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Abstract

Tools from the field of graph signal processing, in particular the graph Laplacian
operator, have recently been successfully applied to the investigation of structure-
function relationships in the human brain. The eigenvectors of the human connectome
graph Laplacian, dubbed ”connectome harmonics”, have been shown to relate to the
functionally relevant resting-state networks. Whole-brain modelling of brain activity
combines structural connectivity with local dynamical models to provide insight into
the large-scale functional organization of the human brain. In this study, we employ
the graph Laplacian and its properties to define and implement a large class of neural
activity models directly on the human connectome. These models, consisting of systems
of stochastic integrodifferential equations on graphs, are dubbed graph neural fields,
in analogy with the well-established continuous neural fields. We obtain analytic
predictions for harmonic and temporal power spectra, as well as functional connectivity
and coherence matrices, of graph neural fields, with a technique dubbed CHAOSS
(shorthand for Connectome-Harmonic Analysis Of Spatiotemporal Spectra). Combining
graph neural fields with appropriate observation models allows for estimating model
parameters from experimental data as obtained from electroencephalography (EEG),
magnetoencephalography (MEG), or functional magnetic resonance imaging (fMRI); as
an example application, we study a stochastic Wilson-Cowan graph neural field model
on a high-resolution connectome, and show that the model equilibrium fluctuations
can reproduce the empirically observed harmonic power spectrum of BOLD fMRI
data. Graph neural fields natively allow the inclusion of important features of cortical
anatomy and fast computations of observable quantities for comparison with multimodal
empirical data. They thus appear particularly suitable for modelling whole-brain activity
at mesoscopic scales, and opening new potential avenues for connectome-graph-based
investigations of structure-function relationships.
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Author summary

The human brain can be seen as an interconnected network of many thousands neuronal
?populations”; in turn, each population contains thousands of neurons, and each is
connected both to its neighbors on the cortex, and crucially also to distant populations
thanks to long-range white matter fibers. This extremely complex network, unique
to each of us, is known as the "human connectome graph”. In this work, we develop
a novel approach to investigate how the neural activity that is necessary for our life
and experience of the world arises from an individual human connectome graph. For
the first time, we implement a mathematical model of neuronal activity directly on a
high-resolution connectome graph, and show that it can reproduce the spatial patterns
of activity observed in the real brain with magnetic resonance imaging. This new kind
of model, made of equations implemented directly on connectome graphs, could help
us better understand how brain function is shaped by computational principles and
anatomy, but also how it is affected by pathology and lesions.
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Introduction

The spatiotemporal dynamics of human resting-state brain activity is organized in
functionally relevant ways, with perhaps the best-known example being the ”resting-
state networks” [1]. How the repertoire of resting-state brain activity arises from the
underlying anatomical structure, i.e. the connectome, is a highly non-trivial question: it
has been shown that structural connections imply functional ones, but that the converse
is not necessarily true [2]; furthermore, specific discordant attributes of structural and
functional connectivity have been found by network analyses [3]. Research on structure-
function questions can be broadly divided into data-driven (analysis), theory-driven
(modelling), and combinations thereof. In this work, we combine techniques from graph
signal processing (analysis) and neural field equations (modelling) to outline a promising
new approach for the investigation of whole-brain structure-function relationships.

A recent trend of particular interest in neuroimaging data analysis is the application of
methods from the field of graph signal processing [4H8]. In these applications, anatomical
information obtained from diffusion tensor imaging (DTI) and structural MRI is used to
construct the connectome graph [9], and combined with functional imaging data such as
BOLD-fMRI or EEG/MEG to investigate structure-function relationships in the human
brain (see [10,[11] for reviews). The workhorse of graph signal processing analysis is
the graph Laplacian operator, or simply graph Laplacian. Originally formulated as the
graph-equivalent of the Laplace-Beltrami operator for Riemannian manifolds |12}/13],
the graph Laplacian is now established as a valuable tool in its own right [10]. The
eigenvectors of the graph Laplacian provide a generalization of the Fourier transform to
graphs, and therefore also a complete orthogonal basis for functions on the graph. In
the context of the human connectome graph, the eigenvectors of the graph Laplacian
are referred to as connectome harmonics by analogy with the harmonic eigenfunctions
of the Laplace-Beltrami operator. Of relevance to the current work, several connectome
harmonics have been shown to be related to specific resting-state networks [9]. More
recent studies have provided additional evidence for this claim [14], and others used
a similar approach to explain how distinct electrophysiological resting-state networks
emerge from the structural connectome graph [15]. Furthermore in [9], for the first time,
to the best of our knowledge, a model of neural activity making use of the graph Lapla-
cian was implemented, and used to suggest the role of excitatory-inhibitory dynamics as
possible underlying mechanism for the self-organization of resting-state activity patterns.
In other very recent work [16] graph-Laplacian-based techniques were employed to model
MEG oscillations. Considering these developments, the combination of neural activity
modelling and graph signal processing techniques appears as a promising direction for
further inquiry.

Whole-brain models are models of neural activity that are defined on the entire cortex
and possibly on subcortical structures. This is generally achieved either by parcellating
the cortex into a network of a few dozens of macroscopic, coupled regions of interest
(ROIs), or by approximating the cortex as a bidimensional manifold, and studying
continuous integrodifferential equations in a flat or spherical geometry (See [17] for a
review). In this study, relying on graph signal processing methods such as the graph
Laplacian and graph filtering [6l[8], we show how to define and implement a large class
of whole-brain models of neural activity on arbitrary metric graphéﬂ and in particular
on a non-parcellated mesoscopic human connectome. These models consist of systems of
integrodifferential equations, and are dubbed graph neural fields by analogy with their
continuous counterparts. We obtain analytic expressions for harmonic and temporal

Ithat is, graphs equipped with a suitable distance metric
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power spectra, as well as functional connectivity and coherence matrices, of graph neural
fields, with a technique dubbed CHAOSS (shorthand for Connectome-Harmonic Analysis
Of Spatiotemporal Spectra). When combined with appropriate observation models, graph
neural fields can be fitted to and compared with functional data obtained from different
imaging modalities such as EEG/MEG, fMRI, and positron emission tomography (PET).
As an example application, we study a Wilson-Cowan stochastic graph neural field model,
implemented on a single-subject unparcellated connectome. We show that the model
can accurately reproduce the empirical harmonic spectrum of resting-state BOLD signal
fluctuations. In sum, graph neural fields provide a computationally efficient and versatile
modelling framework that is tailored for connectome-graph-based structure-function
investigations, and particularly suitable for modelling whole-brain activity on mesoscopic
scales. Graph neural fields present immediate application in the investigation of the
relationship between individual anatomy, pathology, and lesions with functional activity;
and furthermore provide a model-based approach to test novel graph signal processing
neuroimaging hypotheses and analyses.

In Section Results we start by providing an analytic solution and a numerical im-
plementation of the damped-wave equation on the human connectome graph, since this
equation is of interest in the context of modelling neural activity propagation. Next,
we show how to implement the Wilson-Cowan stochastic graph neural field model on
arbitrary metric graphs. We obtain results of linear stability analysis, CHAOSS, and
numerical simulations, first on a one-dimensional graph with 1000 vertices, and then on a
single-subject connectome consisting of approximately 18000 cortical vertices and 10000
white matter tracts. The simplified context of a 1-dimensional graph is useful to study the
effect of simple graph properties, such as inter-node distance and long-range connections,
on model dynamics; moving to a real-world application, we fit the full-connectome model
parameters to the experimentally observed harmonic power spectrum of resting-state
fMRI data of a single subject, showing excellent agreement between the analytically
predicted, numerically simulated, and empirical power spectra. In Section Methods we
provide a more general and detailed description of the framework of graph neural fields.
We define spatiotemporal convolution on graphs through the weighted graph Laplacian,
and obtain the graph-equivalents of several connectivity kernels and reaction-diffusion
systems that are of interest for neural activity modelling. Finally, we show how to derive
analytic expressions for harmonic and temporal power spectra, as well as coherence and
functional connectivity matrices, of graph neural fields (CHAOSS).
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Results

Damped wave equation on the human connectome graph

The damped-wave equation describes the dynamics of simultaneous diffusion and wave
propagation, and is thus of interest in the context of modelling activity propagation in
neural tissue [18]. Here, we solve the graph equivalent of the damped-wave equation and
implement it on the human connectome graph. In one-dimensional continuous space,
the damped-wave equation is

0?u(z,t) ou(z,t)  O*u(w,t)
o Vo T e

where a and b are scalar parameters. Its graph-equivalent is given by

Dyu(t) = Au(t), 2)

where u(t) is a function on the graph, A is the distance-weighted graph Laplacian,
and D; = ad?/dt?> + bd/dt. Since the graph Laplacian is a constant matrix, we can
straightforwardly obtain the exact solution at time t:

a(t) = K(t)a(0) + K (t)a(0), (3)

where (4(0),%(0)) are the initial conditions, the superscript @ indicates the graph Fourier
transform (see Methods), and

rot __ r1t _ rit _ ,rat b+ /b2 dal
K(t) = he” Tre K(t) = ¢ - P = #7 (4)
1 —To 1 —To 2a

A is the diagonal matrix of graph Laplacian eigenvalues. Having obtained an exact
solution, we can efficiently simulate the time-evolution of the damped-wave equation on
arbitrary metric graphs, for example with the following numerical scheme:

a(t + 0t) = K(6t)a(t) + R(&)W, (5)

We also note that the Telegrapher’s Equation, which is of interest in the context of
modelling action potentials [19)

u(x,t) Ou(z,t)
o o

0%u(x,t)
ox?

(6)

+ cu(x,t) =
can also be implemented on metric graphs simply by substituting A with (A — Diag(c))
in Eq .

Fig shows an example implementation of Eq on the human connectome graph. The
initial condition is a Gaussian centered in the occipital cortex of the left hemisphere,
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itself obtained by applying the graph Gaussian convolution filter (Table[2]) to an impulse
function. Note how the initially localized activity propagates with a characteristic speed

and wavelength. Damping of the wave, caused by the diffusion term, can also be observed.

Fig 2| shows an implementation with different parameters, giving rise to faster wavefront
propagation and less damping. Fig[3|shows the same implementation as Fig[2] from a
different point of view and with a narrower color-scale. This is to emphasize that, aside
from the dominant surface-based wavefront, activity also propagates non-locally along
white-matter fibers.

|0.1

»
’ ‘ (‘ : ”'{ 1-0.1

t=10 t=20 t=30 t=40
Fig 1. The damped-wave equation on the human connectome gives rise to
propagation with characteristic speed and wavelength. Shown are snapshots of
simulated cortical activity that is governed by the damped wave equation with
time-step dt = 1 and parameters @ = 3-10%, b= 5-103.

t=0 t=10 t=20 t=30 t=40
Fig 2. Varying the parameters of the damped-wave equation alters the
dynamics of propagation on the human connectome. Shown are snapshots of
simulated cortical activity that is governed by the damped wave equation with
time-step 0t = 1 and parameters a = 1.5-10%, b = 2.5 - 103.

N

uy'd‘

lO .01

L)

t=0 t=10 t=20 t=30 t=40

Fig 3. Dynamics of the damped-wave equation on the human connectome
include non-local propagation along white-matter fibers. Shown are snapshots
of simulated cortical activity that is governed by the damped wave equation with
time-step 0t = 1 and parameters a = 1.5 - 10°, b = 2.5 - 103.
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Stochastic Wilson-Cowan equations on graphs

The Wilson-Cowan model [20] is a widely used and successful model of cortical dynamics.
In this section we show how to use the framework of graph neural fields (Methods) to
implement the stochastic Wilson-Cowan equations on an arbitrary graphs equipped with
a suitable distance metric, and how to compute spatiotemporal observables (CHAOSS).
We then illustrate the effects of weighted and non-local graph edges on the dynamics
in the simplified context of a one-dimensional graph, before moving on to a real-world
application with fMRI data.

General formulation

In continuous space, the stochastic Wilson-Cowan model is described by the following
system of integrodifferential equations:

oF
TEG, = —dpE+S|oge(Keg Q FE) — aip(Kig ® I) + P + 0ég, (7)
ol
TI g, = —diI +Slap(Kgr @ F) —an(Kip @ I) + Q] + o0&y, (8)

where the symbol ® denotes a convolution integral, and we have omitted for brevity
the spatiotemporal dependency of E(x,t), I(x,t), {g(z,t) and £;(x,t). In other words,
this model posits the existence of two neuronal populations (Excitatory and Inhibitory)
at each location in space. The fraction of active neurons in each population (E(z,t),
I(z,t)) evolve according to a spontaneous decay with rate dg and dy, a sigmoid-mediated
activation term containing the four combinations of population interactions (E-E, I-E,
E-I, I-]) as well as the external input terms P and @, stochastic noise realizations &g (z, t)
and &7 (x,t) of intensity o, and with the temporal scaling parameters 75 and 7;. The
propagation of activity and interaction among neuronal populations is modeled by spatial
convolution integrals with four, potentially different, kernels (Kgg, K15, Kgr, Kir). For
arbitrary symmetric spatial kernels, convolutions can be formulated as linear matrix-
vector products on graphs (Methods Eq (45)). Therefore, the stochastic Wilson-Cowan
equations on graphs reduce to

TEE(t) = —dEE(t) + S[QEEKEEE(t) — Oé[EK[EI(t) + P] + O'SE(t) (9)
T]j(t) = —dII(t) + S[OéE[KE[E(t) — (X[[K[]I(t) + Q] + Ug[(t) (10)

Et), I1(t), {p(t) and &7(t) are functions on the graph, i.e. vectors of size n, where
n is the number of vertices in the graph; the convolutions are implemented via the
graph-filters K., which are matrices of size (n,n). In particular, for the case of Gaussian
convolutions, the filters are given by (Table

Kpp = Ue?erN 20T K5 =Ueish/2yT, (11)
Kgy = Ue”BiN20T | K = Ui M2y, (12)

With the distance-weighted graph Laplacian A = UAU”, so that A is the diagonal
matrix of graph Laplacian eigenvalues, U and U7 the corresponding eigenvectors.

This model formulation also allows for non-Gaussian convolution kernels; and the
inclusion of a stochastic term allows for characterization of resting-state activity as
noise-induced fluctuations about a stable steady-state (E*, I*) [3§].
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Symbol Meaning
E Fraction of active excitatory subpopulations.
I Fraction of active inhibitory subpopulations.
TE, TI Time constants.
dg,dy Activity decay rates.
S[x] 1/(14+e7%).

QEE,XIE, R, O] Strength of connectivity between populations.
Kgp, Kig, Kgr, K1

OEE,OIE;,OFEI,OII

Convolution kernels, graph filters.

Standard deviation of Gaussian kernels.

P Constant input to £ populations.
Q Constant input to I populations.
o Noise amplitude.

€, &1 Noise realizations.

Table 1. Meaning of symbols in the continuous Wilson-Cowan equations and their
graph equivalents.

Linear stability analysis

In order to compute meaningful spatiotemporal observables with CHAOSS, it is first
necessary to obtain solutions the steady-state equations and their linear stability. For
generality and compactness of notation, let us define a new column vector u(t) as the
concatenation of E(t) and I(t); We express d for the diagonal matrix containing the
damping parameters dg and d; and 7 for the matrix containing the timescale param-
eters 7g and 77. The matrix K contains the four (arbitrary) graph-filters, X is the
concatenated vector encoding subcortical inputs P and (). We can now write the original

system of Eq (9H10) with a single equation
Tu(t) = —du(t) + S[Ku(t) + X] + o€ (13)

Note that this expression potentially allows for space-dependent model parameters. The
steady-state(s) u* can be obtained by setting the time-derivative and noise amplitude o
to zero and solving the resulting steady state (matrix) equation:

S[Ku* + X] = du* (14)

This equation does not have an analytic, exact, closed form solution (in fact, it doesn’t
even necessarily have a solution. The sigmoid function is bound between -1 and 1,
but du* is not). Furthermore, in the context of a whole-brain model on a mesoscopic
connectome, the equation is very high dimensional (twice the number of vertices n,
with n ~ 18000 in our case). This makes a brute-force numerical approach to the
determination of steady states computationally inefficient, especially because it would
have to be repeated for each parameter set under examination.

Solutions to the steady state equations If we restrict our analysis to spatially
homogeneous steady states and space-independent model parameters, the steady state
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equation simplifies to the following 2-dimensional system, rather than the original 2n-
dimensional Eq :

1
1+ exp(argl* — aggE* — P)
1
1+ exp(arl* —aprE* — Q)

= dpE* (15)

= d;I* (16)

Solutions to this 2-dimensional system can be rapidly obtained numerically for any set of
parameters. The biologically valid steady state(s) of the model are given by the solutions
(E*, I*) with E*, I* € [0,1], since E and I here represent the fraction of active neurons
within the respective population. Once a valid steady state is obtained, its stability
can be determined through the Jacobian eigenspectrum, and verified with numerical
simulations.

General Jacobian To obtain the Jacobian eigenspectrum and determine the stability
of a steady state, we have to linearize Eq as

u(t) = -7 'du(t) + 7 'S[Ku(t) + X] = F(u) =~ F(u*) + su (17)

With F'(u*) = 0 by definition since u* is a steady state, and defining a small perturbation
abut the steady state du = (u — u*). The Jacobian is then:

Ju) = =~ = —77'd + Diag (7'S'[Ku* + X]) K (18)

u*

To simplify this expression and allow further analytic progress, we apply the prop-
erty of the sigmoid derivative S'(z) = S(z)(1 — S(z)); the steady state equation
S[K u* + X] = du*; and finally denoting with o the Hadamard (element-wise) product
we obtain

J(u*) = —77'd + Diag (7 'du* o (1 — du*)) K (19)

We have thus obtained a general expression for the Jacobian of the Wilson-Cowan model
on graphs, which holds also for non-homogeneous steady states and/or space-dependent
parameters. In order to evaluate the linear stability of any steady state, it is sufficient
plug in the steady state u* = (E*, I*) solution to Eq in Eq , and study the
eigenspectrum of the resulting Jacobian.

Analytic form of the Jacobian eigenspectrum On a mesoscopic human connec-
tome graph such as the one we use here, the general Jacobian of Eq is a dense
matrix with more than 10® elements. Its eigenspectrum can be calculated numerically,
but such a computation is not particularly fast, and has to be repeated for each steady
state of each parameter set under examination. However, we restrict the problem to
homogeneous steady states and space-independent model parameters, it is possible to use
the properties of the graph Laplacian to obtain an analytic expression for the Jacobian
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eigenspectrum, which can be computed extremely quicklyﬂ These assumptions can
be relaxed to allow for eigenmode—dependen‘ﬂ model parameters. Define the scalar,
steady-state-dependent parameters:

a=dpE*(1—dgE*), b=dI*(1—d;I*") (20)

We can use the general Jacobian of Eq (19), with Gaussian kernels, to write explicitly
the linearized Wilson-Cowan equations for the time-evolution of a perturbation about a
homogeneous steady state:

TeE(t) = —dpE(t) + aappUe’ e 2 2UTE(t) — aarpUe®#M2UTI(t) + o€p(t)  (21)
m(t) = —diI(t) + bagUe" M 2UTE(t) — bay Ue T M2UTI(8) + 01(t)  (22)

Applying the graph Fourier transform U7, the equations are diagonalized. Each eigen-
mode of the graph Laplacian therefore behaves independently as a 2-dimensional linear
system, with the Jacobian for the k" eigenmode being

_dp a 0L pAk/2 _a 025k /2
pe—s + TEaEEe EE TEO‘IEe I1E
Ty = (23)
2 2
b OéE]@UEI)\k/2 —LO&]]@G”)\/2 _dr

T

Aty = (24)

From the Jacobian eigenspectrum thus obtained, we can directly infer the stability
character of a steady state. Note that in order to obtain meaningful predictions for
spatiotemporal observables, the steady state under examination has to be stable, that is,
Ji must have no eigenvalues with positive real parts for all A\x. We have used Gaussian
kernels in the derivation, but the result can be straightforwardly generalized to all other
kernels. The decoupling of the linearized Wilson-Cowan equations in the graph-Fourier
domain has another important consequence: since the dimensionality of the system
reduces from n? to n (where n is the number of vertices in the graph), very efficient
numerical simulations of the linearized equations can be carried out directly in the graph
Fourier domain.

2These assumptions are required because generally space-dependent parameters would be expressed
by a non-constant diagonal matrix, that would not commute with the graph Fourier transform U7 .

3Eigenmode-dependent parameters would be expressed by a diagonal matrix in the graph Fourier
domain, therefore by definition commuting with U7 .
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Wilson-Cowan model CHAOSS

After having obtained steady state solutions, and determined stability character of
the steady state, we can apply the Connectome-Harmonic Analysis Of Spatiotemporal
Spectra (Methods) to characterize the spatiotemporal dynamics of resting-state brain
activity. CHAOSS predictions, combined with a suitable observation model, can then be
compared with empirical neuroimaging data, for example EEG, MEG, or fMRI. Consider
linearized stochastic graph neural field equations in the graph Fourier domain:

Dy, (t) = et (t) + VBE(1), (25)

Where k£ =1, ...,n indexes the graph Laplacian eigenmodes. For Wilson-Cowan model
(Eq (21122), we have: D, = d/dt, J is given in Eq for the case with Gaussian
kernels, and B is

B {azéﬂ% 02(/)712} 7 (26)

In terms of the elements of the matrices J, and B, the theoretical prediction for the
harmonic-temporal power spectrum of the excitatory neural population activity becomes

(Methods Eq (72)):

[Bloo ([Je]11 +w?) + [Jk]51[Blia
(Wiloo[Telin — [xlon[Jk]10 — w2)* + w? ([JxJoo + [Jx]11)”

[Sk(w)]oo = (27)

The double-digits numerical subscripts in Eq refer to the row-column element of
the respective matrix. Eq can be used to compute the separate harmonic and tem-
poral power spectra of the model, as well as the correlation and functional connectivity
matrices (Methods Eq ) Equivalent formulas for the inhibitory population can also
be similarly derived.

By integrating [Si(w)]oo over all temporal frequencies, an explicit expression for the
harmonic power spectrum of excitatory activity can be obtained:

[Bloo([Jkloo[Jx]11 — [JeJo1[Jk]10) + [Je]31[Bloo + [Jk]g: [Blia
2([Jk3]01 [Jk]l() - [Jk](]O[Jk]ll)([Jk]OO + [Jk}ll)

Hpg(k) = (28)

Eq and represent a general result that does not only apply to the Wilson-Cowan
model. In fact, these equations describe the harmonic-temporal and harmonic power
spectra of stochastic equilibrium fluctuations for the first population of any graph neural
field model with two interacting populations and a first-order temporal differential
operator.

Effects of distance-weighting and long-range connectivity

We characterize the effects internode spacing and the presence of long-range connectivity
on model dynamics by implementing the Wilson-Cowan model on a one-dimensional
graph with 1000 nodes. Numerical simulations were carried out with a time-step
0t = 5-107°s and an observation time of 10° time-steps, which corresponds to 5s of
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simulated activity.

To show the effects of distance-weighting in graph neural fields, we note how, for
the parameter set of increasing the distance between nodes leads to the emer-
gence of an oscillatory resonance that eventually destabilizes and gives way to limit-cycle
activity. Keeping the number of nodes constant, increasing the internode spacing h alters
the stability of the steady state from broadband activity (h = 10~°m), to oscillatory
resonance (h = 107*m), to oscillatory instability (h = 2-107%m). The spatial and
temporal power spectra for the case h = 10~*m are shown Figure and B, respectively.
These results demonstrate that by using the weighted graph Laplacian, the dynamics
of graph neural fields becomes dependent on how metric properties of the graph i.e.
on how the graph is embedded in three-dimensional space. If the combinatorial graph
Laplacian is used, as done in [9], the dynamics only depends on the topology of the corti-
cal mesh and in this sense does not take into account the physical properties of the cortex.

The presence of fast, long-range connectivity can impact the power spectrum and
functional interactions of equilibrium fluctuations, as well as the stability of steady-
states. To illustrate this, we add a single non-local edge between nodes 250 and 750 to
the one-dimensional graph with h = 10~*m. The Euclidean distance between these two
nodes is 500 - h = 5 - 10~?>m= 5cm. In the healthy brain, myelination of white-matter
fibers allows long-range (cortico-cortical) activity propagation to take place at speeds
~ 200 times greater than local (intra-cortical) propagation [21]. To model myelination,
we set the length of the non-local edge to be the Euclidean distance between the nodes,
divided by a factor of 200 (similarly to the construction of the human connectome
graph Laplacian, where the length of cortico-cortical edges is set to be their path-length
distance along DTI fibers, divided by a factor of 200). Therefore, the effective length
of the non-local edge is 2.5 - 10~*m. Figure [5{shows the effects of the presence of the
non-local edge on the spatial and temporal power spectra of the equilibrium fluctuations.
The most pronounced effect is damping of the oscillatory resonance in the temporal
power spectrum, thus rendering the fluctuations more stable. Furthermore, the edge
leads to a faint but discernible alteration in the functional connectivity (see Panels C
and D).

Interestingly, when the model operates in the pathological i.e. non-stable regime
(h = 2-107*m), addition of a single non-local edge stabilizes the steady state, thus
leading to healthy equilibrium fluctuations (see Figure @ The non-local edge also
creates a visible increase in the functional connectivity between the nodes involved, and
a change in the pattern in neighboring nodes (Panels C and D). As noted above, these
significant effects of long-range connectivity are observed if the effective length of the
non-local edge is small enough for non-local activity propagation to interact with local
activity propagation. For these one-dimensional simulations, this happens if the speed
factor is larger than ~50.
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Fig 4. Effects of internode spacing on graph neural field dynamics. Panels
A and B show, respectively, the spatial and temporal power spectrum of equilibrium
fluctuations in the one-dimensional graph for internode spacing h = 10~*m. The dotted
black correspond to the theoretical prediction and the red lines are obtained through
numerical simulations. Panels C and D show the model functional connectivity as
obtained, respectively, by analytic predictions and numerical simulations.
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Fig 5. Suppression of oscillatory resonance by long-range connectivity.
Panels A and B show, respectively, the spatial and temporal power spectrum of
equilibrium fluctuations in the one-dimensional graph for internode spacing h = 10~*m
after the addition of a non-local edge between nodes 250 and 750. Compare with Figure
[ to note the visible suppression of oscillatory resonance, and the slight change in
functional connectivity engendered by a single non-local edge. The dotted black
correspond to the theoretical prediction and the red lines are obtained through
numerical simulations. Panels C and D show the model functional connectivity as
obtained, respectively, by analytic predictions and numerical simulations.
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Fig 6. Abortion of pathological oscillations by long-range connectivity.
Panels A and B show, respectively, the spatial and temporal power spectrum of
equilibrium fluctuations in the one-dimensional graph for internode spacing

h =2-10"*m after the addition of a non-local edge between nodes 250 and 750. Before
the addition, the dynamics was placed in an unstable limit-cycle regime. The dotted
black correspond to the theoretical prediction and the red lines are obtained through
numerical simulations.Panels C and D show the model functional connectivity as
obtained, respectively, by analytic predictions and numerical simulations.
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Application to resting-state functional MRI

To illustrate a real-world application of graph neural fields, we implement the stochastic
Wilson-Cowan model on the connectome graph of a single subject, and use it reproduce
the harmonic power spectrum observed in resting-state fMRI data. The harmonic power
spectrum of resting-state fMRI was computed, according to its definition, as the temporal
mean of the squared graph-Fourier transform of the fMRI timecourses. To regularize
the empirical fMRI harmonic power spectrum, we computed its log-log binned median
with 300 bins, following [22]. Eigenmodes above k ~ 15000 contained artifacts due to
reaching the limits of fMRI spatial resolution, and were thus removed. The model power
spectra were binned in the same way. The parameters of the Wilson-Cowan model were
optimized with a basinhopping procedure, aiming to minimize the residual difference
between observed and predicted spectra. In the fitting, we allowed for a linear rescaling
of the theoretical spectrum so that

Hevri(k) = BHE(R), (29)

where Heyri(k) is the harmonic power spectrum of the fMRI data, Hg(k) is the har-
monic power spectrum of the excitatory population in the Wilson-Cowan model, and
B is a rescaling parameter. Fig [7] shows the best fitting theoretical harmonic power
spectra, together with the empirical fMRI spectrum. The model is able to reproduce the
experimental spectrum. The parameters values obtained from the fitting are reported in

and appear consistent.

To verify the accuracy of predictions obtained with the connectome-harmonic anal-
ysis of spatiotemporal spectra, we implement numerical simulations of the linearized
Wilson-Cowan equations on the human connectome graph. Simulations were carried
out with a time-step value 6t = 10~%s and an observation time of 108 time-steps,
corresponding to 100s of simulated brain activity. Figure [8] shows snapshots of the
simulated resting-state activity at several different times. Note that the two hemispheric
meshes appear physically separate, but inter-hemispheric propagation is allowed through
white-matter callosal tracts (not shown in the figure).
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Fig 7. Stochastic Wilson-Cowan graph neural field model predicts the
experimental harmonic power spectrum. Shown is the empirically observed
BOLD-fMRI harmonic spectrum (cyan line), together with the theoretical (dotted black
line) and numerical (red line) predictions from the stochastic Wilson-Cowan equations.
The numerical prediction was obtained by taking the median of three independent
simulations.

-20

t=0.7s t=1.4s t=2.1s t=2.8s t=3.5s
Fig 8. Measured and simulated resting-state brain activity. Panel A shows
resting-state brain activity, as fluctuations of the BOLD fMRI signal about the mean at
each node. Panel B shows snapshots of activity from the stochastic Wilson-Cowan
equations simulated using the parameters of Table in The model activity was
temporally downsampled to match the TR of fMRI data, and rescaled by /B to match
the scale of the BOLD signal. No spatial or temporal smoothings were applied.
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Methods

Laplacian operators on graphs

In this section we provide a derivation of the weighted graph Laplacian operator in terms
of graph differential operators. The weighted graph Laplacian is distinguished from the
combinatorial graph Laplacian often used in analysis studies [9], as it allows physical
properties of the cortex to be taken into account, which is necessary to implement
"realistic” graph neural field models.

The combinatorial Laplacian. Consider an undirected graph with n vertices. The
graph’s binary adjacency matriz A is defined by

~ 1 if i~y

Aij = {0 otherwise (30)
where ¢ ~ j means that vertices ¢ and j are connected by an edge. The graph’s degree
matriz D is a diagonal matrix whose diagonal entries are defined by

Dy = Zn: A,j. (31)

It hence counts the number of edges for each vertex i. The binary or combinatorial graph
Laplacian, denoted by A, is defined as

A=A-D. (32)

The combinatorial graph Laplacian and its normalized version do not carry information
about the distances between cortical vertices and therefore are invariant under topological
but non-isometric deformations of graph. Neural activity modeled in terms of the
combinatorial graph Laplacian therefore is a topological graph invariant, whereas real
neural activity does depend on the metric properties of the graph. The combinatorial
graph Laplacian, however, can be adjusted so as to take into account the metric properties
of the graph, yielding the weighted graph Laplacian. Below, we provide a derivation of
the weighted graph Laplacian in terms of the graph directional derivaties of a graph
function.

The weighted Laplacian. Let f be a graph function i.e. a function defined on the
vertices of a graph and let M be the graph’s distance matrix. Thus, the (i, )" entry
M;; of M equals the distance between nodes 7 and j in a particular metric. We note
that for this derivation, it is irrelevant how M is obtained. In the context of connec-
tomes, the elements of M can be defined in terms of suitably scaled Euclidean distances,
geodesic distances over the cortical manifold, or as the lengths of the white matter fibers
connecting the vertices. The first-order graph directional derivative 0; f; of f at vertex 4
in the direction of vertex j is defined as

M;;

9;fi = (fj = fi)s (33)

Note that according to this definition, 0; f; = 0 if vertex j is not connected to vertex 7,
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and that 0;f; = 0. Also note that 0; is a linear operator on the vector space of graph
signals. Furthermore, since A?j = A;j, the second-order graph directional derivative 8J2» fi
of f at vertex i in the direction of vertex j is defined as

0;(0;1) = 0} fi = g7z (fi = f5)- (34)

Following the definition of the Laplacian operator in Euclidean space as the sum of
second-order partial derivatives, the weighted graph Laplacian, denoted as A is defined asE|

Afi==>0f. (35)
j=1

To see the relation with the combinatorical graph Laplacian, we note that A can be
written in matrix form as

A=A-D, (36)

where A and D are the weighted adjacency matriz and weighted degree matrix, respectively,
which are defined as A;; = /L-j /MZQJ and D;; = Z?=1 A;j;, respectively. Thus, the
weighted graph Laplacian can be obtained by using the weighted versions of the adjacency
and degree matrices in the definition of the combinatorical graph Laplacian.

Convolution of graph signals

In order to define graph neural fields, we need to have a graph-theoretical analog of the
continuous spatiotemporal convolution (K ® u)(z,t)

(K @ u)(x, 1) = /jo /jo Kz —a/,t — )ula!, )z dt, (37)

To obtain this, we use the convolution theorem to represent the convolution in the
spatiotemporal Fourier domain as K (k,w)i(k,w), where k denotes wavenumber amd w
denotes temporal frequency. When the kernel is real-valued and spatially symmetric,
its Fourier transform is real-valued and even in k, so that K(k,w) can be viewed as
a function of —k2. To generalize the convolution operator to graphs, we use the fact
that —k? is the eigenvalue of the spatial Fourier basis function e’** under the Laplace
operator d?/dx?. Since the Laplace operator on a graph is given by its Laplacian matrix
A, the graph filter corresponding to the spatiotemporal convolution (K & u)(x,t) can be
defined by substituting the eigenvalues of A for the values —k2 in K (—k% w).

The graph Fourier transform. We consider a graph with n vertices and Laplacian
matrix A, together with an eigendecomposition A = UAU”, where U is an n x n
orthogonal matrix containing an eigenbasis of A in its columns and A is the n x n
diagonal matrix that contains the corresponding eigenvalues Ay > Ao >,--- /> A\, >0
on its diagonal. The graph Fourier transform of a function u(t) on the graph is now
defined by

a(t) = UTu(t), (38)

40ne could also write V = [01, ..., O] for the "graph-gradient”, and then define A = —V - V. The
minus sign arises to maintain the analogy with the continuous Laplacian.
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where the transformation U7 expresses u(t) in the eigenbasis of A. The vertex-domain
signal u(t) can be recovered again by applying the inverse graph Fourier transform
U~T =U to a(t). For clarity, note that the graph Fourier transform is not related to the
temporal Fourier transform and that u(¢) does not have to depend on time to apply it.
In particular, for grid graphs (i.e. graphs whose drawing, embedded in some Euclidean
space, forms a regular tiling), the graph Fourier transform is equivalent, in the continuum
limit, to the spatial Fourier transform in Euclidean space. However, the graph Fourier
transform as defined here is a more general concept, since it can be applied to arbitrary
nondirected graphs, possibly with non-local edges, such as the human connectome.

Filtering of graph signals. Let K(x,t) be a kernel with Fourier transform K(—kQ, w)
and let u(t) be a graph signal with spatial Fourier transform #(¢). We denote the tem-
poral Fourier transforms of u(t) and @(¢) by u(w) and @(w), respectively. We define the
graph kernel K 4 associated with the continuous kernel K

K, = diag(K(A1,w),+ , K(An,w)). (39)

In the graph Fourier and temporal frequency domains, the filtered signal is hence per
definition given by

WM (w) = K, i(w) (40)

Applying the inverse graph Fourier transform U, we obtain the filtered signal in the
graph domain

it (w) = UK ji(w) = UK, U u(w) = K u(w), (41)

where we have defined K, = UK JU T the graph domain representation of the filter. In
other words, K is the graph filtering operator corresponding to the continuous kernel
K.

The above representations of the kernel and the filtered signal are in the temporal
frequency domain. To obtain the corresponding time domain representations, we note
that the i*" entry of u!'*(w) is given by

u(w) = Z K (w)u;(w), (42)

where K7 (w) denotes the (i,7)" entry of K4(w). Using the convolution theorem, the
time domain representation of the filtered signal is

uft (1) = D (Ky(i, §) © uy)(t). (43)

Jj=1

Collecting the terms for all n entries in a column vector yields the filtered signal in the
graph and temporal domain and we write it as (K, ®4 u)(t):

uf (t) = (Kg @4 u)(t). (44)

In case of a purely spatial kernel K (z,t) = K(z), with K (z) symmetric and with spatial
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Fourier transform K (—k?), the graph kernel K ¢ is independent of frequency so that the
filtering operator reduces to the frequency-independent linear transformation

(Ky @g u)(t) = Kqu(t), (45)

In case of a purely temporal kernel K(z,t) = go(t), with go(t) = g(t)O(t), where g(t) is
the temporal kernel, and ©(t) the Heaviside step function, which ensures that integration
is temporally causal. Graph filtering reduces to a temporal convolution:

(Ky @g u)(t) = (90 @ u)(t). (46)

Lastly, in case of a separable kernel K (z,t) = w(x)geo(t), the graph kernel decomposes
as

Ky = go(w)diag(w(A1), -+, w(An)), (47)

so that the filtered signal is given by

(Ky ®gu)(t) = (9o @ (Kqu))(t), (48)

In this case, the filtering occurs in two stages: the signal of first spatially filtered by K,
and subsequently temporally filtered by the convolution with gg(t).

Examples of graph kernels. We have defined spatiotemporal graph kernels for
maximal generality, but in practice, spatial kernels are particularly efficient and simple
to use, since they reduce to simple linear products in the graph domain. Table [2| lists
several commonly used continuous spatial kernels and their equivalent on graphs. The
graph Laplacian converges to the Laplacian operator in the continuum limit; therefore
on grid graphs (i.e. graphs whose drawing, embedded in some Euclidean space, forms a
regular tiling), the graph filters act simply like discretized versions of their continuous
counterparts. For example, applying the graph Gaussian kernel to a function defined on
a 2-dimensional square-grid graph is equivalent to blurring/smoothing a 2-dimensional
image with a spatial Gaussian kernel of the same size, and closed boundary conditions
(open boundaries can be implemented by extending the graph beyond the image size,
and periodic boundaries by adding edges connecting nodes on opposite sides). More
relevantly to the current work, this approach generalizes to arbitrary non-grid graphs,
potentially with non-local edges, such as the human connectome, and is therefore more
general than grid-based discretizations of continuous convolution kernels.

Kernel Euclidean domain Fourier domain K,
Gaussian e—’/20° ek /2 e Ak /2
i —alz] 1 1
Exponential e P e
. 2 2 232 2
Mexican hat (1—(z/0)?)e =" /% k2e=o k"/2 —Ape? /2
Rectangular rect(ax) sinc (72-) sinc ( v _’\’“)
Ta 2ma
. . .92 k 2 (V=&
Triangular tri(ax) sine” (52-) sinc (Tm )

Table 2. Spatiotemporal convolution kernels in the Euclidean, Fourier, and graph domains. Normalization factors are
omitted. The sampling function sinc is defined as sinc(x) = sin (7z) /(7).
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Reaction-diffusion neural activity models

In this section we show how graph filters can also be used to implement the graph
equivalents of neural activity models that can be directly written as partial differential
equations |18[23] and, among others, comprise damped wave and reaction-diffusion
equations.

Consider the following scalar reaction-diffusion model

2

Dyu(z,t) = %u(z,t) + o&(z,t), (49)

where D, denotes a temporal differential operator that describes local reactions, 92/
is the diffusion term and o&(x,t) is an external forcing function. To obtain the corre-

sponding graph equation we first transform Eq to the spatiotemporal Fourier domain:

D(w)i(k,w) = —k*a(k,w) + o€ (k,w), (50)

where D(w) denotes the Fourier transform of D(t), and subsequently solve for @(k,w):

a(k,w) = oK (k,w)é(k,w), (51)

where the spatiotemporal kernel K (k,w) is given by

S 1

K = . 2
The corresponding graph kernel is given by

Ky =(D(w)-A)7, (53)

where A denotes the diagonal matrix containing the eigenvalues of the weighted graph
Laplacian A. Applying K, to the input gives

i(w) = 0 K € (w). (54)

Transforming back to the graph-temporal domain to obtain u(t) = o(K, ® §)(t). To
obtain the full system of differential equations, we note that

(D(w) = Aifw) = o&(w), (55)

and transform this equation back to the spatial domain to obtain the following system
of ordinary differential equations:

Dyu(t) = Au(t) + o€(2). (56)

This shows that a reaction diffusion equation can directly be defined on a graph by
replacing the Laplace operator in continuous space by the weighted graph Laplacian A,
and solved by computing a suitable graph filter.

September 9, 2020

20,7

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388


https://doi.org/10.1101/2020.09.08.287110
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.08.287110; this version posted September 9, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Graph neural fields
Continuous neural fields

Neural field models describe the dynamics of cortical activity u(z,t) at time ¢ and
cortical location z € Q. Here, € R? denotes the cortical manifold embedded in
three-dimensional Euclidean space. Depending on the physical interpretation of the
state variable u(x,t), neural fields come in two types, which we will refer in the rest
of the text as Type 1 and Type 2. This short description is by no means meant to be
exhaustive, and only contains the required background to define graph neural fields;
comprehensive treatments of continuous neural fields are provided in [18}[23].

In Type 1 neural fields [18], the state variable u(x,t) describes the average membrane
potential at location z and time ¢. The general form of a neural field model of Type 1 is

Dyu(z,t) = /QK(d(x,x'))S [u(2',t)] da’ + o&(x,t), (57)

where o&(z,t) is the external input, d(z,z’) is the geodesic distance between cortical
locations x and 2/, K is the spatial kernel of the neural field that describes how the firing-
rate S[u(a’,t)] at location x’ affects the voltage at location x, and S is the firing-rate
function that converts voltages to firing-rates. Furthermore, D; is a temporal differential
operator that models the synaptic dynamics. In modelling ongoing cortical activity,
&(t, x) is usually taken to be a stationary stochastic process. Following earlier studies,
we will assume &(¢, z) to be spatiotemporally white-noise, i.e.

E [f(il?, t)f(l’/7 t/] = 6zz’5tt/7 (58)

where [E denotes expectation value and §,,/ is the Dirac delta function, which is defined
by d4ar = 1 if @ = @’ and zero otherwise. Note that in principle, colored noise could
be used as well. The distance function d(x,2’) between cortical locations x and a’ as
well as the integration over the cortical manifold 2 assume that €2 is equipped with a
Riemannian metric. A natural metric is the Euclidean metric induced by the embedding
of the cortical manifold in three-dimensional Euclidean space.

In Type 2 neural field models [24.[25], the state variable u(x,t) denotes the fraction of
active cells in a local cell population at location x and time ¢ and hence takes values in
the interval [0, 1]. Type 2 neural field models have the form

Dyu(z, 1) = S { /Q K(d(z, ')l t)dz' | + ot (2, 1), (59)

where S denotes the activation function that maps fractions to fractions and hence takes
values in the interval [0, 1] and thus has a different interpretation than the firing-rate
function in Type 1 neural field models. Note that the only difference between Type
1 and Type 2 neural field models is the placement of the non-linear function S. Most
neural field models used in practice are obtained by coupling two or more field models,
where each model corresponds to a different neural population. For example, the state
variable of the Wilson-Cowan neural field model is two-dimensional and its components
correspond to excitatory and inhibitory neural populations. In the rest of the text, we
will assume that K is normalized to have unit surface area.

In theoretical studies on neural field models, the cortex is usually assumed to be
flat:, i.e. Q = R? (cortical sheet) or Q = R! (cortical line) or a closed subset thereof.
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The major simplification that occurs in this case is that the cortical metric reduces to
the Euclidean metric:

d(z,z") = ||z — 2'l], (60)

and, as a consequence, the integrals in Eq and reduce to convolutions so that
Fourier methods can be used in the models’ analysis (however, see [27] for a detailed
theoretical study of a neural field model on the sphere). Note that in Euclidean space,
the kernel K is symmetric, i.e. K(—z) = K(z) for all z € R. The definition of graph
neural fields as given in Section Graph neural fields relies on this fact as well. For ease
of notation, below we set = R! so that d(z,2’) = |z — 2/|. Note that the double
integrals in Eq and can be written as convolutions, and hence it will be
possible to implement them on graphs using the previously derived definitions of graph
spatiotemporal convolutions.

Graph neural fields

Neural fields given by Eq and can be defined on an arbitrary graph by replacing
the spatial filter K by its graph-equivalent K, as defined in Section Convolution of graph
signals. Thus, a graph neural field of Type 1 is a model of the form

Dyult) = K, S[u(t)] + o€ (1), (61)

and

Dyu(t) = S [Kgu(t)] + o€(2), (62)

where u(t) and £(t) are graph functions. Thus, the graph-theoretical analogs of the
continuous neural fields given by Eq and are ordinary differential equations.
When more than one type of neural population is included or when the differential
operator Dy is of order higher than one, the continuous neural fields reduce to systems
of ordinary differential equations.

The continuous neural fields in Eq and are described by partial integro-
differential equations in which the integration in done over space. They can also be
described by spatiotemporal integral equations by viewing the differential operator as a
temporal integral, which leads to a more general class of continuous neural fields. Using
the spatiotemporal convolution on graphs, this more general class of neural fields can
be formulated on graphs leading to a systems of temporal integral equations. To make
this explicit, we use the definition of the spatiotemporal graph filtering operator K,® to
write out the i*" component of wu;:

o] n t

u;i(t) = / > K (s)S[ui(t— )] | ds+ o / &)t (63)
=00\ j=1 —o0

Thus, the spatiotemporal integrals in continuous neural fields are replaced by temporal
integrals in graph neural fields and the spatial structure of the continuous neural field
is incorporated into the graph kernels K;j . The same applies to neural fields of Type
2. Furthermore, for continuous neural fields of Type 1 with separable kernels, and for
special choices of the temporal component of the kernel, the spatiotemporal integral
equation can be reduced to a partial integro-differential equation |23,[26]. For graph
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neural fields there exists an equivalent subset of models that can be represented by a
system of ordinary integro-differential equations.

In case of a purely spatial kernel K(x,t) = w(x) we obtain the following systems
of ordinary differential equations:

Dyu(t) = KgS[u(t)] 4+ o&(t), (64)

and

Dyu(t) = S [(Kquy)(1)] + 0£(1), (65)

respectively, and in case of a purely temporal kernel K(z,t) = go(x) we obtain the
following systems of ordinary differential equations:

Diu(t) = (9o ©g S[ul)(t) + o&(t), (66)

and

Dyu(t) = S(ge ®g u) (t)] + (67)

respectively. In case of a separable kernel K (x,t) = w(x)ge(t) we obtain the following
systems of ordinary differential equations:

Dyu(t) = (9o ®q KgS[u])(t) + o&(1), (68)

and

Dyu(t) = S[(ge @y Kqu)(t)] + o&(t), (69)
respectively.

Relating graph neural fields to experimental observables
Connectome-harmonic analysis of spatiotemporal spectra (CHAOSS)

To characterize the spatiotemporal statistics of resting-state brain dynamics, we derive
analytic predictions for harmonic and temporal spectra and functional connectivity
matrices. The derivation relies on the fact that, for space-independent parameters, lin-
earized graph neural field equations decouple in the graph Fourier domairﬂ Each of the
n graph Laplacian eigenmodes behaves independently like the following N-dimensional
linear system, where N is the number of neuronal population types (N = 2 for the
Wilson-Cowan model):

Dy, (t) = Jeiw(t) + VBE(1), (70)

5 Alternatively, for the case of space-dependent parameters, observables may be computed from
numerical simulations
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where £ (t) is an N-dimensional uncorrelated white noise, B is an N-dimensional diago-
nal matrix containing the noise intensity of the N neural populations, D; is a temporal
differential operator, and Jj is the Jacobian of the k** eigenmode. Taking the temporal
Fourier transform we obtain

() = [D(w) — i T VBE (), (71)

where D(w) denotes the temporal Fourier transform of D;. Abbreviating the graph fil-
ter K, = [D(w)— Ji] 7%, the cross-spectral matrix Sk (w) of the k" eigenmode is given by:

Si(w) = Elan (w)ik (w)'] = KV BEE(w)é(w)VBK] = K,BK], (72)

where, T denotes the conjugate transpose and E denotes the expected value. Colored noise
can be modeled by letting B depend on w, although this is usually not done in neural field
modelling studies. Another possible generalization is to let B depend on the eigenmode k.

Eq gives a closed-form expression for the N-dimensional cross-spectral matrix
of the k' eigenmode, where N is the number of neuronal populations in the model.
Hence, its diagonal entries [Sk(w)]pp,p = 0,...,N — 1 describe the power of the pth
neuronal population in the k** eigenmode, at temporal frequency w. The temporal power
spectrum T},(w) of the p'" neuronal population is obtained by summing over eigenmodes:

Tp(w) =2 Z[Sk(w)]ppv (73)
k=1

Where the factor of 2 arises because on graphs, k ranges only over positive integers
between 1 and n (n is the number of eigenmodes). Similarly, the harmonic power spec-
trum of the p* neuronal population H,(k) is obtained by integrating over the temporal
frequency w:

“+oo
H, (k) 1/ [k () ppdeo, (74)

:g .

where 1/27 is a normalization constant. When combined with a suitable observation
model, these predictions can be compared with or fitted to experimental data from
different neuroimaging modalities.

Functional connectivity Furthermore, it is possible to compute the correlation ma-
trix of brain activity for each neuronal population. To construct the covariance matrix
of a neuronal population activity X, across all graph vertices, we first construct the
covariance matrix 3, in the graph Fourier domain. Because of the independence of
eigenmodes, the covariance matrix of the p'* population (at lag zero) in the graph
Fourier domain flp is a diagonal matrix with the elements along the diagonal being the
values of the spatial power spectrum.

£, = Diag(H, (k) (75)
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The covariance matrix across all vertices is obtained by transforming back to the vertex
domain:

v, =Us,U" (76)

The functional connectivity (correlation) matrix Fj,, which is often used in fMRI resting-
state studies, is obtained by normalizing the covariance matrix

Fy = (3) 7178, (50) 712, (77)

where E;‘ denotes X, with all off-diagonal entries set to zero. Seed-based connectivity
of the j" node is measured by the j'" row (or column) of F,.

Coherence matrix From the linearized model equations one can also derive the
coherence matrix, which measures the strength and latency of linear interactions between
pairs of vertices as a function of frequency w and is often used in EEG and MEG
studies [28]. If the noise is assumed to be white, non-linear connectivity measures such
as the phase-locking value and amplitude correlations can be analytically computed from
the coherence matrix [29]. For simplicity we derive the coherence matrix for the special
case of a single population and note that the generalization to multiple populations is
straightforward.

The derivation of the coherence matrix is similar to that of the functional connec-
tivity, and starts by expressing the linearized model equations in the vertex domain:

Dyu(t) = Ju(t) + VBE(t), (78)

where the n-dimensional matrix J denotes the Jacobian matrix in the vertex-domain.
Transforming Eq. to the temporal Fourier domain and taking expectations yields
the cross-spectral matrix S, (w) in the vertex domain:

Sy(w) = Elu(w)u(w)'] = KyBK], (79)

where K, = [D(w) — J]™'. The coherence matrix C(w) is obtained by normalization of
the cross-spectral matrix in the vertex domain:

O(w) = (SF (@) 728u (@) (S ()72, (80)

where S (w)) denotes S, (w) with its off-diagonal entries to zero. The (i,5)"" entry of
C(w) is the coherence between the cortical activity at vertex ¢ and j.
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Anatomical and functional data

We use the same structural MRI and DTT data as in [9], obtained from the Human
Connectome Project (https://db.humanconnectome.org/) to construct the anatomical
connectome graph of a single subject. In short, MRI data is employed to obtain
intra-cortical graph edges based on the surface mesh; DTI data is employed to add
long-range cortico-cortical edges to the graph. The main difference with [9] is that
instead of constructing the combinatorial (binary) graph Laplacian, here we construct a
distance-weighted graph Laplacian. This allows us to take into account physical distance
properties of the cortex that are relevant for graph neural fields, and that are otherwise
lost. Specifically, intra-cortical edges are weighed by they 3D Euclidean distance; white
matter edges are weighed by the distance along the respective DTI fiber path, divided
by a factor of 200. This value is chosen to reflect the myelination of white matter
fibers, which is known to allow cortico-cortical activity to propagate at speeds ~ 200
times greater in comparison with intra-cortical propagation [21]. Resting-state BOLD
fMRI timecourses of the subject were minimally preprocessed (coregistration, motion
correction), resampled on the subject connectome graph, and demeaned.

Spatiotemporal observables in numerical simulations

In numerical simulations, the spatial power spectrum is obtained following its standard
definition, as the temporal mean of the squared graph Fourier transform of activity
fluctuations about a steady state. The temporal power spectrum is estimated with the
periodogram method, as implemented in the Scipy| Python package. The correlation
matrix is obtained by normalizing the covariance matrix of excitatory activity, which
was itself estimated with the Numpy Python package.

Code repository

All code used for analysis and simulations is available for use and review at
https://github.com/marcoaqil/Graph-Stochastic-Wilson-Cowan-Model
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Discussion

In this work, we have presented a general approach to whole-brain neural activity
modelling on unparcellated connectomes (graph neural fields), by combining tools from
graph signal processing and neural field equations. We developed a technique to compute
spatiotemporal observables (CHAOSS), and showed that a Wilson-Cowan stochastic
graph neural field model can reproduce the empirically observed harmonic spectrum of
resting-state BOLD signal fluctuations. Graph neural fields can address some limitations
of existing modelling frameworks, and therefore represent a complementary approach
resulting particularly suitable for mesoscopic-scale modelling and connectome-graph-
based analyses. To discuss advantages and limitations of our approach, it is useful to
contextualize it within the existing landscape of whole-brain models.

Existing whole-brain models can be broadly divided into two classes, according to
whether they incorporate short-range intracortical connectivity or not. Region-based
models only take into account long-range connectivity between dozens or few hundreds
of macroscopic ROIs, whereas surface-based models directly incorporate short-range
intra-cortical connectivity as well [261/30]. It is furthermore possible to distinguish
between discrete and continuous surface-based models. Discrete surface-based mod-
els are defined on a (highly-sampled) cortex and are therefore finite-dimensional. In
several studies, region-based and discrete surface-based models are collectively referred
to as networks of neural masses [1731,32]. Continuous surface-based models are bet-
ter known as neural field models and are defined on the entire cortex and are thus
infinite-dimensional [23}26}33]. Mathematically, discrete surface-based models are finite-
dimensional systems of ordinary differential equations, whereas neural field models are
partial integro-differential equations.

Region-based models are constructed by parcellating the cortex into a number of regions-
of-interest (ROIs), placing a local model in each ROI, and connecting them according
to a given connectome (see [2[17[32] for reviews). The ROIs are usually obtained from
structural or functional cortical atlases and the number of ROIs is in the order of a
hundred or less. Connectome-based mass models are characterized by the type of local
models and how they are connected i.e. if the connections are weighted or not, excitatory
or inhibitory, and if transmission delays are incorporated. A wide variety of local models
has been used in the literature, including neural mass models, self-sustained oscilla-
tors, chaotic deterministic systems, circuits of spiking neurons, normal-form bifurcation
models, rate models, and density models [2,/17}33]. Region-based models have proven
valuable in understanding varies aspects of large-scale cortical dynamics and their roles
in cognitive and perceptual processing, but they are limited in one important respect:
they do not allow studying the spatiotemporal organization of cortical activity on scales
smaller than several squared centimeters and their effects on large-scale pattern formation.
This is due to the fact that the dynamics within ROIs are modeled by a single model
without spatial extent. This prevents studying the mechanisms underlying a large class
of cortical activity patterns that have been observed in experiments, including traveling
and spiral waves, sink-source-dynamics as well as their role in shaping macroscopic
dynamics. This is a significant limitation, particularly because the role of mesoscopic
spatiotemporal dynamics in cognitive and perceptual processing is increasingly being
recognized and experimentally studied [34}35]. Graph neural fields present the advantage
of allowing explicit modelling of activity propagation dynamics with spatiotemporal
convolutions and graph differential equations on mesoscopic-resolution connectomes,
thereby overcoming this limitation.

Whole-brain models that incorporate short-range connectivity are referred to as surface-
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based because they can are defined either on high-resolution surface-based representations
of the cortex [30},/36L/37] or on the entire cortex viewed as a continuous medium. We
will refer to these types of models as discrete and continuous surface-based models, the
latter of which are known as neural field models [23,26,|38},/39]. Numerically simulating
discrete surface-based models is much more computationally demanding than simulating
region-based models as the former typically have dimensions that are one to two orders
higher than those of the latter. Numerically simulating neural field models is even more
demanding and requires heavy numerical integration in combination with advanced
analytical techniques [40]. Moreover, simulating neural field models requires special
preparation of cortical meshes to ensure accuracy and numerical stability. [36,137,|41H43].
In this context, graph neural fields have the advantage of being implementable na-
tively on multimodal structural connectomes obtained from MRI and DTI, thereby
minimizing anatomical approximations. Graph neural fields can naturally take into
account important physical properties such as cortical folding, hemispheric asymmetries,
non-homogeneous structural connectivity, and white matter projections, with a minimal
amount of computational power. Furthermore, the cortex in graph neural field need not
be a flat or spherical bidimensional manifold. The approach can be straightforwardly
extended to include cortical thickness, allowing activity to propagate not only tangen-
tially, but also perpendicularly to the cortical surface. Cortical layers can already be
distinguished with high-field and ultra-high field functional fMRI, and are thought to
subserve different functions [44]. The ability of graph neural fields to account for cortical
thickness in dynamical models of neural activity is therefore a promising property for
future development [45].

Our approach presents several limitations. First, some of the analytic results pre-
sented here (CHAOSS) rely on the model parameters being space-independent, that
is the model parameters are assumed to be the same throughout the cortex. This
assumption has the advantage of allowing mathematical analyses that, unlike numerical
simulations, are virtually ”infinitely” scalable with little computational cost, and was
also used in previous studies of continuous neural fields [18]. However, there are more
biophysically realistic models that require space-dependent parameters. For example,
some recent neural mass network models incorporate neuronal receptors and their den-
sities, which are known to vary across the cortex [46-48]. There are several ways in
which it might be possible to overcome this limitation. We remark that it is only our
analytic approach that requires space-independent parameters; numerical simulations of
graph neural fields could be carried out also with space-dependent parameters (of course,
such simulations would be more computationally demanding than their counterparts
with space-independent parameters). To preserve analytic tractability while characteriz-
ing regional differences, one could attempt to absorb all the relevant space-dependent
information into the graph Laplacian. Similarly to the idea of differentially weighing
white matter edges to account for myelination, one might weigh differentially graph
edges within specific ROIs or specific subsets of vertices. A hybrid approach of space-
dependent numerical simulations and space-independent analysis (by averaging values
of space-dependent parameters) could be another way to address this issue. Second,
we have restricted our approach to spatially symmetric kernels. In some special cases,
asymmetric kernels may be practically obtained by introducing suitable asymmetries in
the graph edges. For example, consider a grid graph in two dimensions, with additional
edges connecting bottom-left and top-right vertices of each square in the grid. Because
of the broken lattice symmetry, a Gaussian kernel on this non-grid graph will behave
like a spatially elliptic Gaussian, angled at 45 degrees. This is analogous to modelling a
spatially asymmetric diffusion process on the graph. Third, another limitation is the use
of an undirected and time-independent connectome graph. For maximal generality and
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biophysical realism, one might want to study a directed, or even time-dependent (plastic)
structural connectome: it is not clear at present if and how this could be implemented
in the framework of graph neural fields.

Immediate applications of graph neural fields can be found in the comparison of harmonic
spectra, functional connectivity and coherence matrix with single-subject empirical data
obtained from different neuroimaging modalities such as fMRI and MEG, as well as
different conditions, for example health, pathology, and neuropharmacologically altered
states of consciousness [22]. For example, investigating the effects of a reduced myelina-
tion speed factor, or pruned white-matter fibers, could be an interesting approach to
modelling the effects of pathological or age-related structural alterations on the dynamics
of functional activity. Other applications include the implementation of more biophysi-
cally realistic models, potentially including space-dependent parameters, and the use of a
cortical connectome that includes cortical thickness, accounting for activity propagation
across layers perpendicularly to the surface. Aside from whole-brain modelling, graph
neural fields may also be used for modelling specific ROIs and stimulus-evoked brain
activity. In particular, because of the known retinotopic mapping between visual stimuli
and neural activity, the visual cortex presents itself as a very interesting ROI for such
developments [49]. Moving beyond neural populations and even the human brain, we
note that the graph Laplacian may also be used to implement single-neuron models
directly on the full connectome graphs of simple organisms, such as C. Elegans, whose
connectome has been experimentally mapped at the single-neuron level.

Conclusion

In this study we described a class of whole-brain neural activity models which we refer
to as graph neural fields, and showed that they can be used to investigate properties of
brain activity measured with neuroimaging methods. The formulation of graph neural
fields relies on existing concepts from the field of graph signal processing, namely the
graph Laplacian operator and graph filtering, and modelling concepts such as neural
field equations. This framework allows inclusion of realistic anatomical features, analytic
predictions of harmonic-temporal power spectra, correlation, and coherence matrices
(CHAOSS), and efficient numerical simulations. We illustrated the practical use of the
framework by reproducing the harmonic spectrum of resting-state BOLD fMRI with
a stochastic Wilson-Cowan graph neural field model. Future work could build on the
methods and results presented here, both from theoretical and applied standpoints.
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Supporting information

S1 Table Parameter set for 1D analysis and simulations. This parameter set
was obtained by a qualitative comparison of the Wilson-Cowan model’s harmonic and
temporal spectra with empirical data, and used to illustrate how graph properties affect
neural field dynamics in one dimension.

Parameter Value Units (S.I)
TE 2.415-107 T S
TI 5.227-1071 S

OEE 4.577-1073 m
OIE 1.704-1073 m
OET 9.377-1073 m
orr 2.239-107! m
dg 102 -
dr 9.430 -
QEE 6.886 - 102 -
arg 7.903 - 102 -
[0%504 9.972 - 102 -
arr 1.223 - 102 -
P 3.824 -
Q 7.120 -
o 10-7 -

S2 Table Parameter set for connectome-wide analysis and simulations. This
parameter set was obtained by quantiatively fitting the Wilson-Cowan model’s harmonic
power spectrum to that of resting-state {MRI data, and used for all connectome-wide
analysis and numerical simulations.

Parameter Value Units (S.I)
" 2.024-10° T s
I 2.346 - 1071 s

OEE 1.611 - 1072 m
OIE 2.022-10°3 m
OEI 6.698 - 1072 m
orr 9.149-1072 m
dg 2.718 - 10* -
dr 1.240 -
aEE 1.487 - 102 -
arg 2.191 - 102 -
apr 2.620 - 102 -
arr 1.614 - 102 -
P 2.235 - 101 -
Q 8.450 -
o 10~ 7 -

S3 Fig. Spatial convolutions on 1-dimensional graphs. To illustrate spatial
convolution on graphs, we apply different spatial convolution filters from Table [2| to
an impulse function centered on the mid-node of a one-dimensional grid-graph with
spacing h = 1 units. The resulting functions, normalized to have unit amplitude, show

September 9, 2020

30/35

681

682

683

684

685

686

687

688

689

690

691

692

693


https://doi.org/10.1101/2020.09.08.287110
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.08.287110; this version posted September 9, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

the shapes of the graph kernels. Note that the rectangular kernel convolution operator
in Panel (E) exhibits the Gibbs phenomenon |50, which is a known feature of finite
Fourier representations of functions with jump discontinuities. Solutions to this problem
have been offered [51], but they are beyond the scope of the current work. Thus, we
suggest avoiding spatial kernels with jump discontinuities in the context of graph neural
fields. As a side remark, we also note that for large datasets (for example natural
images databases), it might be computationally advantageous to apply convolutions with
symmetric kernels through graph filters, rather than with standard discrete convolution
methods. Spatial convolutions on graphs become linear matrix-vector products, which
are highly optimized and easily parallelizable operations; the bulk of the computational
cost for graph convolutions consists in the initial computation of the filter itself, which
has to be performed only once per kernel.

1.0 1.0
0.8 1 058
0.6 1 0.6 1
0.4 0.4 1
02 024
0.0 1 0.0 1
0 200 400 600 800 1000 0 200 400 600 800 1000
(A) Gaussian, t=2000 (B) Exponential, t=0.01
" 0
"
08
os 10
os
W o o8
o o8
o
oo os
0.2 02 02
04 0.0 0.0
B w w W mw W w w W W % @
(c) Mexican Hat, t=2000 (D) Pyramid, t=150 (E) Rectangle, t=500
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