothesis, though not necessarily maximally efficient (Wasserman, 2004). Because
Ho(m) is the conjunction of elementary pairwise null hypotheses Hém""v) , we refer to this approach as

“conjunctive null testing”.

One may also want to evaluate the statistical significance of the comparison of RDM correlations across
levels of our factor of interest, irrespective of our factor of no interest. The corresponding null
hypothesis involves a disjunctive/conjunctive combination of elementary null hypotheses. For

example, if one wants to test whether range adaptation has a significantly higher RDM correlation than

Hebbian or default (no-constraint) ANNs, the corresponding null hypothesis HéRA) is defined as:

* max
pRA,Gauss m '¢{ RA ,sigmoid}

H™ :{ AND (9)

. L F max
pRA,Alngld m'¢{RA,Gauxs}
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The following p-value then yields a valid statistical test of H ™ :

Pon = 2@[{53} P, 0 P] (10
By design, the ensuing “disjunctive/conjunctive” approach cannot conclude about the underlying
activation functions, i..e. it does not discriminate between sigmoid and pseudo-gaussian functional
forms. However, it pools evidence over levels of our factor of no interest, which eventually improves
statistical power. This is a frequentist -and simpler- variant of so-called "family inference" in Bayesian
model comparison (Penny et al., 2010), where one marginalizes over modeling factors of no interest,
effectively trading statistical power against inference resolution. We will see a direct demonstration of

the disjunctive/conjunctive approach below.

fMRI study of risk attitudes: experimental design

In this work, we compare the neural evidence for candidate biological constraints (range adaptation
versus Hebbian plasticity) on behaviorally-relevant neural information processing using a re-analysis
of the NARPS dataset (Botvinik-nezer et al., 2019), openly available on openneuro.org (Poldrack et al.,
2013). This dataset includes two studies, each of which is composed of a group of 54 participants who
make a series of decisions made of 256 risky gambles. On each trial, a gamble was presented, entailing
a 50/50 chance of gaining an amount G of money or losing an amount L. As in Tom et al. (2007),
participants were asked to evaluate whether or not they would like to play each of the gambles
presented to them (strongly accept, weakly accept, weakly reject or strongly reject). They were told
that, at the end of the experiment, four trials would be selected at random: for those trials in which
they had accepted the corresponding gamble, the outcome would be decided with a coin toss, and for

the other ones -if any-, the gamble would not be played. In the first study (hereafter: "equal range"
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group), participants decided on gambles made of gain and loss levels that were sampled from the same
range (G and L varied between 5 and 20 S). In the second study (hereafter: the "equal indifference"
group), gain levels scaled to double the loss levels (L varied between 5 and 20S, and G varied between
10 and 408S). In both studies, all 256 possible combinations of gains and losses were presented across

trials, which were separated by 7 seconds on average (min 6, max 10).

MRI scanning was performed on a 3T Siemens Prisma scanner. High-resolution T1w structural images
were acquired using a magnetization prepared rapid gradient echo (MPRAGE) pulse sequence with the
following parameters: TR = 2530 ms, TE=2.99 ms, FA=7, FOV = 224 x 224 mm, resolution=1x1x1
mm. Whole-brain fMRI data were acquired using echo-planar imaging with multi-band acceleration
factor of 4 and parallel imaging factor (iPAT) of 2, TR = 1000 ms, TE = 30 ms, flip angle = 68 degrees, in-
plane resolution of 2X2 mm 30 degrees of the anterior commissure-posterior commissure line to
reduce the frontal signal dropout, with a slice thickness of 2 mm and a gap of 0.4 mm between slices

to cover the entire brain. See https://www.narps.info/analysis.html#protocol for more details. Data

preprocessing included standard realignment and movement correction steps. Note that we excluded
5 participants from the 'equal-range' group because the misalignment between functional and

anatomical scans could not be corrected. No spatial smoothing was applied.

Previous mass-univariate analyses of these datasets, including a recent study of the analysis variability
among multiple research groups (Botvinik-nezer et al., 2019), provided evidence for the implication of
multiple brain systems in response to either gains and/or losses, in particular: the ventromedial
prefrontal cortex or vmPFC, the dorsolateral prefrontal cortex or dIPFC, the anterior cingulate cortex
or ACC, the posterior cingulate cortex or PCC, the Amygdala, the Striatum and the Insula. Given the
anatomo-functional variability of these regions, we opted for a multiple ROl analysis. Using the
NeuroQuery website (Dockeés et al., 2020), we selected spatial maps based on the following 12 terms:
vmPFC, dIPFC, ACC, dACC, PCC, Amygdala, Striatum, and Insula. We also included primary motor and

primary visual cortices, which serve as sensory/motor control regions. Then we took the 2000-th
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strongest voxels, excluded those that belonged to clusters smaller than 200 voxels, smooth the
resulting map, filter out white matter overlaps, and kept the 200 strongest voxels of each remaining
clusters. This procedure yielded 18 approximately spherical ROls spanning both hemispheres, which

are shown in Figure 3 below.

Figure 3: Regions of interest. Control ROIs: Motor left, median, and right (blue), Visual left, median, right (yellow). ROIs of
interest: PCC, ACC and dACC (green), vmPFC and dIPFC left and right (red), Insula left and right (orange), Amygdala left and
right, and Striatum left and right (purple).

In each ROI, we regressed trial-by-trial activations with SPM through a GLM that included one stick
regressor for each trial (at the time of the gamble presentation onset), which was convolved with the
canonical HRF. To account for variations in hemodynamic delays, we added the basis function set
induced by the HRF temporal derivative (Hopfinger et al., 2000). To correct for movement artifacts, we
also included the six head movement regressors and their squared values. We then extracted the 256
trial-wise regression coefficients in each voxel of each ROI. Finally, we orthogonalized the resulting

fMRI trial series w.r.t. gains, losses, and choices, zscored them and computed the 18 ROI-specific RDMs.
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Results

Assessing expected model confusion using numerical Monte-Carlo simulations

Prior to presenting our fMRI analyses, we ought to provide evidence that our combined ANN-RSA
approach exhibits the statistical robustness that is required for a reliable interpretation of results. In
particular, one may ask whether the approach is robust to modeling assumptions regarding (i) the
(necessarily underestimated) dimensionality of ANNs that process behaviorally-relevant information,
and (ii) the form of units’ activation functions (cf. sigmoid versus pseudo-gaussian). More precisely, we
ask whether the approach discriminates between the three candidate biological mechanisms of
interest (range adaptation, Hebbian plasticity, and ‘default’), even when the data are generated with
higher-dimensional ANNs. We thus performed a series of Monte-Carlo simulations that recapitulates

the design of the fMRI experiment.

We considered a decision task that requires the integration of two inputs u = {u“),u(z)} that vary

randomly across 256 trials. We simulated six series of datasets, corresponding to the 2x3=6 alternative
modified ANN models described above. Each dataset was composed of 20 virtual subjects whose trial-
by-trial behavior and neural responses were generated under an ANN with sets of either n,_ = 20, 30,
or 50 neural units. We allowed for inter-individual variability, derived from sampling ANN parameters
under their respective prior probability density functions (cf. Table 1). Each simulated dataset was then
analyzed using the ANN-RSA approach described above. In brief, each behavioral trial series was fitted
with the 2x3 candidate ANNs, and the resulting estimated neural activity profiles were compared to

simulated neural activity profiles using our modified RSA. Importantly, fitted ANNs contained smaller

sets of n_ = 10 units. For each dataset, we then compared models using conjunctive null testing. We

repeat this procedure 50 times and keep track of all positive tests (with a 5% significance level). The
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upper panel of Figure 4 shows the frequency of positive conjunctive testing for all candidate models

for each type of simulated data.

Conjunctive testing: confusion matrix

Frequency

Disjunctive/conjunctive testing: confusion matrix
1

‘default’

Range
Adaptation
Hebbian
plasticity

Analyzing ANN

Figure 4: Robustness of the ANN-RSA approach: Monte-Carlo simulations. In what follows, so-called "generative” ANNs
were used to simulate data. They can be of 2x3=6 sorts: pseudo-Gaussian/sigmoid 'default' ANNs, pseudo-Gaussian/sigmoid
range adaptation ANNs, and pseudo-Gaussian/sigmoid Hebbian ANNs. Each of these sorts of ANNs had three possible

dimensions with sets of 1. = 20, 30, or 50 units. In contrast, "analyzing” ANNs only included sets of n,. = 10 units. Upper

panel: confusion matrix of the conjunctive testing approach. The rate at which each "analyzing" ANN (y-axis) exhibits
significantly higher RDM correlations than other models, for each "generative" ANNs (x-axis) is color-coded. The three
alternative dimensions of "generative" ANNs are presented side to side, from left to right. Lower panel: confusion matrix of
the disjunctive/conjunctive approach. Same format, except that the y-axis now shows candidate mechanisms.

First, note that the conjunctive approach exhibits almost no model confusion. More precisely, the
maximum frequency of a model selection error is about 10% (generative ANN = pseudo-gaussian ANN
with Hebbian plasticity and 30 units, analyzing ANN= pseudo-gaussian ANN). However, its statistical
power is variable (from about 92% +2% on average for all sigmoid ANNs to about 31% +25% on average
for all pseudo-gaussian ANNs). In other words, the conjunctive testing approach may be too
conservative in detecting the correct ANN. Second, the dimensionality of generative ANNs seems to
have almost no impact on statistical power. In other words, the relatively small dimensionality of
analyzing ANNs (when compared to generative ANNs) does not seem to impair the method’s ability to

detect the correct underlying mechanism.
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Now the lower panel of Figure 4 shows the frequency of positive disjunctive/conjunctive testing for
the three types of biological mechanisms (no constraint, range adaptation, or Hebbian plasticity) for
each type of simulated data. One can see that model confusion is similar to the conjunctive approach
above. However, statistical power is much improved, in particular for detecting range adaptation (94%
+7% on average). Here again, the dimensionality of generative ANNs seems to have no impact on

statistical power.

In conclusion, the ANN-RSA approach is robust to violations of modeling and statistical assumptions,
including the low dimensionality of analyzing ANNs or the distribution of test statistics. In particular,
this implies that, if a candidate mechanism eventually reaches statistical significance using the
disjunctive/conjunctive approach, then we can safely infer that it is a more likely explanation of fMRI

activity patterns than other candidate mechanisms.

Behavioural analyses

Each participant's choice sequence data were fitted with the six candidates ANNs, as well as with a

simple logistic model. We used sets of n_= 4 units and normalized the gain and loss levels by their

averaged sum before feeding them to the input layer. The latter logistic model is the typical agnostic
modeling choice in decision paradigms of this kind and was used to measure loss aversion in a previous
study relying on the same behavioral design (Tom et al., 2007). Here, it will serve as a reference model
for evaluating the predictive power of ANNs. Each group was fitted independently through the VBA
empirical Bayes procedure. All summary statistics of these behavioural analyses are provided in Tables
1 and 2 of the Appendix. Figure 5 below summarizes the fit accuracy of the seven models for the 'equal

range' group.
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Figure 5: Behavioral results: 'equal range' group. Left panel: mean percentage of variance explained in trial-by-trial choices
+ one standard error of the mean (y-axis) is shown for each candidate model (x-axis: from left to right: logistic reference
model, pseudo-Gaussian default ANN, sigmoid default ANN, pseudo-Gaussian range adaptation ANN, sigmoid range
adaptation ANN, pseudo-Gaussian Hebbian ANN and sigmoid Hebbian ANN). Right panel: The average rate of prediction
error (y-axis) is plotted as a function of gambles' expected gain (i.e., G-L, x-axis) for each candidate model (same color code
as left panel). Note that the indifference point (maximal prediction error) seems to be biased towards positive expected
gains.

First, one can see that all candidate ANNs perform much better than the simple (reference) logistic
model. In fact, they all exhibit a significantly higher percentage of explained variance (all p<107®). It
turns out that most of the fit improvement lies around the indifference point, where gains and losses
balance out (cf. right panel of Figure 4). Around that point (i.e., within the [-1,4] interval of expected
utility), the logistic reference model necessarily makes unreliable predictions and yields an average
error rate of about 12.2% to 14.6%. In comparison, ANNs seem to be able to reduce the apparent
randomness in participants' choices, even around the indifference point. This is clearly the case for the
model that achieves the lowest average error rate (about 6.3% to 7.0%): namely: the 'pseudo-gaussian
Hebbian' ANN. A likely explanation here is that Hebbian plasticity may effectively change, in a
deterministic but nonlinear manner, the network response to repetitions of -otherwise indifferent-
gambles. In turn, seemingly random choices may be, at least partially, predicted from the history of
past network inputs. This may be taken as evidence against the range adaptation mechanism, which
exploits qualitatively similar history-dependent effects to find predictors of peoples' choices around
the indifference point. However, it is difficult to conclude from behavioral data alone, because there

is no strong statistical evidence that the 'pseudo-gaussian Hebbian' ANN has better explanatory power
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than the 'pseudo-gaussian range adaptation' ANN, which is the next best model in terms of behavioral

fit accuracy (average R2 difference = 0.1% + 5.6%, p=0.43).

Figure 6 below presents the results of the same analysis for the 'equal indifference’ group.
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Figure 6: Behavioral results: 'equal indifference’ group. Same format as Figure 5.

In brief, the same observations can be made, i.e., the behavioral analysis replicates on this second
study. In particular, here again, the 'pseudo-gaussian Hebbian' ANN achieves an average error rate of
about 6.4% to 9.2% around the indifference point but shows no significant difference in explanatory

power with the next best model (average R2 difference = 1.6% + 15.1%, p=0.22).

At this stage, one would conclude that although biologically-constrained ANNs seem to provide clear
improvements over simple statistical behavioural models, behavioral data alone does not clearly

discriminate between candidate underlying biological mechanisms/constraints.

FMRI analyses

We now aim at identifying the neural signature of candidate biological mechanisms/constraints that

may determine people's choice sequences.
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To begin with, we simply ask whether any candidate model actually explain multivariate fMRI time
series in any ROl that we included in our analysis. Figure 7 below summarizes the ANN-RSA analysis, in
terms of the group-average RDM correlations p for each pair of candidate model and ROI (‘'equal
range' group). Table 3 in the Appendix provides the ensuing p-value of RDM correlations' group-level
statistical significance (HO: p <0, one-sided t-test). Note that instead of using units activity, we
computed the RDM of the logistic model from the gain and loss levels weighted by the regression

coefficients, and orthogonalized from the subject’s choices only.

Disjunctive/conjunctive p-values p-alve:

Mean RDM correlations corr:
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Figure 7: FMRI results: 'equal range' group. Left: group means RDM correlations are shown for each candidate model (x-
axis, from left to right: logistic reference model, pseudo-Gaussian default ANN, sigmoid default ANN, pseudo-Gaussian
range adaptation ANN, sigmoid range adaptation ANN, pseudo-Gaussian Hebbian ANN, and sigmoid Hebbian ANN) and
each ROI (y-axis, from top to bottom: left motor, medial motor, right motor, left visual, medial visual, right visual, PCC,
dorsal ACC, ACC, left DLPFC, right DLPFC, vmPFC, left Insula, right Insula, left Amygdala, right Amygdala, left ventral
Striatum, right ventral Striatum). Right: group-level p-values of the disjunctive/conjunctive approach to comparing
candidate mechanisms are shown for each mechanism (x-axis, for left to right: 'default’, range adaptation, and Hebbian
plasticity) and each ROI (y-axis, same order as left panel).

One can see that non-Hebbian models exhibit very small RDM correlations when compared to Hebbian
models. Also, the RDM correlations of all models (including Hebbian models) are very weak in control
(visual and motor) ROIs. More precisely, no model reaches statistical significance in control regions

when correcting for multiple comparisons (all p>0.0008, Bonferroni-corrected threshold=0.00046). In
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fact, only RDM correlations of Hebbian ANNs reach statistical significance, and only in right DLPFC
(pseudo-Gaussian: p=0.0004, sigmoid: p=0.0004), left insula (pseudo-Gaussian: p=0.0004, sigmoid:
p<10*), left amygdala (pseudo-Gaussian trend: p=0.0006, sigmoid: p=0.0001), right amygdala (pseudo-
Gaussian: p<10*, sigmoid: p<10™), left striatum (pseudo-Gaussian: p<10*, sigmoid: p<10*) and right

striatum (pseudo-Gaussian: p=0.0001, sigmoid: p=0.0002).

We then compared Hebbian plasticity to other biological mechanisms of interest using
disjunctive/conjunctive testing, whose ensuing p-values are shown in Figure 7 (right panel Bonferroni-
corrected threshold=0.0028). We found that the comparison of RDM correlations reached statistical
significance in bilateral Striatum (left Striatum: p=0.0003, right Striatum: p=0.001) and in the right
Amygdala (p=0.0006). In control ROIs, no comparison of RDM correlations achieves statistical
significance (all p>0.1, uncorrected). Furthermore, the RDM correlations of range adaptation are never

significantly higher than those of other models (all p>0.095, uncorrected).

Figure 8 below summarizes the results of the same analysis for the 'equal indifference' group (Table 4

in the Appendix provides the ensuing p-value of RDM correlations).
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Figure 8: FMRI results: 'equal indifference’ group. Same format as Figure 7.

In brief, results remarkably replicate the 'equal range' study. Here again, the RDM Hebbian plasticity
reaches statistical significance in the left Striatum (pseudo-Gaussian: p=0.0004, sigmoid: p<10*), right
Striatum (pseudo-Gaussian: p=0.0001, sigmoid: p<10%), left amygdala (pseudo-Gaussian trend:
p=0.002, sigmoid: p<10)and right Amygdala (pseudo-Gaussian: p=0.0002, sigmoid: p<10®. We note
that here, the RDM correlations of sigmoid-Hebbian ANNSs reach statistical significance in all other ROIs
except in the medial visual cortex (all p<10). Notably, the RDM correlations of Hebbian ANNs are only
significantly higher than other mechanisms of interest in bilateral Striatum (left Striatum: p=0.0018,
right Striatum: p=0.0006). However, there is a trend in bilateral Amygdala (left/right Amygdala:
p=0.0076). In control ROIs, no model comparison achieves statistical significance, and the RDM

correlations of range adaptation are never statistically higher than those of other mechanisms.

At this stage, one may safely conclude that Hebbian plasticity is a more likely explanation for fMRI
activity patterns during risky decisions than range adaptation (or the default, non-constrained,

biological scenario). But is Hebbian plasticity impairing or enabling adaptive behavior? Numerical
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simulations on fitted Hebbian ANNs show that reducing Hebbian learning rates ¢, (keeping all other

estimated parameters the same) altered the decisions' sensitivity to small gains and high losses,
effectively increasing loss aversion. But computational investigations of this sort cannot tell us whether
and how people's behavior change when their brain activity displays more Hebbian-ness, i.e., when it
becomes more similar to predictions from Hebbian ANNs. We thus ask whether inter-individual
differences in Hebbian-ness may explain inter-individual differences in behavior, in particular: choice

inconsistency. We define the Hebbian-ness of fMRI activity patterns in terms of the increase in neural
evidence for the Hebbian ANN when compared to the default (non-constrained) ANN. Let Rj, be the
percentage of explained variance in the fMRI RDM using the model m (in each ROI). We then measure

Hebbian-ness using the following pseudo F-score: R’ .. —R: We define choice inconsistency in

Hebb default *
terms of the number of choices that contradict the logistic reference model, once it has been fitted to
behavioral data. This effectively measures the rate of decisions, close to a subject’s subjective
indifference point, that contradicts its average preference. We then regress choice inconsistency
against Hebbian-ness in bilateral Striatum and Amygdala concurrently (independently for both sigmoid

and pseudo-gaussian ANNs). Figure 9 below summarizes this analysis for both groups of participants.
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Figure 9: Analysis of inter-individual variability. Upper-left panel: measured (x-axis) and predicted (y-axis) rates of choice
inconsistency are plotted against each other for the 'equal range’ group (each dot is a participant). Lower-left panel: same
as above, for the 'equal indifference’ group. Upper-right panel: the normalized regression weight estimates (y-axis) are
shown for each corresponding RO (x-axis, from left to right: left Amygdala, right Amygdala, left ventral Striatum, right
ventral Striatum), for both pseudo-gaussian (red) and sigmoid (yellow) Hebbian ANNs. Lower-right panel: same as above, for
the 'equal indifference’ group.

One can see that, when using pseudo-gaussian ANNs, Hebbian-ness does not predict inter-individual
differences in choice inconsistency (‘equal range' group: p=0.22, 'equal indifference' group: p=0.37,
omnibus F-test). However, when using sigmoid ANNs, inter-individual differences in choice
inconsistency can be predicted from fMRI measures of Hebbian-ness (‘equal range' group: p=0.044,
'equal indifference' group: p=0.012, omnibus F-test). Now whether Hebbian-ness facilitates or hinders
choice consistency seems to depend upon where in the brain it is measured. More precisely, increasing
Hebbian-ness in the left amygdala decreases choice inconsistency ('equal range' group: p=0.019, 'equal
indifference' group trend: p=0.057), whereas (right-)striatal Hebbian-ness increases it (‘equal range'
group trend: p=0.18, 'equal indifference' group: p=0.026). We note that Hebbian-ness in the right

Amygdala and left Striatum does not seem to have a robust effect on choice inconsistency, since
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statistical significance is reached only for the 'equal indifference' group (right Amygdala: p=0025, left

Striatum: p=0.0036), but not for the 'equal range' group (right amygdala: p=0.97, left Striatum: p=0.85).
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Discussion

In this work, we identify the neural signature of candidate biological constraints and/or mechanisms
that may shape or distort neural information processing. Rather than using normative models of
behavior, we quantify the (potentially idiosyncratic) impact of biological constraints by fitting
constrained ANNs to people’s behavioral responses. We then use RSA to compare the estimated neural
activity profiles to multivariate fMRI signals. Using numerical Monte-Carlo simulations, we
demonstrate that the ensuing ANN-RSA approach is robust to modeling and statistical assumptions of
no interest. We then show, on two independent fMRI studies, that (i) seemingly indifferent choices in
risky gambles are partially determined by range adaptation and/or Hebbian plasticity, (ii) multivariate
activity in Striatum and Amygdala during choice is better explained by Hebbian plasticity than with
range adaptation, and (iii) the Hebbian-ness of striatum and amygdala activity profiles predicts inter-

individual differences in choice inconsistency.

From a methodological standpoint, our main contribution is to show how to quantify the neural
evidence for or against incidental, hard-wired, biological constraints on behaviorally-relevant
information processing. With this aim, we retain the simplicity of established ‘model-based’ fMRI
approaches (Borst et al., 2011; O’Doherty et al., 2007), which proceed by cross-validating the
identification of hidden computational determinants of behavior with neural data. In addition, we
leverage the flexibility of ANNs and RSA to extend the breadth of empirical questions that can be

addressed using dual computational/behavioural means.

In particular, this enables us to quantify the statistical evidence for neurophysiological mechanisms
that are difficult —if not impossible- to include in computational models that are defined at Marr’s
algorithmic level (McClamrock, 1991), e.g., normative models of behavior (as derived from, e.g.,
learning or decision theories) and/or cognitive extensions thereof. Hebbian plasticity is a paradigmatic
example of what we mean here. Recall that it was initially proposed as an explanation -at the neural

or Marr's implementational level- for learning, memory, and sensory adaptation (Hebb, 1950). Since
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then, Hebbian-like synaptic plasticity that serves well-defined computational purposes of this sort has
been superseded by theoretical frameworks that transcend the three Marr's analysis levels, e.g., the
"Bayesian brain" hypothesis (Aitchison and Lengyel, 2017; Doya et al., 2007; Friston, 2012). But hard-
wired biological mechanisms of this sort may not always be instrumental to the cognitive process of
interest. In turn, it may be challenging to account for incidental biological disturbances of neural
information processing, when described at the algorithmic level. A possibility here is to conceive of
these disturbances as some form of random noise that perturbs cognitive computations (Drugowitsch
et al., 2016; Wyart and Koechlin, 2016). That these stochastic scenarios remain agnostic about the
underlying (most likely hard-wired and deterministic) biological processes is both their strength and

their weakness.

Of course, the field has been using neural network models of behavior for decades (Deco et al., 2013;
Frank, 2006; Jocham et al., 2012; Rigoux and Daunizeau, 2015; Wang, 2008). However, existing models
are typically difficult to generalize beyond the empirical frame within which they have been derived.
This is because model-based predictions typically rely on many assumptions that are specific to the
neural circuit and/or the cognitive process of interest. In contrast, we take inspiration from recent
theoretical work promoting the advantages of pairing ANNs with RSA (Kriegeskorte and Diedrichsen,
2016, 2019), and search for neural evidence buried in multivariate patterns of brain activity while
marginalizing over modeling assumptions of no interest. The aim here is to keep the modeling simple
and protect the ensuing statistical inference from quantitative assumptions that have no theoretical
or empirical support (cf., e.g., ANN dimensionality and/or sigmoid versus pseudo-gaussian activation
functions). Although the numerical simulations we present here tend to validate our statistical
treatment, we think that this kind of problem is more flexibly solved using the so-called 'family
inference' in the context of Bayesian model comparison (Penny et al., 2010). In brief, the family
inference is an optimal method for pooling statistical evidence over modeling factors of no interest

and has proven both specific and sensitive in the context of large model spaces (Penny and Ridgway,
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2013). This would be most likely needed when extending the set of candidate biological constraints

and/or when studying their interactions (see below).

A related point is the issue of defining which data feature(s) is eventually compared to model
predictions. By construction, RSA assumes that candidate scenarios can be faithfully evaluated in terms
of their ability to predict the trial-to-trial similarity/dissimilarity of multivariate (fMRI) patterns of
neural activity. At the very least, this discards potentially relevant information, e.g., voxels' spatial
location and peri-stimulus dynamics are lost (Kriegeskorte and Diedrichsen, 2016). Whether and how
one may improve the statistical efficiency and robustness of RSA are unresolved issues (Diedrichsen
and Kriegeskorte, 2017; Diedrichsen et al., 2020; Friston et al., 2019; Kriegeskorte and Diedrichsen,
2019). In our context, this has two practical consequences. First, we used control sensory and motor
ROIs to demonstrate the anatomo-functional specificity of our inference. Problematic here is the fact
that we relied on negative results (in control ROIs), which may follow from the limited statistical
efficiency of RSA. In the context of classical mass-univariate approaches, the issue of comparing
different brain regions is known to be bound to many intricate confounds (Henson, 2006). How these
interact with the statistical properties of RSA is virtually unknown. Second, one may question the way
we defined our set of confounds when deriving the ANN and fMRI RDMs. More precisely, we removed
trial-by-trial variations that can be explained by linear combinations of inputs and outputs. This is
important if one is to (i) draw inferences that are orthogonal to linear univariate event-related fMRI
analyses, and (ii) prevent a bias towards models that fit behavior best. Note that the latter issue is
critical for our definition of Hebbian-ness, whose inter-individual variations may otherwise be driven
by statistical artifacts that grow with behavioral atypicality. The obvious cost of this conservative
strategy is in terms of information loss. Although our results are qualitatively unchanged when
excluding inputs and outputs from the set of confounds (not shown), this may not always be the case.
In our opinion, addressing these sorts of issues may require the development of more sophisticated

computational approaches that can treat behavioral and neural data in a statistically symmetrical
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manner (Rigoux and Daunizeau, 2015; Turner et al., 2013, 2016, 2019). We intend to pursue this type

of approach in subsequent publications.

At this point, and given the above limitations, we acknowledge that our neuroscientific claim is quite
modest. In brief, our results support Hebbian plasticity as a valid alternative to range adaptation in the
context of risky gambles. That we eventually identify the Striatum and the Amygdala to be specifically
involved in this context is well aligned with the existing literature. On the one hand, the ventral
Striatum is known to encode value and risk (Schultz et al., 2008), and the tendency to opt for a risky
choice increases with the magnitude of the striatal response to risk (Christopoulos et al., 2009; Kuhnen
and Knutson, 2005). In fact, the same experimental protocol as we use here ('equal indifference' range)
already served to demonstrate that the differential striatal responses to losses and gains drive inter-
individual variations in loss aversion (Tom et al., 2007). On the other hand, it was also shown that the
prospect of a possible loss might activate Amygdala, which would trigger a cautionary brake on
behavior that facilitates loss aversion (Martino et al., 2006, 2010). How ventral Striatum and Amygdala
eventually interact with each other to determine loss aversion is unknown, and the present study does
not resolve this debate. In line with recent studies of hysteretic effects in the brain's decision system
(Conen and Padoa-Schioppa, 2019; Rangel and Clithero, 2012; Soltani et al., 2012), we rather focus on
seemingly indifferent and/or inconsistent choices, which remain otherwise unexplained. The present
results illustrate how neuroimaging can be used to directly test whether candidate hard-wired,
incidental, biological constraints may impact on behavior: in this case, the hysteretic effects of range
adaptation and/or Hebbian plasticity. Hebbian plasticity, but not range adaptation, was observed in
both brain systems that were previously shown to regulate loss aversion. Retrospectively, however,
many other candidate mechanisms may, in principle, explain such hysteretic effects, e.g., homeostatic
plasticity (Fox and Stryker, 2017; Pezzulo et al., 2015; Toyoizumi et al., 2014; Turrigiano, 2017). To what
extent seemingly indifferent and/or inconsistent choices may eventually be explained away with these

and/or similar biological constraints is an open and challenging issue.
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Appendix 1: range adaptation

In what follows we provide the mathematical derivation of equation (6) of the main text.

Let o * be the value of the pseudo-variance parameter o that maximizes the derivative of a given

ANN unit activation function w.r.t. to its inputs, i.e.:

o* = arg max 9. (A1)
o |Ou

where f. is the activation function of neural units in the ANN (cf. Equation 2), and we have dropped

unit indices for mathematical convenience.

Range adaptation proceeds by modifying the pseudo-variance parameter in the direction of o *, with

a step size that is controlled by the learning rate «r,,, , i.e.:

O, =0, T Qpy X (O-*_Gt) (A2)
Setting a,, <1 ensures that the pseudo-variance parameter integrates the history of past inputs

when adapting its range of activation.

Let us first focus on pseudo-gaussian activation functions. Without loss of generality, we will drop the

time index and use a centred input & =u — 4 . The first derivative of the activation function is given

by:

20 u
=—Sexp| —— (A3)
o o

Range adaptation proceeds by maximizing Equation A3 with respect to &, which reduces to finding

the zero of the mixed partial derivative of f
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azf Gauss
0o Ol

:(o.z _ﬁz)ﬁexp(_ﬁ_zJ (Ag)
o’ o’

Since o is positive, the maximum of Equation A3 is simply given by o = ‘u‘ = |u —,u|. Inserting the

expression for o’ into Equation A2 then provides the following learning rule:

0,1 =0, +O(RAX(‘/J—MI _O-z) (A5)

nM n,’(
Noting the input to the integration layer is given by ZZC(’"”“)Q("” eventually yields Equation 6 of
i=1 j=1

the main text.

Let us now focus on sigmoid activation functions. In this case, we use the following change of variable:
u= (u - ,u) *y ,where y is the arbitrary scaling factor of the sigmoid activation function (cf. Equation

2). We will see that it is possible to set such that the range adaptation learning rule is identical for
both pseudo-gaussian and sigmoid activation functions.

It is trivial to show that the first and mixed partial derivative of the sigmoid activation function are

given by:
af‘sigmoid — l e—ﬁ/o—
Oi |, O (e +1)
2 _ (AB)
a f:vigmoid - e_ﬁ/o. _(ﬁ/a‘i‘l)e_u/g‘F(ﬁ/(f—l)
oodi | o (e 1)

Finding the zero of the mixed partial derivative reduces to solving (y—1)—e " (y+1) with y=i/o
. There is no analytical closed form solution to this equation, but a numerical approach yields

y = +1.5434 . Since o is positive, the solution is simply given by o = |ﬁ/y*| = |u —,u|><}//1.5434.

Setting ¥ =1.5434 then simplifies the solution to o = |u — u|, which thus provides the same learning

rule as Equation A3 above.
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Appendix 2: fMRI results statistics

In what follows, we provide summary statistics of our ANN-based behavioural and fMRI analyses. Table
1 gives the mean percentage of explained behavioral variance (R?) and it standard deviation (across
participants) for each model, for both groups. Table 2 gives the mean R? difference between each ANN
model and the reference logistic model, its standard deviation, and the resulting p-value (Ho: no R?
difference, dof=53), for both groups. Table 3 gives the p-value of RDM correlations for each model and
each ROI (Ho: p <0, one-sided t-test, dof=53), in the 'equal’ range' group. Table 4 gives the p-value of
RDM correlations for each model and each ROl (Ho: 0 <0, one-sided t-test, dof=53), in the 'equal

indifference' group. In all tables, statistical significance is highlighted in green (with the appropriate

threshold correction for multiple comparisons).

‘equal range' 'equal indifference’
mean std mean std
logistic 0.7789 0.1049 0.7367 0.1273
G-ANN 0.8451 0.0784 0.8831 0.0866
S-ANN 0.8374 0.0793 0.7845 0.1166
G-RA-ANN 0.8636 0.0682 0.7937 0.1822
S-RA-ANN 0.8402 0.0878 0.8409 0.1094
G-H-ANN 0.8621 0.085 0.867 0.1673
S-H-ANN 0.8527 0.0623 0.8225 0.127

Table 1: Mean R? and its standard deviation for each model, for both groups.

'‘equal range' 'equal indifference’

mean std p-value mean std p-value
G-ANN 0.0662 0.0939 5.00E-06 0.1463 0.0748 3.00E-20
S-ANN 0.0586 0.0446 1.00E-12 0.0477 0.0311 6.00E-16
G-RA-ANN |0.0847 0.0725 6.00E-11 0.0569 0.1884 1.53E-02
S-RA-ANN | 0.0614 0.0363 4.00E-16 0.1041 0.0669 4.00E-16
G-H-ANN 0.0832 0.0601 3.00E-13 0.1302 0.167 3.00E-07
S-H-ANN 0.0738 0.0841 8.00E-08 0.0857 0.119 2.00E-06

Table 2: Mean R? difference and its standard deviation for each ANN model, for both groups.
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G-ANN S-ANN G-RA-ANN | S-RA-ANN | G-H-ANN S-H-ANN
Motor_L 0.9985 0.9684 0.0056 0.9532 0.0096 0.0455
Motor_M 0.9909 0.998 0.1474 0.911 0.0022 0.0008
Motor_R 0.9994 0.9558 0.0335 0.7906 0.0113 0.0195
Visual_L 0.9978 0.9768 0.01 0.9658 0.0684 0.2107
Visual_M 0.9146 0.7227 0.0762 0.9782 0.184 0.5914
Visual_R 0.9458 0.8604 0.0707 0.8023 0.0226 0.0626
PCC 0.9737 0.9226 0.0644 0.9616 0.0101 0.1186
dACC 0.9999 0.9868 0.1332 0.7359 0.0017 0.0008
ACC 0.9996 0.9487 0.2128 0.9518 0.0014 0.0037
dLPFC_L 0.9856 0.7515 0.0271 0.9953 0.004 0.0082
dLPFC_R 0.9887 0.7984 0.0034 0.7863 0.0004 0.0004
vmPFC 0.9999 0.8739 0.1146 0.9821 0.0407 0.0535
Insula_L 0.9965 0.9485 0.0507 0.9592 0.0004 3.57E-05
Insula_R 0.9642 0.9376 0.1517 0.9201 0.0052 0.0067
Amygdala_L | 0.9889 0.5912 0.4413 0.983 0.0006 0.0001
Amygdala_R|0.9773 0.9464 0.2797 0.9175 1.51E-05 9.45E-07
Striatum_L | 0.9986 0.716 0.3392 0.8637 1.86E-05 3.13E-06
Striatum_R | 0.9956 0.9768 0.222 0.9845 0.0001 0.0002

Table 3: P-value of RDM correlations for each model and each ROI (‘equal’ range').

G-ANN S-ANN G-RA-ANN | S-RA-ANN | G-H-ANN S-H-ANN
Motor_L 0.4258 0.9914 0.0784 0.7568 0.1149 1.88E-06
Motor_M 0.5736 0.9907 0.0324 0.839 0.0066 1.94E-06
Motor_R 0.6155 0.9975 0.0559 0.6253 0.0336 7.20E-07
Visual_L 0.6878 0.9954 0.153 0.5337 0.2292 2.41E-05
Visual_M 0.7691 0.9556 0.0014 0.0344 0.9672 3.22E-03
Visual_R 0.5845 0.9997 0.0249 0.5964 0.0202 1.22E-06
PCC 0.2997 0.9995 0.1245 0.6836 0.4924 9.47E-05
dACC 0.455 0.9998 0.1214 0.8494 0.0097 1.00E-07
ACC 0.0753 0.9993 0.1022 0.8217 0.0026 6.30E-07
dLPFC_L 0.051 0.9995 0.0146 0.4022 0.4083 1.94E-04
dLPFC_R 0.3554 0.9998 0.0249 0.9613 0.0037 8.10E-07
vmPFC 0.3914 0.9742 0.0148 0.7574 0.1307 6.89E-05
Insula_L 0.2355 0.9684 0.3209 0.964 0.0009 1.00E-08
Insula_R 0.3882 0.9999 0.0135 0.8121 0.0171 3.71E-05
Amygdala_L | 0.4186 0.9998 0.3852 0.9786 0.0026 2.00E-08
Amygdala_R|0.7117 0.9987 0.0353 0.9971 2.00E-04 3.00E-08
Striatum_L | 0.5835 0.9997 0.1023 0.9974 2.00E-04 4.00E-08
Striatum_R |0.3378 0.9998 0.0955 0.9782 0.0001 3.30E-07

Table 4: P-value of RDM correlations for each model and each ROI ('equal’ indifference).
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