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Abstract

Tools from the field of graph signal processing, in particular the graph Laplacian
operator, have recently been successfully applied to the investigation of structure-
function relationships in the human brain. The eigenvectors of the human connectome
graph Laplacian, dubbed ”connectome harmonics”, have been shown to relate to the
functionally relevant resting-state networks. Whole-brain modelling of brain activity
combines structural connectivity with local dynamical models to provide insight into
the large-scale functional organization of the human brain. In this study, we employ
the graph Laplacian and its properties to define and implement a large class of neural
activity models directly on the human connectome. These models, consisting of systems
of stochastic integrodifferential equations on graphs, are dubbed graph neural fields,
in analogy with the well-established continuous neural fields. We obtain analytic
predictions for harmonic and temporal power spectra, as well as functional connectivity
and coherence matrices, of graph neural fields, with a technique dubbed CHAOSS
(shorthand for Connectome-Harmonic Analysis Of Spatiotemporal Spectra). Combining
graph neural fields with appropriate observation models allows for estimating model
parameters from experimental data as obtained from electroencephalography (EEG),
magnetoencephalography (MEG), or functional magnetic resonance imaging (fMRI); as
an example application, we study a stochastic Wilson-Cowan graph neural field model
on a high-resolution connectome, and show that the model equilibrium fluctuations
can reproduce the empirically observed harmonic power spectrum of BOLD fMRI
data. Graph neural fields natively allow the inclusion of important features of cortical
anatomy and fast computations of observable quantities for comparison with multimodal
empirical data. They thus appear particularly suitable for modelling whole-brain activity
at mesoscopic scales, and opening new potential avenues for connectome-graph-based
investigations of structure-function relationships.
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Author summary

The human brain can be seen as an interconnected network of many thousands neuronal
”populations”; in turn, each population contains thousands of neurons, and each is
connected both to its neighbors on the cortex, and crucially also to distant populations
thanks to long-range white matter fibers. This extremely complex network, unique
to each of us, is known as the ”human connectome graph”. In this work, we develop
a novel approach to investigate how the neural activity that is necessary for our life
and experience of the world arises from an individual human connectome graph. For
the first time, we implement a mathematical model of neuronal activity directly on a
high-resolution connectome graph, and show that it can reproduce the spatial patterns
of activity observed in the real brain with magnetic resonance imaging. This new kind
of model, made of equations implemented directly on connectome graphs, could help
us better understand how brain function is shaped by computational principles and
anatomy, but also how it is affected by pathology and lesions.
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Introduction 1

The spatiotemporal dynamics of human resting-state brain activity is organized in 2

functionally relevant ways, with perhaps the best-known example being the ”resting- 3

state networks” [1]. How the repertoire of resting-state brain activity arises from the 4

underlying anatomical structure, i.e. the connectome, is a highly non-trivial question: it 5

has been shown that structural connections imply functional ones, but that the converse 6

is not necessarily true [2]; furthermore, specific discordant attributes of structural and 7

functional connectivity have been found by network analyses [3]. Research on structure- 8

function questions can be broadly divided into data-driven (analysis), theory-driven 9

(modelling), and combinations thereof. In this work, we combine techniques from graph 10

signal processing (analysis) and neural field equations (modelling) to outline a promising 11

new approach for the investigation of whole-brain structure-function relationships. 12

13

A recent trend of particular interest in neuroimaging data analysis is the application of 14

methods from the field of graph signal processing [4–8]. In these applications, anatomical 15

information obtained from diffusion tensor imaging (DTI) and structural MRI is used to 16

construct the connectome graph [9], and combined with functional imaging data such as 17

BOLD-fMRI or EEG/MEG to investigate structure-function relationships in the human 18

brain (see [10, 11] for reviews). The workhorse of graph signal processing analysis is 19

the graph Laplacian operator, or simply graph Laplacian. Originally formulated as the 20

graph-equivalent of the Laplace-Beltrami operator for Riemannian manifolds [12, 13], 21

the graph Laplacian is now established as a valuable tool in its own right [10]. The 22

eigenvectors of the graph Laplacian provide a generalization of the Fourier transform to 23

graphs, and therefore also a complete orthogonal basis for functions on the graph. In 24

the context of the human connectome graph, the eigenvectors of the graph Laplacian 25

are referred to as connectome harmonics by analogy with the harmonic eigenfunctions 26

of the Laplace-Beltrami operator. Of relevance to the current work, several connectome 27

harmonics have been shown to be related to specific resting-state networks [9]. More 28

recent studies have provided additional evidence for this claim [14], and others used 29

a similar approach to explain how distinct electrophysiological resting-state networks 30

emerge from the structural connectome graph [15]. Furthermore in [9], for the first time, 31

to the best of our knowledge, a model of neural activity making use of the graph Lapla- 32

cian was implemented, and used to suggest the role of excitatory-inhibitory dynamics as 33

possible underlying mechanism for the self-organization of resting-state activity patterns. 34

In other very recent work [16] graph-Laplacian-based techniques were employed to model 35

MEG oscillations. Considering these developments, the combination of neural activity 36

modelling and graph signal processing techniques appears as a promising direction for 37

further inquiry. 38

39

Whole-brain models are models of neural activity that are defined on the entire cortex 40

and possibly on subcortical structures. This is generally achieved either by parcellating 41

the cortex into a network of a few dozens of macroscopic, coupled regions of interest 42

(ROIs), or by approximating the cortex as a bidimensional manifold, and studying 43

continuous integrodifferential equations in a flat or spherical geometry (See [17] for a 44

review). In this study, relying on graph signal processing methods such as the graph 45

Laplacian and graph filtering [6, 8], we show how to define and implement a large class 46

of whole-brain models of neural activity on arbitrary metric graphs1, and in particular 47

on a non-parcellated mesoscopic human connectome. These models consist of systems of 48

integrodifferential equations, and are dubbed graph neural fields by analogy with their 49

continuous counterparts. We obtain analytic expressions for harmonic and temporal 50

1that is, graphs equipped with a suitable distance metric
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power spectra, as well as functional connectivity and coherence matrices, of graph neural 51

fields, with a technique dubbed CHAOSS (shorthand for Connectome-Harmonic Analysis 52

Of Spatiotemporal Spectra). When combined with appropriate observation models, graph 53

neural fields can be fitted to and compared with functional data obtained from different 54

imaging modalities such as EEG/MEG, fMRI, and positron emission tomography (PET). 55

As an example application, we study a Wilson-Cowan stochastic graph neural field model, 56

implemented on a single-subject unparcellated connectome. We show that the model 57

can accurately reproduce the empirical harmonic spectrum of resting-state BOLD signal 58

fluctuations. In sum, graph neural fields provide a computationally efficient and versatile 59

modelling framework that is tailored for connectome-graph-based structure-function 60

investigations, and particularly suitable for modelling whole-brain activity on mesoscopic 61

scales. Graph neural fields present immediate application in the investigation of the 62

relationship between individual anatomy, pathology, and lesions with functional activity; 63

and furthermore provide a model-based approach to test novel graph signal processing 64

neuroimaging hypotheses and analyses. 65

66

In Section Results we start by providing an analytic solution and a numerical im- 67

plementation of the damped-wave equation on the human connectome graph, since this 68

equation is of interest in the context of modelling neural activity propagation. Next, 69

we show how to implement the Wilson-Cowan stochastic graph neural field model on 70

arbitrary metric graphs. We obtain results of linear stability analysis, CHAOSS, and 71

numerical simulations, first on a one-dimensional graph with 1000 vertices, and then on a 72

single-subject connectome consisting of approximately 18000 cortical vertices and 10000 73

white matter tracts. The simplified context of a 1-dimensional graph is useful to study the 74

effect of simple graph properties, such as inter-node distance and long-range connections, 75

on model dynamics; moving to a real-world application, we fit the full-connectome model 76

parameters to the experimentally observed harmonic power spectrum of resting-state 77

fMRI data of a single subject, showing excellent agreement between the analytically 78

predicted, numerically simulated, and empirical power spectra. In Section Methods we 79

provide a more general and detailed description of the framework of graph neural fields. 80

We define spatiotemporal convolution on graphs through the weighted graph Laplacian, 81

and obtain the graph-equivalents of several connectivity kernels and reaction-diffusion 82

systems that are of interest for neural activity modelling. Finally, we show how to derive 83

analytic expressions for harmonic and temporal power spectra, as well as coherence and 84

functional connectivity matrices, of graph neural fields (CHAOSS). 85
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Results 86

Damped wave equation on the human connectome graph 87

The damped-wave equation describes the dynamics of simultaneous diffusion and wave
propagation, and is thus of interest in the context of modelling activity propagation in
neural tissue [18]. Here, we solve the graph equivalent of the damped-wave equation and
implement it on the human connectome graph. In one-dimensional continuous space,
the damped-wave equation is

a
∂2u(x, t)

∂t2
+ b

∂u(x, t)

∂t
=

∂2u(x, t)

∂x2
, (1)

88

where a and b are scalar parameters. Its graph-equivalent is given by 89

90

Dtu(t) = ∆u(t), (2)

where u(t) is a function on the graph, ∆ is the distance-weighted graph Laplacian,
and Dt = ad2/dt2 + bd/dt. Since the graph Laplacian is a constant matrix, we can
straightforwardly obtain the exact solution at time t:

û(t) = K(t)û(0) + K̃(t) ˙̂u(0), (3)

where (û(0), ˙̂u(0)) are the initial conditions, the superscript û indicates the graph Fourier
transform (see Methods), and

K(t) =
r1e

r2t − r2e
r1t

r1 − r2
, K̃(t) =

er1t − er2t

r1 − r2
, r1,2 =

−b±
√
b2 + 4aΛ

2a
, (4)

Λ is the diagonal matrix of graph Laplacian eigenvalues. Having obtained an exact
solution, we can efficiently simulate the time-evolution of the damped-wave equation on
arbitrary metric graphs, for example with the following numerical scheme:

û(t+ δt) = K(δt)û(t) + K̃(δt)
û(t)− û(t− δt)

δt
, (5)

We also note that the Telegrapher’s Equation, which is of interest in the context of
modelling action potentials [19]

a
∂2u(x, t)

∂t2
+ b

∂u(x, t)

∂t
+ cu(x, t) =

∂2u(x, t)

∂x2
, (6)

91

can also be implemented on metric graphs simply by substituting Λ with (Λ−Diag(c)) 92

in Eq (4). 93

94

Fig 1 shows an example implementation of Eq (5) on the human connectome graph. The 95

initial condition is a Gaussian centered in the occipital cortex of the left hemisphere, 96
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itself obtained by applying the graph Gaussian convolution filter (Table 2) to an impulse 97

function. Note how the initially localized activity propagates with a characteristic speed 98

and wavelength. Damping of the wave, caused by the diffusion term, can also be observed. 99

Fig 2 shows an implementation with different parameters, giving rise to faster wavefront 100

propagation and less damping. Fig 3 shows the same implementation as Fig 2, from a 101

different point of view and with a narrower color-scale. This is to emphasize that, aside 102

from the dominant surface-based wavefront, activity also propagates non-locally along 103

white-matter fibers. 104

Fig 1. The damped-wave equation on the human connectome gives rise to
propagation with characteristic speed and wavelength. Shown are snapshots of
simulated cortical activity that is governed by the damped wave equation with
time-step δt = 1 and parameters a = 3 · 105, b = 5 · 103.

Fig 2. Varying the parameters of the damped-wave equation alters the
dynamics of propagation on the human connectome. Shown are snapshots of
simulated cortical activity that is governed by the damped wave equation with
time-step δt = 1 and parameters a = 1.5 · 105, b = 2.5 · 103.

Fig 3. Dynamics of the damped-wave equation on the human connectome
include non-local propagation along white-matter fibers. Shown are snapshots
of simulated cortical activity that is governed by the damped wave equation with
time-step δt = 1 and parameters a = 1.5 · 105, b = 2.5 · 103.

105
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Stochastic Wilson-Cowan equations on graphs 106

The Wilson-Cowan model [20] is a widely used and successful model of cortical dynamics. 107

In this section we show how to use the framework of graph neural fields (Methods) to 108

implement the stochastic Wilson-Cowan equations on an arbitrary graphs equipped with 109

a suitable distance metric, and how to compute spatiotemporal observables (CHAOSS). 110

We then illustrate the effects of weighted and non-local graph edges on the dynamics 111

in the simplified context of a one-dimensional graph, before moving on to a real-world 112

application with fMRI data. 113

General formulation 114

In continuous space, the stochastic Wilson-Cowan model is described by the following
system of integrodifferential equations:

τE
∂E

∂t
= −dEE + S [αEE(KEE ⊗ E)− αIE(KIE ⊗ I) + P ] + σξE , (7)

τI
∂I

∂t
= −dII + S [αEI(KEI ⊗ E)− αII(KII ⊗ I) +Q] + σξI , (8)

where the symbol ⊗ denotes a convolution integral, and we have omitted for brevity
the spatiotemporal dependency of E(x, t), I(x, t), ξE(x, t) and ξI(x, t). In other words,
this model posits the existence of two neuronal populations (Excitatory and Inhibitory)
at each location in space. The fraction of active neurons in each population (E(x, t),
I(x, t)) evolve according to a spontaneous decay with rate dE and dI , a sigmoid-mediated
activation term containing the four combinations of population interactions (E-E, I-E,
E-I, I-I ) as well as the external input terms P and Q, stochastic noise realizations ξE(x, t)
and ξI(x, t) of intensity σ, and with the temporal scaling parameters τE and τI . The
propagation of activity and interaction among neuronal populations is modeled by spatial
convolution integrals with four, potentially different, kernels (KEE ,KIE ,KEI ,KII). For
arbitrary symmetric spatial kernels, convolutions can be formulated as linear matrix-
vector products on graphs (Methods Eq (45)). Therefore, the stochastic Wilson-Cowan
equations on graphs reduce to

τEĖ(t) = −dEE(t) + S
[

αEEKEEE(t)− αIEKIEI(t) + P
]

+ σξE(t) (9)

τI İ(t) = −dII(t) + S
[

αEIKEIE(t)− αIIKIII(t) +Q
]

+ σξI(t) (10)

E(t), I(t), ξE(t) and ξI(t) are functions on the graph, i.e. vectors of size n, where
n is the number of vertices in the graph; the convolutions are implemented via the
graph-filters K∗∗, which are matrices of size (n, n). In particular, for the case of Gaussian
convolutions, the filters are given by (Table 2)

KEE = Ueσ
2

EEΛ/2UT , KIE = Ueσ
2

IEΛ/2UT , (11)

KEI = Ueσ
2

EIΛ/2UT , KII = Ueσ
2

IIΛ/2UT . (12)

115

With the distance-weighted graph Laplacian ∆ = UΛUT , so that Λ is the diagonal 116

matrix of graph Laplacian eigenvalues, U and UT the corresponding eigenvectors. 117

118

This model formulation also allows for non-Gaussian convolution kernels; and the 119

inclusion of a stochastic term allows for characterization of resting-state activity as 120

noise-induced fluctuations about a stable steady-state (E∗, I∗) [38]. 121
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Symbol Meaning

E Fraction of active excitatory subpopulations.

I Fraction of active inhibitory subpopulations.

τE , τI Time constants.

dE , dI Activity decay rates.

S[x] 1/(1 + e−x).

αEE , αIE , αEI , αII Strength of connectivity between populations.

KEE ,KIE ,KEI ,KII Convolution kernels, graph filters.

σEE , σIE , σEI , σII Standard deviation of Gaussian kernels.

P Constant input to E populations.

Q Constant input to I populations.

σ Noise amplitude.

ξE , ξI Noise realizations.

Table 1. Meaning of symbols in the continuous Wilson-Cowan equations and their
graph equivalents.

Linear stability analysis 122

In order to compute meaningful spatiotemporal observables with CHAOSS, it is first
necessary to obtain solutions the steady-state equations and their linear stability. For
generality and compactness of notation, let us define a new column vector u(t) as the
concatenation of E(t) and I(t); We express d for the diagonal matrix containing the
damping parameters dE and dI and τ for the matrix containing the timescale param-
eters τE and τI . The matrix K contains the four (arbitrary) graph-filters, X is the
concatenated vector encoding subcortical inputs P and Q. We can now write the original
system of Eq (9-10) with a single equation

τ u̇(t) = −du(t) + S
[

Ku(t) +X
]

+ σξ (13)

Note that this expression potentially allows for space-dependent model parameters. The
steady-state(s) u∗ can be obtained by setting the time-derivative and noise amplitude σ
to zero and solving the resulting steady state (matrix) equation:

S
[

Ku∗ +X] = du∗ (14)

123

This equation does not have an analytic, exact, closed form solution (in fact, it doesn’t 124

even necessarily have a solution. The sigmoid function is bound between -1 and 1, 125

but du∗ is not). Furthermore, in the context of a whole-brain model on a mesoscopic 126

connectome, the equation is very high dimensional (twice the number of vertices n, 127

with n ∼ 18000 in our case). This makes a brute-force numerical approach to the 128

determination of steady states computationally inefficient, especially because it would 129

have to be repeated for each parameter set under examination. 130

Solutions to the steady state equations If we restrict our analysis to spatially

homogeneous steady states and space-independent model parameters, the steady state
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equation simplifies to the following 2-dimensional system, rather than the original 2n-
dimensional Eq (14):

1

1 + exp(αIEI∗ − αEEE∗ − P )
= dEE

∗ (15)

1

1 + exp(αIII∗ − αEIE∗ −Q)
= dII

∗ (16)

131

Solutions to this 2-dimensional system can be rapidly obtained numerically for any set of 132

parameters. The biologically valid steady state(s) of the model are given by the solutions 133

(E∗, I∗) with E∗, I∗ ∈ [0, 1], since E and I here represent the fraction of active neurons 134

within the respective population. Once a valid steady state is obtained, its stability 135

can be determined through the Jacobian eigenspectrum, and verified with numerical 136

simulations. 137

General Jacobian To obtain the Jacobian eigenspectrum and determine the stability
of a steady state, we have to linearize Eq (13) as

u̇(t) = −τ−1du(t) + τ−1S
[

Ku(t) +X
]

= F (u) ≈ F (u∗) +
∂F (u)

∂u

∣

∣

∣

∣

u
∗

δu (17)

With F (u∗) = 0 by definition since u∗ is a steady state, and defining a small perturbation
abut the steady state δu = (u− u∗). The Jacobian is then:

J(u∗) =
∂F (u)

∂u

∣

∣

∣

∣

u
∗

= −τ−1d+Diag
(

τ−1S′[Ku∗ +X]
)

K (18)

To simplify this expression and allow further analytic progress, we apply the prop-
erty of the sigmoid derivative S′(x) = S(x)(1 − S(x)); the steady state equation
S
[

Ku∗ +X] = du∗; and finally denoting with ◦ the Hadamard (element-wise) product
we obtain

J(u∗) = −τ−1d+Diag
(

τ−1du∗ ◦ (1− du∗)
)

K (19)

138

We have thus obtained a general expression for the Jacobian of the Wilson-Cowan model 139

on graphs, which holds also for non-homogeneous steady states and/or space-dependent 140

parameters. In order to evaluate the linear stability of any steady state, it is sufficient 141

plug in the steady state u∗ = (E∗, I∗) solution to Eq (14) in Eq (19), and study the 142

eigenspectrum of the resulting Jacobian. 143

Analytic form of the Jacobian eigenspectrum On a mesoscopic human connec-
tome graph such as the one we use here, the general Jacobian of Eq (19) is a dense
matrix with more than 108 elements. Its eigenspectrum can be calculated numerically,
but such a computation is not particularly fast, and has to be repeated for each steady
state of each parameter set under examination. However, we restrict the problem to
homogeneous steady states and space-independent model parameters, it is possible to use
the properties of the graph Laplacian to obtain an analytic expression for the Jacobian
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eigenspectrum, which can be computed extremely quickly2. These assumptions can
be relaxed to allow for eigenmode-dependent3 model parameters. Define the scalar,
steady-state-dependent parameters:

a = dEE
∗(1− dEE

∗), b = dII
∗(1− dII

∗) (20)

We can use the general Jacobian of Eq (19), with Gaussian kernels, to write explicitly
the linearized Wilson-Cowan equations for the time-evolution of a perturbation about a
homogeneous steady state:

τEĖ(t) = −dEE(t) + aαEEUeσ
2

EEΛ/2UTE(t)− aαIEUeσ
2

IEΛ/2UT I(t) + σξE(t) (21)

τI İ(t) = −dII(t) + bαEIUeσ
2

EIΛ/2UTE(t)− bαIIUeσ
2

IIΛ/2UT I(t) + σξI(t) (22)

Applying the graph Fourier transform UT , the equations are diagonalized. Each eigen-
mode of the graph Laplacian therefore behaves independently as a 2-dimensional linear
system, with the Jacobian for the kth eigenmode being

Jk =







−dE

τE
+ a

τE
αEEe

σ2

EEλk/2 − a
τE

αIEe
σ2

IEλk/2

b
τI
αEIe

σ2

EIλk/2 − b
τI
αIIe

σ2

IIλ/2 − dI

τI






(23)

The Jacobian eigenvalues can then be computed directly as

λJk
1,2 =

Tr (Jk)±
√

Tr2 (Jk)− 4Det (Jk)

2
(24)

144

From the Jacobian eigenspectrum thus obtained, we can directly infer the stability 145

character of a steady state. Note that in order to obtain meaningful predictions for 146

spatiotemporal observables, the steady state under examination has to be stable, that is, 147

Jk must have no eigenvalues with positive real parts for all λk. We have used Gaussian 148

kernels in the derivation, but the result can be straightforwardly generalized to all other 149

kernels. The decoupling of the linearized Wilson-Cowan equations in the graph-Fourier 150

domain has another important consequence: since the dimensionality of the system 151

reduces from n2 to n (where n is the number of vertices in the graph), very efficient 152

numerical simulations of the linearized equations can be carried out directly in the graph 153

Fourier domain. 154

2These assumptions are required because generally space-dependent parameters would be expressed
by a non-constant diagonal matrix, that would not commute with the graph Fourier transform UT .

3Eigenmode-dependent parameters would be expressed by a diagonal matrix in the graph Fourier
domain, therefore by definition commuting with UT .
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Wilson-Cowan model CHAOSS 155

After having obtained steady state solutions, and determined stability character of
the steady state, we can apply the Connectome-Harmonic Analysis Of Spatiotemporal

Spectra (Methods) to characterize the spatiotemporal dynamics of resting-state brain
activity. CHAOSS predictions, combined with a suitable observation model, can then be
compared with empirical neuroimaging data, for example EEG, MEG, or fMRI. Consider
linearized stochastic graph neural field equations in the graph Fourier domain:

Dtûk(t) = Jkûk(t) +
√
Bξ̂k(t), (25)

Where k = 1, ..., n indexes the graph Laplacian eigenmodes. For Wilson-Cowan model
(Eq (21-22)), we have: Dt = d/dt, Jk is given in Eq (23) for the case with Gaussian
kernels, and B is

B =

[

σ2/τ2E 0
0 σ2/τ2I

]

, (26)

In terms of the elements of the matrices Jk and B, the theoretical prediction for the
harmonic-temporal power spectrum of the excitatory neural population activity becomes
(Methods Eq (72)):

[Sk(ω)]00 =
[B]00

(

[Jk]
2
11 + ω2

)

+ [Jk]
2
01[B]11

([Jk]00[Jk]11 − [Jk]01[Jk]10 − ω2)
2
+ ω2 ([Jk]00 + [Jk]11)

2
(27)

The double-digits numerical subscripts in Eq (27) refer to the row-column element of
the respective matrix. Eq (27) can be used to compute the separate harmonic and tem-
poral power spectra of the model, as well as the correlation and functional connectivity
matrices (Methods Eq (77)). Equivalent formulas for the inhibitory population can also
be similarly derived.

By integrating [Sk(ω)]00 over all temporal frequencies, an explicit expression for the
harmonic power spectrum of excitatory activity can be obtained:

HE(k) =
[B]00([Jk]00[Jk]11 − [Jk]01[Jk]10) + [Jk]

2
11[B]00 + [Jk]

2
01[B]11

2([Jk]01[Jk]10 − [Jk]00[Jk]11)([Jk]00 + [Jk]11)
(28)

156

Eq (27) and (28) represent a general result that does not only apply to the Wilson-Cowan 157

model. In fact, these equations describe the harmonic-temporal and harmonic power 158

spectra of stochastic equilibrium fluctuations for the first population of any graph neural 159

field model with two interacting populations and a first-order temporal differential 160

operator. 161

Effects of distance-weighting and long-range connectivity 162

We characterize the effects internode spacing and the presence of long-range connectivity 163

on model dynamics by implementing the Wilson-Cowan model on a one-dimensional 164

graph with 1000 nodes. Numerical simulations were carried out with a time-step 165

δt = 5 · 10−5s and an observation time of 105 time-steps, which corresponds to 5s of 166
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simulated activity. 167

168

To show the effects of distance-weighting in graph neural fields, we note how, for 169

the parameter set of S1 Table, increasing the distance between nodes leads to the emer- 170

gence of an oscillatory resonance that eventually destabilizes and gives way to limit-cycle 171

activity. Keeping the number of nodes constant, increasing the internode spacing h alters 172

the stability of the steady state from broadband activity (h = 10−5m), to oscillatory 173

resonance (h = 10−4m), to oscillatory instability (h = 2 · 10−4m). The spatial and 174

temporal power spectra for the case h = 10−4m are shown Figure 4A and B, respectively. 175

These results demonstrate that by using the weighted graph Laplacian, the dynamics 176

of graph neural fields becomes dependent on how metric properties of the graph i.e. 177

on how the graph is embedded in three-dimensional space. If the combinatorial graph 178

Laplacian is used, as done in [9], the dynamics only depends on the topology of the corti- 179

cal mesh and in this sense does not take into account the physical properties of the cortex. 180

181

The presence of fast, long-range connectivity can impact the power spectrum and 182

functional interactions of equilibrium fluctuations, as well as the stability of steady- 183

states. To illustrate this, we add a single non-local edge between nodes 250 and 750 to 184

the one-dimensional graph with h = 10−4m. The Euclidean distance between these two 185

nodes is 500 · h = 5 · 10−2m= 5cm. In the healthy brain, myelination of white-matter 186

fibers allows long-range (cortico-cortical) activity propagation to take place at speeds 187

∼ 200 times greater than local (intra-cortical) propagation [21]. To model myelination, 188

we set the length of the non-local edge to be the Euclidean distance between the nodes, 189

divided by a factor of 200 (similarly to the construction of the human connectome 190

graph Laplacian, where the length of cortico-cortical edges is set to be their path-length 191

distance along DTI fibers, divided by a factor of 200). Therefore, the effective length 192

of the non-local edge is 2.5 · 10−4m. Figure 5 shows the effects of the presence of the 193

non-local edge on the spatial and temporal power spectra of the equilibrium fluctuations. 194

The most pronounced effect is damping of the oscillatory resonance in the temporal 195

power spectrum, thus rendering the fluctuations more stable. Furthermore, the edge 196

leads to a faint but discernible alteration in the functional connectivity (see Panels C 197

and D). 198

199

Interestingly, when the model operates in the pathological i.e. non-stable regime 200

(h = 2 · 10−4m), addition of a single non-local edge stabilizes the steady state, thus 201

leading to healthy equilibrium fluctuations (see Figure 6). The non-local edge also 202

creates a visible increase in the functional connectivity between the nodes involved, and 203

a change in the pattern in neighboring nodes (Panels C and D). As noted above, these 204

significant effects of long-range connectivity are observed if the effective length of the 205

non-local edge is small enough for non-local activity propagation to interact with local 206

activity propagation. For these one-dimensional simulations, this happens if the speed 207

factor is larger than ∼50. 208

209
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Fig 4. Effects of internode spacing on graph neural field dynamics. Panels
A and B show, respectively, the spatial and temporal power spectrum of equilibrium
fluctuations in the one-dimensional graph for internode spacing h = 10−4m. The dotted
black correspond to the theoretical prediction and the red lines are obtained through
numerical simulations. Panels C and D show the model functional connectivity as
obtained, respectively, by analytic predictions and numerical simulations.

Fig 5. Suppression of oscillatory resonance by long-range connectivity.
Panels A and B show, respectively, the spatial and temporal power spectrum of
equilibrium fluctuations in the one-dimensional graph for internode spacing h = 10−4m
after the addition of a non-local edge between nodes 250 and 750. Compare with Figure
4 to note the visible suppression of oscillatory resonance, and the slight change in
functional connectivity engendered by a single non-local edge. The dotted black
correspond to the theoretical prediction and the red lines are obtained through
numerical simulations. Panels C and D show the model functional connectivity as
obtained, respectively, by analytic predictions and numerical simulations.

Fig 6. Abortion of pathological oscillations by long-range connectivity.
Panels A and B show, respectively, the spatial and temporal power spectrum of
equilibrium fluctuations in the one-dimensional graph for internode spacing
h = 2 · 10−4m after the addition of a non-local edge between nodes 250 and 750. Before
the addition, the dynamics was placed in an unstable limit-cycle regime. The dotted
black correspond to the theoretical prediction and the red lines are obtained through
numerical simulations.Panels C and D show the model functional connectivity as
obtained, respectively, by analytic predictions and numerical simulations.
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Application to resting-state functional MRI 210

To illustrate a real-world application of graph neural fields, we implement the stochastic
Wilson-Cowan model on the connectome graph of a single subject, and use it reproduce
the harmonic power spectrum observed in resting-state fMRI data. The harmonic power
spectrum of resting-state fMRI was computed, according to its definition, as the temporal
mean of the squared graph-Fourier transform of the fMRI timecourses. To regularize
the empirical fMRI harmonic power spectrum, we computed its log-log binned median
with 300 bins, following [22]. Eigenmodes above k ∼ 15000 contained artifacts due to
reaching the limits of fMRI spatial resolution, and were thus removed. The model power
spectra were binned in the same way. The parameters of the Wilson-Cowan model were
optimized with a basinhopping procedure, aiming to minimize the residual difference
between observed and predicted spectra. In the fitting, we allowed for a linear rescaling
of the theoretical spectrum so that

HfMRI(k) = βHE(k), (29)

211

where HfMRI(k) is the harmonic power spectrum of the fMRI data, HE(k) is the har- 212

monic power spectrum of the excitatory population in the Wilson-Cowan model, and 213

β is a rescaling parameter. Fig 7 shows the best fitting theoretical harmonic power 214

spectra, together with the empirical fMRI spectrum. The model is able to reproduce the 215

experimental spectrum. The parameters values obtained from the fitting are reported in 216

S2 Table and appear consistent. 217

218

To verify the accuracy of predictions obtained with the connectome-harmonic anal- 219

ysis of spatiotemporal spectra, we implement numerical simulations of the linearized 220

Wilson-Cowan equations on the human connectome graph. Simulations were carried 221

out with a time-step value δt = 10−4s and an observation time of 106 time-steps, 222

corresponding to 100s of simulated brain activity. Figure 8 shows snapshots of the 223

simulated resting-state activity at several different times. Note that the two hemispheric 224

meshes appear physically separate, but inter-hemispheric propagation is allowed through 225

white-matter callosal tracts (not shown in the figure). 226
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Fig 7. Stochastic Wilson-Cowan graph neural field model predicts the
experimental harmonic power spectrum. Shown is the empirically observed
BOLD-fMRI harmonic spectrum (cyan line), together with the theoretical (dotted black
line) and numerical (red line) predictions from the stochastic Wilson-Cowan equations.
The numerical prediction was obtained by taking the median of three independent
simulations.

Fig 8. Measured and simulated resting-state brain activity. Panel A shows
resting-state brain activity, as fluctuations of the BOLD fMRI signal about the mean at
each node. Panel B shows snapshots of activity from the stochastic Wilson-Cowan
equations simulated using the parameters of Table in S2 Table. The model activity was
temporally downsampled to match the TR of fMRI data, and rescaled by

√
β to match

the scale of the BOLD signal. No spatial or temporal smoothings were applied.
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Methods 227

Laplacian operators on graphs 228

In this section we provide a derivation of the weighted graph Laplacian operator in terms 229

of graph differential operators. The weighted graph Laplacian is distinguished from the 230

combinatorial graph Laplacian often used in analysis studies [9], as it allows physical 231

properties of the cortex to be taken into account, which is necessary to implement 232

”realistic” graph neural field models. 233

The combinatorial Laplacian. Consider an undirected graph with n vertices. The
graph’s binary adjacency matrix Ã is defined by

Ãij =

{

1 if i ∼ j
0 otherwise

(30)

234

where i ∼ j means that vertices i and j are connected by an edge. The graph’s degree 235

matrix D̃ is a diagonal matrix whose diagonal entries are defined by 236

237

D̃ii =
n
∑

j=1

Ãij . (31)

238

It hence counts the number of edges for each vertex i. The binary or combinatorial graph 239

Laplacian, denoted by ∆̃, is defined as 240

241

∆̃ = Ã− D̃. (32)

242

The combinatorial graph Laplacian and its normalized version do not carry information 243

about the distances between cortical vertices and therefore are invariant under topological 244

but non-isometric deformations of graph. Neural activity modeled in terms of the 245

combinatorial graph Laplacian therefore is a topological graph invariant, whereas real 246

neural activity does depend on the metric properties of the graph. The combinatorial 247

graph Laplacian, however, can be adjusted so as to take into account the metric properties 248

of the graph, yielding the weighted graph Laplacian. Below, we provide a derivation of 249

the weighted graph Laplacian in terms of the graph directional derivaties of a graph 250

function. 251

The weighted Laplacian. Let f be a graph function i.e. a function defined on the
vertices of a graph and let M be the graph’s distance matrix. Thus, the (i, j)th entry
Mij of M equals the distance between nodes i and j in a particular metric. We note
that for this derivation, it is irrelevant how M is obtained. In the context of connec-
tomes, the elements of M can be defined in terms of suitably scaled Euclidean distances,
geodesic distances over the cortical manifold, or as the lengths of the white matter fibers
connecting the vertices. The first-order graph directional derivative ∂jfi of f at vertex i
in the direction of vertex j is defined as

∂jfi =
Ãij

Mij
(fj − fi), (33)

Note that according to this definition, ∂jfi = 0 if vertex j is not connected to vertex i,
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and that ∂ifi = 0. Also note that ∂j is a linear operator on the vector space of graph

signals. Furthermore, since Ã2
ij = Ãij , the second-order graph directional derivative ∂2

j fi
of f at vertex i in the direction of vertex j is defined as

∂j(∂jfi) = ∂2
j fi =

Ãij

M2
ij

(fi − fj). (34)

Following the definition of the Laplacian operator in Euclidean space as the sum of
second-order partial derivatives, the weighted graph Laplacian, denoted as ∆ is defined as 4

∆fi = −
n
∑

j=1

∂2
j fi. (35)

To see the relation with the combinatorical graph Laplacian, we note that ∆ can be
written in matrix form as

∆ = A−D, (36)

252

where A andD are the weighted adjacency matrix and weighted degree matrix, respectively, 253

which are defined as Aij = Ãij/M
2
ij and Dii =

∑n
j=1 Aij , respectively. Thus, the 254

weighted graph Laplacian can be obtained by using the weighted versions of the adjacency 255

and degree matrices in the definition of the combinatorical graph Laplacian. 256

Convolution of graph signals 257

In order to define graph neural fields, we need to have a graph-theoretical analog of the 258

continuous spatiotemporal convolution (K ⊗ u)(x, t) 259

260

(K ⊗ u)(x, t) =

∫ ∞

−∞

∫ ∞

−∞
K(x− x′, t− t′)u(x′, t′)dx′dt′, (37)

261

To obtain this, we use the convolution theorem to represent the convolution in the 262

spatiotemporal Fourier domain as K̂(k, ω)û(k, ω), where k denotes wavenumber amd ω 263

denotes temporal frequency. When the kernel is real-valued and spatially symmetric, 264

its Fourier transform is real-valued and even in k, so that K̂(k, ω) can be viewed as 265

a function of −k2. To generalize the convolution operator to graphs, we use the fact 266

that −k2 is the eigenvalue of the spatial Fourier basis function eikx under the Laplace 267

operator d2/dx2. Since the Laplace operator on a graph is given by its Laplacian matrix 268

∆, the graph filter corresponding to the spatiotemporal convolution (K ⊗ u)(x, t) can be 269

defined by substituting the eigenvalues of ∆ for the values −k2 in K̂(−k2, ω). 270

The graph Fourier transform. We consider a graph with n vertices and Laplacian 271

matrix ∆, together with an eigendecomposition ∆ = UΛUT , where U is an n × n 272

orthogonal matrix containing an eigenbasis of ∆ in its columns and Λ is the n × n 273

diagonal matrix that contains the corresponding eigenvalues λ1 ≥ λ2 ≥, · · · ,≥ λn ≥ 0 274

on its diagonal. The graph Fourier transform of a function u(t) on the graph is now 275

defined by 276

277

û(t) = UTu(t), (38)

4One could also write ∇ = [∂1, ..., ∂N ] for the ”graph-gradient”, and then define ∆ = −∇ · ∇. The
minus sign arises to maintain the analogy with the continuous Laplacian.

September 9, 2020 17/35

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.08.287110doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.08.287110
http://creativecommons.org/licenses/by/4.0/


278

where the transformation UT expresses u(t) in the eigenbasis of ∆. The vertex-domain 279

signal u(t) can be recovered again by applying the inverse graph Fourier transform 280

U−T = U to û(t). For clarity, note that the graph Fourier transform is not related to the 281

temporal Fourier transform and that u(t) does not have to depend on time to apply it. 282

In particular, for grid graphs (i.e. graphs whose drawing, embedded in some Euclidean 283

space, forms a regular tiling), the graph Fourier transform is equivalent, in the continuum 284

limit, to the spatial Fourier transform in Euclidean space. However, the graph Fourier 285

transform as defined here is a more general concept, since it can be applied to arbitrary 286

nondirected graphs, possibly with non-local edges, such as the human connectome. 287

Filtering of graph signals. Let K(x, t) be a kernel with Fourier transform K̂(−k2, ω) 288

and let u(t) be a graph signal with spatial Fourier transform û(t). We denote the tem- 289

poral Fourier transforms of u(t) and û(t) by u(ω) and û(ω), respectively. We define the 290

graph kernel K̂g associated with the continuous kernel K 291

292

K̂g = diag(K̂(λ1, ω), · · · , K̂(λn, ω)). (39)

293

In the graph Fourier and temporal frequency domains, the filtered signal is hence per 294

definition given by 295

296

ûfilt(ω) = K̂gû(ω) (40)

297

Applying the inverse graph Fourier transform U , we obtain the filtered signal in the 298

graph domain 299

300

ufilt(ω) = UK̂gû(ω) = UK̂gU
Tu(ω) = Kgu(ω), (41)

301

where we have defined Kg = UK̂gU
T , the graph domain representation of the filter. In 302

other words, Kg is the graph filtering operator corresponding to the continuous kernel 303

K. 304

305

The above representations of the kernel and the filtered signal are in the temporal 306

frequency domain. To obtain the corresponding time domain representations, we note 307

that the ith entry of ufilt(ω) is given by 308

309

ufilt
i (ω) =

n
∑

j=1

Ki,j
g (ω)uj(ω), (42)

310

where Ki,j
g (ω) denotes the (i, j)th entry of Kg(ω). Using the convolution theorem, the 311

time domain representation of the filtered signal is 312

313

ufilt
i (t) =

n
∑

j=1

(Kg(i, j)⊗ uj)(t). (43)

314

Collecting the terms for all n entries in a column vector yields the filtered signal in the 315

graph and temporal domain and we write it as (Kg ⊗g u)(t): 316

317

ufilt(t) = (Kg ⊗g u)(t). (44)

318

In case of a purely spatial kernel K(x, t) = K(x), with K(x) symmetric and with spatial 319
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Fourier transform K̂(−k2), the graph kernel K̂g is independent of frequency so that the 320

filtering operator reduces to the frequency-independent linear transformation 321

322

(Kg ⊗g u)(t) = Kgu(t), (45)

323

In case of a purely temporal kernel K(x, t) = gΘ(t), with gΘ(t) = g(t)Θ(t), where g(t) is 324

the temporal kernel, and Θ(t) the Heaviside step function, which ensures that integration 325

is temporally causal. Graph filtering reduces to a temporal convolution: 326

327

(Kg ⊗g u)(t) = (gΘ ⊗ u)(t). (46)

328

Lastly, in case of a separable kernel K(x, t) = w(x)gΘ(t), the graph kernel decomposes 329

as 330

331

K̂g = gΘ(ω)diag(ŵ(λ1), · · · , ŵ(λn)), (47)

332

so that the filtered signal is given by 333

(Kg ⊗g u)(t) = (gΘ ⊗ (Kgu))(t), (48)

In this case, the filtering occurs in two stages: the signal of first spatially filtered by Kg 334

and subsequently temporally filtered by the convolution with gΘ(t). 335

Examples of graph kernels. We have defined spatiotemporal graph kernels for 336

maximal generality, but in practice, spatial kernels are particularly efficient and simple 337

to use, since they reduce to simple linear products in the graph domain. Table 2 lists 338

several commonly used continuous spatial kernels and their equivalent on graphs. The 339

graph Laplacian converges to the Laplacian operator in the continuum limit; therefore 340

on grid graphs (i.e. graphs whose drawing, embedded in some Euclidean space, forms a 341

regular tiling), the graph filters act simply like discretized versions of their continuous 342

counterparts. For example, applying the graph Gaussian kernel to a function defined on 343

a 2-dimensional square-grid graph is equivalent to blurring/smoothing a 2-dimensional 344

image with a spatial Gaussian kernel of the same size, and closed boundary conditions 345

(open boundaries can be implemented by extending the graph beyond the image size, 346

and periodic boundaries by adding edges connecting nodes on opposite sides). More 347

relevantly to the current work, this approach generalizes to arbitrary non-grid graphs, 348

potentially with non-local edges, such as the human connectome, and is therefore more 349

general than grid-based discretizations of continuous convolution kernels. 350

Kernel Euclidean domain Fourier domain K̂g

Gaussian e−x2/2σ2

e−σ2k2/2 eσ
2λk/2

Exponential e−α|x| 1
α2+k2

1
α2−λk

Mexican hat (1− (x/σ)2)e−x2/2σ2

k2e−σ2k2/2 −λke
σ2λk/2

Rectangular rect(ax) sinc
(

k
2πa

)

sinc
(√

−λk

2πa

)

Triangular tri(ax) sinc2
(

k
2πa

)

sinc2
(√

−λk

2πa

)

Table 2. Spatiotemporal convolution kernels in the Euclidean, Fourier, and graph domains. Normalization factors are
omitted. The sampling function sinc is defined as sinc(x) = sin (πx)/(πx).
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Reaction-diffusion neural activity models 351

In this section we show how graph filters can also be used to implement the graph 352

equivalents of neural activity models that can be directly written as partial differential 353

equations [18, 23] and, among others, comprise damped wave and reaction-diffusion 354

equations. 355

356

Consider the following scalar reaction-diffusion model 357

358

Dtu(x, t) =
∂2

∂x2
u(x, t) + σξ(x, t), (49)

359

where Dt denotes a temporal differential operator that describes local reactions, ∂2/∂x2
360

is the diffusion term and σξ(x, t) is an external forcing function. To obtain the corre- 361

sponding graph equation we first transform Eq (49) to the spatiotemporal Fourier domain: 362

363

D(ω)û(k, ω) = −k2û(k, ω) + σξ̂(k, ω), (50)

364

where D(ω) denotes the Fourier transform of D(t), and subsequently solve for û(k, ω): 365

366

û(k, ω) = σK̂(k, ω)ξ̂(k, ω), (51)

367

where the spatiotemporal kernel K̂(k, ω) is given by 368

369

K̂(k, ω) =
1

D(ω) + k2
. (52)

370

The corresponding graph kernel is given by 371

372

K̂g = (D(ω)− Λ)−1, (53)

373

where Λ denotes the diagonal matrix containing the eigenvalues of the weighted graph 374

Laplacian ∆. Applying K̂g to the input gives 375

376

û(ω) = σK̂g ξ̂(ω). (54)

377

Transforming back to the graph-temporal domain to obtain u(t) = σ(Kg ⊗ ξ)(t). To 378

obtain the full system of differential equations, we note that 379

380

(D(ω)− Λ)û(ω) = σξ̂(ω), (55)

381

and transform this equation back to the spatial domain to obtain the following system 382

of ordinary differential equations: 383

384

Dtu(t) = ∆u(t) + σξ(t). (56)

385

This shows that a reaction diffusion equation can directly be defined on a graph by 386

replacing the Laplace operator in continuous space by the weighted graph Laplacian ∆, 387

and solved by computing a suitable graph filter. 388

September 9, 2020 20/35

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.08.287110doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.08.287110
http://creativecommons.org/licenses/by/4.0/


Graph neural fields 389

Continuous neural fields 390

Neural field models describe the dynamics of cortical activity u(x, t) at time t and 391

cortical location x ∈ Ω. Here, Ω ∈ R
3 denotes the cortical manifold embedded in 392

three-dimensional Euclidean space. Depending on the physical interpretation of the 393

state variable u(x, t), neural fields come in two types, which we will refer in the rest 394

of the text as Type 1 and Type 2. This short description is by no means meant to be 395

exhaustive, and only contains the required background to define graph neural fields; 396

comprehensive treatments of continuous neural fields are provided in [18,23]. 397

398

In Type 1 neural fields [18], the state variable u(x, t) describes the average membrane 399

potential at location x and time t. The general form of a neural field model of Type 1 is 400

401

Dtu(x, t) =

∫

Ω

K(d(x, x′))S [u(x′, t)] dx′ + σξ(x, t), (57)

402

where σξ(x, t) is the external input, d(x, x′) is the geodesic distance between cortical 403

locations x and x′, K is the spatial kernel of the neural field that describes how the firing- 404

rate S[u(x′, t)] at location x′ affects the voltage at location x, and S is the firing-rate 405

function that converts voltages to firing-rates. Furthermore, Dt is a temporal differential 406

operator that models the synaptic dynamics. In modelling ongoing cortical activity, 407

ξ(t, x) is usually taken to be a stationary stochastic process. Following earlier studies, 408

we will assume ξ(t, x) to be spatiotemporally white-noise, i.e. 409

410

E [ξ(x, t)ξ(x′, t′] = δxx′δtt′ , (58)

411

where E denotes expectation value and δaa′ is the Dirac delta function, which is defined 412

by δaa′ = 1 if a = a′ and zero otherwise. Note that in principle, colored noise could 413

be used as well. The distance function d(x, x′) between cortical locations x and x′ as 414

well as the integration over the cortical manifold Ω assume that Ω is equipped with a 415

Riemannian metric. A natural metric is the Euclidean metric induced by the embedding 416

of the cortical manifold in three-dimensional Euclidean space. 417

418

In Type 2 neural field models [24,25], the state variable u(x, t) denotes the fraction of 419

active cells in a local cell population at location x and time t and hence takes values in 420

the interval [0, 1]. Type 2 neural field models have the form 421

422

Dtu(x, t) = S

[∫

Ω

K(d(x, x′))u(x′, t)dx′
]

+ σξ(x, t), (59)

423

where S denotes the activation function that maps fractions to fractions and hence takes 424

values in the interval [0, 1] and thus has a different interpretation than the firing-rate 425

function in Type 1 neural field models. Note that the only difference between Type 426

1 and Type 2 neural field models is the placement of the non-linear function S. Most 427

neural field models used in practice are obtained by coupling two or more field models, 428

where each model corresponds to a different neural population. For example, the state 429

variable of the Wilson-Cowan neural field model is two-dimensional and its components 430

correspond to excitatory and inhibitory neural populations. In the rest of the text, we 431

will assume that K is normalized to have unit surface area. 432

433

In theoretical studies on neural field models, the cortex is usually assumed to be 434

flat:, i.e. Ω = R
2 (cortical sheet) or Ω = R

1 (cortical line) or a closed subset thereof. 435
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The major simplification that occurs in this case is that the cortical metric reduces to 436

the Euclidean metric: 437

438

d(x, x′) = ||x− x′||, (60)

439

and, as a consequence, the integrals in Eq (57) and (59) reduce to convolutions so that 440

Fourier methods can be used in the models’ analysis (however, see [27] for a detailed 441

theoretical study of a neural field model on the sphere). Note that in Euclidean space, 442

the kernel K is symmetric, i.e. K(−x) = K(x) for all x ∈ R. The definition of graph 443

neural fields as given in Section Graph neural fields relies on this fact as well. For ease 444

of notation, below we set Ω = R
1 so that d(x, x′) = |x − x′|. Note that the double 445

integrals in Eq (57) and (59) can be written as convolutions, and hence it will be 446

possible to implement them on graphs using the previously derived definitions of graph 447

spatiotemporal convolutions. 448

Graph neural fields 449

Neural fields given by Eq (57) and (59) can be defined on an arbitrary graph by replacing 450

the spatial filter K by its graph-equivalent Kg as defined in Section Convolution of graph 451

signals. Thus, a graph neural field of Type 1 is a model of the form 452

453

Dtu(t) = KgS[u(t)] + σξ(t), (61)

454

and 455

456

Dtu(t) = S [Kgu(t)] + σξ(t), (62)

457

where u(t) and ξ(t) are graph functions. Thus, the graph-theoretical analogs of the 458

continuous neural fields given by Eq (57) and (59) are ordinary differential equations. 459

When more than one type of neural population is included or when the differential 460

operator Dt is of order higher than one, the continuous neural fields reduce to systems 461

of ordinary differential equations. 462

463

The continuous neural fields in Eq (57) and (59) are described by partial integro- 464

differential equations in which the integration in done over space. They can also be 465

described by spatiotemporal integral equations by viewing the differential operator as a 466

temporal integral, which leads to a more general class of continuous neural fields. Using 467

the spatiotemporal convolution on graphs, this more general class of neural fields can 468

be formulated on graphs leading to a systems of temporal integral equations. To make 469

this explicit, we use the definition of the spatiotemporal graph filtering operator Kg⊗ to 470

write out the ith component of ui: 471

472

ui(t) =

∫ ∞

−∞





n
∑

j=1

Kij
g (s)S[uj(t− s)]



 ds+ σ

∫ t

−∞
ξi(t

′)dt′. (63)

473

Thus, the spatiotemporal integrals in continuous neural fields are replaced by temporal 474

integrals in graph neural fields and the spatial structure of the continuous neural field 475

is incorporated into the graph kernels Kij
g . The same applies to neural fields of Type 476

2. Furthermore, for continuous neural fields of Type 1 with separable kernels, and for 477

special choices of the temporal component of the kernel, the spatiotemporal integral 478

equation can be reduced to a partial integro-differential equation [23, 26]. For graph 479
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neural fields there exists an equivalent subset of models that can be represented by a 480

system of ordinary integro-differential equations. 481

482

In case of a purely spatial kernel K(x, t) = w(x) we obtain the following systems 483

of ordinary differential equations: 484

485

Dtu(t) = KgS[u(t)] + σξ(t), (64)

486

and 487

488

Dtu(t) = S [(Kgug)(t)] + σξ(t), (65)

489

respectively, and in case of a purely temporal kernel K(x, t) = gΘ(x) we obtain the 490

following systems of ordinary differential equations: 491

492

Dtu(t) = (gΘ ⊗g S[u])(t) + σξ(t), (66)

493

and 494

495

Dtu(t) = S [(gΘ ⊗g u)(t)] + (67)

496

respectively. In case of a separable kernel K(x, t) = w(x)gΘ(t) we obtain the following 497

systems of ordinary differential equations: 498

499

Dtu(t) = (gΘ ⊗g KgS[u])(t) + σξ(t), (68)

500

and 501

502

Dtu(t) = S [(gΘ ⊗g Kgu)(t)] + σξ(t), (69)

503

respectively. 504

Relating graph neural fields to experimental observables 505

Connectome-harmonic analysis of spatiotemporal spectra (CHAOSS) 506

To characterize the spatiotemporal statistics of resting-state brain dynamics, we derive
analytic predictions for harmonic and temporal spectra and functional connectivity
matrices. The derivation relies on the fact that, for space-independent parameters, lin-
earized graph neural field equations decouple in the graph Fourier domain5. Each of the
n graph Laplacian eigenmodes behaves independently like the following N -dimensional
linear system, where N is the number of neuronal population types (N = 2 for the
Wilson-Cowan model):

Dtûk(t) = Jkûk(t) +
√
Bξ̂k(t), (70)

5Alternatively, for the case of space-dependent parameters, observables may be computed from
numerical simulations
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where ξk(t) is an N -dimensional uncorrelated white noise, B is an N -dimensional diago-
nal matrix containing the noise intensity of the N neural populations, Dt is a temporal
differential operator, and Jk is the Jacobian of the kth eigenmode. Taking the temporal
Fourier transform we obtain

ûk(ω) = [D(ω)− Jk]
−1

√
Bξ̂k(ω), (71)

where D(ω) denotes the temporal Fourier transform of Dt. Abbreviating the graph fil-
ter K̂g = [D(ω)−Jk]

−1, the cross-spectral matrix Sk(ω) of the k
th eigenmode is given by:

Sk(ω) = E[ûk(ω)ûk(ω)
†] = K̂g

√
BE[ξ̂k(ω)ξ̂k(ω)

†]
√
BK̂†

g = K̂gBK̂†
g , (72)

where, † denotes the conjugate transpose and E denotes the expected value. Colored noise
can be modeled by letting B depend on ω, although this is usually not done in neural field
modelling studies. Another possible generalization is to let B depend on the eigenmode k.

Eq (72) gives a closed-form expression for the N -dimensional cross-spectral matrix
of the kth eigenmode, where N is the number of neuronal populations in the model.
Hence, its diagonal entries [Sk(ω)]pp, p = 0, ..., N − 1 describe the power of the pth

neuronal population in the kth eigenmode, at temporal frequency ω. The temporal power
spectrum Tp(ω) of the p

th neuronal population is obtained by summing over eigenmodes:

Tp(ω) = 2
n
∑

k=1

[Sk(ω)]pp, (73)

Where the factor of 2 arises because on graphs, k ranges only over positive integers
between 1 and n (n is the number of eigenmodes). Similarly, the harmonic power spec-
trum of the pth neuronal population Hp(k) is obtained by integrating over the temporal
frequency ω:

Hp(k) =
1

2π

∫ +∞

−∞
[Sk(ω)]ppdω, (74)

507

where 1/2π is a normalization constant. When combined with a suitable observation 508

model, these predictions can be compared with or fitted to experimental data from 509

different neuroimaging modalities. 510

Functional connectivity Furthermore, it is possible to compute the correlation ma-
trix of brain activity for each neuronal population. To construct the covariance matrix
of a neuronal population activity Σp across all graph vertices, we first construct the

covariance matrix Σ̂p in the graph Fourier domain. Because of the independence of
eigenmodes, the covariance matrix of the pth population (at lag zero) in the graph
Fourier domain Σ̂p is a diagonal matrix with the elements along the diagonal being the
values of the spatial power spectrum.

Σ̂p = Diag(Hp(k)) (75)
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The covariance matrix across all vertices is obtained by transforming back to the vertex
domain:

Σp = U Σ̂pU
T (76)

The functional connectivity (correlation) matrix Fp, which is often used in fMRI resting-
state studies, is obtained by normalizing the covariance matrix

Fp = (Σ+
p )

−1/2Σp(Σ
+
p )

−1/2, (77)

511

where Σ+
p denotes Σp with all off-diagonal entries set to zero. Seed-based connectivity 512

of the jth node is measured by the jth row (or column) of Fp. 513

Coherence matrix From the linearized model equations one can also derive the
coherence matrix, which measures the strength and latency of linear interactions between
pairs of vertices as a function of frequency ω and is often used in EEG and MEG
studies [28]. If the noise is assumed to be white, non-linear connectivity measures such
as the phase-locking value and amplitude correlations can be analytically computed from
the coherence matrix [29]. For simplicity we derive the coherence matrix for the special
case of a single population and note that the generalization to multiple populations is
straightforward.

The derivation of the coherence matrix is similar to that of the functional connec-
tivity, and starts by expressing the linearized model equations in the vertex domain:

Dtu(t) = Ju(t) +
√
Bξ̂(t), (78)

where the n-dimensional matrix J denotes the Jacobian matrix in the vertex-domain.
Transforming Eq. (78) to the temporal Fourier domain and taking expectations yields
the cross-spectral matrix Sv(ω) in the vertex domain:

Sv(ω) = E[u(ω)u(ω)†] = KgBK†
g , (79)

where Kg = [D(ω)− J ]
−1

. The coherence matrix C(ω) is obtained by normalization of
the cross-spectral matrix in the vertex domain:

C(ω) = (S+
v (ω))−1/2Sv(ω)(S

+
v (ω))−1/2, (80)

514

where S+
v (ω)) denotes Sv(ω) with its off-diagonal entries to zero. The (i, j)th entry of 515

C(ω) is the coherence between the cortical activity at vertex i and j. 516
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Anatomical and functional data 517

We use the same structural MRI and DTI data as in [9], obtained from the Human 518

Connectome Project (https://db.humanconnectome.org/) to construct the anatomical 519

connectome graph of a single subject. In short, MRI data is employed to obtain 520

intra-cortical graph edges based on the surface mesh; DTI data is employed to add 521

long-range cortico-cortical edges to the graph. The main difference with [9] is that 522

instead of constructing the combinatorial (binary) graph Laplacian, here we construct a 523

distance-weighted graph Laplacian. This allows us to take into account physical distance 524

properties of the cortex that are relevant for graph neural fields, and that are otherwise 525

lost. Specifically, intra-cortical edges are weighed by they 3D Euclidean distance; white 526

matter edges are weighed by the distance along the respective DTI fiber path, divided 527

by a factor of 200. This value is chosen to reflect the myelination of white matter 528

fibers, which is known to allow cortico-cortical activity to propagate at speeds ∼ 200 529

times greater in comparison with intra-cortical propagation [21]. Resting-state BOLD 530

fMRI timecourses of the subject were minimally preprocessed (coregistration, motion 531

correction), resampled on the subject connectome graph, and demeaned. 532

Spatiotemporal observables in numerical simulations 533

In numerical simulations, the spatial power spectrum is obtained following its standard 534

definition, as the temporal mean of the squared graph Fourier transform of activity 535

fluctuations about a steady state. The temporal power spectrum is estimated with the 536

periodogram method, as implemented in the Scipy Python package. The correlation 537

matrix is obtained by normalizing the covariance matrix of excitatory activity, which 538

was itself estimated with the Numpy Python package. 539

Code repository 540

All code used for analysis and simulations is available for use and review at 541

https://github.com/marcoaqil/Graph-Stochastic-Wilson-Cowan-Model 542
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Discussion 543

In this work, we have presented a general approach to whole-brain neural activity 544

modelling on unparcellated connectomes (graph neural fields), by combining tools from 545

graph signal processing and neural field equations. We developed a technique to compute 546

spatiotemporal observables (CHAOSS), and showed that a Wilson-Cowan stochastic 547

graph neural field model can reproduce the empirically observed harmonic spectrum of 548

resting-state BOLD signal fluctuations. Graph neural fields can address some limitations 549

of existing modelling frameworks, and therefore represent a complementary approach 550

resulting particularly suitable for mesoscopic-scale modelling and connectome-graph- 551

based analyses. To discuss advantages and limitations of our approach, it is useful to 552

contextualize it within the existing landscape of whole-brain models. 553

554

Existing whole-brain models can be broadly divided into two classes, according to 555

whether they incorporate short-range intracortical connectivity or not. Region-based 556

models only take into account long-range connectivity between dozens or few hundreds 557

of macroscopic ROIs, whereas surface-based models directly incorporate short-range 558

intra-cortical connectivity as well [26, 30]. It is furthermore possible to distinguish 559

between discrete and continuous surface-based models. Discrete surface-based mod- 560

els are defined on a (highly-sampled) cortex and are therefore finite-dimensional. In 561

several studies, region-based and discrete surface-based models are collectively referred 562

to as networks of neural masses [17,31,32]. Continuous surface-based models are bet- 563

ter known as neural field models and are defined on the entire cortex and are thus 564

infinite-dimensional [23, 26, 33]. Mathematically, discrete surface-based models are finite- 565

dimensional systems of ordinary differential equations, whereas neural field models are 566

partial integro-differential equations. 567

568

Region-based models are constructed by parcellating the cortex into a number of regions- 569

of-interest (ROIs), placing a local model in each ROI, and connecting them according 570

to a given connectome (see [2, 17, 32] for reviews). The ROIs are usually obtained from 571

structural or functional cortical atlases and the number of ROIs is in the order of a 572

hundred or less. Connectome-based mass models are characterized by the type of local 573

models and how they are connected i.e. if the connections are weighted or not, excitatory 574

or inhibitory, and if transmission delays are incorporated. A wide variety of local models 575

has been used in the literature, including neural mass models, self-sustained oscilla- 576

tors, chaotic deterministic systems, circuits of spiking neurons, normal-form bifurcation 577

models, rate models, and density models [2, 17,33]. Region-based models have proven 578

valuable in understanding varies aspects of large-scale cortical dynamics and their roles 579

in cognitive and perceptual processing, but they are limited in one important respect: 580

they do not allow studying the spatiotemporal organization of cortical activity on scales 581

smaller than several squared centimeters and their effects on large-scale pattern formation. 582

This is due to the fact that the dynamics within ROIs are modeled by a single model 583

without spatial extent. This prevents studying the mechanisms underlying a large class 584

of cortical activity patterns that have been observed in experiments, including traveling 585

and spiral waves, sink-source-dynamics as well as their role in shaping macroscopic 586

dynamics. This is a significant limitation, particularly because the role of mesoscopic 587

spatiotemporal dynamics in cognitive and perceptual processing is increasingly being 588

recognized and experimentally studied [34,35]. Graph neural fields present the advantage 589

of allowing explicit modelling of activity propagation dynamics with spatiotemporal 590

convolutions and graph differential equations on mesoscopic-resolution connectomes, 591

thereby overcoming this limitation. 592

593

Whole-brain models that incorporate short-range connectivity are referred to as surface- 594
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based because they can are defined either on high-resolution surface-based representations 595

of the cortex [30, 36, 37] or on the entire cortex viewed as a continuous medium. We 596

will refer to these types of models as discrete and continuous surface-based models, the 597

latter of which are known as neural field models [23, 26,38,39]. Numerically simulating 598

discrete surface-based models is much more computationally demanding than simulating 599

region-based models as the former typically have dimensions that are one to two orders 600

higher than those of the latter. Numerically simulating neural field models is even more 601

demanding and requires heavy numerical integration in combination with advanced 602

analytical techniques [40]. Moreover, simulating neural field models requires special 603

preparation of cortical meshes to ensure accuracy and numerical stability. [36, 37, 41–43]. 604

In this context, graph neural fields have the advantage of being implementable na- 605

tively on multimodal structural connectomes obtained from MRI and DTI, thereby 606

minimizing anatomical approximations. Graph neural fields can naturally take into 607

account important physical properties such as cortical folding, hemispheric asymmetries, 608

non-homogeneous structural connectivity, and white matter projections, with a minimal 609

amount of computational power. Furthermore, the cortex in graph neural field need not 610

be a flat or spherical bidimensional manifold. The approach can be straightforwardly 611

extended to include cortical thickness, allowing activity to propagate not only tangen- 612

tially, but also perpendicularly to the cortical surface. Cortical layers can already be 613

distinguished with high-field and ultra-high field functional fMRI, and are thought to 614

subserve different functions [44]. The ability of graph neural fields to account for cortical 615

thickness in dynamical models of neural activity is therefore a promising property for 616

future development [45]. 617

618

Our approach presents several limitations. First, some of the analytic results pre- 619

sented here (CHAOSS) rely on the model parameters being space-independent, that 620

is the model parameters are assumed to be the same throughout the cortex. This 621

assumption has the advantage of allowing mathematical analyses that, unlike numerical 622

simulations, are virtually ”infinitely” scalable with little computational cost, and was 623

also used in previous studies of continuous neural fields [18]. However, there are more 624

biophysically realistic models that require space-dependent parameters. For example, 625

some recent neural mass network models incorporate neuronal receptors and their den- 626

sities, which are known to vary across the cortex [46–48]. There are several ways in 627

which it might be possible to overcome this limitation. We remark that it is only our 628

analytic approach that requires space-independent parameters; numerical simulations of 629

graph neural fields could be carried out also with space-dependent parameters (of course, 630

such simulations would be more computationally demanding than their counterparts 631

with space-independent parameters). To preserve analytic tractability while characteriz- 632

ing regional differences, one could attempt to absorb all the relevant space-dependent 633

information into the graph Laplacian. Similarly to the idea of differentially weighing 634

white matter edges to account for myelination, one might weigh differentially graph 635

edges within specific ROIs or specific subsets of vertices. A hybrid approach of space- 636

dependent numerical simulations and space-independent analysis (by averaging values 637

of space-dependent parameters) could be another way to address this issue. Second, 638

we have restricted our approach to spatially symmetric kernels. In some special cases, 639

asymmetric kernels may be practically obtained by introducing suitable asymmetries in 640

the graph edges. For example, consider a grid graph in two dimensions, with additional 641

edges connecting bottom-left and top-right vertices of each square in the grid. Because 642

of the broken lattice symmetry, a Gaussian kernel on this non-grid graph will behave 643

like a spatially elliptic Gaussian, angled at 45 degrees. This is analogous to modelling a 644

spatially asymmetric diffusion process on the graph. Third, another limitation is the use 645

of an undirected and time-independent connectome graph. For maximal generality and 646
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biophysical realism, one might want to study a directed, or even time-dependent (plastic) 647

structural connectome: it is not clear at present if and how this could be implemented 648

in the framework of graph neural fields. 649

650

Immediate applications of graph neural fields can be found in the comparison of harmonic 651

spectra, functional connectivity and coherence matrix with single-subject empirical data 652

obtained from different neuroimaging modalities such as fMRI and MEG, as well as 653

different conditions, for example health, pathology, and neuropharmacologically altered 654

states of consciousness [22]. For example, investigating the effects of a reduced myelina- 655

tion speed factor, or pruned white-matter fibers, could be an interesting approach to 656

modelling the effects of pathological or age-related structural alterations on the dynamics 657

of functional activity. Other applications include the implementation of more biophysi- 658

cally realistic models, potentially including space-dependent parameters, and the use of a 659

cortical connectome that includes cortical thickness, accounting for activity propagation 660

across layers perpendicularly to the surface. Aside from whole-brain modelling, graph 661

neural fields may also be used for modelling specific ROIs and stimulus-evoked brain 662

activity. In particular, because of the known retinotopic mapping between visual stimuli 663

and neural activity, the visual cortex presents itself as a very interesting ROI for such 664

developments [49]. Moving beyond neural populations and even the human brain, we 665

note that the graph Laplacian may also be used to implement single-neuron models 666

directly on the full connectome graphs of simple organisms, such as C. Elegans, whose 667

connectome has been experimentally mapped at the single-neuron level. 668

Conclusion 669

In this study we described a class of whole-brain neural activity models which we refer 670

to as graph neural fields, and showed that they can be used to investigate properties of 671

brain activity measured with neuroimaging methods. The formulation of graph neural 672

fields relies on existing concepts from the field of graph signal processing, namely the 673

graph Laplacian operator and graph filtering, and modelling concepts such as neural 674

field equations. This framework allows inclusion of realistic anatomical features, analytic 675

predictions of harmonic-temporal power spectra, correlation, and coherence matrices 676

(CHAOSS), and efficient numerical simulations. We illustrated the practical use of the 677

framework by reproducing the harmonic spectrum of resting-state BOLD fMRI with 678

a stochastic Wilson-Cowan graph neural field model. Future work could build on the 679

methods and results presented here, both from theoretical and applied standpoints. 680

September 9, 2020 29/35

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.08.287110doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.08.287110
http://creativecommons.org/licenses/by/4.0/


Supporting information 681

S1 Table Parameter set for 1D analysis and simulations. This parameter set 682

was obtained by a qualitative comparison of the Wilson-Cowan model’s harmonic and 683

temporal spectra with empirical data, and used to illustrate how graph properties affect 684

neural field dynamics in one dimension.

Parameter Value Units (S.I)
τE 2.415 · 10−1 s
τI 5.227 · 10−1 s
σEE 4.577 · 10−3 m
σIE 1.704 · 10−3 m
σEI 9.377 · 10−3 m
σII 2.239 · 10−1 m
dE 102 -
dI 9.430 -
αEE 6.886 · 102 -
αIE 7.903 · 102 -
αEI 9.972 · 102 -
αII 1.223 · 102 -
P 3.824 -
Q 7.120 -
σ 10−7 -

685

S2 Table Parameter set for connectome-wide analysis and simulations. This 686

parameter set was obtained by quantiatively fitting the Wilson-Cowan model’s harmonic 687

power spectrum to that of resting-state fMRI data, and used for all connectome-wide 688

analysis and numerical simulations.

Parameter Value Units (S.I)
τE 2.024 · 10−1 s
τI 2.346 · 10−1 s
σEE 1.611 · 10−2 m
σIE 2.022 · 10−3 m
σEI 6.698 · 10−2 m
σII 9.149 · 10−2 m
dE 2.718 · 101 -
dI 1.240 -
αEE 1.487 · 102 -
αIE 2.191 · 102 -
αEI 2.620 · 102 -
αII 1.614 · 102 -
P 2.235 · 101 -
Q 8.450 -
σ 10−7 -

689

S3 Fig. Spatial convolutions on 1-dimensional graphs. To illustrate spatial 690

convolution on graphs, we apply different spatial convolution filters from Table 2 to 691

an impulse function centered on the mid-node of a one-dimensional grid-graph with 692

spacing h = 1 units. The resulting functions, normalized to have unit amplitude, show 693
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the shapes of the graph kernels. Note that the rectangular kernel convolution operator 694

in Panel (E) exhibits the Gibbs phenomenon [50], which is a known feature of finite 695

Fourier representations of functions with jump discontinuities. Solutions to this problem 696

have been offered [51], but they are beyond the scope of the current work. Thus, we 697

suggest avoiding spatial kernels with jump discontinuities in the context of graph neural 698

fields. As a side remark, we also note that for large datasets (for example natural 699

images databases), it might be computationally advantageous to apply convolutions with 700

symmetric kernels through graph filters, rather than with standard discrete convolution 701

methods. Spatial convolutions on graphs become linear matrix-vector products, which 702

are highly optimized and easily parallelizable operations; the bulk of the computational 703

cost for graph convolutions consists in the initial computation of the filter itself, which 704

has to be performed only once per kernel.

705
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