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Abstract

Aging is associated with increased white matter hyperintensities (WMHs) and with the
aterations of apha oscillations (7-13 Hz). However, a crucia question remains, whether
changes in alpha oscillations relate to aging per se or whether this relationship is mediated by
age-related neuropathology like WMHSs. Using a large cohort of cognitively healthy older
adults (N=907, 60-80 years), we assessed relative alpha power, apha peak frequency, and
long-range temporal correlations (LRTC) from resting-state EEG. We further associated these
parameters with voxel-wise WMHs from 3T MRI. We found that a higher prevalence of
WMHs in the superior and posterior corona radiata as well as in the thalamic radiation was
related to elevated alpha power, with the strongest association in the bilateral occipital cortex.
In contrast, we observed no significant relation of the WMHs probability with alpha peak
frequency and LRTC. Finaly, higher age was associated with elevated alpha power via total
WMH volume. Although an increase in alpha oscillations due to WMH can have a
compensatory nature, we rather suggest that an elevated alpha power is a consequence of
WMH affecting a spatial organization of apha sources.
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1. Introduction

White matter lesions, also known as white matter hyperintensities (WMHSs), are
highly prevalent in older adults and are of paramount clinical relevance since they are known
to accompany cognitive decline and dementia (Birdsill et a., 2014; Debette and Markus,
2010; Habes et a., 2016). WMHs are considered to reflect mainly small vessel disease
(Wardlaw et a., 2015), which typically affects periventricular regions and deep white matter
gparing U-fibers (Habes et al., 2016). Little is known, however, whether and how WMHSs
impact functional measures of brain activity. Due to their location, WMHs may cause
disconnection of neurona populations (O’ Sullivan et al., 2001). Theoretically, such damage
of cortico-cortical and cortico-subcortical pathways is expected to ater the synchronized

activity of neurons measured with M/EEG (Hindriks and van Putten, 2013).

One of the most prominent EEG rhythms are alpha oscillations (7-13 Hz), which have
been shown to originate from thalamocortical and cortico-cortical interactions (Bazanova and
Vernon, 2014; Lopes Da Silva et al., 1997). Importantly, measures of alpha oscillations have
been related to many aspects of cognitive function (Klimesch, 1999) and also to
endophenotypes of brain aging (Ishii et a., 2018; Knyazeva et al., 2018) either using apha
peak frequency or power. While individual alpha peak frequency has been consistently
shown to decrease with age (Ishii et al., 2018; Knyazevaet al., 2018; Mierau et a., 2017), the
findings on alpha power remain rather inconsistent. Previous EEG studies showed decreases
of alpha power across the lifespan when using relatively large sample sizes (Babiloni et al.,
2006a; Lodder and van Putten, 2011; Vysata et a., 2012): Y et these age-related reductions in
alpha power were either not strongly present within the older age groups (>60 years of age;

Lodder and van Putten, 2011) or not replicated (Sahoo et al., 2020; Scally et a., 2018).
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Apart from these two measures of alpha oscillations, temporal dynamics of the signals
can be quantified with auto-correlation showing to what extent a past of the signal relates to
its future. A very slow attenuation of the auto-correlation, which can be described with a
power law, is also referred to as long-range tempora correlations (LRTC). The presence of
LRTC indicates scale-free properties of the signal fluctuation pattern that look similar at
different time scales. LRTC in the amplitude envelope of the neurona oscillations were
shown to extend to tens or even hundreds of seconds (Linkenkaer-Hansen et al., 2001,
Nikulin and Brismar, 2005). Importantly, the presence of LRTC is consistent with the idea
that neuronal networks may operate at a critical state, characterized by a balance between
inhibition and excitation (Linkenkaer-Hansen et al., 2001; Nikulin and Brismar, 2005; Palva
et a., 2013; Shew and Plenz, 2013). LRTC exponent that represents the decay of the
autocorrelation has been linked to functional connectivity measures (Zhigalov et al., 2017),
brain maturation (Smit et al., 2011), and different aspects of cognition (Mahjoory et al., 2019;
Samek et al., 2016; Smit et al., 2011). However, the link between LRTC and structural brain

changes has not yet been examined.

As both static (i.e., power, individual alpha peak frequency) and dynamic (i.e., LRTC)
measures of alpha oscillations might be affected by microstructural deteriorations, due to the
disconnection among neural cells and damage to cortico-cortical and cortico-subcortical
pathways (Madden et al., 2017), WMHs-associated aterations of EEG rhythms are plausible.
However, there are only a few EEG studies that have directly investigated the relationship
between alpha oscillations and WMHSs or integrity (Babiloni et al., 2011, 2008a; Vadés-
Hernandez et al., 2010; van Straaten et a., 2012). Previously, local and global disturbances of
brain anatomy like white matter microstructure (Hinault et al., 2020; Hindriks et al., 2015;
Minami et al., 2020; Valdés-Hernandez et al., 2010) have been found to be related to alpha

rhythm affecting its peak frequency and power. For instance, a previous study with 222
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subjects using Cuban Human Brain Mapping Project (Valdés-Hernandez et al., 2010)
provides evidence that alpha peak frequency can be associated with both decrease and
increase (depending on the region) in the microstructure of thalamocortical or corticothalamic
fibers assessed by Fractional Anisotropy (FA) using diffusion tensor imaging (DTI).
Interestingly, so far only a few studies have investigated the relationship between apha
power and WMHSs (Babiloni et al., 2009, 2008b, 2008a). For instance, it has been observed
that higher alpha power was associated with higher scores of the prevalence of WMHSs in
individuals with mild cognitive impairment (Babiloni et al., 2008a). Similarly, a recent study
(Quandt et al., 2020) reported that higher WHM lesion load was related to reduced EEG
alpha connectivity measures in healthy older adults (N=35). However, to our knowledge, no
link between voxel-wise whole-brain WMHSs and different parameters of alpha oscillations
has been investigated using a large sample of healthy older adults. Moreover, a crucial
question still remains unresolved, for example, whether changes in apha oscillations relate to
normal aging per se or rather they represent the impact of age-related neuropathology, for
instance, WMHSs. In this study, using a large population-based sample, we investigated
neurophysiological links between age, WMHs and alpha oscillations. More precisely, we
investigated the association between age and parameters of alpha oscillations, and whether
this relationship was mediated by WMHs. We further explored the association of WMHs
with parameters of alpha oscillations in a topographically specific manner taking into account

the location of the lesioned white matter tracts.
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2. Methods
2.1 Participants

Participants were drawn from the population-based Leipzig Research Center for
Civilization Diseases LIFE-Adult study (Loeffler et a., 2015). All participants provided
written informed consent, and the study was approved by the ethics committee of the medical
faculty at the University of Leipzig, Germany. The study was performed in agreement with
the Declaration of Helsinki. A subset of participants underwent a 3-Tesla MRI head scan and
resting-state (rs)EEG recordings on two separate assessment days. We selected participants
above 60 years of age and without additional brain pathology or history of stroke, multiple
sclerosis, epilepsy, Parkinson’'s disease, intracranial hemorrhage, or brain tumors. We further
excluded individuals whose rsEEG recordings were not temporally close to the MRI
acquisition time and participants for whom alpha peak could not be identified. The details
about the time differences between EEG and MRI measurement days can be found in
Supplementary Figure 1 (M = 23.4 in absolute days). This resulted in a final sample of 907
participants (M=69.49 + 4.63 years of age, 380 female) for the rsEEG sensor space analysis.
After excluding individuals with failed T1-weighted segmentation and head-modeling, the
final sample for the rsEEG source analysis was 855 (M=68.89 + 4.66 years of age, 360

female). For a detailed overview of the selection process, see Figure 1.
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Figure 1. How chart visualizing the selection process of the MRI and EEG sample.
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2.2MRI Acquisition and Processing
All MRI scans were performed at 3 Tesla on a MAGNETOM Verio scanner
(Siemens, Erlangen, Germany). The body coil was used for radiofrequency (RF) transmission
and a 32- channel head coil was used for signal reception. T1-weighted MPRAGE and
FLAIR images were acquired as part of a standardized protocol: MPRAGE (flip angle (FA) =
9°, relaxation time (TR) = 2300 ms, inversion time (T1) = 900 ms, echo time (TE) = 2.98 ms,
1-mm isotropic resolution, acquisition time (AT) = 5.10 min); FLAIR (TR = 5000 ms, Tl =

1800 ms, TE = 395 ms, 1x0.49x0.49-mm resolution, AT = 7.02 min).
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Location of WMH. The automated assessment of WMHSs was computed in a previous
study (Lampe et al., 2019). All images were checked by a study physician for incidental
findings. A computer-based WMHs segmentation algorithm was then used to automatically
determine WMH volume on T1-weighted MPRAGE and FLAIR images (Shiee et al., 2010)
and inspected visually for segmentation errors. Binary WMH maps of all participants were
nonlinearly co-registered to a standardized MNI template (1-mm isometric) with ANTS
(Avants et a., 2011). In standard space, binary subject-wise WMH maps were grand-
averaged to create a population WMH frequency map (Jenkinson et al., 2012) and to further
compute the voxel-wise statistics. As previously implemented (Lampe et al., 2019), to
segregate the periventricular (pv)WMH and deep (d)WMH, a default distance of 10 mm to
the ventricular surface was used (DeCarli et al., 2005). Every voxel of WMH located within

this border was classified as pvWMH; voxels outside the border were classified as AWMH.

WMH Volume. Regional WMH volume was calculated separately for the deep and
periventricular white matter. Following Lampe et al. (2019), we added a constant value 1 to
every participant’s regiona dWMH volume because there were participants without lesions
in the deep WM. We then calculated the ratio of dAWMH and pyWMH (dAWMH/pvWMH) as
localized WMH volume. Total, deep and periventricular WMH volumes were further
normalized to head size by total intracrania volume. Total and localized WMH

(dWMH/pvWMH) volume were log-transformed for further statistical analyses.

2.3.EEG Acquisition and Preprocessing
RSEEG activity was recorded in an electrically and acoustically shielded room using
an EEG cap with 34 passive Ag/AQCl electrodes (EasyCap, Brain Products GmbH,
Germany). 31 scalp electrodes were placed according to the extended international 10-20

system. The signal was amplified using a QuickAmp amplifier, frequency range: DC-280 Hz
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(Brain Products GmbH, Germany). Two electrodes recorded vertical and horizontal eye
movements while one bipolar electrode was used for el ectrocardiography. The rsEEG activity
was referenced against common average and sampled at 1000 Hz. Impedances were kept
below 10 kQ. RSEEG data were preprocessed using EEGLAB toolbox (version 14.1.1b) and
scripts were custom written in Matlab 9.3 (Mathworks, Natick, MA, USA). We filtered data
between 1 and 45 Hz and applied a notch filter at 50 Hz. We then down-sampled the data to
500 Hz and ran a semi-automatic pipeline for artifact rgection: different noise threshold
levels to mark bad time segments were used for the signal filtered in higher frequency (1545
Hz) and lower frequency (1-15 Hz) ranges. The noise threshold for higher frequencies was
set to 40 YV since noise at this range (i.e., induced by muscle activity) is typically lower in
amplitude. The noise threshold for the lower frequency range was set to + 3SD over the mean
amplitude of a filtered signal between 1 and 15 Hz. To control for the accuracy of
automatically marked bad segments, we compared them to the noisy segments marked by
another research group (Jawinski et a., 2017). Whenever these segments did not overlap by
more than 10 s or they exceeded 60 s of total bad-segment duration, we inspected those
datasets visualy (~10% of cases) to confirm whether they indeed were contaminated by
noise. We further visually assessed power spectral densities (PSD) for data quality and used it
to identify broken channels. Next, using independent component analysis (Infomax; Bell and
Sejnowski, 1995), activity associated with the confounding sources — namely eye-

movements, eye-blinks, muscle activity, and residual heart-related artifacts — was removed.

24.EEG Sensor Space Analysis
24.1. Parametersof Alpha Oscillations
For rsEEG analysis, we used the first 10 min of a recording to avoid the potential
effect of participants' drowsiness. We individually adjusted the alpha band frequency range

by locating a mgor peak between 7 and 13 Hz on Welch's PSD with 4 s Hanning windows.
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Thus, we determined individual alpha peak frequency in every channel and defined a
bandwidth not exceeding 3 Hz around the peak. We then calculated relative alpha power for
the individually adjusted apha frequency range dividing it by the broadband power
calculated in the 345 Hz frequency range. LRTC were calculated using detrended
fluctuation analysis (DFA) on the amplitude envelope (calculated with Hilbert transform) of
alpha band oscillations in time windows ranging from 3 to 50 seconds (while respecting the
boundaries where the bad segments had been cut) based on the previously published
procedure (Hardstone et al., 2012). Here, we briefly repeat the main steps: (1) a cumulative
sum of the amplitude envelope is calculated, (2) the signal is then divided into pre-defined
window sizes (1) (3) the linear trend is removed in a given window. Fluctuation function F(t)
for al time windows of a given size 1 is calculated as the root-mean-square of the detrended
signal. In the case of a power-law relationship, we have F(t) « t’, where v is a scaling
exponent (measuring LRTC) which can be obtained as a slope of alinear fit in log-log plot
between F(t) and t. An exponent of 0.5 reflects uncorrelated signals (i.e., resembling white
noise), v<0.5 indicates anticorrelations, while an exponent between 0.5<v<1 shows persistent
autocorrelation (LRTC) where large fluctuations are likely to be followed by large fluctuation
(Hardstone et al., 2012). This range of 0.5<v<1 is a typical range for many EEG and MEG
studies.

Theillustration of parameters of alpha oscillations are shown in Figure 2.

To reduce data dimensionality of rsEEG sensor space data used for the whole-brain voxel-
wise inference analyses, we further grouped EEG channels into six coarser brain regions

(frontal, central, temporal, parietal, and occipital) (Figure 3A).

10
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Figure 2. lllustration of parameters of alpha oscillations. A) Raw resting-state EEG time series data
(blue) consists of various frequency bands that can be defined by their power and peak frequency. B) The
temporal dynamics of a signal filtered in the alpha frequency range (812 Hz) is assessed by the properties
of its amplitude envelope (red) using long-range temporal correlations (LRTC). The scaling exponent (v)

quantifiesthe presence of LRTC.
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2.5.EEG Source Space Analysis

To reconstruct sources of the rsEEG signal, we calculated leadfield matrices based on
individual brain anatomies and standard electrode positions. The T1-weighted MPRAGE
images were segmented using the Freesurfer v.5.3.0 software (Fischl, 2012). We constructed
a 3-shell boundary element model which was subsequently used to compute the leadfield
matrix using OpenMEEG (Gramfort et al., 2010). Approximately 2,000 cortical dipolar
sources were modeled for each individual. Source reconstruction was performed using exact

low resolution brain electromagnetic tomography (eLORETA; Pascual-Marqui, 2007) with a

11
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regularization parameter of 0.05. We filtered the signal within the individually adjusted alpha
frequency band range as well as in broadband range (345 Hz), squared it, and summed up
across al three dipole directions. Relative alpha power (%) was then calculated in each voxel
through the division of alpha power by the broadband power. The cortex surface mantle was
divided into 68 regions of interest (ROIs) based on the Desikan-Killiany atlas (Desikan et al.,
2006). These were further combined into five coarser ROIs (frontal, parietal, temporal,
occipital, and cingulate) for the right and left hemispheres following a standard parcellation

atlas (Figur e 3B). Relative alpha power values were averaged across each ROI.

Figure 3 — lllustration of the regions of interest (ROIs) identified for EEG. Schematic topography for
resting-state EEG in A) sensor space and B) source space. ROIs which form the frontal region are in
purple, central region, and cingulate region (source) in orange, temporal region in yellow, parietal regionin
green, and occipital region in blue.

A. Sensor Space B. Source Space

2.6.1. Correlation of Age with total WMH Volume and Alpha Oscillations

2.6.Statistical Analyses

Pearson correlations were calculated to examine the relationship between age and i)
tota or localized WMH volume (dWMH/pvWMH) and ii) the parameters of alpha
oscillations in six regions at sensor space. Differences between correlations were assessed

with Fisher's r-to-z transformation implemented in R verson 3.5.2 (http://www.R-

12
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project.org/). To correct for multiple comparisons, p-values were then adjusted using the
False Discovery Rate (FDR; (FDR; Benjamini and Hochberg, 1995).
2.6.2. Topographical Relevance Analyses of WMHs for Alpha Oscillations at Sensor
Space
To identify regions in which WMHSs robustly correlated with alpha oscillations, we
performed whole-brain voxel-wise regressions. More precisely, we applied general linear
models (GLMs) in which individual values of relative alpha power, apha peak frequency,
and LRTC were used as predictors for the topographical occurrence of WMHSs, adjusting for
effects of age, sex, and intracranial volume as covariates of no interest. 3D voxel-wise binary
lesion maps were analyzed using randomise function, implemented in FSL (Winkler et al.,
2014). For each statistical analysis, positive and negative contrasts were computed. The
significance of results was based on threshold-free cluster enhancement (TFCE, N=10,000
permutations) with family-wise error (FWE) corrected p-values of 0.05. We further reported

statistical results for the more conservative FWE threshold of p<0.005.

2.6.3. Topographical Relevance Analyses of WMHSs and Alpha Power at Sour ce Space

Since we only observed the significant results between WMHs and relative alpha
power at sensor space, we implemented source-analyses only for the relative alpha power.
More precisely, to assess the association between relative alpha power and whole-brain
WMHSs, we implemented GLMs separately for 10 ROIs with relative apha power as a
covariate of interest, and age, sex, and total intracranial volume as covariates of no interest.
Because we found a positive correlation between the voxel-wise occurrence of WMHSs and
relative alpha power at the sensor space, we only computed a positive contrast. All statistical

analyses were further corrected for multiple comparisons using TFCE based permutation

13


https://doi.org/10.1101/2020.09.04.283200
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.04.283200; this version posted May 13, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

14

testing (N=10,000) at FWE level of p<0.05, as well as with a conservative threshold of

p<0.005.

2.7.Sensditivity Analyses
2.7.1. Control for Confounding factors
Given that different cardiovascular risk factors including body mass index (BMI),
systolic blood pressure (SBP), smoking, and diabetes are associated with WMHSs (Habes et
a., 2016; Lampe et al., 2019; Ryu et al., 2014), we further considered these factors as
potential confounders (as covariates of no interest) for the voxel-wise associations between
parameters of alpha oscillations and probability of WMH occurrence in the overall sample
(N=907). To assess a degree of collinearity between the regressors used in GLMs, we
additionally computed variance inflation factor in R. All predictors had a variance inflation
factor below 2, therefore, we concluded that models showed acceptably low multicollinearity.
2.7.2. Medication
We implemented the voxel-wise inference analyses between parameters of alpha
oscillations and WMHSs excluding participants taking medications affecting the central
nervous system (opioids, hypnotics, and sedatives, anti-parkinsonian drugs, anxiolytics, anti-
psychotics, anti-epileptic drugs). The resulting sample included 801 individuals (M=68.96 £
458, 323 female).
2.7.3. Control Analyses
To assess the robustness of our results, we further applied voxel-wise inference
analyses between the probability of WMH occurrence and absolute alpha power in the left
and right occipital region at EEG source space, using age, sex, and total intracranial volume
as covariates of no interest. Absolute power in both regions was log-transformed to normalize

the distribution of the data for statistical analyses.

14
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2.8.Mediation Analyses

We performed mediation analyses using mediation package (Tingley et a., 2014) in R
to test the association between a predictor (X), and an outcome (Y) which can be transmitted
through a mediator (M) (Hayes and Rockwood, 2017). Here, we examine whether a total or
localized WMH volume (M) mediates the relationship between age as a predictor (X) and
parameters of alpha oscillations at sensor space as an outcome variable (Y). Bootstrapping
(n=5000) with 99% confidence intervals (ClI) was used for testing the indirect effect because
it does not assume normality in sampling distribution (Hayes and Rockwood, 2017). While
the indirect effect shows whether age was associated with the parameters of alpha oscillations
through a mediator, a total effect is the sum of indirect and direct effect. The indirect effect
was considered significant if the corresponding 99% bootstrap Cls did not include zero.

2.9.Cognition

The Trail Making Test (TMT) is a cognitive test measuring executive function,
including processing speed and mental flexibility (Reitan, 1955; Reitan and Wolfson, 1995).
In the first part of the test (TMT-A) participants are asked to connect numbers in an
ascending order, while in the second part (TMT-B), participants need to alternate between
numbers and letters. In both TMT-A and B, the time to complete the task quantifies the
performance, and lower scores indicate better performance.
We ran mediation analyses with 99% bootstrap Cls using relative alpha power in different
regions as a predictor, total WMH volume as a mediator, and the task completion time in
TMT-A or TMT-B as an outcome variable. The TMT data was available for 899 participants

at the EEG sensor and 848 individuals at the EEG source space.
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3. Results
3.1.Sample Characteristics
Details about the demographic, anthropometric, cardiovascular measures, as well as
WMH volume, and alpha oscillations can be found in Table 1. Histograms of total WMH
volume, averaged relative alpha power, its peak frequency, and LRTC across channels can be

found in Supplementary Figure 2.

Mean or n Min. Max. SD
Age (in years) 69.49 60.15 80.03 4.63
Female/ Male 380/ 527
BMI (kg/m?) 27.59 18.68 42.26 3.97
SBP (mmHg) 133.71 92.00 200.5 16.31
DBP (in mmHg) 74.54 435 120 9.06
Never / former / active smokers 517 / 319 /

71
Diabetes (yes/ no / unknown) 143/ 7481 16
WMH volume (mm3) 3935 127 78509 6676.76
Normalized total WMH Volume 0.0093 0.0003 0.170 0.015
dWMH/pvWMH (%) 0.439 0.011 3.635 0.402
Intracranial volume (mm®) 1729811 1297219 2466529 147492.5
Mean relative alpha power (%) 0.55 0.21 0.88 0.15
Mean apha peak frequency (Hz) 94 7.34 12.01 0.86
Mean Scaling Exponent (V) 0.73 0.53 1.14 0.093
TMT A (9) 41.33 17.00 126 13.32
TMT B (s) 89.29 25.00 300 43.49

Table 1. Sample Characteristics
Abbreviations.: BMI = body mass index; DBP = diastolic blood pressure; dWMH/pvWMH = the ratio of
deep/periventricular white matter hyperintensities; SD = standard deviation; SBP = systolic blood pressure;
WMH = white matter hyperintensity, TMT= Trail Making Test
3.2.Topography and Characteristics of Alpha Oscillations
The relative alpha power at sensor space showed a maximum over the occipital

channels, with a mean value of 0.66 = 0.17 (%). Similarly, the relative alpha power at source

space showed a maximum over the bilateral occipital cortex, including cuneus and lateral
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occipital regions with a mean value of 0.59 + 0.18 (%). The grand-average peak frequency
was 9.40 + 0.49 Hz, showing larger values at occipital regions. The average scaling exponent
(v) was 0.72 = 0.017. Similarly, topographies of the scaling exponent had higher values at
occipital and parietal areas as well as frontal regions (Supplementary Figure 3).

3.3.Association of Agewith WMH Volume and Alpha Oscillations

We found a correlation between age and total WMH volume (r=0.374, p<0.001,

Supplementary Figure 4), but not with the AWMH/pvWMH (r=0.03, p>0.05, Supplementary
Figure 5). Regarding parameters of alpha oscillations, we found that higher age was
associated with decreased alpha peak frequency all EEG ROIs (r from -0.13 to -0.17,
pPror<0.05), while no correlations between age and relative alpha power or LRTC were found
(@l prpr>0.05). A full report of these correlations for the entire sample and by sex are
provided in Supplementary Figures 6-8.

3.4.Topographical Association Between WM Hs and Alpha Power

3.4.1. Sensor Space

The voxel-wise inference analyses revealed that higher relative apha power (%) in the

frontal region was associated with higher WMH probabilities in the right body of corpus
callosum ([16, -26, 32], T=3.76, k=653). Higher relative alpha power in the central region
was associated with higher WMH probabilities in the right anterior thalamic radiation
extending to the posterior corona radiata ([22, -49, 37], T= 4.44, k=2744), while higher
relative AP in the right temporal region was linked to higher WMHSs in the right superior
longitudinal fasciculus ([22, -49, 37], T=4.52, k=6893) extending to the left inferior fronto-
occipital fasciculus ([-21, -53, 32], T=4.00, k=4210). Furthermore, higher relative apha
power in the parietal region was associated with higher WMHSs in the right superior corona
radiata ([ 18, -19, 37], T=4.05, k=4474). Similarly, for relative alpha power in the occipital

region, we observed a higher prevalence of WMHSs in the bilateral superior corona radiata
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through the body of the corpus callosum to the anterior corona radiata, including the right
anterior thalamic radiation ([ 18, -19, 37], T=4.39, k=9450). Accordingly, higher voxel-wise
WMH probabilities were associated with higher relative alpha power independent of age, sex,
and brain size, as shown in Figure 4 (TFCE, p<0.05, FWE-corrected). Note that using a more
stringent TFCE, FWE rate of p<0.005, the correlation between the probability of WMH
occurrence and relative apha power was only evident for the occipital region ([ 18, -19, 37],
T=4.39, k=904). Finally, no voxel-wise associations between regional WMHs and alpha
peak frequency or LRTC were observed (TFCE, p<0.05, FWE-corrected).

Figure 4. Association between white matter hyperintensties (WMHSs) and relative alpha power at
EEG sensor space (N=907). A) Schematic depiction of the significant association between regional
WMHSs and relative alpha power: thicker lines indicate higher t-values. B) We implemented nonparametric
permutation testing based on whole-brain voxel-wise analysis to investigate the association between
WMHSs and relative alpha power (%). The brain WMH clusters show significant relation with the EEG
frontal region (purple), central region (orange), right temporal region (yellow), parietal region (green), and
occipital region (blue), respectively (TFCE, FWE-corrected, p<0.05 corrected for age, sex and total
intracranial volume). C) Scatter plots show the association between WMH probability (x-axis) extracted
from clusters based on significant whole-brain voxel-wise inference analyses and elevated relative alpha
power (y-axis) in different EEG regions. The resulting statistical images (P-map) were further thresholded
at 0.05 and binarized. Abbreviations.: A = anterior; L = left; R = right; P = posterior

A. WMHs and relative alpha power (%) B. Voxel-wise association between WMHSs and relative alpha power (%)

EEG Regions
@ Frontal

@ central

. R. Temporal
@ Parietal

@ Occipital

z2=20
P
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3.4.2. Source Space

We found that higher relative apha power (%) in al EEG regions except for the left
frontal region was associated with a higher probability of WMH occurrence (Supplementary
Table 2, TFCE, p<0.05, FWE-corrected, Figure 5). With the stricter FWE-level of p<0.005,
the association between the occurrence of WMHSs and relative alpha power was evident for

left ([18, -19, 37], T=4.29, k=192) and right occipital regions ([18, -19, 37], T=4.45,
k=845).

Figure 5. Schematic depiction of the significant association between regional WMHSs and relative
alpha power in EEG source space (N=855). The circular plot indicates EEG ROIs for both hemispheres
a source space and their relationship to WMHs where thicker lines indicate higher t-values (See:
Supplementary Table 1.)
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3.5.Sensitivity Analyses
3.5.1. Control for Confounding Factors
Voxel-wise inference analyses after controlling for age, sex, intracranial volume,

BMI, SBP, diabetes, and smoking status yielded a similar relationship between higher WMH
probability and elevated relative alpha power in the following regions: central ([22, -49, 37],
T=4.46, k=5417), right temporal ([22, -49, 37], T=4.52, k=5417), left temporal ([22, -49,
37], T=4.59, k=4772), parietal ([18, -19, 37], T=3.68, k=231), and occipital ([18, -19, 37],
T=4.08, k=4018) EEG regions across the overall sample. Note that with TFCE, FWE-
corrected, p<0.005, we did not find any clusters. Lastly, no WMH clusters were related to
alpha peak frequency or LRTC (TFCE, p > 0.05, FWE-corrected).

3.5.2. Medication

Voxel-wise inference analyses excluding individuals taking central nervous system

medication (N=801) till indicated the association between higher prevalence of WMHs and
increased relative alpha power at sensor space in the following regions: frontal ([17, 9, 31],
T=4.42, k=6880), centra ([20, -30, 35], T= 4.46, k=9063), right temporal (|20, -48, 35],
T=4.57, k=12098), left tempora ([22, -49, 37], T=4.61, k=9408), parietal ([14, -8, 31],
T=4.61, k=9054), and occipital ([18, -19, 37], T=4.44, k=12,885) EEG regions.
Importantly, with TFCE, FWE-corrected, p<0.005, we identified WMHSs clusters (k>2000)
for occipital, left temporal, right temporal, and a small cluster (k>200) for parietal and central
EEG regions. Additional voxel-wise inference analyses revealed that higher WM HSs resulted
in decreased alpha peak frequency in right temporal ([ 17, -27, 33], T=4.00, k=138) and left
temporal regions ([17, -27, 33], T=4.12, k=503). Lastly, no WMHSs clusters in the brain

were related to LRTC (TFCE, p > 0.05, FWE-corrected).
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3.5.3. Control Analyses
Voxel-wise inference analyses with absolute alpha power similarly indicated that
higher probability of WMH occurrence was associated with elevated absolute alpha power in
right ([-23, 0, 36], T=3.98, k=5633) and left occipital regions ([-23, 0, 36], T=4.05,

k=5358) (TFCE, p<0.05, FWE-corrected).

3.6.Mediation Analyses
We examined whether total or localized (dAWMH/pvWMH) WMH volume could
mediate the relationship between age and relative alpha power in all cortical ROIs.
Investigating the relationship between age and relative alpha power, we observed a
significant indirect effect of total WMH volume in most of the cortical regions defined at
sensor space (Table 2). The direct effect was not significant in any of the ROIs (99% |Cl| >
0), and only in the right temporal region at sensor space did the total effect of age on relative
alpha power appear to be significant (Table 2). Further, we confirmed the indirect effects of
total WMH volume for relative alpha power at EEG source space for left parietal ($=0.0012,
Cl = [0.00006-0.002]), left (3=0.0014, Cl = [0.00013-0.002]) and right occipital (3=0.0014,
Cl =[0.00015-0.0028]) regions. Findly, our results revealed that neither total nor localized
WMH volume mediated the association of age with alpha peak frequency and LRTC at

sensor space (all p>0.05).
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Table 2. Mediation effect of total WMH volume on the association between age and relative a pha power at EEG sensor space (N=855).
While the indirect or mediation effect shows whether age was associated with apha power through a mediator (total WMH), total effect is the sum of indirect and
direct effect (age on relative alpha power). The indirect effect was considered significant if the corresponding 99% bootstrap Cls did not include zero (marked in

(ma1na1 Jaad Aq payiniad jou sem
ot/BJo"10p//:sdny :1op undaid AlxHolq

bol d).
EEG Region frontal central right temporal left temporal parietal occipital =t
B p or 99.5% ClI p por 99.5% Cl B por 99.5% Cl p por 99.5% Cl B p or 99.5% ClI B por 99.5%;;630
Total effectc 0.0004 0.742 0.0006 0.580 0.002 0.033 0.002 0.0620 0.0017 0.166 0.0006 0.584 m‘”g
— o
Mediation effect &b 0.0009 [-0.0003, 0.0021] 0.001 [-0.00008,0.0022] 0.0013 [0.0003,0.024]  0.0011 [0.00002,0.002] 0.0015 [0.0002, 0.0028] 0.0014 [0.00012 &
Direct effect ¢’ -0.0005 0.721 -0.0004 0.730 0.0008 0.44 0.0009 0.3944 0.0002 0.894 -0.0008 0.557

"9sUaI| [euoIRUIBIU| 07 DN-AG-DDE Japun p|ge

apeuw si | ‘Aumadiad ui juudaid ayy Aejdsip 01 asuadl| B AIXHoIq pajuelb sey oym ‘1spuny/iSjine

yoiym) Jundaid siyy Joy sapjoy 1ybuAdoo syl Tz0z ‘€T Ae palsod uoisiaA siy) :00ZE8Z 70'60

22


https://doi.org/10.1101/2020.09.04.283200
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.04.283200; this version posted May 13, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

23

3.7.Cognition

Compared to population-based norms (Hobert et al., 2011; Tombaugh, 2004), our
sample shows similar TMT scores (Table 1), indicating good to intermediate cognitive
performance. We then investigated the question of whether the relationship between relative
alpha power and cognition measured by task completion time in TMT-A and B is mediated
by total WMH volume. After controlling for age and sex, we found a significant indirect
effect of total WMH volume on the association between TMT-A and relative alpha power
only in the right temporal region ($=1.071, CI=[0.123-2.539]). In TMT-B, we observed a
significant indirect effect of total WMH volume for the frontal region ($=3.399, CI = [0.252-
7.896]), as shown in the Supplementary Table 2. At EEG source space, however, we did not
confirm these findings. Further, in all anayses, the direct and total effects were not

significant.
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4. Discussion

The main goa of this study was to investigate whether regional WMHs affect
parameters of alpha oscillations independently from age. We pursued this aim using a large
sample of cognitively healthy older individuals (e.g., also based on TMT scores; Hobert et
a., 2011; Tombaugh, 2004) from a population-based study (Loeffler et al., 2015). We
showed distinct regional relationships between relative alpha power and WMHs: our
topographical analysis suggested that higher occurrence of WMHS in superior, posterior to
anterior corona radiata, as well as thalamic radiation, was related to higher relative apha
power, with strongest correlations in the bilateral occipital cortex. Adjusting for potential
confounding factors including age, cardiovascular risk factors, or controlling for the effect of
medication did not change these results. While the direct link between age and alpha power
assessed by correlation analyses was absent, mediation analyses supported an indirect link for
the existence of the relation between age and alpha power through the total WMH volume.
This finding indicates why we should consider the age-related structural changes in the brain
(e.g., WMHs) when we investigate the aging effects on EEG neural oscillations.

Alpha rhythm is the most salient rsEEG oscillatory phenomenon that originates from
thalamocortical and cortico-cortical interactions (Bazanova and Vernon, 2014; Lopes Da
Silvaet a., 1997). Alterations in alpha oscillations have previously been linked to changes in
different anatomical features including properties of WM (e.g., Valdés-Hernandez et al.,
2010). Regarding WMHSs, for instance, a previous EEG-MRI study showed that higher
relative alpha power in parieta regions was associated with higher scores of the prevalence of
WMHSs in 79 individuals with mild cognitive impairment (Babiloni et al., 2008a), consistent
with our findings in this population-based sample. Previous studies with computational
models have given further support for the notion that resonance properties of feedforward,

cortico-thalamocortical, and intra-cortical circuits substantially influence alpha oscillations
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(Hindriks and van Putten, 2013). In the present study using a larger sample, we similarly
observed that regional WMHs, detected mostly in superior corona radiata, containing
thalamocortical fibers, affect inter-individual differencesin relative alpha power. This finding
was further reproduced when using alpha power values extracted from EEG source-based
analysis. Although we did not observe significant association between these two measures
after controlling for other confounding factors at stricter threshold (TFCE, FWE<0.005), the
consistent results with regular FWE threshold a voxel-wise level suggest a possible
neurophysiological link between WMHSs and relative alpha power.

But, how could lesions in the WM possibly affect EEG signal which mainly reflects
neural synchrony within gray matter? While in principle a hyperintensity in T2-weighted MR
sequences is a quite unspecific marker of various pathologies, postmortem histopathological
studies of older adults with WMHs have mostly reported demyelination, axonal loss, and
other consequences of ischemic small vessel disease (Smith et al., 2000; Wardlaw et al.,
2015). Myelin contributes to the speed of impulse conduction through axons, and the
synchrony of impulses between distant cortical regions (Fields, 2015, 2008). Reductions of
conduction velocity due to demyelination and loss of (communicating) axons are assumed to
be responsible for cognitive dysfunctions which are known to be based on delicately
orchestrated propagations of neurona signals. Electrophysiologicaly, interactions, and
synchrony between neuronal populations are reflected in rhythmic M/EEG signals, of which
alpha oscillations are the most prominent ones (Bazanova and Vernon, 2014; Lopes Da Silva
et a., 1997). Alpha power is a quantitative marker of the degree of synchrony in the neuronal
activity of the corresponding neuronal populations (Pfurtscheller and Lopes Da Silva, 1999).
While for a long-time alpha oscillations were regarded as idle rhythms of non-active brain
areas, a plenitude of studies has convincingly demonstrated that apha oscillations play an

important role in many cognitive functions (Fox et a., 2016; Klimesch, 1999; Palva and
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Palva, 2007). For instance, in motor and sensory domains it has been shown that amplitude
decreases of alpha oscillations in focal aress (i.e., reflecting cortical activation) is in turn
associated with the inhibition of neighboring cortical areas (Pfurtscheller and Lopes Da Silva,
1999). This phenomenon is thought to include mutualy inhibitory interactions between the
chain of modules including thalamocortical and reticular nucleus neurons which are involved
in the generation of apha oscillations (Suffczynski et al., 2001). Importantly, the authors
hypothesized that this surround inhibition should underlie other cognitive operations such as
focused attention and stimulus selection. Such topographically specific relationships are
likely to be disturbed by the alterations in conduction velocity and axona loss in the
thalamocortical circuitry (Pajevic et a., 2014). As a result of such WM disturbances, a
modular organization of thalamocortical inputs and a corresponding demarcation between
cortical patches of enhanced and attenuated alpha oscillations could be abolished, thus
leading to a larger spread of apha oscillations across the cortex and consequently to stronger
and spatially less specific alpha oscillations. This in turn might explain a positive association
between alpha power and WMHSs. In addition, it is also possible to further speculate that such
an elevated alpha power may result from the additional compensatory recruitment of neuronal
resources to maintain an adequate brain functioning. Although we did not observe a
convincing evidence for this statement in our mediation analyses involving cognition,
elevated alpha power — as a consequence of WMHs — may still reflect a resilience against
the cognitive decline given that cognitively healthy sample was used in the present study
(e.g., Hobert et al., 2011; Tombaugh, 2004). Alternatively, the hyperactivation of apha with
WMH could aso be ineffective in preserving cognitive performance or even reflect the
progression of neurodegenerative alterations (Corriveau-Lecavalier et a., 2019; Pons et al.,

2010).
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Despite a number of reports of age-related apha power aterations (Babiloni et al.,
2006b; Lodder and van Putten, 2011; Vysata et a., 2012), in our study, we replicated other
recent studies (Sahoo et al., 2020; Scally et al., 2018) which did not find strong evidence for
age-related attenuations of relative apha power. The discrepancy in findings with earlier
reports could be due to the narrow age range of our participants, as well as the individually
adjusted alpha frequency range based on the peak frequency. In fact, preserved peak power at
peak frequency has recently been reported in an older sample (Scally et a., 2018), suggesting
that any observed age-dependent power changes might be due to shifts in the frequency range
at which alpha peak occurs. While our cross-sectional dataset cannot provide unequivocal
evidence for a causal relationship, mediation analyses demonstrated a presence of an indirect
relationship between age and alpha power through total WMHSs. Currently, in the literature,
there is an ongoing discussion on the interpretation and meaning of an indirect (mediation)
effect when atotal effect is not statistically significant (Hayes and Rockwood, 2017; Zhao et
al., 2010). In our paper, following the suggestions by Hayes and Rockwood (2017), we also
reported and interpreted the mediation effects even when a total effect was not significant.
More precisely, the mediation via total WMH volume showed that higher age was associ ated
with the elevated relative alpha power in the right temporal, parietal, and occipital regions.
As mentioned before, age-related reductions of alpha power in occipital regions were
previously reported in different sample populations (see detailed review: Ishii et a., 2018).
Aswe show in this study, in healthy older adults the association between these two measures
can potentially be mediated by WMH volume thus demonstrating a positive relationship
between apha power and age. Therefore, our result shows why one should potentialy
consider structural correlates when investigating age-related alterations in neural oscillations.

In the literature, other commonly reported age-dependent changes in spectral

parameters of EEG include slowing of the alpha peak (Knyazeva et a., 2018). We replicated
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the slowing of the alpha peak frequency with increasing age despite the narrow age range.
Alpha peak slowing has previously been suggested to be linked to a less efficient
coordination of neuronal activity in this frequency range (Mierau et al., 2017). We further
explored the relationship between age and LRTC in the amplitude envelope of alpha
oscillations that capture scale-free dynamics of resting-state oscillations. LRTC has
previously been linked to the presence of a critica state in neural networks, which is
characterized by the balance of excitation and inhibition (Poil et al., 2012) that has been
suggested to be optimal for the processing of information in the human brain. Regarding the
association between age and LRTC, previous studies have shown that the observed age-
related changes might be dependent on age range — it increases from childhood to early
adulthood, after which it stabilizes (Nikulin and Brismar, 2005; Smit et al., 2011). In
accordance with these previous findings, in our sample of older adults, we observed no
pronounced age-related LRTC attenuations. The fact that WM Hs were correlated with alpha
power but not with LRTC indicates that temporal dynamics have more flexibility in adjusting
to white matter lesions since they are largely based on cortico-cortical interactions which are
not reflected in WMH (Beggs and Plenz, 2003).
5. Limitations

While a strength of this study is the large popul ation-based sample, the study design is
cross-sectional and does not alow making inferences about the directionality of the
association between WMHs and apha oscillations. Longitudinal studies are required to
further clarify these associations. Research using other advanced techniques such as
guantitative MRI or specific assessment of tissue properties with ultra-high field MRI
combined with intracranial EEG recording could further provide valuable insights into the
nature of the relationship between WM properties and alpha oscillations. We performed a

relatively coarse parcellation of the brain at EEG source space analysis due to the relatively
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small number of electrodes (n=31). A denser spatial sampling of the EEG (not available in
the present cohort) would allow investigation of this relationship with better spatial precision.
Finally, while our study aimed to investigate the effect of WMHSs on properties of alpha
oscillations, future research on aging using microstructural integrity assessed by DTI would
benefit from additional connectivity-based measures including phase synchrony (Hinault et
a., 2020; Quandt et al., 2020).
6. Conclusion

Using sensitive high-resolution neuroimaging techniques in cognitively healthy older
adults (N=907), we showed that elevated relative alpha power is related to a higher
probability of WMHSs, supporting the idea that an elevated alpha power as a consequence of
WMHs may result from the additional recruitment of compensatory neuronal resources
during aging. Importantly, our study provides evidence that the changes in apha oscillations
do not relate to aging per se but rather depend on the impact of age-related neuropathology,
such as WMHs. Our findings thus suggest that longitudina EEG recordings might be
sensitive for the detection of aterations in neuronal activities due to progressive structural
changesin WM.
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Supplementary Material

Supplementary Figure 1. Histogram of the day differences between EEG and MRI
acquisition points. While the averaged (absolute) day difference across participants was 23.4
days, the minimum day was 0, maximum was 175 days.

120-

90- —

number of participants
2
]

0- = —
-180 -160 -140 -120 -100 -80 -60 -40 -20 O 20 40 60
day differences (from EEG to MRI)


https://doi.org/10.1101/2020.09.04.283200
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.04.283200; this version posted May 13, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

40

All variables in the supplementary Figure 2 are presented as mean (M) * standard deviation
(SD). Before the statistical analyses, we used the Box-Cox method (A value) (Sakia, 1992) to
determine the type transformation on the parameters of alpha oscillations. Since the mgjority
of the variables after the necessary transformation did not pass Shapiro-Wilk normality tests
at the 0.05 significance level, we decided to keep the original values.

Supplementary Figure 2. The four histograms show the distribution of A) normalized total
white matter hyperintensity (WMH), B) individual alpha peak frequency (IAPF), C) relative
apha power, and D) long-range temporal correlation (LRTC) averaged across 31 EEG
channels. Note that total WMH volume further normalized to head size by total intracranial
volume and log-transformed.
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Supplementary Figure 3. Grand-average topographic maps of alpha band measures in
EEG.

A) Individual alpha peak frequency (Hz); B) Relative apha power (%); C) Long-range
temporal correlations (v). D) Grand-average of relative alpha power at EEG source space
across 68 regions based on Desikan-Killiany Atlas.

A} Individual alpha peak frequency B) Relative Alpha Power C} Long range temporal correlations
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Supplementary Figure 4. Association between age (x-axis) and total white matter
hyperintensity (WMH, y-axis) in LIFE-Adult sample (N=907). There was a significant
correlation between age and tota WMH (r=0.374, p<0.001 in all; r=0.376, p<0.001 in
females; r=0.355, p<0.001 in males). Note that Total WMH volume further normalized by
total intracranial volume and log-transformed.
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Supplementary Figure 5. Association between age (x-axis) and regional white matter
hyperintensity as the ratio of deep WMH and periventricular WMH (y-axis) in LIFE-Adult
sample (N=907) (r=0.03, p=0.354 in all; r=-0.005, p=0.912 in females; r=0.038, p =0.379 in
males)
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Supplementary Figure 6. Association between age (x-axis, in years) and individual apha
peak frequency (IAPF, y-axis, in Hz) in EEG different regions. The correlations between two
measures were not significant after FDR correction and none of the pairwise correlations
differed from each other. Abbr.: F- female, M-male

Frontal (r=-0.16, p<0.001 in al, r=-0.147, p=0.004 in females, r=-0.16, p=0.0001 in males)

Central (r=-0.130, p<0.001in all, r=-0.12, p=0.01 in females, r=-0.12, p=0.004 in males)

Left temporal (r=-0.17, p<0.001 in all, r=-0.166, p=0.001 in females, r=-0.168, p=0.0001 in males)
Right Temporal (r=-0.156, p<0.001 in all, r=-0.141 p=0.006 in females; r=-0.146, p=0.0009 in males)
Parietal (r=-0.158, p<0.001 in all, r=-0.144 p=0.005 in females; r=-0.143, p=0.001 in males)
Occipital (r=-0.170, p<0.001 in all, r=-0.13, p=0.01 in females, r=-0.164, p=0.0001 in males)
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Supplementary Figure 7. Association between age (x-axis, in years) and relative apha
power (y-axis, ratio expressed in %) in different EEG regions. The correlations between two
measures were not significant after FDR correction and none of the pairwise correlations
differed from each other. Abbr.: F- female, M-male

Frontal (r=0.010, p=0.742 in all, r=0.008, p=0.868 in females, r=-0.008, p=0.837 in males)
Central (r=0.009, p=0.850in all, r=0.012, p=0.781 in females, r=0.019, p=0.565 in males)

Left temporal (r=0.0065, p=0.048 in all; r=0.098, p=0.056 in females, r=0.027, p=0.52 in males)
Right Temporal (r=0.071, p=0.03 in all, r=0.090, p=0.07 in females; r=0.040, p=0.355 in males)
Parietal (r=0.04, p=0.16 in all, r=0.033, p=0.51 in females, r=0.02, p =0.62 in males)

Occipital (r=0.016, p=0.61 in all, r=0.001, p=0.98 in females, r=0.016, p=0.69 in males)
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Supplementary Figure 8. Association between age (x-axis, in years) and scaling exponent
(v) for long-range temporal correlations LRTC, y-axis) in different EEG regions (represented
in different colors). The correlations between two measures were not significant after FDR

correction.
e Frontal (r=0.02, p=0.540in all, r=0.04, p=0.409 in females, r=-0.04, p=0.312 in males)
e Central (r=0.04, p=0.288 in all, r=0.07, p=0.166 in females, r=0.05, p=0.192 in males)
e Left temporal (r=0.05, p=0.109in all; r=0.098, p=0.07 in females, r=0.07, p=0.09 in males)
e Right Temporal (r=0.071, p=0.03in all, r=0.08, p=0.112 in females; r=0.040, p=0.355 in males)
e Parietal (r=0.04, p=0.248 in all, r=0.06, p=0.284 in females, r=0.06, p =0.127 in males)
e Occipital (r=0.023, p=0.513in all, r=0.03, p=0.558 in females, r=0.05, p=0.252 in males)
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Supplementary Table 1. Positive correlation between the probability of white matter
hyperintensity (WMH) occurrence and relative alpha power (%) at EEG source space. Peak
voxel MNI coordinates (x, y, z) and cluster size (k) for the association between WMHs
probability and relative apha power for five regions of interest for each hemisphere at source
space across 855 older adults (TFCE, p < 0.05, FWE-corrected).

EEG Region MRI Region x y z k T-value
Left Fronta Right Posterior Corona Radiata/ 21-4636 219 4.38
Right Anterior Thalamic Radiation
Right Cingulate Right Anterior Thalamic Radiation / 22 -4937 2310 433
Right Anterior Thalamic Radiation
Left Superior Corona Radiata -22 631 655 429
Right Superior Corona Radiata 29-4626 359  3.65
Left Cingulate Right Anterior Thalamic Radiation / 22 -4937 3280 4.44
Right superior Longitudinal Fasciculus
Left Superior Corona Radiata 22 631 597 433
Right Temporal Right Anterior Thalamic Radiation 20-50 36 4669  4.57
Left Anterior Corona Radiata -18 1827 2044 414
Right Inferior Fronto-occipital Fasciculus 34-49 0 129 3.68
Left Temporal Right Anterior Thalamic Radiation 20-5036 602  4.63
Body of Corpus Callosum 16 -536 279 3.63
Right Posterior Corona Radiata 19-3035 132 4.13
Right Parietal Right Anterior Thalamic Radiation 20-5036 3983  4.72
Left Superior Corona Radiata -19 1128 824  3.98
Left Superior Longitudinal Fasciculus -24-12 40 210 412
Left Parietal Right Superior Corona Radiata/L eft 19-2536 634 391
Corticospinal Tract
Right Anterior Thalamic Radiation 20-5036 618 4.75
Right Occipital Right Superior Corona Radiata 18-1937 8339 445
Left Superior Corona Radiata -19 9291070 441
Left Posterior Corona Radiata/ Anterior -24-2731 100 394
Thalamic Radiation
Left Occipital Right Superior Corona Radiata 18-19 37 7304 4.29
Left Superior Corona Radiata -19 929 450 419
Right Inferior Fronto-occipital Fasciculus 34-37 -4 175 394
Left Superior Corona Radiata -20 -632 133  3.66
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Supplementary Table 2. Mediation effect of total WMH volume on the associ ation between relative alpha power at EEG sensor space and

cognition, measured by trail making test (TMT), corrected by age and sex. While the indirect or mediation effect shows whether relative apha
power was associated with TMT-A or -B through amediator (total WMH volume), total effect isthe sum of indirect and direct effect (relative
alpha power on TMT-A or TMT-B). The indirect effect was considered significant if the corresponding 99% bootstrap Cls did not include zero,

48

(mainai Jaad Aq payiniad jou sem

60°0202/T0TT 0T/610"10p//:sdny :10p udaid AixHolq

marked in bold.
>
Cognition  EEG Region frontal central right temporal left temporal parietal occipital 3
B por99.5% CI B por99.5%Cl B por99.5% Cl B p or 99.5% ClI p p or 99.5% ClI B por99.5% gE
Total effectc -0.739 0.81 -1.658 0.56 0.891 0.7828 -0.669 0.85 -1.180 0.65 -3.596 0.15 52
TMT-A Mediation effect a*b 0.270 [-0.333,1.133] 0.236 [-0.362, 1.07] 1.071 [0.123,2539] 0.270 [-0.357,1.24] 0.160 [-0.25,0.76] 0.280 [-0.307, 111%]%'0
Direct effect ¢’ -1.009 0.74 -1.894 0.51 -0.181 0.956 -0.939 0.78 -1.020 0.70 -3.876 0.12 § o g
Total effect ¢ 12.741 0.157 8.763 0.349 7519 0.435 8.808 0.380 7.446 0.40 7.897 0.308 2x®
.. o o
TMT-B Mediation effect a*b 3.399 [0.252, 7.896] 2.978 [-0.703,7.472] 2.879 [-0.055,7.123] 2.206 [-0.285,6.218] 2.064 [-0.14, 6.38] 2.072 [-0.02, 5.707@ 32
Direct effect ¢’ 9.342 0.300 5.785 0.540 4,639 0.626 6.602 0.518 5.382 0.53 5.824 0.456 Uo7
o <
~AQO
g2
H
5=5
=) 83
Z25
SR
=]
g3
So
=<
EX
2=
58
B2
53
==
LE
=3
%5
35
2=
5%
48 z


https://doi.org/10.1101/2020.09.04.283200
http://creativecommons.org/licenses/by-nc/4.0/

