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Abstract

A major disease affecting sugarcane, a leading sugar and energy crop, is sugarcane yellow leaf (SCYL), caused by
the sugarcane yellow leaf virus (SCYLV). Despite damages caused by SCYLYV, the genetic basis of resistance to this
virus remains largely unknown. Several methodologies have arisen to identify molecular markers associated with
SCYLYV resistance, which are crucial for marker-assisted selection and understanding response mechanisms to this
virus. We investigated the genetic basis of SCYLV resistance using dominant and codominant markers and
genotypes of interest for breeding. A sugarcane panel inoculated with SCYLV was analyzed for SCYL symptoms,
and viral titer was estimated by RT-qPCR. This panel was genotyped with 662 dominant markers and 70,888 SNPs
and indels with allele proportion information. We used polyploid-adapted genome-wide association analyses and
machine-learning algorithms coupled with feature selection methods to establish marker-trait associations. While
each approach identified unique marker sets associated with phenotypes, convergences were observed between
them, demonstrating their complementarity. Lastly, we annotated these markers, identifying genes encoding
emblematic participants in virus resistance mechanisms and previously unreported candidates involved in viral
responses. Our approach could accelerate sugarcane breeding targeting SCYLV resistance and facilitate studies on

biological processes leading to this trait.
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1 Introduction

Sugarcane is one of the world’s most important crops, ranking first in production quantity and sixth in net
production value in 2016'. It is by far the most relevant sugar crop, accounting for approximately 80% of the
world’s sugar production! and is also a prominent energy crop. However, it has an extremely complex genome;
modern cultivars are the product of a few crosses between two autopolyploid species. Saccharum spontaneum (2n =
5x =40 to 16x = 128; x = 8)*, a wild stress-resistant but low-sugar species, was hybridized and backcrossed with
Saccharum officinarum (2n = 8x = 80, x = 10)*, which has a high sugar content but is sensitive to drought and
susceptible to diseases. These procedures gave origin to plants with very large (ca. 10 Gb), highly polyploid,
aneuploid and remarkably duplicated genomes>®. This complexity directly affects sugarcane research and breeding;
until recently, it prevented the use of codominance information in marker-assisted breeding strategies for this crop,
limiting such approaches’.

One of the diseases that affect this crop is sugarcane yellow leaf (SCYL), which is caused by sugarcane
yellow leaf virus (SCYLYV), a positive-sense ssSRNA virus belonging to the Polerovirus genus®'°. The expression of
SCYL symptoms is complex and usually occurs in late stages of plant development, being mainly characterized by
the intense yellowing of midribs in the abaxial surface of leaves!!"!2. SCYLV alters the metabolism and transport of

13-14

sucrose and photosynthetic efficiency'~"'*, impairing plant development and eventually reflecting productivity

losses!3 18, Many SCYL symptoms may, however, be caused by other stresses or plant senescence'>!>1

, making
SCYL identification troublesome. Therefore, molecular diagnosis of SCYLYV infection is of great importance; this
was initially performed through immunological assays'!, but more sensitive and sensible methods using reverse
transcription followed by quantitative polymerase chain reaction (RT-qPCR) were later developed®%-22,

Due to SCYL's elusive symptomatology, SCYLV’s spread is silent; it is disseminated mostly during
sugarcane vegetative propagation but is also transmitted by aphids, mainly the white sugarcane aphid Melanaphis
sacchari (Zehntner, 1897)!". Unlike other pathogens, the virus is not efficiently eradicated by thermal treatments®?;
the only way to thoroughly eliminate it is by meristem micropropagation®-?, which is time-consuming and requires
specialized infrastructure and personnel. These features make varietal resistance to SCYLV the most efficient
resource to prevent damage and losses caused by this virus. Resistance has been explored in breeding programs and

by a few genetic mapping studies?*°. However, research on SCYL genetics is not exempt from the difficulties

generated by the complexity of the sugarcane genome?'; due to this crop’s polyploid nature, most of these works
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employed dominantly scored molecular markers, implying a great loss of genetic information®?. Additionally, they
employed immunological methods to phenotype SCYLYV resistance. The usage of dominant markers and the poor
reliability of phenotyping were listed as key factors limiting the power of these studies?’-28,

Here, we evaluated the efficacy of several genome-wide approaches to identify markers and genes
associated with SCYLYV resistance. We analyzed a panel of Saccharum accessions inoculated with SCYLV, which
were graded for the severity of SCYL symptoms, and their viral titer was estimated by relative and absolute RT-
gPCR. This panel was genotyped with amplified fragment length polymorphisms (AFLPs) and simple sequence
repeats (SSRs), as well as single nucleotide polymorphisms (SNPs) and insertions and deletions (indels) obtained by
genotyping-by-sequencing (GBS). We then employed three distinct methodologies to detect marker-trait
associations: the fixed and random model circulating probability unification (FarmCPU) method using dominant
AFLPs and SSRs; mixed linear modeling using SNPs and indels, in which allele proportions (APs) in each locus
were employed to establish genotypic classes and estimate additive and dominant effects; and several machine
learning (ML) methods coupled with feature selection (FS) techniques, using all markers to predict genotype

attribution to phenotypic clusters. Finally, we annotated genes containing markers associated with phenotypes,

discussing the putative participation of these genes in the mechanisms underlying resistance to SCYLV.

2 Results

2.1 Phenotypic Data Analyses
A total of 97 sugarcane accessions inoculated with SCYLV were evaluated for the severity of SCYL symptoms and
for viral titer estimated by relative and absolute RT-qPCR quantification in two consecutive years, as
comprehensively described in Supplementary Results. Based on best linear unbiased prediction (BLUP) estimations,
symptom severity was not correlated with the viral titer determined by relative (p = 0.117) or absolute (p = 0.296)
quantification. We found, however, a significant (p < 2.2e-16) and strong (1> = 0.772) correlation between the values
obtained by the two quantification methods, indicating their reliability (Supplementary Fig. 2).

Using BLUP values, we performed two hierarchical clustering on principal components (HCPC) analyses
to investigate the classification of genotypes according to SCYLV resistance phenotypes — the first using BLUP

values of SCYLYV titers determined by RT-qPCR, and the second including BLUP values of all three traits analyzed.
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Both analyses indicated a division of the panel into three clusters (Supplementary Figs. 3-4) — named Q1-3 for the
first HCPC and SQ1-3 for the second analysis. Factor maps wherein these groups are plotted onto the first two
dimensions of HCPCs are shown in Fig. 1, and the attribution of genotypes to each cluster is available in
Supplementary Table 4. Each group defined in the first HCPC presented significantly different SCYLV titers as
estimated by both quantification methods (Supplementary Fig. 5, Supplementary Table 5). The second HCPC also
resulted in a separation of groups with contrasting phenotypes: SQ1 accessions showed the least severe SCYL
symptoms and the lowest titers of SCYLV; SQ2 accessions displayed significantly more severe disease symptoms
and higher viral titers; and SQ3 accessions had the most severe disease symptoms and equally higher virus titers

(Supplementary Fig. 6, Supplementary Table 5).

2.2 Genotyping and genetic analyses
After genotyping and filtering procedures, 93 accessions of the panel were successfully characterized with 550
AFLP fragments and 112 SSR fragments, totaling 662 polymorphic dominant markers. The GBS library constructed
allowed the successful genotyping of 92 panel accessions, as described in detail in the Supplementary Results. We
performed variant calling using BWA aligner and a monoploid chromosome set isolated from the S. spontaneum
genome as a reference. This genome allowed the discovery of a large number of markers (38,710 SNPs and 32,178
indels) with AP information after rigorous filtering (Supplementary Tables 6-7). Additionally, unlike many of the
references tested, it provided markers with information of position at chromosome level, allowing the estimation of
long-distance linkage disequilibrium (LD). Pairwise LD between markers located within chromosomes was obtained
and its decay was analyzed over distance. We observed high r? values (~0.4) between closely distanced markers,
which dropped to 0.1 at approximately 2 Mb (Fig. 2).

The genetic structure of the panel was investigated separately using the two marker datasets generated —
AFLPs and SSRs scored as dominant and codominant SNPs and indels with AP information —, and three different
approaches — a discriminant analysis of principal components (DAPC), a principal component analysis (PCA)
followed by k-means and a Bayesian clustering implemented in STRUCTURE. Results are thoroughly described in
the Supplementary Results, and Supplementary Table 8 summarizes the allocation of genotypes to the clusters
identified in each analysis. Analyses performed with dominant markers identified two to four clusters, depending on

the structure analysis employed (Supplementary Figs. 7-10); however, we observed extensive similarities between
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the groups identified in each method. A similar pattern was observed when the same three structure analyses were
performed with codominant markers. Each method resulted in a unique separation of accessions, varying between
two and three groups (Supplementary Figs. 11-14), but the clustering obtained by these different analyses was
overall coincident. We found, however, that using dominant or codominant markers yielded noticeably different
outcomes. Some overlap was observed between clusters identified by the analyses using each set of markers but,
overall, groups identified by these analyses shared little resemblance. Additionally, the results from these methods

did not present correspondences with the phenotype-based HCPCs.

2.3 Association Analyses

2.3.1 FarmCPU

For FarmCPU analyses, we tested including matrices obtained from each genetic structure analysis as covariates and
ran the models with no covariates. The distribution of the genomic inflation factor A (Supplementary Fig. 15) was
normal (p = 0.975) and no significant differences (p = 0.084) were observed between the inflation of p-values of
models. Thus, we chose to conduct FarmCPU analyses using no covariates, as this resulted in the median value of A
closest to its theoretical value under the null hypothesis (A = 1) and in appropriate profiles of inflation of p-values as
seen in quantile-quantile (Q-Q) plots (Supplementary Fig. 16). Using a Bonferroni-corrected threshold of 0.05, one
marker-trait association was detected for symptom severity and five associations were detected for the viral titer
estimated by each quantification method — with one marker being mutually associated with both. The percentage of

phenotypic variance explained by each marker ranged from 9 to 30% (Supplementary Table 9).

2.3.2 Mixed Modeling

Twelve combinations of population structure (Q) and kinship (K) matrices were tested as effects in the codominant
association models. The distribution of A in each Q + K combination (Supplementary Fig. 17) was not normal (p =
3.253e-06) and no significant differences (p = 0.869) were detected between models. Thus, following analyses were
conducted with a Q + K combination that resulted in the median value of A closest to 1, which was obtained with the
combination of the first three PCs from a PCA with both the realized relationship (MMT) and pseudodiploid kinship

matrices. As the MM matrix is directly computed by the GWASpoly package, we considered the Qpca + Knvm
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combination to be the most straightforward. Q-Q plots of the association analyses for SCYL symptom severity and
SCYLV relative and absolute quantifications can be found in Supplementary Fig. 18; in general, all models showed
appropriate inflation of p-values.

A stringent significance threshold (p < 0.05 corrected by the Bonferroni method) was used to identify 35
nonredundant markers significantly associated with SCYL symptom severity (Fig. 3). Using this correction, no
markers were significantly associated with SCYLV titer. In an attempt to establish a less conservative threshold for
association analyses of these two traits, we employed the false discovery rate (FDR) for the correction of p-values,
which resulted in very low significance thresholds and the identification of thousands of associations as significant.
Therefore, we ultimately opted to use an arbitrary threshold of p < 0.0001 to determine markers strongly associated
with the two quantification traits. This resulted in 13 and 9 markers associated with SCYLYV titer determined by
relative and absolute quantifications, respectively (Fig. 3); one marker was common to both analyses.
Supplementary Table 10 supplies information on all marker-trait associations identified by this approach. For each
trait, we observed a redundancy between markers identified as significant by different marker-effect models; this

observation was particularly common between the simplex dominant alternative and the diploidized models.

2.3.3 Machine Learning Coupled with Feature Selection
As a last marker-trait association method, we tested eight ML algorithms for predicting the attribution of genotypes
to the phenotypic clusters identified in the HCPCs. When assessing their potential in this task using the full marker
dataset, predictive accuracies varied greatly depending on the method and phenotypic groups under analysis. They
were lower for the prediction of clusters associated with viral titer (Q), ranging between 39.2-49.6%, with an
average of 44.5% (Supplementary Fig. 19a). For clusters identified including symptom severity data (SQ),
accuracies were overall higher, albeit varying even more and being still unsatisfactory; they ranged between 7.9-
73.9% (Supplementary Fig. 19b) and had an average of 58%. Therefore, we tested applying five FS methods to
reduce the marker dataset, and constructed three additional reduced marker datasets consisting of intersections
between FS methods.

These procedures led to considerably higher accuracies in predicting Q and SQ clusters. Three FS methods
(FS1, FS2 and FS4) presented notably superior effects in increasing accuracy in both cases (Supplementary Fig. 20).

In the two scenarios, the most accurate model-FS combination was a multilayer perceptron neural network (MLP)
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coupled with FS2, which was composed of 232 markers for Q and 170 markers for SQ. This combination resulted in
average accuracies of 97.6% and 96.5% for the prediction of Q and SQ, respectively (Supplementary Tables 11 and
12). However, in both scenarios, MLP achieved the second-best results when using Inter2 datasets, composed by
markers present in at least two out of the three best FS methods; these represented 190 markers for Q and 120
markers for SQ. With this strategy, we could achieve equally high accuracies (95.7% for Q and 95.4% for SQ) with
further reductions in marker numbers. To farther evaluate the performance of MLP, we produced receiver operating
characteristic (ROC) curves and calculated their respective area under the curves (AUCs). Prior to FS, MLP did not
present satisfactory results, with ROC curves very close to the chance level and AUCs of 0.45-0.61 for Q and 0.40-
0.56 for SQ (Fig. 4a). When Inter2 was used, ROC curves showed much better model performances, with AUCs of
1.00 for Q and of 0.98-1.00 for SQ (Fig. 4b). These results confirm that Inter2 markers are in fact associated with
SCYLYV resistance and that MLP is an appropriate model to predict clustering based on this dataset. The markers
representing the reduced datasets associated with Q and SQ clusters can be found in Supplementary Tables 13 and
14, respectively. We observed twelve marker overlaps between the two datasets; interestingly, several of these

markers were also identified as associated with phenotypes in the FarmCPU and mixed modeling analyses.

2.4 Marker Mapping and Annotation

For a better visualization of the physical location of all markers associated with SCYLYV resistance, we constructed a
map of their distribution along S. spontaneum’s “A” chromosomes (Fig. 5), in which we also included markers
identified as associated with SCYLYV resistance in previous mapping studies. Overall, markers were considerably
spread along chromosomes; however, we observed regions of dense concentration of markers identified by various
methods, such as the long arms of chromosomes 1 and 3. We also verified the proximity between several markers
identified in the present work and by other authors, indicating their convergence and the reliability of the methods
employed here.

Out of the 362 nonredundant markers associated with all phenotypes, 176 were located in genic regions and
could be annotated by aligning their 2000-bp neighboring regions with the coding sequences (CDSs) of 14 Poaceae
species and A. thaliana genomes; Supplementary Table 15 contains data on the alignment with the highest
percentage of identity for each marker. In some cases, where two or more markers were closely located, coincident

alignments and annotations were obtained; consequently, 148 genes were representative of all the best alignments.
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The large majority of top-scoring alignments (117) occurred with CDSs of Sorghum bicolor, the phylogenetically
closest species among those used for alignment; fewer alignments also occurred with the CDSs of other species.

Several of the annotated genes could be associated with plant resistance to viruses, as detailed in the discussion.

3 Discussion

We evaluated the severity of SCYL symptoms and SCYLYV titer in a panel of 97 sugarcane accessions. These two
traits are of great concern to breeding, as both have been associated with higher yield losses in SCYLV-infected
sugarcane plants'®2233, Prior to phenotyping, plants were subjected to high and uniform SCYLV inoculum pressure,

2630 which relied on natural infection under field

an innovation over all previous SCYLC genetic mapping studies
conditions. Using RT-qPCR, currently regarded as the most precise method for SCYLV quantification?, we
assessed the viral titer in these genotypes. We found a strong and positive correlation between the BLUPs calculated
for the SCYLYV titers obtained by the two quantification methods employed, showing the consistency of the data.
The absence of a perfect correlation might have arisen from intrinsic differences between methods, which have been
responsible for disparities in viral quantification by RT-qPCR in other plant-virus interactions**.

However, we observed no quantitative correlation between the severity of SCYL symptoms and SCYLV
titers across the sugarcane genotypes analyzed. This finding corroborates a growing body of evidence suggesting
that these traits are not strongly or necessarily correlated, i.e., high SCYLYV titers are not a guarantee of more severe
yellowing or of its development at all*>37. This reinforces the importance of SCYLV molecular screening of
sugarcane clones by breeding programs; this should be done to avoid the employment of genotypes that accumulate
high viral loads asymptomatically but may inconspicuously suffer yield losses, in addition to serving as a virus
reservoir for vector transmission to other susceptible genotypes.

To further explore this issue, we performed two HCPC analyses to discriminate accessions based on their
response to SCYLV, which led to the separation of clusters with considerable phenotypic differences. In the first
HCPC, using only viral quantification data, we could discern groups with significant variation in viral titers; in the
second analysis, which also included symptom severity data, clusters with even more contrasting responses to
SCYLYV could be discriminated. In 1983, Cooper and Jones>® proposed a terminology addressing plant responses to
viral infections that is still employed today>**!. According to this proposal, once infected, plants present differences

in the ability to restrict viral replication and invasion; at the extremes of a spectrum of behaviors are plants termed
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susceptible and resistant. Additionally, they may also respond differently to the infection in terms of symptom
development: another spectrum exists, at the extremes of which are sensitive and tolerant plants. In view of this
nomenclature, we propose that the clusters identified in this second HCPC be described as follows: (SQ1) resistant,
for sugarcane genotypes distinguished by low SCYLYV titer and mild or no SCYL symptoms; (SQ2) tolerant, for
genotypes that, despite exhibiting higher viral titers, presented few or no disease symptoms; and (SQ3) susceptible,
for genotypes with the most severe symptoms and presenting high viral titers. This classification per se is of great
use in sugarcane breeding, as it distinguishes not only sources of tolerance to SCYLYV but also an exceptionally
promising group of truly resistant genotypes.

Our main objective was, however, to identify markers associated with SCYLYV resistance in a broader
sense. With this aim, we performed genotyping with a combination of dominant and codominant markers, which has
never been described for sugarcane. We evaluated the impact of using genomic references from various
backgrounds in variant calling from GBS. In previous sugarcane GWASs, this was performed using the genome of
S. bicolor’®#>* _a close relative species with a well-assembled and annotated genome; however, in our analyses, this
reference yielded a number of markers considerably inferior to other references. The methyl-filtered genome of the
SP70-1143 cultivar yielded the most markers, in agreement with a previous study employing GBS*’; this is a
plausible outcome, as this method avoids sampling of methylated regions*® which were also filtered out for this
genomic assembly*’. However, to choose the best reference for further analyses, we also considered the quality of
the assembly, which greatly affects the results of GWASs in polyploids*®. The best-assembled sugarcane genome
available to date is the allele-defined genome of a haploid S. spontaneum accession®’. Despite presenting one of the
highest total tag alignment rates, this reference also gave a very high rate of multiple alignments, leading to the
identification of relatively few markers. This was probably due to the alignment of tags to homeologous regions of
different alleles rather than to the duplicated regions that we intended to avoid. To circumvent this situation, we
conducted our analyses with markers isolated using a monoploid chromosome set obtained from this genome, which
provided a large number of markers with reliable position information.

Using these codominant markers, we analyzed the decay of LD over distance. LD has long been
hypothesized to be high in sugarcane due to the short breeding history and narrow genetic basis of this crop; many
studies using dominant markers have estimated it to be especially high at 5-10 cM>*34, The first study to use SNPs

for this task and estimate LD decay in bp> indicated that LD was extremely long lasting, with the average r?

10
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decaying to 0.2 at 3.5 Mb in hybrids. Our results further confirm the persistence of LD at long distances in
sugarcane, albeit indicating that it decayed more quickly — with r> dropping to 0.2 at less than 1 Mb and to 0.1 at 2
Mb. These results impact mapping studies, as a high LD implies that a low density of markers might be needed for
accurate mapping of quantitative traits.

We tested several approaches to evaluate population structure in the panel using each distinct marker
dataset generated, which yielded remarkably different results. Studies contrasting the usage of dominant and
codominant markers in plants have shown discrepancies in measures of genetic structure and diversity>*8, but this
sort of comparison has never been performed including markers with dosage information in polyploids — let alone in
sugarcane. In this crop, the most relatable findings available are those reported by Creste et al.®, who showed that
using different dominant markers can bias genetic analyses, and thus the choice of marker must be guided by the
specific goal of each study. For GWASs — for which a high density of markers is usually necessary — SNPs and
indels are currently more cost-effective, as they can be easily identified in much larger numbers, in addition to

60-62 Hence, we believe the results we

offering the possibility of estimating highly-informative allele dosages or APs
obtained with codominant SNPs and indels are more reliable, as they lean on much more genetic information.

In contrast with the differences arising from the type of marker used, we observed little divergence between
results of different structure methods performed with each marker dataset, and eventual discrepancies did not result
in significant differences in the inflation of the association models, whose patterns were similar to those of previous
studies3®43-4454 Therefore, we opted to perform association analyses using the covariates that resulted in the value of
A closest to 1. For FarmCPU, this corresponded to the “naive” model with no covariates; for codominant mixed
modeling analysis, this was the Qpca + Kmm combination. Kuw is the usual choice of relationship matrix in

polyploid association mapping®*%

, as Q matrices obtained from PCA are commonly used to control population
structure in GWASs%-68,

FarmCPU analyses using dominant markers identified one AFLP fragment significantly associated with
symptom severity, which explained a small part of the phenotypic variation (r> = 0.116). Eight out of the nine
markers associated with viral titer explained larger parts of the variation in the phenotypes (21-30%). These results
are more promising than those obtained in a previous dominant GWAS targeting SCYLV resistance, which found 12

ranging between 0.09-0.14?7. Albeit low, values in this range are very common in sugarcane association studies.

Evidence indicates that almost all of this crop’s traits are highly quantitative, with the notable exception of brown

11
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rust resistance®-7°. For other relevant traits, it is common to find the most associated markers explaining < 10% of
the phenotypic variation?®4234,

A few authors have suggested that these suboptimal results could be improved with the usage of markers
with dosage; this was also performed here, using SNPs and indels with AP information. Although codominant
mixed modeling analyses successfully identified markers associated with SCYL symptom severity using the
Bonferroni correction, the same was not observed for SCYLYV titer. This was probably influenced by the modest size
of the panel, a factor that restricts the power of GWASs’'“72. As previously noted by Racedo et al.”3, assembling and
phenotyping large sugarcane association panels is a challenging task; thus, it is not uncommon for association
studies of this crop to evaluate fewer than 100 genotypes*>7376, Our study was particularly burdensome, as
extremely laborious inoculation and quantification techniques were employed to generate highly reliable phenotypic
data. Furthermore, the Bonferroni method is notorious for its conservative nature, poorly controlling false
negatives’”7?. This led us to establish an arbitrary threshold (p < 0.0001) to select markers strongly associated with
SCYLYV titer for further investigation. Using this methodology, we identified 57 nonredundant markers associated
with the three phenotypes.

As a last approach to identify marker-trait associations, we tested several ML algorithms coupled with FS
methods to predict genotype attribution to phenotypic clusters identified by HCPC analyses. Unlike methods built
on classical statistics, these algorithms are not as heavily impacted by the sample size. We could achieve very high
accuracies of prediction (up to 95%) with considerably reduced datasets comprising 120-190 markers. These results
are very similar to what was obtained for predicting sugarcane brown rust resistance groups, where an accuracy of
95% was obtained using 131 SNPs®2, Marker datasets selected by ML have rarely been employed in genetic
association studies in plants, but the few existing examples show their power to identify genes associated with
phenotypes of interest3%-82,

We annotated 176 markers associated with SCYLYV resistance to 148 genes. Many candidates do not allow
extensive discussion on their involvement in resistance to this disease, as they either have very generic descriptions
or have not been previously linked to plant virus resistance. Other proteins have occasionally been associated with
responses to viruses but are members of very large gene families with extremely diverse biological roles and will not

be discussed. Remarkably, a few candidates encode proteins previously associated with the response to SCYLV

infection; this was the case for SbRi0.10G317500.1, encoding a peroxidase precursor. Peroxidases are long known
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to be activated in response to pathogens, but most notably, a guaiacol peroxidase has been shown to be more active
in sugarcane plants exhibiting SCYL symptoms than in uninfected or asymptomatic plants®:. Our results provide
further evidence that these enzymes are in fact involved in the response to SCYLV. Other candidates harboring
markers associated with SCYLYV resistance encode proteins with motifs previously associated with SCYLV
resistance’: Sobic.001G023900, encoding a GATA zinc finger protein, and Sobic.001G200200 and
Zm00001d037864_T030, which encode proteins containing tetratricopeptide repeats.

Other annotations included classic participants in more general disease resistance mechanisms, such as
several genes encoding proteins with leucine-rich repeat (LRR) motifs. These structures are part of nucleotide-
binding LRR (NBS-LRR) proteins, receptors that detect pathogen-associated proteins and elicit effector-triggered
immunity®*, having been shown to determine resistance to viruses in plants®>-%’. We found two LRR proteins
(Sobic.008G156600.1 and Sobic.001G452600.1), one disease resistance NBS-LRR (Sobic.007G085400.1) and one
N-terminal leucine zipper NBS-LRR resistance gene analog (Sobic.005G203500.1) associated with SCYLV
resistance. Furthermore, we annotated one gene (Sobic.009G204800.1) that encodes a precursor of a receptor-like
serine/threonine-protein kinase, i.e., the family to which LRR proteins belong. Yang et al.’* also identified a
serine/threonine-protein kinase associated with SCYLYV resistance. We consider these proteins highly promising
candidates to be involved in the recognition of infection by SCYLV, which could trigger response mechanisms
leading to the restriction of the virus. Further virus-host interaction studies involving these proteins might help
confirm this hypothesis, which would represent a major breakthrough in understanding resistance to SCYLV.

Two other annotated genes were readily identified as involved in plant disease resistance mechanisms.
Sobic.010G131300.2 contains a Bric-a-Brac, Tramtrack, Broad Complex/Pox virus and Zinc finger (BTB/POZ)
domain, while Sobic.007G198400.1 contains two BTB domains, as well as ankyrin repeat regions. These domains
are present in and are essential for the function of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1
(NPR1), a central player in plant disease responses®-%. This family of transcription factors is involved in
establishing both systemic acquired resistance and induced systemic resistance®, mediating the crosstalk between
salicylic acid and jasmonic acid/ethylene responses®!. Correspondingly, NPR1 has been widely shown to be
involved in resistance to viruses®>°%; therefore, it is reasonable to suggest its participation in the response to

infection by SCYLV.
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We also found a few candidates with putative roles in the RNA interference mechanism, one of the most
prominent processes that contribute to resistance against viruses in plants. This is the case for Sobic.001G214000.1,
which encodes a Dicer. Dicers are part of a mechanism known as RNA silencing, recognizing and cleaving long
double-stranded RNA molecules into mature small RNAs that guide the cleavage of viral mRNAs and disrupt virus
replication®; accordingly, these nucleases have been linked to resistance to viruses in several plant species®>°.
Another gene possibly involved in RNA interference is Sobic.009G121100, encoding a protein related to calmodulin
binding — a calcium transducer that regulates the activity of various proteins with diverse functions®’ and has been
widely implicated in viral resistance in plants, often playing roles in RNA interference®®!®. Therefore, we consider
these genes promising candidates in the regulation of SCYLV replication and spreading in planta, as well as in the
development of SCYL symptoms.

Two additional annotations linked to the mechanism of RNA interference are those of genes encoding
proteins with F-box domains, SbRi0.03G158900 and Sobic.002G019750.1. F-box proteins are involved in virus
resistance in several plant species'®!"'%%; a particularly interesting case is FBW2 from A. thaliana, which regulates
AGO1, an Argonaute protein with a central role in RNA silencing!'® and repression of target viral RNAs!%1%, Even
more intriguing is the fact that one of the proteins encoded by the SCYLV genome, PO, contains an F-box-like
domain and mediates the destabilization of AGO1, leading to the suppression of host gene silencing'?’. Whether the
F-box proteins identified here play active roles in silencing of SCYLV remains a question to be investigated by
further studies.

Other annotated genes may represent host factors involved in various steps of plant-virus interactions. For
instance, Sobic.010G160500.4 encodes an RNA helicase with a DEAD-box domain, which are often coopted by
viruses to promote viral translation or replication, playing important roles in regulating infection %1%, Similarly,
soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) proteins such as
Sobic.001G528000.1 are essential in the biogenesis and fusion of vesicles of several plant viruses!!"!'4, We also
found one gene encoding a myosin (Sobic.002G108000.1) and two genes related to kinesin (Sobic.001G346600.1
and Sobic.001G399200.2), filament-associated motor proteins involved in the transport of organelles''>. In a few

116-118 and kinesins''® have been shown to be involved in viral intercellular movement through

cases, both myosins
poorly understood mechanisms. One last interesting annotation was Sobic.003G101500.1, a protein with a DNAJ

domain. DNAJs have been shown to interact with proteins of various plant viruses and to be associated with
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resistance, sometimes being crucial for virus infection and spread'?*!23, We consider these genes to be promising
candidates as host cofactors in the response to SCYLV infection.

In conclusion, this array of genome-wide analyses allowed us to detect markers significantly associated
with SCYLYV resistance in sugarcane. If validated, these markers represent an especially valuable resource for
sugarcane breeding programs, as the results can be directly employed in marker-assisted strategies for the early
selection of clones. The annotation of several genes wherein these markers are located revealed many candidates
with long-established and pivotal roles in viral disease resistance, further demonstrating the efficiency of the
methods employed for this purpose. Additionally, this annotation provides valuable insights into the unexplored
mechanisms possibly involved in sugarcane’s response to infection by SCYLV, introducing new candidates whose

role in this process can be further investigated in future studies.

4 Material and Methods

4.1 Plant Material and Inoculation

The plant material and inoculation methods employed in the present study are described by Burbano et al.!**. The
experimental population consisted of a panel of 97 sugarcane genotypes comprising wild germplasm accessions of
S. officinarum, S. spontaneum and Saccharum robustum; traditional sugarcane and energy cane clones; and
commercial cultivars originating from Brazilian breeding programs (Supplementary Table 1). To ensure plant
infection with SCYLYV, a field nursery was established in March 2016 at the Advanced Centre for Technological
Research in Sugarcane Agribusiness located in Ribeirdo Preto, Sdo Paulo, Brazil (4°52°34” W, 21°12°50” S).
Seedlings from sprouted setts of each genotype were planted in 1-meter plots with an interplot spacing of 1.5 meters.
The cultivar SP71-6163, which is highly susceptible to SCYLV ', was interspersed with the panel genotypes. M.
sacchari vector aphids were reared on RT-PCR tested SCYLV-infected SP71-6163 plants; after an acquisition
access period of at least 48 hours, aphids were released weekly in the field nursery in July 2016. After plant growth,
setts obtained from this nursery were used to install a field experiment following a randomized complete block
design with three blocks in May 2017. Plants were grown in 1-meter-long three-row plots with row-to-row and
interplot spacings of 1.5 and 2 meters, respectively. Each row contained two plants, totaling six plants of each

genotype per plot. To further assist infection by SCYLV, the cultivar SP71-6163 was planted in the borders and
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between blocks, and M. sacchari aphids were again released in the field weekly for five months, starting from

November 2017.

4.2 Phenotyping

Plants were phenotyped in two crop seasons: plant cane in June 2018 and ratoon cane in July 2019. The severity of
SCYL symptoms was assessed by three independent evaluators, who classified the top visible dewlap leaves
(TVDLs) of each plot using a diagrammatic scale established by Burbano et al.'?*, as shown in Supplementary Fig.
1. In the same week as symptom evaluation was performed, fragments from the median region of at least one TVDL
per plot were collected and stored at -80°C until processing. Total RNA was extracted from this tissue using TRIzol
(Invitrogen, Carlsbad, USA). Samples were subjected to an additional purification process consisting of three steps:
(1) mixing equal volumes of RNA extract and chloroform, (ii) precipitating the RNA overnight with 2.5 volumes of
100% ethanol and (iii) a conventional cleaning step with 70% ethanol. RNA was then quantified on a NanoDrop
2000 spectrophotometer (Thermo Scientific, Waltham, USA) and subjected to electrophoresis on a 1% agarose gel
stained with ethidium bromide for integrity checks. Samples were next diluted, treated with RNase-Free RQ1 DNase
(Promega, Madison, USA), quantified and diluted again for standardization, and converted to cDNA using the
ImProm-II Reverse Transcription System kit (Promega, Madison, USA).

The SCYLYV titer in each sample was determined by qPCR using GoTaq qPCR Master Mix (Promega,
Madison, USA) on a Bio-Rad CFX384 Touch detection system (Bio-Rad, Philadelphia, USA). Two viral
quantification methodologies were employed — one relative and one absolute — using primers and conditions as
described by Chinnaraja and Viswanathan'%. For both methods, a set of primers was used to amplify a 181-bp
fragment from SCYLV ORF3 (YLSRT). For the relative quantification, an additional set of primers was used to
amplify a 156-bp fragment of the 25S subunit of sugarcane ribosomal RNA (25SrRNA), used as an internal control.
The 2-24°T method!'?® was used to correct cycle threshold (CT) values; the sample with the highest CT and a melting
temperature of 82.5 + 0.5°C for the YLSRT primers was used as a control for phenotyping in each year. The
absolute quantification followed the methodology described by Chinnaraja et al.””. A pGEM-T Easy vector
(Promega, Madison, USA) cloned with a 450-bp fragment from SCYLV ORF3 previously amplified by RT-PCR
was used to construct a serial dilution curve with six points and tenfold dilutions between points, which was

amplified on all qPCR plates. All reactions were performed using three technical replicates.
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4.3 Phenotypic Data Analyses

The normality of phenotypic data was assessed by Shapiro-Wilk tests, and normalization was carried out using the
bestNormalize package'?’ in R software!?®. BLUPs were estimated for each trait with the breedR R package'?® using
a mixed model as follows:

Yiim =01+ B;+ Yy + BYj + Gi(jm) + €ijm

where Yijm is the phenotype of the i genotype considering the j* block and the m™ year of phenotyping. The trait
mean is represented by u; fixed effects were modeled to estimate the contributions of the j* block (B;), the m™ year
(Yn) and the interaction between block and year (By;,). Random effects included the genotype (G) and the residual
error (e), representing nongenetic effects.

Pearson’s correlation tests were performed using the BLUPs to check the correlation between traits, and
correlation distributions were plotted using the GGally R package!*°. To investigate the separation of genotypes
according to phenotypes, we performed two HCPC analyses with the factoMineR package'?! — first using only viral
quantification and then employing the three analyzed traits. The factoextra R package'? was used to plot graphs
associated with these analyses. Statistical differences between the phenotypes of the clusters identified in each
HCPC were assessed by Kruskal-Wallis tests or analyses of variance (ANOV As), depending on the distribution of
the data. Post hoc Dunn’s tests using the Bonferroni correction were performed with the R package dunn.test!** to

verify pairwise differences between clusters.

4.4 Genotyping

4.4.1 Dominant Markers

Total DNA was extracted from leaves of each genotype following the method described by Aljanabi et al.'**. AFLPs
were developed using EcoRI and Mspl restriction enzymes (New England BioLabs). Digestion reactions were
prepared in a final volume of 20 pL containing 300 ng DNA, 2.5 U of each restriction enzyme in 1X RL Buffer
(New England BioLabs) and incubated for 3 hours at 37°C and for 5 min at 70°C. Adapter ligation was conducted in
a final volume of 40 puL containing 20 puL of the digestion reaction, 5 X buffer (40 mM Tris pH 8.4, 100 mM KCI),

0.5 uM EcoRI adaptor, 5 pM Mspl adaptor, 1 mM ATP and 0.85 U of T4 DNA ligase (67 U/uL) (New England
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BioLabs). Ligation was performed at 37°C for 2 hours and 16°C for 16 hours. Preamplification was conducted with
primers complementary to restriction enzyme adaptors and devoid of selective nucleotides at the 3' end (EcoRI+0
and Mspl+0 primers) and using a 6X dilution of the digestion/ligation product. This reaction was performed in a
final volume of 15 pL containing 2 pL of the 6X dilution digestion/ligation product, 1X PCR buffer (20 mM Tris pH
8.4, 50 mM KCl), 3.3 uM EcoRI+0 and Mspl+0 primers, 0.17 mM dNTPs, 2 mM MgCl, and 0.07 U Taq DNA
polymerase. The cycling conditions were as follows: 29 cycles at 94°C for 30 seconds, 56°C for 1 minute and 72°C
for 1 minute. Preamplification reactions were diluted 10X and used for selective amplification reactions using
combinations of EcoRl/Mspl primers with three selective nucleotides at the 3 end and the EcoRI primer labeled with
fluorophores IRDye700 or IRDye800. Thirty-five selective primer combinations were used (Supplementary Table
2). The reaction was performed in a final volume of 10 puL containing 2.5 puL of the 10X diluted preamplification,
1X PCR buffer (20 mM Tris pH 8.4, 50 mM KCl), 0.05 uM of selective Eco700 labeled primer (or 0.07 pM Eco800
primer), 0.25 pM for Msp selective primer, 0.25 uM dNTPs, 2 mM MgCl,, 0.5 U of Taq DNA polymerase. Cycling
conditions were as follows: 94°C for 30 seconds, 65°C for 30 seconds and 72°C for 1 minute followed by 12 cycles
at 94°C for 30 seconds, 65°C for 30 seconds (decreasing 0.7°C/cycle) and 72°C for 1 minute, followed by 23 cycles
of 94°C for 30 seconds, 56°C for 30 seconds and 72°C for 1 minute. Final amplicons were separated on a 6%
denaturing polyacrylamide gel and visualized with a LI-COR 4300 DNA Analyzer (LI-COR, Lincoln, NE, USA).

135-138 were used

Twelve SSR loci previously isolated from the sugarcane expressed sequence tag database
for SSR genotyping (Supplementary Table 3). PCR mixes were prepared and amplifications were conducted in a
Bio-Rad MyCycler thermocycler (Bio-Rad, Philadelphia, USA) following the conditions previously established by

137 and Marconi et al.'®; primers were labeled with fluorescent dyes IRDye700 and IRDye800 to allow

Oliveira et al.
band visualization. Amplicons were separated on a 6% denaturing polyacrylamide gel and visualized with a LI-COR
4300 DNA Analyzer. Due to sugarcane polyploidy, both AFLPs and SSRs were treated as dominant and scored

based on the presence (1) or absence (0) of bands. After genotyping, genotypes and markers with over 10% missing

data were removed, as well as markers with a MAF below 10%.

4.4.2 Genotyping-by-sequencing

Genomic DNA was extracted from leaves using the GenElute Plant Genomic DNA Miniprep Kit (Sigma-Aldrich,

St. Louis, USA). The integrity of the DNA was verified by electrophoresis on a 1% agarose gel stained with
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ethidium bromide, and its concentration was determined using a Qubit 3.0 fluorometer (Thermo Scientific,
Wilmington, USA). The construction of the GBS library was based on a protocol by Poland et al.'*® and used a
combination of Psfl and Msel restriction enzymes. For operational reasons, 94 out of the 97 genotypes of the panel
were included in the library, which did not include genotypes 87, 88 and 95 (see Supplementary Table 1). The
library was subjected to a purification step using polyethylene glycol as described by Lundin et al.'*® with slight
modifications. It was then validated with a Fragment Analyzer (Agilent Technologies, Santa Clara, USA) and
quantified by RT-qPCR in a Bio-Rad CFX384 Touch detection system using the KAPPA KK4824 kit (Kapa
Biosystems, Wilmington, USA). Two 150-bp single-end sequencing libraries were prepared using the NextSeq
500/550 High Output Kit (Illumina, San Diego, USA) and sequenced on a NextSeq 500 (Illumina, San Diego,
USA).

After checking sequencing quality with FastQC!*!, we used Stacks software version 1.42'*? for
demultiplexing and checking the amount of data generated for each sample. The TASSEL4-POLY pipeline'*,
developed from TASSEL-GBS'#, was used for variant calling. Most parameters were set at their standard values;
exceptions were the use of the "inclGaps" argument in the “DiscoverySNPCaller” plugin, the "misMat" argument
with a value of 0.3 and the "callHets" argument in the “MergeDuplicateSNPs” plugin. Rather than aligning raw
reads to a reference genome, the TASSEL-GBS pipeline first generates “tags” — unique sequences representing
redundant reads — to reduce computation time'**. We tested mapping tags against nine genomic references using two
aligners: BWA version 0.7.2'% and Bowtie2 version 2.2.5'%. The genomic references used were as follows: the S.

147 the methyl-filtered genome of the sugarcane cultivar SP70-1143%7, a sugarcane RNA-Seq

bicolor genome
assembly '3, a de novo assembly generated from GBS data following the GBS-SNP-CROP pipeline'*’, a draft
genome of the sugarcane cultivar SP80-3280'%, a sugarcane transcriptome generated by Iso-Seq'3!, the mosaic
monoploid genome of the sugarcane cultivar R570'%2, the S. spontaneum genome* and a monoploid chromosomic
set obtained from this same reference that included the “A” haplotype and unassembled scaffolds. To avoid
sampling of duplicated regions, we did not include tags with multiple alignments in the ensuing analyses. After
variant calling, VCFtools version 0.1.13!3 was used to retain biallelic markers with an MAF of 0.1, no missing data
and a minimum sequencing depth of 50 reads. The most appropriate reference was chosen, and adopting the method

proposed by Yang et al.**, the ratio between alleles (allele proportions, APs) of each variant was transformed into

genotypes with a fixed ploidy of 12 using the vcfR R package'>*.
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4.5 Linkage Disequilibrium and Population Structure Analyses

For SNPs and indels, we measured LD on the ldsep R package!®? by calculating the squared correlation coefficient
(r?) between pairs of markers on the same chromosome. The decay of LD over physical distance was investigated by
pooling all chromosomes, plotting pairwise 1> values against the distance between markers and fitting a curve using
the equation proposed by Hill and Weir'%. The critical 1 for LD decay was set to 0.1, the most commonly used
threshold for determining the existence of LD'®*. Only comparisons with p < 0.05 were used in this analysis.

Three procedures were used to evaluate genetic structuring in the panel, employing dominant and
codominant markers separately; for all analyses, the maximum number of clusters in the panel was set to 10. The
first method was a DAPC, performed in the adegenet R package'3. The second was PCA followed by K-means, for
which missing data were imputed with the pcaMethods package'3® and for which the optimal number of clusters was
evaluated using the elbow, silhouette and gap statistic methods in the factoextra package. The last was a Bayesian
clustering of genotypes into predetermined numbers of clusters (K) performed on STRUCTURE software'"’,
assuming an admixture model with correlated allelic frequencies between populations. Ten independent runs were
implemented for each K, and for dominant markers, estimates of probabilities of values of K in each run were taken
following 100,000 generations as burn-in and 200,000 generations sampled in a Monte Carlo Markov Chain
(MCMOQ). For Bayesian clustering using SNPs and indels, we used a subset of 7,000 markers randomly sampled
from the total dataset, parallelized STRUCTURE with StrAuto software! and sampled 100,000 generations in the
MCMC. In both cases, the most likely number of genetic clusters was determined by the ad hoc statistics AK'>° and
the LnP(D) probability logarithm; the output was interpreted in STRUCTURE HARVESTER software version
0.6.94!°. Clumpak software!é! was used to average the admixture proportions of runs and to estimate cluster

membership coefficients for genotypes.

4.6 Association Analyses

4.6.1 FarmCPU

Association analyses with dominant markers were performed with the FarmCPU'® method in R For these analyses,

markers were recoded to indicate the presence (0) and absence (2) of bands. We tested FarmCPU using no
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covariates and including matrices obtained from the three genetic structure analyses described in the previous
section as such. In each case, a Q-Q)plot of the -logio(p) values of markers was generated, and the genomic inflation
factor 1'% was calculated. The average A from analyses employing each covariate matrix was calculated and used to
select the model that best controlled inflation. The Bonferroni correction with a = 0.05 was used to establish the
significance threshold for associations, and the phenotypic variance explained by each marker was estimated for

significant marker-trait associations using a linear model in R software.

4.6.2 Mixed Modeling in GWASpoly

Association analyses using SNPs and indels were performed using mixed linear model approaches in the
GWASpoly R package®. The output of the three genetic structure analyses previously described was used to build Q
matrices, which were included in the models as fixed effects. Similarly, three different genetic kinship matrices (K)
of the panel were computed and included as random effects: (I) a MM™ matrix'®’, built on GWASpoly; (II) a
complete autopolyploid matrix based on Slater et al.'®®, built with the AGHmatrix R package'®; and (III) a
pseudodiploid matrix based on Slater et al. %8, also built with AGHmatrix. We tested twelve Q + K combinations,
and for each of them, six marker-effect models were used: general, additive, simplex dominant reference, simplex
dominant alternative, diploidized general and diploidized additive. For each model, a Q-Q plot of the -logio(p)
values of markers was generated, and A was calculated. The average A of all traits and models employing each Q + K
combination was calculated and used to select the best set of matrices. Once this combination was chosen,
Manhattan plots were generated for all models and traits. The Bonferroni and FDR correction methods with o = 0.05

were assessed to establish the significance threshold for associations.

4.6.3 Machine Learning Coupled with Feature Selection

Finally, we assessed the capacity of ML strategies to predict the attribution of genotypes to the phenotypic groups
identified in the HCPC analyses based on all markers, following the genomic prediction approach proposed by Aono
et al.52. For this approach, we selected accessions successfully genotyped with both SNPs/indels and AFLPs/SSRs;
missing data in dominant markers were imputed as the means. We evaluated the accuracy of eight ML algorithms:
adaptive boosting (AB)'"°, decision tree (DT)!”!, Gaussian naive Bayes (GNB)'7?, Gaussian process (GP)!73, K-

nearest neighbor (KNN)!'7#, MLP'7?, random forest (RF)!7® and support vector machine (SVM)'”’, all implemented
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in the scikit-learn Python 3 module!”®. As a cross-validation strategy, we used a stratified K-fold (k=5) repeated 100
times for different data configurations.

We then tested five FS techniques to obtain feature importance and create subsets of marker data: gradient
tree boosting (FS1)!7°, L1-based FS through a linear support vector classification system (FS2)!”7, extremely
randomized trees (FS3)'8, univariate FS using ANOVA (FS4) and RF (FS5)!7®. All FS approaches were
implemented in the scikit-learn Python 3 module. We tested the differences in the accuracy between the selected FS
methods using ANOVAs and multiple comparisons by Tukey’s tests implemented in the agricolae R package'®!. We
also evaluated intersections between these datasets: markers selected by at least two of the five methods (Interl);
markers selected by at least two of the three best methods (Inter2); and markers selected by all three best methods
(Inter3). Finally, the area under ROC curves was calculated for the best ML-FS combination and plotted using the

Matplotlib library89 with Python 3.

4.7 Marker Mapping and Annotation

The distribution of markers identified by all analyses along S. spontaneum “A” chromosomes was visualized using
MapChart!'®2, Markers previously associated with SCYLV resistance by QTL mapping?®?° and GWAS?"** were also
retrieved and included in the map. Finally, the sequences of associated markers were annotated by aligning SSR
flanking sequences or the 2000-bp window adjacent to SNPs and indels against a database comprising CDSs of the
genomes of 14 Poaceae species and Arabidopsis thaliana®?. For this, BLASTn'®? was used with an E-value of 1e-30,

and the best alignment of each sequence was kept for analysis.
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Figure Legends

Fig. 1 Factorial maps generated in the two hierarchical clustering on principal components (HPCP) analyses
using BLUP values. (a) Factorial map of HCPCs performed using the SCYLYV titer determined by RT-qPCR. A
division into three clusters (Q1, Q2 and Q3) was considered. (b) Factorial map of HCPC performed using SCYL
symptom severity and SCYLV titer determined by RT-qPCR. A division into three clusters (SQ1, SQ2 and SQ3)
was considered

Fig. 2 Decay of linkage disequilibrium (r?) as a function of physical distance (bp) between pairs of 67,007
single nucleotide polymorphisms (SNPs) and insertions and deletions (indels) located on Saccharum
spontaneum chromosomes 1A-8A. Only 12 values with P < 0.05 are included

Fig. 3 Manhattan plots generated in association analyses using the best linear unbiased predictor (BLUP)
values of the three traits analyzed. Six different models were tested: general, additive, simplex dominant reference
(1-dom-ref), simplex dominant alternative (1-dom-alt), diploidized general (diplo-general) and diploidized additive
(diplo-additive). On the x-axis, S represents scaffolds not associated with any of the S. spontaneum chromosomes
Fig. 4 Receiver operating characteristic (ROC) curves and area under the curve (AUC) results regarding the
performance of MLP in predicting clustering by by SCYLYV titer determined by RT-qPCR (Q) and SCYLV
titer determined by RT-qPCR and SCYL symptom severity (SQ). (a) Model performance obtained using the full
marker dataset. (b) Model performance obtained using the marker dataset obtained from the intersection of at least
three of the three best feature selection methods employed in the study (Inter2)

Fig. 5 Distribution of markers associated with SCYLYV resistance along Saccharum spontaneum “A”
chromosomes. In each chromosome, marker positions are shown on the left, and marker names are indicated on the
right, labeled and colored according to the method employed for their identification. Markers identified by previous

mapping studies are colored in gray
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