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Abstract

Motivation: Peptide-protein interactions between a smaller or dis-
ordered peptide stretch and a folded receptor make up a large part of
all protein-protein interactions. A common approach for modelling such
interactions is to exhaustively sample the conformational space by fast-
fourier-transform docking, and then refine a top percentage of decoys.
Commonly, methods capable of ranking the decoys for selection in short
enough time for larger scale studies rely on first-principle energy terms
such as electrostatics, Van der Waals forces, or on pre-calculated statisti-
cal pairwise potentials.
Results: We present InterPepRank for peptide-protein complex scoring
and ranking. InterPepRank is a machine-learning based method which
encodes the structure of the complex as a graph; with physical pairwise
interactions as edges and evolutionary and sequence features as nodes.
The graph-network is trained to predict the LRMSD of decoys by us-
ing edge-conditioned graph convolutions on a large set of peptide-protein
complex decoys. InterPepRank is tested on a massive independent test set
with no targets sharing CATH annotation nor 30% sequence identity with
any target in training or validation data. On this set, InterPepRank has
a median AUC of 0.86 for finding coarse peptide-protein complexes with
LRMSD<4Å. This is an improvement compared to other state-of-the-art
ranking methods that have a median AUC of circa 0.69. When included
as selection-method for selecting decoys for refinement in a previously es-
tablished peptide docking pipeline, InterPepRank improves the number of
Medium and High quality models produced by 80% and 40%, respectively.
Availability: The program is available from: http://wallnerlab.org/InterPepRank
Contact: Björn Wallner bjorn.wallner@liu.se
Supplementary information: Supplementary data are available at
BioRxiv online.

1 Introduction

Interactions between a short stretch of amino acid residues and a larger
protein receptor, referred to as peptide-protein interactions, make up ap-
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proximately 15-40% of all inter-protein interactions (Petsalaki and Rus-
sell, 2008), and are involved in regulating vital biological processes (Midic
et al., 2009; Tu et al., 2015). These short peptide stretches are often
disordered when unbound or part of larger disordered regions (Petsalaki
and Russell, 2008; Neduva, Victor et al., 2005). Because of their inherent
flexibility predicting peptide-protein interaction complexes is difficult.

However, since the peptide ligand is a smaller molecule, it is possible to
exhaustively sample the binding space by Fast-Fourier Transform docking
(FFT-docking). Classically, this requires a close to correct rigid receptor
and ligand, but as shown in Alam et al. 2017, a set of poses derived from
protein fragments with sequence similar to the peptide can consistently
produce conformations near the native bound conformation. While the
strength of FFT-docking is the exhaustive search of docking space, the
problem, as we will show, is that the energy function is a limited approxi-
mation of the binding affinity, and thus even though the method samples
many near-native decoys it often fails to separate them from poor decoys.
Additionally, rigid-body docking needs to be followed up with much more
computationally expensive refinement to reliably produce native contacts
and binding modes.

A workflow previously shown to be successful is to rescore and re-
fine promising decoys using a more advanced energy-function, such as
Rosetta (Raveh et al., 2010). Indeed, previous works have shown great
success in the peptide-protein docking area by combining FFT-based dock-
ing with Rosetta refinement (Alam et al., 2017). However, because of the
computational cost in running refinement, only a tiny subset if the FFT-
generated decoys can be used. This selection is based on the energy func-
tion of the FFT method, resulting in unnecessary refinement of several
decoys unsalvageable by the refinement protocol.

An improvement to this approach would be to run all decoys through
a fast and accurate re-scoring algorithm to select decoys for refinement,
rather than relying on energy functions constrained to FFT-compatibility.
Many methods have been developed for the rescoring of protein-protein
complexes, some examples include: PyDock evaluates decoys based on
pairwise electrostatic potentials and desolvation energy (Pallara et al.,
2017; Cheng et al., 2007). Zrank and Zrank2 utilizes van der Waals in
excess of electrostatics and desolvation (Pierce and Weng, 2007, 2008).
OPUS-PSP uses orientation-dependent packing and knowledge-based re-
pulsive energy (Lu et al., 2008). SIPPER uses statistical residue-pair
potentials derived from a curated interaction-set (Pons et al., 2011). How-
ever, most rescoring methods for docked complexes are not optimized for
the peptide-protein problem, and to the best of our knowledge still rely
on either physics-based manually defined energy-functions, or knowledge-
based and empirically tested energy-function approximations, that do
not take evolutionary information of the target into account. More ad-
vanced methods using machine learning, like ProQDock (Basu and Wall-
ner, 2016), have running times unfeasible for application on a large set of
decoys and are better suited for evaluating a small set of refined models.

Within structural bioinformatics, Graph Convolutional Networks (GCNs)
have seen increased use recently through applications such as PipGCN
which uses a pairwise classification architecture and evolutional features
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to predict protein-protein binding sites (Fout et al., 2017), the GCN of
(Gligorijevic et al., 2019) which feeds pre-trained LSTM sequence feature
extraction to a graph network to classify protein function, EGCN which
uses edge-based graph convolutions to score protein-protein complexes
with the use of simple features such as side-chain charge and hydropho-
bicity (Cao and Shen, 2019), and GCNN of (Zamora-Resendiz and Crivelli,
2019) which encodes spatial information into the residue-nodes to classify
proteins. A Graph Convolutional Network eschews the spatial limitations
of a classic convolutional network and allows for the direct definition of
spatial relationships on a case-by-case basis. It passes information along
pre-defined edges between nodes rather than by proximity in the input-
matrix, while still allowing for complex information, such as evolutionary
information, to be encoded in the nodes.

In this work, we present a fast, novel, rescoring algorithm utilizing
GCNs to represent the peptide-protein complex with the added context
of evolutionary information. The GCNs is capable of quickly sift through
and rank the complete space of conformations generated by FFT-methods
and improving the selection of decoys for subsequent refinement.

2 Materials and Methods

2.1 IPD0220 Dataset

A set of 6,857 interacting peptide-protein pairs taken from the PDB
(Berman et al., 2000) at 15/10/2018 was redundancy reduced by 30%
sequence identity down to 687 pairs. In this case, a peptide-protein in-
teraction is defined as a peptide of 25 or fewer residues sharing a contact
surface of at least 400Å2 with a receptor of 50 residues or more. The
full dataset of 687 pairs was further randomly divided into partial sets
of circa 50 pairs each, with the requirement that no receptor in any of
these sets could share a CATH superfamily annotation (Dawson et al.,
2017) with any receptor from any other of the sets. In the case a recep-
tor lacked CATH annotation, it was aligned to all other receptors with
TM-align (Zhang and Skolnick, 2005) and classified as similar if it had a
TM-score>0.4.

One of the sets was randomly selected as a validation set. The remain-
ing 13 sets were all used for testing in a jack-knifing-like scheme with a
unique training set generated for each test set. The network parameters
and architecture was optimized on the validation set once, while early
stopping was performed with the help of the validation set for all tests.

The complete data set is published available here (Johansson-Åkhe
et al., 2020b)

2.1.1 Test and Validation Set Generation

To achieve more variety and difficulty in the sets, peptide conformations
were generated rather than using the native conformations alone. For
each target of each of the test and validation sets, 50 different peptide
conformations were generated using the Rosetta fragment-picker (Gront
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et al., 2011). Each of these conformations were exhaustively docked on the
surface of their receptors by PIPER using FFT-docking (Kozakov et al.,
2006), generating 70,000 decoys for each conformation for each target in
the sets, in total close to 2.5 billion (70,000x50x687) decoys. To enable
rapid method development, only a random subset 2,500 decoys per target
were used in the validation.

To ensure that each of the validation and test sets represent the total
dataset, the distribution of LRMSD of all decoys for each set were com-
pared with Kolmogorov-Smirnov test to the distribution of all data not in
the set. These tests showed that the sets could not be said to represent
different distributions (P>0.37).

2.1.2 Training Set Generation

A unique training set was constructed for each test set, to allow a broad
variety in training decoys while simultaneously ensuring the method was
never trained on examples too similar to what it was tested on. When
testing on one of the test sets, each of the original non-redundancy re-
duced 6,587 peptide-protein pairs which did not share a CATH annotation
nor 30% sequence identity with the test set in question nor the valida-
tion set were used for training. For each of these, peptide conformations
were generated as for the test and validation sets, but 4,375 decoys for
each conformation were used rather than 70,000. A balanced dataset was
achieved by only permitting each target to contribute as many incorrect
decoys as it could contribute correct decoys (definition of a correct decoy
can be found in the Metrics section below). Additionally, to avoid bias,
the number of decoys which was included in the finalized training sets by
each CATH superfamily was limited by the median number of decoys each
CATH superfamily could contribute, resulting in each peptide-protein pair
contributing on average 426 decoys, divided equally between correct and
incorrect decoys. This resulted in the number of decoys in each unique
training set totaling on average 1,048,386.

2.1.3 Expanded Analysis set

One of the test-sets was randomly selected as an Expanded Analysis set
for running extra analysis and refinement on. This allows for the use
of computationally slow refinement methods to test the final impact the
methods in this paper can have on full docking protocols, and addition-
ally allows for comparison to relatively slow re-scoring methods such as
pyDock3.

2.2 Metrics

Several different metrics are used to evaluate the performance of Inter-
PepRank and other methods benchmarked.
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Model Quality LRMSD iRMSD fnat

Acceptable < 5.0 Å < 2.0 Å > 0.2
Medium < 2.0 Å < 1.0 Å > 0.5
High < 1.0 Å < 0.5 Å > 0.8

Table 1: CAPRI criteria for peptide-protein docked model quality (Lensink
et al., 2017). iRMSD is the root mean square deviation of residues at the native
interface. Fnat is the fraction native residue-residue contacts recalled. A model
which is at least High quality will also be at least Medium and Acceptable
quality, like a Medium quality model will also be at least Acceptable quality.

2.2.1 Metrics for Rigid-Body-Docked decoys - Correct De-

coys

In the perspective of ranking rigid-body-docked decoys, a decoy is defined
as correct if it has the peptide positioned within 4.0Å ligand root-mean
square deviation (LRMSD) of the native conformation. This limit was
selected both as it is within the reported limit of when the Rosetta Flex-
PepDock refinement protocol can reliably refine decoys to sub-Ångström
precision (Raveh et al., 2010), and since it is below the CAPRI limit for
an acceptable prediction of a docked peptide-protein complex (Lensink
et al., 2017).

Since the goal of the method presented herein is not to produce fi-
nal high-quality predictions, but rather to select which rigid-body-docked
decoys are worth refining, a higher cutoff than the sub-Ångström high-
quality model cutoff was selected.

2.2.2 Metrics for Refined Models - Acceptable, Medium,

High

Later in the paper, the quality of models refined from the rigid-body-
docked decoys by the Rosetta FlexPepDock refinement is discussed. In
this case, molecular details of interaction and sub-Ångström positioning
of the peptide becomes relevant, and the more lax definition of a correct
decoy established earlier needs to be supplemented. The CAPRI standard
for assessing refined peptide-protein docked complexes can be found in
Table 1.

2.2.3 ROC

A receiving operand characteristic-curve (ROC-curve) measures how two
metrics change in relation to each-other, here False Positive Rate (FPR)
and True Positive Rate (TPR), as the threshold for scoring is varied.

False Positive Rate is defined as:

FPR =
FP

N

where FP is the number of decoys incorrectly identified as correct and
N is the total number of incorrect decoys in the set.
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True Positive Rate is defined as:

TPR =
TP

P

where TP is the number of correctly identified correct decoys and P

is the total number of correct decoys in the set.

2.3 Representation and Architecture

2.3.1 Decoy Representation

The graph network utilizes edge-conditioned graph convolutions, where
the input is a set of nodes, each one described by a set of input features,
as well as edges of different types between nodes. In this case, nodes rep-
resent individual residues of a decoy and edges denote different types of
interactions between couples of residues. In this study, the node features
used were Amino Acid Code (one-hot encoded, 21 values to account for
unknown residues), a Position-Specific Scoring Matrix (21 values includ-
ing gaps, Eq. 1), Self-Entropy (21 values, including gaps, Eq. 2), and
one variable denoting if the residue belongs to the peptide or receptor (1
value), for a total of 64 features. Multiple sequence alignments for calcu-
lation of PSSM and self-entropy were acquired by running HHblits 2.0.15
with uniclust30 2016 03 as the database, running 2 iterations with max-
imum pairwise sequence identity of 90% and E-value inclusion threshold
of 0.001.

PSSMi = − log
pi

pbi
(1)

Si = −pi log
pi

pbi
(2)

where pi is the frequency of the amino acid on position i recurring at
that position in the multiple sequence alignment and pbi is the background
probability of that amino acid.

Four types of one-hot-encoded edges were used: self-edges to allow
the passing on of information to the same residue in consecutive layers,
covalent edges denoting the existence of a covalent bond between two
residues, proximity edges between each pair of residues with any heavy
atoms within 4.5Å, and to speed up calculations through filtering where
convolutions can be performed a summarizing identity edge feature set to
1 if any other edge feature was present. For each decoy, only 100 nodes and
the vertices that connected them were used; the peptide and the residues
of the receptor closest to the peptide. This means that if the peptide is 25
residues long and the receptor 170 residues, the 100 nodes would include
the 25 peptide residues as well as the 75 residues from the receptor which
were closest to any peptide amino acid. For cases where all the residues
in the complex amount to fewer than 100, zero-padding is used.

2.3.2 Target Function

To facilitate training, the raw LRMSD values were normalized to the [0,1]
range using the same normalization scheme as in Levitt and Gerstein 1998:
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LRMSDnorm =
1

1 + (LRMSD

4.0
)2

(3)

Since networks are often observed learning quicker from classification
tasks, the problem was formulated as a classification problem by predict-
ing to which bin of LRMSDnorm a decoy belonged to. The number of bins
were varied from 2-4 evenly spread in the [0,1] range. The final predicted
score, S, was a sum of the LRMSDnorm bins weighted by the predicted
indeprobability:

S =
∑

i

xiP (xi) (4)

where i is the number of bins, xi the center of bin i and P (xi) the predicted
probability for bin xi.

2.3.3 Network Architecture

The network was implemented as a feed-forward graph convolutional net-
work, see Figure 1. Before any convolutions were applied, the node fea-
ture Amino Acid Code (one-hot encoded 21 value feature) was passed
through an Embedding Layer to reduce dimensionality and thus also the
number of weights, limiting overfitting. Embedding layers are small net-
work architectures for mapping discrete labels onto continuous space, and
are frequently used in areas such as language processing (Mikolov et al.,
2013), and have previously successfully been used to describe amino acids
(Mirabello and Wallner, 2019).

Next, the node features were passed through a varied number of Edge
Convolution Layers (Simonovsky and Komodakis, 2017), with ReLU ac-
tivation between each layer, taking the output of the last layer as node
features for the next, while keeping the same edge features throughout.
Edge Convolution Layers learn filters as a function of both node and edge
features, and apply these filters along the edges of the graph.

The output from each convolution layer was concatenated together
before global pooling of all node features, followed by 2 dense layers before
prediction. During training, a dropout ranging between 0.1 and 0.25 was
applied to the edge features. Different sizes of the Edge Convolution and
Dense outputs were explored, as well as different methods for Pooling, see
below.

The network was implemented using Spektral and Keras (Chollet et al.,
2015), using the layers proposed by Simonovsky and Komodakis 2017, and
trained with the TensorFlow backend (Abadi et al., 2015).

2.3.4 Parameter Optimization and Ensembling

Parameters and hyperparameters of the nets were optimized to maximize
performance on the validation set. Additionally, to increase the predictive
power of InterPepRank with little impact on run-time, some of the best-
performing trained nets were ensembled by averaging their outputs.
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3 Results and Discussion

In this work we have developed InterPepRank, a machine-learning based
method which encodes the structure of peptide-protein complex as a
graph; with physical pairwise interactions as edges and evolutionary fea-
tures such as PSSM and sequence conservation as nodes. The graph rep-
resentation is trained to predict the LRMSD of decoys by using edge-
conditioned graph convolutions on a large set of peptide-protein com-
plexes. Different network architectures were tried and the nine best (0-8)
on validation are shown in Figure 2, details on specific network archi-
tectures in the Supplementary Information. To maximize performance a
subset of these were used as an ensemble predictor, averaging over their
output; best ensemble used all networks except 5 and 6.

3.1 Comparison to Established methods

To put the performance of InterPepRank into perspective, we compared
its ranking strength to several established state-of-the-art docked complex
scoring methods: PIPER (Kozakov et al., 2006), pyDock3 (Cheng et al.,
2007), and Zrank (Pierce and Weng, 2007). PIPER was run with the same
rotation and energy matrices as when part of the peptide-protein dock-
ing protocol PIPER-FlexPepDock (Alam et al., 2017). Although both
pyDock3 and Zrank are optimized for the scoring of protein-protein com-
plexes, pyDock3 was recently shown to efficiently identify near-native pep-
tide decoys in the sixth CAPRI edition (Pallara et al., 2017), and Zrank
is included as one of the currently leading fast available protein-protein
scoring functions according to (Moal et al., 2013) and (Yan and Huang,
2019), amongst others. It should be noted that PIPER was also used to
generate the decoys of this study.

As discussed in the introduction, currently there is a lack of ready-to-
use scoring functions developed specifically for peptide-protein complexes.
Technically, the Rosetta FlexPepDock protocol (Raveh et al., 2010) can
be run in a mode which only applies its scoring function without changing
the structure. However, Rosetta utilizes a fine-grained scoring algorithm,
and the structures needs to be minimized using the Rosetta relax protocol
to be scored properly.

The primary objective of this study was to develop a method for se-
lecting decoys for further refinement, which means the metric of interest
is the ability of the method to rank decoys for individual targets. Inter-
PepRank has a higher average AUC compared to both Zrank and PIPER,
see Figure 3. The median AUC is 0.86 for InterPepRank compared to 0.65
and 0.69 for Zrank and PIPER, respectively. The same trend holds true
against pyDock3 and Rosetta FlexPepDock scoring as well on the Ex-
panded Analysis set, see Supplementary Figure 1.

Another metric of interest is the ability to rank decoys even between
targets, testing if the methods are capable of absolute decoy ranking. This
was tested on the Expanded Analysis set. Overall InterPepRank is much
better than Zrank, pyDock3, and PIPER at assessing the absolute quality
of individual decoys in comparison to both other decoys from the same
target and between targets, even when scores are normalized by receptor
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and peptide length, see Figure 4, with an AUC of 0.90 compared to 0.73
and 0.70 for pyDock3 and Zrank, respectively. PIPER is slightly worse
with AUC 0.66. This is expected as the other scoring methods are de-
pendent on complex size and primary structure composition. The overall
AUCs of Figure 4 mirror the median AUCs of Figure 3 when PIPER and
Zrank are normalized by receptor and ligand length. This indicates the
methods tested should be roughly equally able to pick out refineable de-
coys from a pool of different receptors and ligands as they should be at
ranking internally, implying the results from the tests focusing on internal
ranking could be generalized to an overall selection case.

3.1.1 Run-time and Large-scale Studies

Although slower than Zrank, InterPepRank still operates well within the
realm of possibility of use in large-scale studies, see Table 2. Additionally,
most of the time (circa 95%) of InterPepRank is spent preparing the graph-
input to the net, something which could be optimized as compiled code
rather than run as a python script.

Time (min) pyDock3 Zrank InterPepRank Rosetta FPD scoring
Mean 664.4 9.2 100.6 590.0
Median 574.9 7.2 85.4 479.6
60 res. receptor 293.1 2.9 57.2 256.6
472 res. receptor 1372.6 24.7 249.2 1624.5

Table 2: Average runtime over all targets for the different methods to evaluate
70,000 decoys, as measured in minutes, assuming all relevant files are available
for each target. In the case of the 60 residue receptor and 472 residue receptor
rows, it is instead the average runtime to evaluate 70,000 decoys over the 50
different peptide conformations. All calculations were performed on a single
CPU core of Intel Xeon Gold 6130 running on CentOS 7, and when applicable
an Nvidia GeForceRTX 2080 Ti graphics card was available. If InterPepRank
is run completely on CPU, add approximately 30 minutes to the runtime.

3.2 Proof of concept: Improving the PIPER-FlexPepDock

pipeline

The purpose of InterPepRank is to provide an accurate rescoring step
for selecting which decoys from FFT-based rigid-body-docking are worth
further refining to achieve sub-Ångström docked complexes. The PIPER-
FlexPepDock pipeline (Alam et al., 2017) uses FFT-based PIPER to dock
peptides of varying conformations onto a receptor surface, then utilizes
PIPER-score to select 12,500 decoys for further refinement by the Rosetta
FlexPepDock protocol, followed by clustering the top 1% of the refined
decoys to make final docking predictions.

As a proof of concept, the full PIPER-FlexPepDock pipeline was run
on the Expanded Analysis set both as is, and with InterPepRank, Zrank,

9

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2020. ; https://doi.org/10.1101/2020.09.07.285957doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.07.285957
http://creativecommons.org/licenses/by-nc/4.0/


or pyDock3 instead of PIPER for selecting decoys for refinement. The
results were analyzed according to the CAPRI standard of classifying
docked peptide-protein structures as compared to their native structures
(Lensink et al., 2017), and can be found in Table 3. It should be noted
that many of the peptides in the Expanded Analysis set are longer than
the maximum length investigated in the original PIPER-FlexPepDock pa-
per, explaining the overall decrease in performance as compared to that
paper. As seen in the table, both InterPepRank and Zrank are capable of
improving the performance of PIPER-FlexPepDock if inserted as a func-
tion selecting decoys for refinement. While the inclusion of Zrank leads to
a higher number of Acceptable models as per the CAPRI standard, the
inclusion of InterPepRank leads to a higher yield of both Medium and
High quality models. This is in line with the ROC-curves in Supplemen-
tary Figure 1 where Zrank can be seen to have fewer decoys for which it
shows a ROC AUC below 0.5 than InterPepRank for this set, but where
the average and median AUC of InterPepRank are higher.

This is also reflected in the overall distribution LRMSD of the decoys
sent for refinement by InterPepRank and Zrank: while InterPepRank both
in mean and median selects more decoys with lower LRMSD, Zrank prefers
a wider sampling of conformations resulting in a generally lower number
of low LRMSD decoys, but meaning more targets have at least one low
LRMSD decoy, see Supplementary Figures 1 and 2.

As InterPepRank has less targets with an AUC below 0.5 on the full
test-set, we hypothesize that in the general case using InterPepRank to
select decoys for refinement would be superior also in generating Accept-
able models, as the larger full test set should be more representative of
most real-world cases.

Re-scoring Method Acceptable Medium High
InterPepRank 15.33 9.66 3.33

Zrank 18.0 7.0 2.33
pyDock3 13.33 5.0 0.0
None (PIPER) 13.66 5.33 2.33

Table 3: For how many of the targets in the Expanded Analysis set the modified
PIPER-FlexPepDock pipeline produced models of the different quality measures
among the top 10 results. As Rosetta FlexPepDock is a Monte-Carlo based ap-
proach, the part of the pipeline utilizing the FlexPepDock protocol and onwards
was run in triplicates and the results averaged. Note that Acceptable means
any model of at least Acceptable quality (same for Medium).

3.2.1 Improving Run-time with Score Threshold

InterPepRank score is independent from protein and receptor size and
composition, and only depends on the absolute quality of each decoy,
which can be seen in Figure 4 showing InterPepRank can sort decoys
even between targets. Because of this, it should be possible to introduce
a score-threshold to avoid refining guaranteed bad decoys, as predicted by
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the InterPepRank score, rather than simply picking the top X decoys for
refinement.

Indeed, adding an InterPepRank score cutoff of 0.47 for picking decoys
for refinement rather than always picking the top 12,500 decoys reduces
the median number of decoys refined per target to 10,000, while at least
one High- or Medium-quality decoy will be produced for just as many
targets as picking the top 12.500 decoys for refinement by InterPepRank
without the threshold, and 95% of all targets which have at least one
Acceptable decoy among the 12,500 will still have at least one.

Considering the median run-time of FlexPepDock refinement being
1.55 minutes per decoy on the same systems used for the re-scoring method
speed benchmark, this results in the usage of an InterPepRank threshold
saving on average 3,875 minutes of run-time, making up for the extra
minutes spent running InterPepRank.

3.3 Example

As seen in previous works, machine learning methods for prediction of
binding sites tend to predict protein-protein binding sites as potential
peptide-protein binding sites, often resulting in difficulties in differenti-
ating an interaction with the correct binding site from an interaction
with another site, like one for protein-protein binding, or even crystal
contacts (Johansson-Åkhe et al., 2018, 2020a). A problem with shape-
complementarity or electrostatics based methods on the other hand is
their preference for conformations which maximize the number of con-
tacts.

In this study, an example of a target difficult to both kinds of meth-
ods would be Siah1 (PDB ID: 4i7b). Its asymmetric unit, as well as
many structural homologs, display it in a dimeric conformation, with the
peptide binding at the opposite side of the protein. Additionally, there
is a secondary hydrophobic groove which could maximize contacts with
a potential peptide and has the same charge-distribution as the correct
binding site, see Figure 5. While the true site shows an average evolution-
ary entropy of 0.520 and the dimerization site shows a similar entropy of
0.521, the hydrophobic groove shows less conservation with an entropy of
0.544 and the rest of the protein surface shows 0.603.

For this target, InterPepRank identified several locally favorable po-
sitions for the peptide, see Figure 6. The three wells roughly represent
distances to the native peptide from decoys close to the native peptide,
decoys bound at the hydrophobic groove by the helix, and decoys bound
at the false dimerization site, respectively. These sites have average In-
terPepRank scores of 0.531, 0.496, and 0.465, respectively, while decoys
bound over the rest of the protein surface average an InterPepRank score
of 0.381. Similarly, the energy-based methods also report a lower aver-
age for the true binding site (-38.286 for Zrank and -3.150 for pyDock3)
compared to the alternative sites (-30.4451 and -3.9 for the hydrophobic
groove by the helix, and 4.145 and 3.108 for the dimerization site) and
the rest of the protein surface (-7.142 and 4.742 respectively), albeit with
some variation as pyDock3 generally prefers the groove by the helix to
the correct site and Zrank ranks the dimerization site even worse than
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the rest of the surface. This demonstrates that InterPepRank does not
simply select decoys arranged at conserved sites, but judges on more met-
rics, which is also supported by the fact that the length of the receptor
multiple sequence alignment as well as the quality of alignments therein
do not correlate with the quality of prediction (R ¡ 0.1), and that sim-
pler Machine Learning models with the same architecture but less edge
information perform worse (data not shown).

Similar scatter-plots for all test-targets and all methods benchmarked
can be found in the Supplementary scatterplot compendium online (Johansson-
Åkhe et al., 2020b).

4 Conclusions

We have presented InterPepRank, a peptide-protein complex scoring and
ranking method for use of rescoring and selecting coarse rigid-body-docking
decoys for further refinement. InterPepRank uses both the structure of
the complex and evolutionary features such as PSSM and sequence con-
servation to achieve high accuracy scoring in manageable computational
time. The structure and the features are encoded in a graph representation
where physical interactions between peptide and protein are represented
as edges and the features are encoded in the nodes. The graph representa-
tion is trained using graph convolutions on a large set of peptide-protein
complexes to predict the quality as measured by LRMSD. To maximize
performance, the output of an ensemble of different network architectures
are averaged in the final prediction.

On a massive independent test set not used to train and validate the
method, InterPepRank has a median AUC of 0.86 for finding peptide-
protein complexes with LRMSD¡4Å. This is an improvement compared to
other ranking methods that have a median AUC of circa 0.65 to 0.69.

When inserted in the PIPER-FlexPepDock pipeline, InterPepRank
consistently improves the performance of the pipeline by improving the
selection of decoys for refinement, resulting in a 40% increase in High
quality models produced, and a 80% increase in Medium quality models
produced, with the possibility of not increasing the overall computational
time without loss in performance by filtering decoys by InterPepRank
score.

In addition to selecting peptide-protein complexes for all-atom refine-
ment, InterPepRank should prove useful for providing a cross-target com-
parable scoring function.
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D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,

B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas,

F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng,

X. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems.

Software available from tensorflow.org.

Alam, N., Goldstein, O., Xia, B., Porter, K. A., Kozakov, D., and Schueler-Furman,

O. (2017). High-resolution global peptide-protein docking using fragments-based

PIPER-FlexPepDock. PLoS computational biology, 13(12), e1005905.

Basu, S. and Wallner, B. (2016). Finding correct protein–protein docking models

using proqdock. Bioinformatics, 32(12), i262–i270.

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H.,

Shindyalov, I. N., and Bourne, P. E. (2000). The protein data bank. Nucleic

Acids Research, 28(1), 235–242.

Cao, Y. and Shen, Y. (2019). Energy-based graph convolutional networks for scoring

protein docking models. arXiv preprint arXiv:1912.12476 .

Cheng, T. M.-K., Blundell, T. L., and Fernandez-Recio, J. (2007). pydock: electro-

statics and desolvation for effective scoring of rigid-body protein–protein docking.

Proteins: Structure, Function, and Bioinformatics, 68(2), 503–515.

Chollet, F. et al. (2015). Keras.

Dawson, N. L., Lewis, T. E., Das, S., Lees, J. G., Lee, D., Ashford, P., Orengo, C. A.,

and Sillitoe, I. (2017). Cath: an expanded resource to predict protein function

through structure and sequence. Nucleic acids research, 45(D1), D289–D295.

Fout, A., Byrd, J., Shariat, B., and Ben-Hur, A. (2017). Protein interface prediction

using graph convolutional networks. In Advances in neural information processing

systems, pages 6530–6539.

Gligorijevic, V., Renfrew, P. D., Kosciolek, T., Leman, J. K., Cho, K., Vatanen, T.,

Berenberg, D., Taylor, B. C., Fisk, I. M., Xavier, R. J., et al. (2019). Structure-

based function prediction using graph convolutional networks. bioRxiv , page

786236.

Gront, D., Kulp, D. W., Vernon, R. M., Strauss, C. E., and Baker, D. (2011). Gener-

alized fragment picking in rosetta: design, protocols and applications. PloS one,

6(8), e23294.
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Figure 1: The basic architecture of the InterPepRank nets. Note that the
output from the Edge Convolution and Embedding layers have been denoted as
X, since different values were sampled. Throughout the net, the ReLU activation
function is applied after each convolution.
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Figure 2: AUC on validation targets for the different individual network archi-
tectures, the final ensemble method and an ensemble including all architectures.
The network architectures are numbered from 0 through 8, and the ensemble
methods are named after the included architectures. The ensemble 0123478
shows optimal performance on the validation data. A detailed description of
the architectures and their differences can be found in the Supplementary In-
formation.
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Figure 3: ROC-curves for the different methods, each target is represented by
1 curve, and a violin-plot over the distributions of AUCs. The area under the
curve (AUC) displayed in the graphs is the average and median over all targets.
Note that while the standard deviation of AUC is higher for InterPepRank, it
still only has 19 targets with an AUC below 0.5, compared to 37 and 26 targets
for PIPER and Zrank, respectively.
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b

Figure 4: ROC-curves for using the method scores to separate low-LRMSD
decoys from other decoys. Zrank, pyDock3, and PIPER are normalized by the
total length of receptor and peptide. Analysis run only on the decoys of the
Expanded Analysis set.
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Figure 5: Siah1 in complex with a synthetic peptide (PDB-ID 4i7b). Siah1 is
shown in black, the native conformation of the peptide is shown in green, the
other chain in the asymmetric unit is shown in gray, and an example peptide
conformation maximizing interaction in the alternate groove is shown in pink.

(a) InterPep (b) Zrank

Figure 6: Scatterplot of InterPepRank predicted score (a) and Zrank predicted
score (b) versus LRMSD for all decoys of 4i7b chains A (receptor) and B (pep-
tide). Each decoy is colored by the backbone RMSD of the peptide to its native
conformation if superimposed.
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