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Abstract 

A major disease affecting sugarcane, a leading sugar and energy crop, is sugarcane yellow leaf (SCYL), caused by 

the sugarcane yellow leaf virus (SCYLV). Despite damages caused by SCYLV, the genetic basis of resistance to this 

virus remains largely unknown. Several methodologies have arisen to identify molecular markers associated with 

SCYLV resistance, which are crucial for marker-assisted selection and understanding response mechanisms to this 

virus. We investigated the genetic basis of SCYLV resistance using dominant and codominant markers and 

genotypes of interest for breeding. A sugarcane panel inoculated with SCYLV was analyzed for SCYL symptoms, 

and viral titer was estimated by RT-qPCR. This panel was genotyped with 662 dominant markers and 70,888 SNPs 

and indels with allele proportion information. We used polyploid-adapted genome-wide association analyses and 

machine-learning algorithms coupled with feature selection methods to establish marker-trait associations. While 

each approach identified unique marker sets associated with phenotypes, convergences were observed between 

them, demonstrating their complementarity. Lastly, we annotated these markers, identifying genes encoding 

emblematic participants in virus resistance mechanisms and previously unreported candidates involved in viral 

responses. Our approach could accelerate sugarcane breeding targeting SCYLV resistance and facilitate studies on 

biological processes leading to this trait.  
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1 Introduction 

Sugarcane is one of the world9s most important crops, ranking first in production quantity and sixth in net 

production value in 20161. It is by far the most relevant sugar crop, accounting for approximately 80% of the 

world9s sugar production1-2 and is also a prominent energy crop. However, it has an extremely complex genome; 

modern cultivars are the product of a few crosses between two autopolyploid species. Saccharum spontaneum (2n = 

5x = 40 to 16x = 128; x = 8)3, a wild stress-resistant but low-sugar species, was hybridized and backcrossed with 

Saccharum officinarum (2n = 8x = 80, x = 10)4, which has a high sugar content but is sensitive to drought and 

susceptible to diseases. These procedures gave origin to plants with very large (ca. 10 Gb), highly polyploid, 

aneuploid and remarkably duplicated genomes5-6. This complexity directly affects sugarcane research and breeding; 

until recently, it prevented the use of codominance information in marker-assisted breeding strategies for this crop, 

limiting such approaches7-8. 

One of the diseases that affect this crop is sugarcane yellow leaf (SCYL), which is caused by sugarcane 

yellow leaf virus (SCYLV), a positive-sense ssRNA virus belonging to the Polerovirus genus9-10. The expression of 

SCYL symptoms is complex and usually occurs in late stages of plant development, being mainly characterized by 

the intense yellowing of midribs in the abaxial surface of leaves11-12. SCYLV alters the metabolism and transport of 

sucrose and photosynthetic efficiency13-14, impairing plant development and eventually reflecting productivity 

losses15-18. Many SCYL symptoms may, however, be caused by other stresses or plant senescence12,15,19, making 

SCYL identification troublesome. Therefore, molecular diagnosis of SCYLV infection is of great importance; this 

was initially performed through immunological assays11, but more sensitive and sensible methods using reverse 

transcription followed by quantitative polymerase chain reaction (RT-qPCR) were later developed20-22. 

Due to SCYL's elusive symptomatology, SCYLV9s spread is silent; it is disseminated mostly during 

sugarcane vegetative propagation but is also transmitted by aphids, mainly the white sugarcane aphid Melanaphis 

sacchari (Zehntner, 1897)11. Unlike other pathogens, the virus is not efficiently eradicated by thermal treatments23; 

the only way to thoroughly eliminate it is by meristem micropropagation24-25, which is time-consuming and requires 

specialized infrastructure and personnel. These features make varietal resistance to SCYLV the most efficient 

resource to prevent damage and losses caused by this virus. Resistance has been explored in breeding programs and 

by a few genetic mapping studies26-30. However, research on SCYL genetics is not exempt from the difficulties 

generated by the complexity of the sugarcane genome31; due to this crop9s polyploid nature, most of these works 
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employed dominantly scored molecular markers, implying a great loss of genetic information32. Additionally, they 

employed immunological methods to phenotype SCYLV resistance. The usage of dominant markers and the poor 

reliability of phenotyping were listed as key factors limiting the power of these studies27-28. 

Here, we evaluated the efficacy of several genome-wide approaches to identify markers and genes 

associated with SCYLV resistance. We analyzed a panel of Saccharum accessions inoculated with SCYLV, which 

were graded for the severity of SCYL symptoms, and their viral titer was estimated by relative and absolute RT-

qPCR. This panel was genotyped with amplified fragment length polymorphisms (AFLPs) and simple sequence 

repeats (SSRs), as well as single nucleotide polymorphisms (SNPs) and insertions and deletions (indels) obtained by 

genotyping-by-sequencing (GBS). We then employed three distinct methodologies to detect marker-trait 

associations: the fixed and random model circulating probability unification (FarmCPU) method using dominant 

AFLPs and SSRs; mixed linear modeling using SNPs and indels, in which allele proportions (APs) in each locus 

were employed to establish genotypic classes and estimate additive and dominant effects; and several machine 

learning (ML) methods coupled with feature selection (FS) techniques, using all markers to predict genotype 

attribution to phenotypic clusters. Finally, we annotated genes containing markers associated with phenotypes, 

discussing the putative participation of these genes in the mechanisms underlying resistance to SCYLV. 

 

2 Results 

 

2.1 Phenotypic Data Analyses 

A total of 97 sugarcane accessions inoculated with SCYLV were evaluated for the severity of SCYL symptoms and 

for viral titer estimated by relative and absolute RT-qPCR quantification in two consecutive years, as 

comprehensively described in Supplementary Results. Based on best linear unbiased prediction (BLUP) estimations, 

symptom severity was not correlated with the viral titer determined by relative (p = 0.117) or absolute (p = 0.296) 

quantification. We found, however, a significant (p < 2.2e-16) and strong (r2 = 0.772) correlation between the values 

obtained by the two quantification methods, indicating their reliability (Supplementary Fig. 2). 

Using BLUP values, we performed two hierarchical clustering on principal components (HCPC) analyses 

to investigate the classification of genotypes according to SCYLV resistance phenotypes – the first using BLUP 

values of SCYLV titers determined by RT-qPCR, and the second including BLUP values of all three traits analyzed. 
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Both analyses indicated a division of the panel into three clusters (Supplementary Figs. 3-4) – named Q1-3 for the 

first HCPC and SQ1-3 for the second analysis. Factor maps wherein these groups are plotted onto the first two 

dimensions of HCPCs are shown in Fig. 1, and the attribution of genotypes to each cluster is available in 

Supplementary Table 4. Each group defined in the first HCPC presented significantly different SCYLV titers as 

estimated by both quantification methods (Supplementary Fig. 5, Supplementary Table 5). The second HCPC also 

resulted in a separation of groups with contrasting phenotypes: SQ1 accessions showed the least severe SCYL 

symptoms and the lowest titers of SCYLV; SQ2 accessions displayed significantly more severe disease symptoms 

and higher viral titers; and SQ3 accessions had the most severe disease symptoms and equally higher virus titers 

(Supplementary Fig. 6, Supplementary Table 5). 

 

2.2 Genotyping and genetic analyses 

After genotyping and filtering procedures, 93 accessions of the panel were successfully characterized with 550 

AFLP fragments and 112 SSR fragments, totaling 662 polymorphic dominant markers. The GBS library constructed 

allowed the successful genotyping of 92 panel accessions, as described in detail in the Supplementary Results. We 

performed variant calling using BWA aligner and a monoploid chromosome set isolated from the S. spontaneum 

genome as a reference. This genome allowed the discovery of a large number of markers (38,710 SNPs and 32,178 

indels) with AP information after rigorous filtering (Supplementary Tables 6-7). Additionally, unlike many of the 

references tested, it provided markers with information of position at chromosome level, allowing the estimation of 

long-distance linkage disequilibrium (LD). Pairwise LD between markers located within chromosomes was obtained 

and its decay was analyzed over distance. We observed high r2 values (~0.4) between closely distanced markers, 

which dropped to 0.1 at approximately 2 Mb (Fig. 2). 

The genetic structure of the panel was investigated separately using the two marker datasets generated – 

AFLPs and SSRs scored as dominant and codominant SNPs and indels with AP information –, and three different 

approaches – a discriminant analysis of principal components (DAPC), a principal component analysis (PCA) 

followed by k-means and a Bayesian clustering implemented in STRUCTURE. Results are thoroughly described in 

the Supplementary Results, and Supplementary Table 8 summarizes the allocation of genotypes to the clusters 

identified in each analysis. Analyses performed with dominant markers identified two to four clusters, depending on 

the structure analysis employed (Supplementary Figs. 7-10); however, we observed extensive similarities between 
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the groups identified in each method. A similar pattern was observed when the same three structure analyses were 

performed with codominant markers. Each method resulted in a unique separation of accessions, varying between 

two and three groups (Supplementary Figs. 11-14), but the clustering obtained by these different analyses was 

overall coincident. We found, however, that using dominant or codominant markers yielded noticeably different 

outcomes. Some overlap was observed between clusters identified by the analyses using each set of markers but, 

overall, groups identified by these analyses shared little resemblance. Additionally, the results from these methods 

did not present correspondences with the phenotype-based HCPCs. 

 

2.3 Association Analyses 

 

2.3.1 FarmCPU 

For FarmCPU analyses, we tested including matrices obtained from each genetic structure analysis as covariates and 

ran the models with no covariates. The distribution of the genomic inflation factor » (Supplementary Fig. 15) was 

normal (p = 0.975) and no significant differences (p = 0.084) were observed between the inflation of p-values of 

models. Thus, we chose to conduct FarmCPU analyses using no covariates, as this resulted in the median value of » 

closest to its theoretical value under the null hypothesis (» = 1) and in appropriate profiles of inflation of p-values as 

seen in quantile-quantile (Q-Q) plots (Supplementary Fig. 16). Using a Bonferroni-corrected threshold of 0.05, one 

marker-trait association was detected for symptom severity and five associations were detected for the viral titer 

estimated by each quantification method – with one marker being mutually associated with both. The percentage of 

phenotypic variance explained by each marker ranged from 9 to 30% (Supplementary Table 9). 

 

2.3.2 Mixed Modeling 

Twelve combinations of population structure (Q) and kinship (K) matrices were tested as effects in the codominant 

association models. The distribution of » in each Q + K combination (Supplementary Fig. 17) was not normal (p = 

3.253e-06) and no significant differences (p = 0.869) were detected between models. Thus, following analyses were 

conducted with a Q + K combination that resulted in the median value of » closest to 1, which was obtained with the 

combination of the first three PCs from a PCA with both the realized relationship (MMT) and pseudodiploid kinship 

matrices. As the MMT matrix is directly computed by the GWASpoly package, we considered the QPCA + KMM 
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combination to be the most straightforward. Q-Q plots of the association analyses for SCYL symptom severity and 

SCYLV relative and absolute quantifications can be found in Supplementary Fig. 18; in general, all models showed 

appropriate inflation of p-values. 

A stringent significance threshold (p < 0.05 corrected by the Bonferroni method) was used to identify 35 

nonredundant markers significantly associated with SCYL symptom severity (Fig. 3). Using this correction, no 

markers were significantly associated with SCYLV titer. In an attempt to establish a less conservative threshold for 

association analyses of these two traits, we employed the false discovery rate (FDR) for the correction of p-values, 

which resulted in very low significance thresholds and the identification of thousands of associations as significant. 

Therefore, we ultimately opted to use an arbitrary threshold of p < 0.0001 to determine markers strongly associated 

with the two quantification traits. This resulted in 13 and 9 markers associated with SCYLV titer determined by 

relative and absolute quantifications, respectively (Fig. 3); one marker was common to both analyses. 

Supplementary Table 10 supplies information on all marker-trait associations identified by this approach. For each 

trait, we observed a redundancy between markers identified as significant by different marker-effect models; this 

observation was particularly common between the simplex dominant alternative and the diploidized models. 

 

2.3.3 Machine Learning Coupled with Feature Selection 

As a last marker-trait association method, we tested eight ML algorithms for predicting the attribution of genotypes 

to the phenotypic clusters identified in the HCPCs. When assessing their potential in this task using the full marker 

dataset, predictive accuracies varied greatly depending on the method and phenotypic groups under analysis. They 

were lower for the prediction of clusters associated with viral titer (Q), ranging between 39.2-49.6%, with an 

average of 44.5% (Supplementary Fig. 19a). For clusters identified including symptom severity data (SQ), 

accuracies were overall higher, albeit varying even more and being still unsatisfactory; they ranged between 7.9-

73.9% (Supplementary Fig. 19b) and had an average of 58%. Therefore, we tested applying five FS methods to 

reduce the marker dataset, and constructed three additional reduced marker datasets consisting of intersections 

between FS methods. 

These procedures led to considerably higher accuracies in predicting Q and SQ clusters. Three FS methods 

(FS1, FS2 and FS4) presented notably superior effects in increasing accuracy in both cases (Supplementary Fig. 20). 

In the two scenarios, the most accurate model-FS combination was a multilayer perceptron neural network (MLP) 
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coupled with FS2, which was composed of 232 markers for Q and 170 markers for SQ. This combination resulted in 

average accuracies of 97.6% and 96.5% for the prediction of Q and SQ, respectively (Supplementary Tables 11 and 

12). However, in both scenarios, MLP achieved the second-best results when using Inter2 datasets, composed by 

markers present in at least two out of the three best FS methods; these represented 190 markers for Q and 120 

markers for SQ. With this strategy, we could achieve equally high accuracies (95.7% for Q and 95.4% for SQ) with 

further reductions in marker numbers. To farther evaluate the performance of MLP, we produced receiver operating 

characteristic (ROC) curves and calculated their respective area under the curves (AUCs). Prior to FS, MLP did not 

present satisfactory results, with ROC curves very close to the chance level and AUCs of 0.45-0.61 for Q and 0.40-

0.56 for SQ (Fig. 4a). When Inter2 was used, ROC curves showed much better model performances, with AUCs of 

1.00 for Q and of 0.98-1.00 for SQ (Fig. 4b). These results confirm that Inter2 markers are in fact associated with 

SCYLV resistance and that MLP is an appropriate model to predict clustering based on this dataset. The markers 

representing the reduced datasets associated with Q and SQ clusters can be found in Supplementary Tables 13 and 

14, respectively. We observed twelve marker overlaps between the two datasets; interestingly, several of these 

markers were also identified as associated with phenotypes in the FarmCPU and mixed modeling analyses. 

 

2.4 Marker Mapping and Annotation 

For a better visualization of the physical location of all markers associated with SCYLV resistance, we constructed a 

map of their distribution along S. spontaneum9s <A= chromosomes (Fig. 5), in which we also included markers 

identified as associated with SCYLV resistance in previous mapping studies. Overall, markers were considerably 

spread along chromosomes; however, we observed regions of dense concentration of markers identified by various 

methods, such as the long arms of chromosomes 1 and 3. We also verified the proximity between several markers 

identified in the present work and by other authors, indicating their convergence and the reliability of the methods 

employed here. 

Out of the 362 nonredundant markers associated with all phenotypes, 176 were located in genic regions and 

could be annotated by aligning their 2000-bp neighboring regions with the coding sequences (CDSs) of 14 Poaceae 

species and A. thaliana genomes; Supplementary Table 15 contains data on the alignment with the highest 

percentage of identity for each marker. In some cases, where two or more markers were closely located, coincident 

alignments and annotations were obtained; consequently, 148 genes were representative of all the best alignments. 
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The large majority of top-scoring alignments (117) occurred with CDSs of Sorghum bicolor, the phylogenetically 

closest species among those used for alignment; fewer alignments also occurred with the CDSs of other species. 

Several of the annotated genes could be associated with plant resistance to viruses, as detailed in the discussion. 

 

3 Discussion 

We evaluated the severity of SCYL symptoms and SCYLV titer in a panel of 97 sugarcane accessions. These two 

traits are of great concern to breeding, as both have been associated with higher yield losses in SCYLV-infected 

sugarcane plants18,22,33. Prior to phenotyping, plants were subjected to high and uniform SCYLV inoculum pressure, 

an innovation over all previous SCYLC genetic mapping studies26-30, which relied on natural infection under field 

conditions. Using RT-qPCR, currently regarded as the most precise method for SCYLV quantification22, we 

assessed the viral titer in these genotypes. We found a strong and positive correlation between the BLUPs calculated 

for the SCYLV titers obtained by the two quantification methods employed, showing the consistency of the data. 

The absence of a perfect correlation might have arisen from intrinsic differences between methods, which have been 

responsible for disparities in viral quantification by RT-qPCR in other plant-virus interactions34. 

However, we observed no quantitative correlation between the severity of SCYL symptoms and SCYLV 

titers across the sugarcane genotypes analyzed. This finding corroborates a growing body of evidence suggesting 

that these traits are not strongly or necessarily correlated, i.e., high SCYLV titers are not a guarantee of more severe 

yellowing or of its development at all35-37. This reinforces the importance of SCYLV molecular screening of 

sugarcane clones by breeding programs; this should be done to avoid the employment of genotypes that accumulate 

high viral loads asymptomatically but may inconspicuously suffer yield losses, in addition to serving as a virus 

reservoir for vector transmission to other susceptible genotypes. 

To further explore this issue, we performed two HCPC analyses to discriminate accessions based on their 

response to SCYLV, which led to the separation of clusters with considerable phenotypic differences. In the first 

HCPC, using only viral quantification data, we could discern groups with significant variation in viral titers; in the 

second analysis, which also included symptom severity data, clusters with even more contrasting responses to 

SCYLV could be discriminated. In 1983, Cooper and Jones38 proposed a terminology addressing plant responses to 

viral infections that is still employed today39-41. According to this proposal, once infected, plants present differences 

in the ability to restrict viral replication and invasion; at the extremes of a spectrum of behaviors are plants termed 
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susceptible and resistant. Additionally, they may also respond differently to the infection in terms of symptom 

development: another spectrum exists, at the extremes of which are sensitive and tolerant plants. In view of this 

nomenclature, we propose that the clusters identified in this second HCPC be described as follows: (SQ1) resistant, 

for sugarcane genotypes distinguished by low SCYLV titer and mild or no SCYL symptoms; (SQ2) tolerant, for 

genotypes that, despite exhibiting higher viral titers, presented few or no disease symptoms; and (SQ3) susceptible, 

for genotypes with the most severe symptoms and presenting high viral titers. This classification per se is of great 

use in sugarcane breeding, as it distinguishes not only sources of tolerance to SCYLV but also an exceptionally 

promising group of truly resistant genotypes. 

Our main objective was, however, to identify markers associated with SCYLV resistance in a broader 

sense. With this aim, we performed genotyping with a combination of dominant and codominant markers, which has 

never been described for sugarcane. We evaluated the impact of using genomic references from various 

backgrounds in variant calling from GBS. In previous sugarcane GWASs, this was performed using the genome of 

S. bicolor30,42-44, a close relative species with a well-assembled and annotated genome; however, in our analyses, this 

reference yielded a number of markers considerably inferior to other references. The methyl-filtered genome of the 

SP70-1143 cultivar yielded the most markers, in agreement with a previous study employing GBS45; this is a 

plausible outcome, as this method avoids sampling of methylated regions46 which were also filtered out for this 

genomic assembly47. However, to choose the best reference for further analyses, we also considered the quality of 

the assembly, which greatly affects the results of GWASs in polyploids48. The best-assembled sugarcane genome 

available to date is the allele-defined genome of a haploid S. spontaneum accession49. Despite presenting one of the 

highest total tag alignment rates, this reference also gave a very high rate of multiple alignments, leading to the 

identification of relatively few markers. This was probably due to the alignment of tags to homeologous regions of 

different alleles rather than to the duplicated regions that we intended to avoid. To circumvent this situation, we 

conducted our analyses with markers isolated using a monoploid chromosome set obtained from this genome, which 

provided a large number of markers with reliable position information. 

Using these codominant markers, we analyzed the decay of LD over distance. LD has long been 

hypothesized to be high in sugarcane due to the short breeding history and narrow genetic basis of this crop; many 

studies using dominant markers have estimated it to be especially high at 5-10 cM50-54. The first study to use SNPs 

for this task and estimate LD decay in bp55 indicated that LD was extremely long lasting, with the average r2 
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decaying to 0.2 at 3.5 Mb in hybrids. Our results further confirm the persistence of LD at long distances in 

sugarcane, albeit indicating that it decayed more quickly – with r2 dropping to 0.2 at less than 1 Mb and to 0.1 at 2 

Mb. These results impact mapping studies, as a high LD implies that a low density of markers might be needed for 

accurate mapping of quantitative traits. 

We tested several approaches to evaluate population structure in the panel using each distinct marker 

dataset generated, which yielded remarkably different results. Studies contrasting the usage of dominant and 

codominant markers in plants have shown discrepancies in measures of genetic structure and diversity56-58, but this 

sort of comparison has never been performed including markers with dosage information in polyploids – let alone in 

sugarcane. In this crop, the most relatable findings available are those reported by Creste et al.59, who showed that 

using different dominant markers can bias genetic analyses, and thus the choice of marker must be guided by the 

specific goal of each study. For GWASs – for which a high density of markers is usually necessary – SNPs and 

indels are currently more cost-effective, as they can be easily identified in much larger numbers, in addition to 

offering the possibility of estimating highly-informative allele dosages or APs60-62. Hence, we believe the results we 

obtained with codominant SNPs and indels are more reliable, as they lean on much more genetic information. 

In contrast with the differences arising from the type of marker used, we observed little divergence between 

results of different structure methods performed with each marker dataset, and eventual discrepancies did not result 

in significant differences in the inflation of the association models, whose patterns were similar to those of previous 

studies30,43-44,54. Therefore, we opted to perform association analyses using the covariates that resulted in the value of 

» closest to 1. For FarmCPU, this corresponded to the <naive= model with no covariates; for codominant mixed 

modeling analysis, this was the QPCA + KMM combination. KMM is the usual choice of relationship matrix in 

polyploid association mapping63-65, as Q matrices obtained from PCA are commonly used to control population 

structure in GWASs66-68. 

FarmCPU analyses using dominant markers identified one AFLP fragment significantly associated with 

symptom severity, which explained a small part of the phenotypic variation (r2 = 0.116). Eight out of the nine 

markers associated with viral titer explained larger parts of the variation in the phenotypes (21-30%). These results 

are more promising than those obtained in a previous dominant GWAS targeting SCYLV resistance, which found r2 

ranging between 0.09-0.1427. Albeit low, values in this range are very common in sugarcane association studies. 

Evidence indicates that almost all of this crop9s traits are highly quantitative, with the notable exception of brown 
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rust resistance69-70. For other relevant traits, it is common to find the most associated markers explaining ≤ 10% of 

the phenotypic variation28,42,54. 

A few authors have suggested that these suboptimal results could be improved with the usage of markers 

with dosage; this was also performed here, using SNPs and indels with AP information. Although codominant 

mixed modeling analyses successfully identified markers associated with SCYL symptom severity using the 

Bonferroni correction, the same was not observed for SCYLV titer. This was probably influenced by the modest size 

of the panel, a factor that restricts the power of GWASs71-72. As previously noted by Racedo et al.73, assembling and 

phenotyping large sugarcane association panels is a challenging task; thus, it is not uncommon for association 

studies of this crop to evaluate fewer than 100 genotypes42,73-76. Our study was particularly burdensome, as 

extremely laborious inoculation and quantification techniques were employed to generate highly reliable phenotypic 

data. Furthermore, the Bonferroni method is notorious for its conservative nature, poorly controlling false 

negatives77-79. This led us to establish an arbitrary threshold (p < 0.0001) to select markers strongly associated with 

SCYLV titer for further investigation. Using this methodology, we identified 57 nonredundant markers associated 

with the three phenotypes. 

As a last approach to identify marker-trait associations, we tested several ML algorithms coupled with FS 

methods to predict genotype attribution to phenotypic clusters identified by HCPC analyses. Unlike methods built 

on classical statistics, these algorithms are not as heavily impacted by the sample size. We could achieve very high 

accuracies of prediction (up to 95%) with considerably reduced datasets comprising 120-190 markers. These results 

are very similar to what was obtained for predicting sugarcane brown rust resistance groups, where an accuracy of 

95% was obtained using 131 SNPs62. Marker datasets selected by ML have rarely been employed in genetic 

association studies in plants, but the few existing examples show their power to identify genes associated with 

phenotypes of interest80-82. 

We annotated 176 markers associated with SCYLV resistance to 148 genes. Many candidates do not allow 

extensive discussion on their involvement in resistance to this disease, as they either have very generic descriptions 

or have not been previously linked to plant virus resistance. Other proteins have occasionally been associated with 

responses to viruses but are members of very large gene families with extremely diverse biological roles and will not 

be discussed. Remarkably, a few candidates encode proteins previously associated with the response to SCYLV 

infection; this was the case for SbRio.10G317500.1, encoding a peroxidase precursor. Peroxidases are long known 
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to be activated in response to pathogens, but most notably, a guaiacol peroxidase has been shown to be more active 

in sugarcane plants exhibiting SCYL symptoms than in uninfected or asymptomatic plants83. Our results provide 

further evidence that these enzymes are in fact involved in the response to SCYLV. Other candidates harboring 

markers associated with SCYLV resistance encode proteins with motifs previously associated with SCYLV 

resistance30: Sobic.001G023900, encoding a GATA zinc finger protein, and Sobic.001G200200 and 

Zm00001d037864_T030, which encode proteins containing tetratricopeptide repeats. 

Other annotations included classic participants in more general disease resistance mechanisms, such as 

several genes encoding proteins with leucine-rich repeat (LRR) motifs. These structures are part of nucleotide-

binding LRR (NBS-LRR) proteins, receptors that detect pathogen-associated proteins and elicit effector-triggered 

immunity84, having been shown to determine resistance to viruses in plants85-87. We found two LRR proteins 

(Sobic.008G156600.1 and Sobic.001G452600.1), one disease resistance NBS-LRR (Sobic.007G085400.1) and one 

N-terminal leucine zipper NBS-LRR resistance gene analog (Sobic.005G203500.1) associated with SCYLV 

resistance. Furthermore, we annotated one gene (Sobic.009G204800.1) that encodes a precursor of a receptor-like 

serine/threonine-protein kinase, i.e., the family to which LRR proteins belong. Yang et al.30 also identified a 

serine/threonine-protein kinase associated with SCYLV resistance. We consider these proteins highly promising 

candidates to be involved in the recognition of infection by SCYLV, which could trigger response mechanisms 

leading to the restriction of the virus. Further virus-host interaction studies involving these proteins might help 

confirm this hypothesis, which would represent a major breakthrough in understanding resistance to SCYLV. 

Two other annotated genes were readily identified as involved in plant disease resistance mechanisms. 

Sobic.010G131300.2 contains a Bric-a-Brac, Tramtrack, Broad Complex/Pox virus and Zinc finger (BTB/POZ) 

domain, while Sobic.007G198400.1 contains two BTB domains, as well as ankyrin repeat regions. These domains 

are present in and are essential for the function of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 

(NPR1), a central player in plant disease responses88-89. This family of transcription factors is involved in 

establishing both systemic acquired resistance and induced systemic resistance90, mediating the crosstalk between 

salicylic acid and jasmonic acid/ethylene responses91. Correspondingly, NPR1 has been widely shown to be 

involved in resistance to viruses92-93; therefore, it is reasonable to suggest its participation in the response to 

infection by SCYLV. 
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We also found a few candidates with putative roles in the RNA interference mechanism, one of the most 

prominent processes that contribute to resistance against viruses in plants. This is the case for Sobic.001G214000.1, 

which encodes a Dicer. Dicers are part of a mechanism known as RNA silencing, recognizing and cleaving long 

double-stranded RNA molecules into mature small RNAs that guide the cleavage of viral mRNAs and disrupt virus 

replication94; accordingly, these nucleases have been linked to resistance to viruses in several plant species95-96. 

Another gene possibly involved in RNA interference is Sobic.009G121100, encoding a protein related to calmodulin 

binding – a calcium transducer that regulates the activity of various proteins with diverse functions97 and has been 

widely implicated in viral resistance in plants, often playing roles in RNA interference98-100. Therefore, we consider 

these genes promising candidates in the regulation of SCYLV replication and spreading in planta, as well as in the 

development of SCYL symptoms. 

Two additional annotations linked to the mechanism of RNA interference are those of genes encoding 

proteins with F-box domains, SbRio.03G158900 and Sobic.002G019750.1. F-box proteins are involved in virus 

resistance in several plant species101-102; a particularly interesting case is FBW2 from A. thaliana, which regulates 

AGO1, an Argonaute protein with a central role in RNA silencing103 and repression of target viral RNAs104-106. Even 

more intriguing is the fact that one of the proteins encoded by the SCYLV genome, P0, contains an F-box-like 

domain and mediates the destabilization of AGO1, leading to the suppression of host gene silencing107. Whether the 

F-box proteins identified here play active roles in silencing of SCYLV remains a question to be investigated by 

further studies. 

Other annotated genes may represent host factors involved in various steps of plant-virus interactions. For 

instance, Sobic.010G160500.4 encodes an RNA helicase with a DEAD-box domain, which are often coopted by 

viruses to promote viral translation or replication, playing important roles in regulating infection108-110. Similarly, 

soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) proteins such as 

Sobic.001G528000.1 are essential in the biogenesis and fusion of vesicles of several plant viruses111-114. We also 

found one gene encoding a myosin (Sobic.002G108000.1) and two genes related to kinesin (Sobic.001G346600.1 

and Sobic.001G399200.2), filament-associated motor proteins involved in the transport of organelles115. In a few 

cases, both myosins116-118 and kinesins119 have been shown to be involved in viral intercellular movement through 

poorly understood mechanisms. One last interesting annotation was Sobic.003G101500.1, a protein with a DNAJ 

domain. DNAJs have been shown to interact with proteins of various plant viruses and to be associated with 
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resistance, sometimes being crucial for virus infection and spread120-123. We consider these genes to be promising 

candidates as host cofactors in the response to SCYLV infection. 

In conclusion, this array of genome-wide analyses allowed us to detect markers significantly associated 

with SCYLV resistance in sugarcane. If validated, these markers represent an especially valuable resource for 

sugarcane breeding programs, as the results can be directly employed in marker-assisted strategies for the early 

selection of clones. The annotation of several genes wherein these markers are located revealed many candidates 

with long-established and pivotal roles in viral disease resistance, further demonstrating the efficiency of the 

methods employed for this purpose. Additionally, this annotation provides valuable insights into the unexplored 

mechanisms possibly involved in sugarcane9s response to infection by SCYLV, introducing new candidates whose 

role in this process can be further investigated in future studies. 

 

4 Material and Methods 

 

4.1 Plant Material and Inoculation 

The plant material and inoculation methods employed in the present study are described by Burbano et al.124. The 

experimental population consisted of a panel of 97 sugarcane genotypes comprising wild germplasm accessions of 

S. officinarum, S. spontaneum and Saccharum robustum; traditional sugarcane and energy cane clones; and 

commercial cultivars originating from Brazilian breeding programs (Supplementary Table 1). To ensure plant 

infection with SCYLV, a field nursery was established in March 2016 at the Advanced Centre for Technological 

Research in Sugarcane Agribusiness located in Ribeirão Preto, São Paulo, Brazil (4°52934= W, 21°12950= S). 

Seedlings from sprouted setts of each genotype were planted in 1-meter plots with an interplot spacing of 1.5 meters. 

The cultivar SP71-6163, which is highly susceptible to SCYLV15, was interspersed with the panel genotypes. M. 

sacchari vector aphids were reared on RT-PCR tested SCYLV-infected SP71-6163 plants; after an acquisition 

access period of at least 48 hours, aphids were released weekly in the field nursery in July 2016. After plant growth, 

setts obtained from this nursery were used to install a field experiment following a randomized complete block 

design with three blocks in May 2017. Plants were grown in 1-meter-long three-row plots with row-to-row and 

interplot spacings of 1.5 and 2 meters, respectively. Each row contained two plants, totaling six plants of each 

genotype per plot. To further assist infection by SCYLV, the cultivar SP71-6163 was planted in the borders and 
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between blocks, and M. sacchari aphids were again released in the field weekly for five months, starting from 

November 2017. 

 

4.2 Phenotyping 

Plants were phenotyped in two crop seasons: plant cane in June 2018 and ratoon cane in July 2019. The severity of 

SCYL symptoms was assessed by three independent evaluators, who classified the top visible dewlap leaves 

(TVDLs) of each plot using a diagrammatic scale established by Burbano et al.124, as shown in Supplementary Fig. 

1. In the same week as symptom evaluation was performed, fragments from the median region of at least one TVDL 

per plot were collected and stored at -80°C until processing. Total RNA was extracted from this tissue using TRIzol 

(Invitrogen, Carlsbad, USA). Samples were subjected to an additional purification process consisting of three steps: 

(i) mixing equal volumes of RNA extract and chloroform, (ii) precipitating the RNA overnight with 2.5 volumes of 

100% ethanol and (iii) a conventional cleaning step with 70% ethanol. RNA was then quantified on a NanoDrop 

2000 spectrophotometer (Thermo Scientific, Waltham, USA) and subjected to electrophoresis on a 1% agarose gel 

stained with ethidium bromide for integrity checks. Samples were next diluted, treated with RNase-Free RQ1 DNase 

(Promega, Madison, USA), quantified and diluted again for standardization, and converted to cDNA using the 

ImProm-II Reverse Transcription System kit (Promega, Madison, USA). 

The SCYLV titer in each sample was determined by qPCR using GoTaq qPCR Master Mix (Promega, 

Madison, USA) on a Bio-Rad CFX384 Touch detection system (Bio-Rad, Philadelphia, USA). Two viral 

quantification methodologies were employed – one relative and one absolute – using primers and conditions as 

described by Chinnaraja and Viswanathan125. For both methods, a set of primers was used to amplify a 181-bp 

fragment from SCYLV ORF3 (YLSRT). For the relative quantification, an additional set of primers was used to 

amplify a 156-bp fragment of the 25S subunit of sugarcane ribosomal RNA (25SrRNA), used as an internal control. 

The 2-ΔΔCT method126 was used to correct cycle threshold (CT) values; the sample with the highest CT and a melting 

temperature of 82.5 ± 0.5°C for the YLSRT primers was used as a control for phenotyping in each year. The 

absolute quantification followed the methodology described by Chinnaraja et al.37. A pGEM-T Easy vector 

(Promega, Madison, USA) cloned with a 450-bp fragment from SCYLV ORF3 previously amplified by RT-PCR 

was used to construct a serial dilution curve with six points and tenfold dilutions between points, which was 

amplified on all qPCR plates. All reactions were performed using three technical replicates. 
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4.3 Phenotypic Data Analyses 

The normality of phenotypic data was assessed by Shapiro-Wilk tests, and normalization was carried out using the 

bestNormalize package127 in R software128. BLUPs were estimated for each trait with the breedR R package129 using 

a mixed model as follows: �ÿĀ� = � + �Ā + �� + ��Ā� + �ÿ(Ā�) + �ÿĀ� 

where Yijm is the phenotype of the ith genotype considering the jth block and the mth year of phenotyping. The trait 

mean is represented by μ; fixed effects were modeled to estimate the contributions of the jth block (Bj), the mth year 

(Ym) and the interaction between block and year (BYjm). Random effects included the genotype (G) and the residual 

error (e), representing nongenetic effects. 

Pearson9s correlation tests were performed using the BLUPs to check the correlation between traits, and 

correlation distributions were plotted using the GGally R package130. To investigate the separation of genotypes 

according to phenotypes, we performed two HCPC analyses with the factoMineR package131 – first using only viral 

quantification and then employing the three analyzed traits. The factoextra R package132 was used to plot graphs 

associated with these analyses. Statistical differences between the phenotypes of the clusters identified in each 

HCPC were assessed by Kruskal-Wallis tests or analyses of variance (ANOVAs), depending on the distribution of 

the data. Post hoc Dunn9s tests using the Bonferroni correction were performed with the R package dunn.test133 to 

verify pairwise differences between clusters. 

 

4.4 Genotyping 

 

4.4.1 Dominant Markers 

Total DNA was extracted from leaves of each genotype following the method described by Aljanabi et al.134. AFLPs 

were developed using EcoRI and MspI restriction enzymes (New England BioLabs). Digestion reactions were 

prepared in a final volume of 20 ¼L containing 300 ng DNA, 2.5 U of each restriction enzyme in 1X RL Buffer 

(New England BioLabs) and incubated for 3 hours at 37°C and for 5 min at 70°C. Adapter ligation was conducted in 

a final volume of 40 ¼L containing 20 ¼L of the digestion reaction, 5 X buffer (40 mM Tris pH 8.4, 100 mM KCl), 

0.5 ¼M EcoRI adaptor, 5 ¼M MspI adaptor, 1 mM ATP and 0.85 U of T4 DNA ligase (67 U/¼L) (New England 
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BioLabs). Ligation was performed at 37°C for 2 hours and 16°C for 16 hours. Preamplification was conducted with 

primers complementary to restriction enzyme adaptors and devoid of selective nucleotides at the 3' end (EcoRI+0 

and MspI+0 primers) and using a 6X dilution of the digestion/ligation product. This reaction was performed in a 

final volume of 15 ¼L containing 2 ¼L of the 6X dilution digestion/ligation product, 1X PCR buffer (20 mM Tris pH 

8.4, 50 mM KCl), 3.3 ¼M EcoRI+0 and MspI+0 primers, 0.17 mM dNTPs, 2 mM MgCl2 and 0.07 U Taq DNA 

polymerase. The cycling conditions were as follows: 29 cycles at 94°C for 30 seconds, 56°C for 1 minute and 72°C 

for 1 minute. Preamplification reactions were diluted 10X and used for selective amplification reactions using 

combinations of EcoRI/MspI primers with three selective nucleotides at the 3`end and the EcoRI primer labeled with 

fluorophores IRDye700 or IRDye800. Thirty-five selective primer combinations were used (Supplementary Table 

2). The reaction was performed in a final volume of 10 ¼L containing 2.5 ¼L of the 10X diluted preamplification, 

1X PCR buffer (20 mM Tris pH 8.4, 50 mM KCl), 0.05 ¼M of selective Eco700 labeled primer (or 0.07 ¼M Eco800 

primer), 0.25 ¼M for Msp selective primer, 0.25 ¼M dNTPs, 2 mM MgCl2, 0.5 U of Taq DNA polymerase. Cycling 

conditions were as follows: 94°C for 30 seconds, 65°C for 30 seconds and 72°C for 1 minute followed by 12 cycles 

at 94°C for 30 seconds, 65°C for 30 seconds (decreasing 0.7°C/cycle) and 72°C for 1 minute, followed by 23 cycles 

of 94°C for 30 seconds, 56°C for 30 seconds and 72°C for 1 minute. Final amplicons were separated on a 6% 

denaturing polyacrylamide gel and visualized with a LI-COR 4300 DNA Analyzer (LI-COR, Lincoln, NE, USA). 

Twelve SSR loci previously isolated from the sugarcane expressed sequence tag database135-138 were used 

for SSR genotyping (Supplementary Table 3). PCR mixes were prepared and amplifications were conducted in a 

Bio-Rad MyCycler thermocycler (Bio-Rad, Philadelphia, USA) following the conditions previously established by 

Oliveira et al.137 and Marconi et al.138; primers were labeled with fluorescent dyes IRDye700 and IRDye800 to allow 

band visualization. Amplicons were separated on a 6% denaturing polyacrylamide gel and visualized with a LI-COR 

4300 DNA Analyzer. Due to sugarcane polyploidy, both AFLPs and SSRs were treated as dominant and scored 

based on the presence (1) or absence (0) of bands. After genotyping, genotypes and markers with over 10% missing 

data were removed, as well as markers with a MAF below 10%. 

 

4.4.2 Genotyping-by-sequencing 

Genomic DNA was extracted from leaves using the GenElute Plant Genomic DNA Miniprep Kit (Sigma-Aldrich, 

St. Louis, USA). The integrity of the DNA was verified by electrophoresis on a 1% agarose gel stained with 
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ethidium bromide, and its concentration was determined using a Qubit 3.0 fluorometer (Thermo Scientific, 

Wilmington, USA). The construction of the GBS library was based on a protocol by Poland et al.139 and used a 

combination of PstI and MseI restriction enzymes. For operational reasons, 94 out of the 97 genotypes of the panel 

were included in the library, which did not include genotypes 87, 88 and 95 (see Supplementary Table 1). The 

library was subjected to a purification step using polyethylene glycol as described by Lundin et al.140 with slight 

modifications. It was then validated with a Fragment Analyzer (Agilent Technologies, Santa Clara, USA) and 

quantified by RT-qPCR in a Bio-Rad CFX384 Touch detection system using the KAPPA KK4824 kit (Kapa 

Biosystems, Wilmington, USA). Two 150-bp single-end sequencing libraries were prepared using the NextSeq 

500/550 High Output Kit (Illumina, San Diego, USA) and sequenced on a NextSeq 500 (Illumina, San Diego, 

USA). 

After checking sequencing quality with FastQC141, we used Stacks software version 1.42142 for 

demultiplexing and checking the amount of data generated for each sample. The TASSEL4-POLY pipeline143, 

developed from TASSEL-GBS144, was used for variant calling. Most parameters were set at their standard values; 

exceptions were the use of the "inclGaps" argument in the <DiscoverySNPCaller= plugin, the "misMat" argument 

with a value of 0.3 and the "callHets" argument in the <MergeDuplicateSNPs= plugin. Rather than aligning raw 

reads to a reference genome, the TASSEL-GBS pipeline first generates <tags= – unique sequences representing 

redundant reads – to reduce computation time144. We tested mapping tags against nine genomic references using two 

aligners: BWA version 0.7.2145 and Bowtie2 version 2.2.5146. The genomic references used were as follows: the S. 

bicolor genome147, the methyl-filtered genome of the sugarcane cultivar SP70-114347, a sugarcane RNA-Seq 

assembly148, a de novo assembly generated from GBS data following the GBS-SNP-CROP pipeline149, a draft 

genome of the sugarcane cultivar SP80-3280150, a sugarcane transcriptome generated by Iso-Seq151, the mosaic 

monoploid genome of the sugarcane cultivar R570152, the S. spontaneum genome49 and a monoploid chromosomic 

set obtained from this same reference that included the <A= haplotype and unassembled scaffolds. To avoid 

sampling of duplicated regions, we did not include tags with multiple alignments in the ensuing analyses. After 

variant calling, VCFtools version 0.1.13153 was used to retain biallelic markers with an MAF of 0.1, no missing data 

and a minimum sequencing depth of 50 reads. The most appropriate reference was chosen, and adopting the method 

proposed by Yang et al.43, the ratio between alleles (allele proportions, APs) of each variant was transformed into 

genotypes with a fixed ploidy of 12 using the vcfR R package154. 
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4.5 Linkage Disequilibrium and Population Structure Analyses 

For SNPs and indels, we measured LD on the ldsep R package162 by calculating the squared correlation coefficient 

(r2) between pairs of markers on the same chromosome. The decay of LD over physical distance was investigated by 

pooling all chromosomes, plotting pairwise r2 values against the distance between markers and fitting a curve using 

the equation proposed by Hill and Weir163. The critical r2 for LD decay was set to 0.1, the most commonly used 

threshold for determining the existence of LD164. Only comparisons with p < 0.05 were used in this analysis. 

Three procedures were used to evaluate genetic structuring in the panel, employing dominant and 

codominant markers separately; for all analyses, the maximum number of clusters in the panel was set to 10. The 

first method was a DAPC, performed in the adegenet R package155. The second was PCA followed by K-means, for 

which missing data were imputed with the pcaMethods package156 and for which the optimal number of clusters was 

evaluated using the elbow, silhouette and gap statistic methods in the factoextra package. The last was a Bayesian 

clustering of genotypes into predetermined numbers of clusters (K) performed on STRUCTURE software157, 

assuming an admixture model with correlated allelic frequencies between populations. Ten independent runs were 

implemented for each K, and for dominant markers, estimates of probabilities of values of K in each run were taken 

following 100,000 generations as burn-in and 200,000 generations sampled in a Monte Carlo Markov Chain 

(MCMC). For Bayesian clustering using SNPs and indels, we used a subset of 7,000 markers randomly sampled 

from the total dataset, parallelized STRUCTURE with StrAuto software158 and sampled 100,000 generations in the 

MCMC. In both cases, the most likely number of genetic clusters was determined by the ad hoc statistics ∆K159 and 

the LnP(D) probability logarithm; the output was interpreted in STRUCTURE HARVESTER software version 

0.6.94160. Clumpak software161 was used to average the admixture proportions of runs and to estimate cluster 

membership coefficients for genotypes. 

 

4.6 Association Analyses 

 

4.6.1 FarmCPU 

Association analyses with dominant markers were performed with the FarmCPU165 method in R For these analyses, 

markers were recoded to indicate the presence (0) and absence (2) of bands. We tested FarmCPU using no 
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covariates and including matrices obtained from the three genetic structure analyses described in the previous 

section as such. In each case, a Q-Q)plot of the -log10(p) values of markers was generated, and the genomic inflation 

factor »166 was calculated. The average » from analyses employing each covariate matrix was calculated and used to 

select the model that best controlled inflation. The Bonferroni correction with α = 0.05 was used to establish the 

significance threshold for associations, and the phenotypic variance explained by each marker was estimated for 

significant marker-trait associations using a linear model in R software. 

 

4.6.2 Mixed Modeling in GWASpoly 

Association analyses using SNPs and indels were performed using mixed linear model approaches in the 

GWASpoly R package63. The output of the three genetic structure analyses previously described was used to build Q 

matrices, which were included in the models as fixed effects. Similarly, three different genetic kinship matrices (K) 

of the panel were computed and included as random effects: (I) a MMT matrix167, built on GWASpoly; (II) a 

complete autopolyploid matrix based on Slater et al.168, built with the AGHmatrix R package169; and (III) a 

pseudodiploid matrix based on Slater et al. 168, also built with AGHmatrix. We tested twelve Q + K combinations, 

and for each of them, six marker-effect models were used: general, additive, simplex dominant reference, simplex 

dominant alternative, diploidized general and diploidized additive. For each model, a Q-Q plot of the -log10(p) 

values of markers was generated, and » was calculated. The average » of all traits and models employing each Q + K 

combination was calculated and used to select the best set of matrices. Once this combination was chosen, 

Manhattan plots were generated for all models and traits. The Bonferroni and FDR correction methods with α = 0.05 

were assessed to establish the significance threshold for associations. 

 

4.6.3 Machine Learning Coupled with Feature Selection 

Finally, we assessed the capacity of ML strategies to predict the attribution of genotypes to the phenotypic groups 

identified in the HCPC analyses based on all markers, following the genomic prediction approach proposed by Aono 

et al.62. For this approach, we selected accessions successfully genotyped with both SNPs/indels and AFLPs/SSRs; 

missing data in dominant markers were imputed as the means. We evaluated the accuracy of eight ML algorithms: 

adaptive boosting (AB)170, decision tree (DT)171, Gaussian naive Bayes (GNB)172, Gaussian process (GP)173, K-

nearest neighbor (KNN)174, MLP175, random forest (RF)176 and support vector machine (SVM)177, all implemented 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2020.09.04.283614doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.04.283614
http://creativecommons.org/licenses/by-nd/4.0/


22 

in the scikit-learn Python 3 module178. As a cross-validation strategy, we used a stratified K-fold (k=5) repeated 100 

times for different data configurations. 

We then tested five FS techniques to obtain feature importance and create subsets of marker data: gradient 

tree boosting (FS1)179, L1-based FS through a linear support vector classification system (FS2)177, extremely 

randomized trees (FS3)180, univariate FS using ANOVA (FS4) and RF (FS5)176. All FS approaches were 

implemented in the scikit-learn Python 3 module. We tested the differences in the accuracy between the selected FS 

methods using ANOVAs and multiple comparisons by Tukey9s tests implemented in the agricolae R package181. We 

also evaluated intersections between these datasets: markers selected by at least two of the five methods (Inter1); 

markers selected by at least two of the three best methods (Inter2); and markers selected by all three best methods 

(Inter3). Finally, the area under ROC curves was calculated for the best ML-FS combination and plotted using the 

Matplotlib library89 with Python 3. 

 

4.7 Marker Mapping and Annotation 

The distribution of markers identified by all analyses along S. spontaneum <A= chromosomes was visualized using 

MapChart182. Markers previously associated with SCYLV resistance by QTL mapping26,29 and GWAS27,30 were also 

retrieved and included in the map. Finally, the sequences of associated markers were annotated by aligning SSR 

flanking sequences or the 2000-bp window adjacent to SNPs and indels against a database comprising CDSs of the 

genomes of 14 Poaceae species and Arabidopsis thaliana62. For this, BLASTn183 was used with an E-value of 1e-30, 

and the best alignment of each sequence was kept for analysis. 
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Figure Legends 

Fig. 1 Factorial maps generated in the two hierarchical clustering on principal components (HPCP) analyses 

using BLUP values. (a) Factorial map of HCPCs performed using the SCYLV titer determined by RT-qPCR. A 

division into three clusters (Q1, Q2 and Q3) was considered. (b) Factorial map of HCPC performed using SCYL 

symptom severity and SCYLV titer determined by RT-qPCR. A division into three clusters (SQ1, SQ2 and SQ3) 

was considered 

Fig. 2 Decay of linkage disequilibrium (r2) as a function of physical distance (bp) between pairs of 67,007 

single nucleotide polymorphisms (SNPs) and insertions and deletions (indels) located on Saccharum 

spontaneum chromosomes 1A-8A. Only r2 values with P < 0.05 are included 

Fig. 3 Manhattan plots generated in association analyses using the best linear unbiased predictor (BLUP) 

values of the three traits analyzed. Six different models were tested: general, additive, simplex dominant reference 

(1-dom-ref), simplex dominant alternative (1-dom-alt), diploidized general (diplo-general) and diploidized additive 

(diplo-additive). On the x-axis, S represents scaffolds not associated with any of the S. spontaneum chromosomes 

Fig. 4 Receiver operating characteristic (ROC) curves and area under the curve (AUC) results regarding the 

performance of MLP in predicting clustering by by SCYLV titer determined by RT-qPCR (Q) and SCYLV 

titer determined by RT-qPCR and SCYL symptom severity (SQ). (a) Model performance obtained using the full 

marker dataset. (b) Model performance obtained using the marker dataset obtained from the intersection of at least 

three of the three best feature selection methods employed in the study (Inter2) 

Fig. 5 Distribution of markers associated with SCYLV resistance along Saccharum spontaneum <A= 

chromosomes. In each chromosome, marker positions are shown on the left, and marker names are indicated on the 

right, labeled and colored according to the method employed for their identification. Markers identified by previous 

mapping studies are colored in gray 
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