

1 **Impaired cytotoxic CD8+ T cell response in elderly COVID-19 patients**

2

3

4

5 Jaana Westmeier¹, Krystallenia Paniskaki², Zehra Karaköse¹, Tanja Werner¹, Kathrin
6 Sutter^{1,6}, Sebastian Dolff³, Marvin Overbeck⁴, Andreas Limmer⁴, Jia Liu^{5,6}, Xin
7 Zheng^{5,6}, Thorsten Brenner⁴, Marc M. Berger⁴, Oliver Witzke³, Mirko Trilling^{1,6}, Mengji Lu^{1,6},
8 Dongliang Yang^{5,6}, Nina Babel^{2,7}, Timm Westhoff⁸, Ulf Dittmer^{1,6,#}, Gennadiy Zelinsky^{1,6,#}

9 ¹*Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen,
10 Germany.*

11 ²*Center for Translational Medicine, Medical Department I, Marien Hospital Herne, University
12 Hospital of the Ruhr-University Bochum, Herne, Germany.*⁷

13 ³*Department of Infectious Diseases, West German Centre of Infectious Diseases, University
14 Hospital Essen, University Duisburg-Essen, Germany.*

15 ⁴*Department of Anesthesiology, University Hospital Essen, University Duisburg-Essen,
16 Germany.*

17 ⁵*Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong
18 University of Science and Technology, Wuhan, China.*

19 ⁶*Joint International Laboratory of Infection and Immunity, HUST, Wuhan, China.*

20 ⁷*Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin,
21 Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for
22 Regenerative Therapies, Berlin, Germany.*

23 ⁸*Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University of
24 Bochum, Bochum.*

25

26 [#]Corresponding authors:

27 Gennadiy Zelinsky and Ulf Dittmer,

28 *Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen,
29 Germany*

30

31 *E-mail: gennadiy.zelinsky@uni-due.de*

32 *ulf.dittmer@uni-due.de*

33

34 **Keywords:** COVID-19, SARS-CoV-2, cytotoxic T cells, CD8+, CD4+, PD-1, granzyme,
35 perforin, aging.

36

37 **Abstract**

38 SARS-CoV-2 infection induces a T cell response that most likely contributes to virus control
39 in COVID-19 patients, but may also induce immunopathology. Until now, the cytotoxic T cell
40 response has not been very well characterized in COVID-19 patients.

41 Here, we analyzed the differentiation and cytotoxic profile of T cells in 30 cases of mild
42 COVID-19 during acute infection. SARS-CoV-2 infection induced a cytotoxic response of
43 CD8+ T cells, but not CD4+ T cells, characterized by the simultaneous production of
44 granzyme A and B, as well as perforin within different effector CD8+ T cell subsets. PD-1
45 expressing CD8+ T cells also produced cytotoxic molecules during acute infection indicating
46 that they were not functionally exhausted. However, in COVID-19 patients over the age of 80
47 years the cytotoxic T cell potential was diminished, especially in effector memory and
48 terminally differentiated effector CD8+ cells, showing that elderly patients have impaired
49 cellular immunity against SARS-CoV-2.

50 Our data provides valuable information about T cell responses in COVID-19 patients that
51 may also have important implications for vaccine development.

52

53 **Importance**

54 Cytotoxic T cells are responsible for the elimination of infected cells and are key players for
55 the control of viruses. CD8+ T cells with an effector phenotype express cytotoxic molecules
56 and are able to perform target cell killing. COVID-19 patients with a mild disease course were
57 analyzed for the differentiation status and cytotoxic profile of CD8+ T cells. SARS-CoV-2
58 infection induced a vigorous cytotoxic CD8+ T cell response. However, this cytotoxic profile
59 of T cells was not detected in COVID-19 patients over the age of 80 years. Thus, the
60 absence of a cytotoxic response in elderly patients might be a possible reason for the more
61 frequent severity of COVID-19 in this age group in comparison to younger patients.

62 **Introduction**

63 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly virulent
64 sarbecovirus currently causing a global pandemic with millions of cases and hundred
65 thousands of fatalities. Virus replication in the lung epithelium and the corresponding
66 pneumonia are the main reasons for symptomatic COVID-19 cases, although other tissues
67 and organs such as the kidney are also affected (1). Elderly people are predisposed to
68 severe COVID-19 and the mortality increases dramatically with age (1-3) . In particular,
69 individuals over 80 years of age show the highest hazard ratio (8.93-13.77) in terms of
70 hospital admissions (1) and have the highest case fatality rate (4).

71 There is growing evidence that adaptive immune responses are necessary for the control
72 and subsequent elimination of the virus (5). Cytotoxic T lymphocytes (CTL) are a specialized
73 population of immune cells which is able to selectively kill infected cells and consequently
74 eliminate viruses. Usually, CD8+ T lymphocytes mediate adaptive cytotoxic T cell responses.
75 Additionally, a fraction of the CD4+ T cell population is able to differentiate into cells with
76 cytotoxic properties (6). Both populations of cytotoxic cells can contribute to virus control by
77 eliminating infected cells. T cells responding to viral antigens expand and differentiate from
78 cells with a naïve phenotype into subpopulations of terminally differentiated cytotoxic effector
79 T cells or cells with an effector memory phenotype. Both effector cell subpopulations are
80 abundant during the acute phase of antiviral immune responses (7). Accordingly, the number
81 of cells with these phenotypes rises during the acute immune responses against several
82 respiratory viral infections (8). The SARS-CoV-2 infection is associated with a reduction of
83 CD8+ and CD4+ T cells (9, 10). One prominent cause of lymphopenia may be an enhanced
84 migration of T cells into infected compartments (11, 12). Despite the lymphopenia, expanded
85 virus-specific CD8+ and CD4+ T cells can be detected in COVID-19 patients (13, 14). The
86 CD4+ and CD8+ T cells are specific towards several proteins of SARS-CoV-2 as has been
87 recently shown (15-17). During the early phase of the immune response, CD8+ and CD4+ T
88 cells reacted against the spike, membrane, and nucleocapsid proteins (15, 16). The T
89 lymphocytes of convalescent patients responded to structural proteins or nonstructural
90 proteins which provides evidence of the development of memory to different viral proteins
91 after infection (17, 18). Interestingly, some individuals who were not infected with SARS-
92 CoV-2 also responded to the antigens of this virus which have a low homology with “common
93 cold” human coronaviruses (17, 18).

94 The detection of these virus-specific cells was possible after the *in vitro* stimulation of T cells
95 with viral peptides. This method allows for the definition of the specificity of analyzed T cells,
96 but has a modulating impact on the T cell phenotype and functionality. Moreover, the
97 stimulation of activated effector T cells *in vitro* can lead to restimulation-induced cell death

98 (RICD) (19). In our study, we have characterized lymphocytes without any treatment and
99 performed ex vivo multiparameter analyses of T cells.

100 A key mechanism of functional CTLs is the elimination of virus-infected cells through the
101 induction of apoptosis of target cells after cell-to-cell contact with effector CD8+ T cells. To
102 perform cytotoxic functions, CTLs produce and accumulate effector molecules like the serine
103 proteases granzymes (Gzm) and the pore-forming protein perforin in cytotoxic granules.
104 Additionally, the release of Gzms from activated T cells contributes to the development of
105 inflammation in infected organs. Gzms also change the intracellular matrix and support the
106 migration of lymphocytes, while perforin is necessary for the entry of Gzms into target cells.
107 After the formation of an immunological synapse and the degranulation of cytotoxic granules,
108 Gzms enter into target cells where they initiate multiple pathways leading to the cell death of
109 the infected cell, terminating intracellular virus replication through the loss of the host cell.
110 Thus, the expression of different cytotoxic molecules in T cell subpopulations is an important
111 hallmark for the existence of lymphocytes with a cytotoxic potential known to be necessary
112 for virus control (20). Besides their beneficial role, the elimination of virus-infected cells by
113 cytotoxic T cells can also be associated with a damage of infected organs resulting in severe
114 immunopathology. Therefore, they are tightly controlled by multiple checkpoints of the
115 immune system (21). Accordingly, the contribution of T cells to the pathology seen in COVID-
116 19 patients has been recently discussed (22).
117 Immune senescence is an age-associated change of the immune system related to thymus
118 involution and reduced frequencies of naïve CD8+ and CD4+ T cells (23). The senescent
119 immune system exhibits a reduced plasticity and adaptive effector potential to respond
120 against viral infections (12). In the current study, we characterized the differentiation status of
121 T lymphocytes and their production of cytotoxic molecules in 30 COVID-19 patients with a
122 mild disease course. CD8+ T cells, but not CD4+ T cells, developed a cytotoxic phenotype
123 during early SARS-CoV-2 infection. We observed reduced frequencies of T cells producing
124 cytotoxic molecules in elderly patients. The ability to simultaneously produce Gzms and
125 perforin was significantly impaired in aged patients.

126 **Results**

127 To characterize the cytotoxic profile of T cells upon SARS-CoV-2 infection, we analyzed the
128 blood of 30 COVID-19 patients with a mild disease course by multi-parameter flow cytometry.
129 All analyses were performed directly *ex vivo* from blood cells to determine the *in*
130 *vivo* phenotype of T cells in COVID-19 patients excluding changes that are inevitably induced
131 by re-stimulation protocols *in vitro*. Usually, patients were hospitalized one week after the first
132 onset of COVID-19 symptoms. Most frequently patients were hospitalized due to dyspnea.
133 Fifteen patients had a CT-scan showing the specific characteristics of COVID-19

134 pneumonia. Nine patients did not need oxygen supplementation, but all others received
135 oxygen during their stay. All patients received empiric antimicrobial treatment except four
136 patients. Four patients were treated additionally with oral Oseltamivir until a negative
137 influenza test was available. The median length of hospitalization was 8 (3-108) days. The
138 median age of patients was high (71 years), consistent with the fact that symptomatic
139 COVID-19 disease and hospital admissions are more prevalent in the elderly. Peripheral
140 blood was drawn immediately after hospitalization to analyze T cell responses during acute
141 infection. The laboratory parameters of the patients are depicted in Table 1 (Sup. Tab. 1). All
142 SARS-CoV-2 infections were unequivocally confirmed by certified diagnostic RT-PCRs.

143

144 **CD4+ T cells are not cytotoxic during SARS-CoV-2 infection**

145 CD4+ T cells usually function as helper cells, but have been shown to be capable of
146 cytotoxicity after several virus infections, including those with coronaviruses (6, 24).
147 Therefore, we analyzed the production of cytotoxic molecules in CD4+ T cells upon SARS-
148 CoV-2 infection without any additional stimulation of lymphocytes. First, we determined the
149 numbers of CD4+ T cells in the blood of COVID-19 patients and stratified the patients into
150 age groups of 29-79 (median 62) and 80-96 (median 86) years. CD4+ T cell counts were
151 reduced compared to normal clinical references: in the 29-79 age group, the median was 333
152 CD4+ T cells per μ l vs. 555-1460 CD4+ T cells per μ l in healthy donors, and in the 80-96
153 age group, the median was 319 CD4+ T cells per μ l vs 540-720 CD4+ T cells per μ l in age-
154 matched control individuals (25) (Fig. 1A). No difference in CD4+ T cell counts between the
155 analyzed age groups was observed. Next, we determined the differentiation status of all
156 CD3+CD4+ T cells according to the expression of CD45RO, CCR7, and CD28 and stratified
157 CD4+ T cells into naïve (N, CD45RO- CCR7+ CD28+), central memory (CM, CD45RO+
158 CCR7+ CD28+), transitional memory (TM, CD45RO+ CCR7- CD28+), effector memory (EM,
159 CD45RO+ CCR7- CD28-), and terminally differentiated effector (E, CD45RO- CCR7- CD28-)
160 subpopulations (Fig. 1B). The gating strategy is shown in Figure S1. Subsequently, we
161 compared the distribution of subpopulations between COVID-19 patients and age-matched
162 healthy controls, again stratified according to age. No obvious differences between COVID-
163 19 patients and healthy controls were found for any of the CD4+ T cell subtypes (Fig. 1C). To
164 characterize their cytotoxic profile, we stained total CD4+ T cells directly *ex vivo* without re-
165 stimulation for the cytotoxic molecules GzmA, GzmB, and perforin and compared the two
166 age groups between COVID-19 patients and age-matched healthy controls (Fig. 1C-F).
167 Again, we did not find clear differences between groups, except that the frequency of GzmB-
168 producing cells was slightly increased in the 29-79 year group of COVID-19 patients
169 compared to healthy controls, yet with largely overlapping confidence intervals (Fig. 1C, E).

170 Conversely, perforin responses were reduced in the older age group of COVID-19 patients
171 (Fig. 1C, F). The overall data failed to reveal a meaningful cytotoxic response of CD4+ T
172 cells early after SARS-CoV-2 infection, and we did not further analyze CD4+ cells in the
173 current study.

174

175 **Expansion of CD8+ T cells with a cytotoxic profile upon SARS-CoV-2 infection**

176 CD8+ T cell are also named cytotoxic T cells and constitute the main T cell population that
177 can kill virus-infected cells. Therefore, we analyzed the production of cytotoxic molecules in
178 CD8+ T cells in a cohort of SARS-CoV-2-infected individuals.

179 We first determined CD8+ T cell numbers in the blood of COVID-19 patients in the two age
180 groups. CD8+ T cell counts were clearly reduced in both groups compared to the numbers
181 reported in the literature (25), and an additional significant reduction was found for COVID-19
182 patients over 80 years of age (Fig. 2A). When calculating the Pearson correlation, we found
183 an inverse association between CD8+ T cell counts in peripheral blood and patient age (Fig.
184 2B). Next, we determined the distribution of different CD8+ T cell subsets (defined parallel to
185 the criteria for CD4+ T cells described above) and compared COVID-19 patients with age-
186 matched healthy controls, again in two age groups. The gating strategy is shown in Figure
187 S2. Differences were found for the 29-79 year group in which the frequency of naïve CD8+ T
188 cells was clearly reduced in COVID-19 patients, whereas percentages of effector, effector
189 memory, and transitional memory cells were enhanced compared to healthy individuals,
190 suggesting an ongoing CD8+ T cell response in COVID-19 patients (Fig. 2C). Interestingly,
191 this difference was almost absent in the older age group, most likely because the pool of
192 naïve CD8+ T cells largely disappears in elderly individuals (23). To characterize the profile
193 of CD8+ T cells, we stained CD8+ cells for cytotoxic molecules and compared the two age
194 groups from COVID-19 patients and healthy controls (Fig. 3A). Cells were analyzed directly
195 *ex vivo* without any re-stimulation. We found a significant difference between the patients
196 and controls in the younger age group. COVID-19 patients had higher frequencies of CD8+ T
197 cells producing the cytotoxic molecules GzmA and GzmB as well as perforin compared to
198 healthy controls (Fig. 3A-D). Thus, a clear cytotoxic profile could be detected at an early
199 stage of SARS-CoV-2 infection. In the 80-96 age group, an enhanced production of cytotoxic
200 molecules in CD8+ T cells was not evident after infection, most likely because the CD8+ T
201 cells of elderly non-infected individuals already express high background levels of cytotoxic
202 molecules (23). However, if these cells still mediate cytotoxic functions remains elusive.

203 Some studies on T cell responses in COVID-19 patients reported that CD8+ T cells may
204 already become functionally exhausted during acute infection (26). This hypothesis was

205 based on the analysis of PD-1 expression by T cells during early COVID-19. In functional
206 terms, PD-1, in conjunction with its ligands PD-L1 and PD-L2, exerts potent immune-
207 inhibitory activities. However, its expression is induced by T cell receptor (TCR) activation
208 (27) and TCR downstream NFAT signaling (28). PD-1 expression is a hallmark of recent
209 TCR-based recognition of MHC-presented antigens that is often up-regulated on cytotoxic
210 effector T cells during acute infections (29, 30). We found that about 20% of total CD8+ T
211 cells expressed PD-1 in healthy controls, as well as in COVID-19 patients (Fig. 4A). Most of
212 these cells expressed GzmA with no apparent differences between the groups (Fig. 4B).
213 However, for GzmB and perforin, we found a higher frequency of positive cells among PD-1+
214 CD8+ T cells in the group of younger COVID-19 patients compared to healthy controls. This
215 difference was absent for the older age group (Fig. 4C, D). Our data indicate that PD-1+
216 CD8+ T cells express cytotoxic molecules and should not be misclassified as functionally
217 exhausted T cells during the early SARS-CoV-2 infection.

218 Here, we clearly demonstrate a cytotoxic profile in CD8+ T cells upon SARS-CoV-2 infection,
219 which was also found in CD8+ T cells expressing PD-1.

220

221 **The frequency of CD8+ T cells with a cytotoxic profile in COVID-19 is reduced with 222 patients' age**

223 Individual subpopulations of CD8+ T cells differ in their ability to produce cytotoxic molecules,
224 with the highest potency for effector T cell populations. To investigate which CD8+ T cell
225 subpopulation dominates the cytotoxic profile of CD8+ T cells in mild COVID-19 patients, we
226 analyzed the expression of Gzms and perforin in all five T cell subpopulations.

227 The representative histogram shows that GzmA was produced by transitional memory,
228 effector memory, and effector cells, whereas GzmB and perforin were only found in the latter
229 two populations in our *ex vivo* analysis (Fig. 5A). Next, we assessed whether the production
230 of cytotoxic molecules by effector CD8+ T cell subpopulations is influenced by the age of
231 COVID-19 patients. For a precise analysis of age effects on the expression of cytotoxic
232 molecules we stratified the COVID-19 patients into 3 age groups (29-66 (median 56); 70-76
233 (median 73); 80-96 years (median 86)). Interestingly, for effector and effector memory cells,
234 the percentages of GzmA- as well as perforin-positive cells were significantly reduced in the
235 80-96 age group compared to the 29-69 age group (Fig. 5E, G, H, G). For transitional
236 memory cells, this was only the case for GzmA (Fig. 5B). This suggests a functional
237 impairment of the cytotoxic program in the CD8+ T cells of elderly COVID-19 patients.

238 The simultaneous expression of different cytotoxic molecules is a feature of effector cells
239 with a strong cytolytic potential. Therefore, we also performed single-cell analysis of CD8+ T
240 cells from COVID-19 patients to determine the expression profiles of cytotoxic molecules for
241 the different subpopulations of CD8+ T cells. For transitional memory cells, most cells with a
242 cytotoxic profile produced only GzmA and there was no obvious difference between the age
243 groups (Fig. 6A-C). Surprisingly, the vast majority of effector and effector memory cells
244 produced all three cytotoxic molecules simultaneously (Fig. 6D-I). While all patients from the
245 youngest age group had multifunctional effector cells, some individual patients from the older
246 age groups showed reduced multifunctional responses (Fig. 6E, F, H, I). Interestingly, a
247 comparison of effector CD8+ T cells from age-matched healthy controls and COVID-19
248 patients revealed that uninfected individuals had two dominating effector cell populations:
249 GzmA and GzmB double-positive as well as GzmA, GzmB and perforin triple-positive cells,
250 whereas in COVID-19 patients, the triple-positive cells unanimously dominated the response
251 (Fig. S3). It remains to be elucidated whether CD8+ T cells that produce multiple cytotoxic
252 molecules are critical for SARS-CoV2 control or the virus-induced immunopathology, or both.
253 However, since our analysis was focused on COVID-19 patients who had a mild disease
254 course without signs of immunopathology, a protective role appears more likely.

255

256 **Discussion**

257 Cytotoxicity of T cells is the decisive factor for the elimination of virus-infected cells during
258 different acute infections. The CTL-mediated elimination of the virus can also lead to damage
259 of infected organs and to the progression of virus-mediated diseases. A viral infection usually
260 induces a polyclonal activation and expansion of T cells which leads to lymphocytosis in the
261 peripheral blood and a local or systemic lymphadenopathy. Some expanded T cells later
262 differentiate into effector CTLs. In the case of the SARS-CoV-2 infection, the frequency of all
263 lymphocytes in the blood and especially the frequencies of CD8+T cells are strongly reduced
264 in COVID-19 patients (3, 31). In the case of a mild disease course, this reduction was not as
265 pronounced as in the case of severe diseases (31). Interestingly, the recovery during
266 COVID-19 is associated with the reappearance of circulating effector T cells in the blood
267 (32). We analyzed only mild COVID-19 cases here and also found that the frequencies of T
268 cells in the blood were not greatly reduced, except in the older patient group. Our *ex vivo*
269 study indicates that COVID-19 patients show a cytotoxic response dominated by CD8+ T cell
270 in contrast to CD4+ T cells during the early period of infection. It is very likely that this CD8+
271 T cell response contributes to virus control and its subsequent elimination as it has been
272 shown in other viral infections affecting the respiratory tract (33-35). However, no cytotoxic
273 CD4+ T cell response could be demonstrated during SARS-CoV-2 infection, which may not

274 be too surprising since these cells were mainly found in chronic and not in acute self-limiting
275 viral infections (36). Interestingly, PD-1-positive CD8+ T cells show a clear profile of
276 cytotoxicity, indicating that they are most likely not functionally exhausted during acute
277 SARS-CoV-2 infection. This is in clear contrast to suggestions by other groups (26) but in
278 line with previous findings made by us and others indicating that PD-1 is a marker for
279 activation rather than for exhaustion during early phases of infections (30) and is especially
280 up-regulated on T cell subsets that produce cytotoxic molecules such as Gzms and perforin.
281 PD-1 expression is induced upon T cell activation and TCR signaling and only sets the stage
282 for subsequent immune checkpoint control post-acute infection. This is then strongly
283 influenced by the presence of the PD-1 ligands on virus-infected target cells (21). The control
284 of cytotoxic cells is necessary during later phases of the immune response, where
285 immunopathology rather than viral replication may become the greatest danger.

286 In contrast to the younger age group, no clear cytotoxic CD8+ T cell response in the blood
287 could be demonstrated in the age group of over 80 year old patients. Two main points
288 influence this finding: the age-dependent reduction of CD8+ T cell frequencies in the blood of
289 COVID-19 patients (25) and the previously reported high baseline expression levels of Gzms
290 and perforin being a feature of senescent CD8+ T cells from elderly individuals (37).

291 For an aged immune system, the reduction of T lymphocytes and processes of immune
292 senescence are characteristic (37). However, the nature of the progressive loss of circulating
293 CD8+ T cells in elderly COVID-19 patients is not completely understood. One possible
294 explanation may be an enhanced migration of T cells from the blood into the infected tissue.
295 Usually, the accumulation of T lymphocytes leads to a progressive inflammation in the
296 infected organs. SARS-CoV-2 infects lung epithelial cells, which might recruit cytotoxic T
297 cells into the lung. In the early phase of infection, which we analyzed here, they most likely
298 contribute to virus control in the lung. However, sustained T cell cytotoxicity might also
299 contribute to organ damage. Thus, the precise recognition and elimination of infected cells
300 without the induction of too much inflammation and tissue destruction is necessary for the
301 survival of infected patients. This delicate balance of two opposing processes is very
302 important for survival. Here, multifunctional T cells, producing both perforin and Gzms at the
303 same time may be very important, as it has been shown that perforin is a critical enabler of
304 the apoptotic effects mediated by Gzms. Cells producing perforin and Gzms are necessary
305 for the efficient control of virus infections (20). We found many T cells producing Gzms and
306 perforin in our COVID-19 patient cohort, although their frequencies were reduced in elderly
307 patients. They might have contributed to efficient virus control, since all our patients showed
308 only mild symptoms and fully recovered from COVID-19. Multifunctional cytotoxic T cells
309 often express PD-1 (38), not because they are functionally impaired during acute infection,

310 but as an important negative switch to shut them down when responses are either too strong
311 or maintained for too long.

312 The cytotoxic molecules analyzed here share some overlapping functions but also elicit non-
313 redundant features. The critical effector molecule for target cell killing is perforin, as it
314 promotes the entry of Gzms into target cells and in this way enables the cytotoxic
315 functionality of Gzms (20). Thus, CTLs producing Gzms without perforin can induce severe
316 inflammation triggered by the aimless release of Gzms and inflammatory cytokines. Once
317 Gzms enter infected target cells in the presence of perforin, they mediate apoptosis of these
318 cells. Thus, it is tempting to speculate that the herein identified age-associated reduction of
319 CTLs expressing perforin may be an additional factor in COVID-19 progression, as it might
320 support lung inflammation.

321 Our current data support the concept that cytotoxic CD8+ T cells play an important role in the
322 control of early SARS-CoV-2 infections, but may also be a factor of immune pathogenesis
323 and COVID-19 progression during later periods of infection. Thus, it will be important to
324 carefully balance therapeutic measures either supporting or suppressing T cell responses in
325 future COVID-19 therapy. Recent suggestions to therapeutically administer checkpoint
326 inhibitors, which are efficiently used for tumor immune therapy, for the treatment of COVID-
327 19 patients (39) should be reevaluated, since we did not find functionally exhausted CD8+ T
328 cells in our patients. In agreement with our previous findings based on acute virus infection
329 models in mice (30, 38), our clinical study suggests that a checkpoint therapy might enhance
330 the functionality of the PD-1-expressing cytotoxic CD8+ T cells in COVID-19 patients and
331 improve virus control, but with a potential to exaggerate the immunopathology in the lung and
332 other organs, which might actually accelerate decompensation.

333 **Material and Methods**

334

335 **Study population and design.** For this study, 30 patients with mild COVID-19 cases were
336 recruited directly after hospitalization, which occurred approximately one week after symptom
337 onset and at least one positive SARS-CoV-2 PCR result was available (SARS-CoV-2 test,
338 Altona Diagnostics, Hamburg). Written consent was obtained from each of the study
339 participants. The study was approved by the University Hospital Essen's ethical committee
340 (ethics vote 20-9216-BO). Clinical characteristics of all patients are shown in Table 1. Two
341 groups of age-matched healthy individuals were used as controls: 10 individuals (6F/4M),
342 median age 50.3 years, median BMI 24.3, no diabetes and 8 individuals (3F/5M), median
343 age 85.2 years, median BMI 25.0, including 3 with diabetes. Otherwise no medical conditions
344 were reported for the control group.

345

346 **Preparation of PBMCs.** Peripheral blood mononuclear cells (PBMCs) were isolated from
347 peripheral blood by gradient centrifugation. Blood was collected in EDTA S-monovettes
348 (Sarstedt). Collected blood was pre-diluted with RPMI-1640 (Thermo Fisher Scientific) and
349 overlaid onto 15 mL Pancoll separating solution (PAN-Biotech). The tubes were centrifuged
350 at 1600 rcf for 15 min at room temperature with deceleration of the centrifuge set to low.
351 Isolated PBMCs were washed twice with RPMI-1640.

352

353 **Cell surface and intracellular staining by flow cytometry.** Surface and intracellular
354 staining were performed as described previously (40). For the surface staining of human
355 cells, specific antibodies against human CD3 (OKT3, BioLegend), CD4 (OKT4, BioLegend),
356 CD8 (BW135/80, Miltenyi Biotec), CD45RO (UCHL1, BioLegend), CCR7 (G043H7,
357 BioLegend), CD28 (CD28.2, BioLegend), and PD-1 (EH12.2 H7, BioLegend) were used. For
358 intracellular staining antibodies against human GzmA (CB9, BioLegend), GzmB (QA16A02,
359 BioLegend) and perforin (B-D48, BioLegend) were used. Dead cells were determined by
360 Fixable Viability Dye (Thermo Fisher) staining and excluded from analysis. The numbers of
361 CD3+CD4+ and CD3+CD8+ T cells in the blood were calculated from lymphocytes counts
362 measured in a certified clinical laboratory for every patient.

363 Data were acquired on a LSR II flow cytometer (Becton Dickinson) from 250,000-300,000
364 lymphocyte-gated events per sample. Analyses were done using FACSDiva software
365 (Becton Dickinson) and FlowJo software (Becton Dickinson).

366

367 **Statistical Analysis.** Statistics comparing two groups were done using the unpaired non-
368 parametric t-test or Mann-Whitney U test. A Pearson correlation coefficient was used for the
369 definition of correlation. (GraphPad Prism software; GraphPad Software Inc., San Diego,
370 USA). When more than two groups were compared, a Dunn test with the Benjamini–
371 Hochberg correction for multiple testing was performed (R-package dunn.test, version 1.3.4).

372

373

374 **Acknowledgements**

375 We are grateful to the Stiftung Universitätsmedizin Essen of University Hospital Essen for the
376 financial support of this study and we are thankful to Westdeutsche Biobank Essen for
377 material sampling.

379 **References**

380

381 1. Docherty AB, Harrison EM, Green CA, Hardwick HE, Pius R, Norman L, Holden KA, Read JM,
382 Dondelinger F, Carson G, Merson L, Lee J, Plotkin D, Sigfrid L, Halpin S, Jackson C, Gamble C,
383 Horby PW, Nguyen-Van-Tam JS, Ho A, Russell CD, Dunning J, Openshaw PJ, Baillie JK, Semple
384 MG. 2020. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO
385 Clinical Characterisation Protocol: prospective observational cohort study. *BMJ* 369:m1985.

386 2. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, Du B, Li LJ, Zeng
387 G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang JL, Liang ZJ, Peng YX,
388 Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu
389 SY, Zhong NS, China Medical Treatment Expert Group for C. 2020. Clinical Characteristics of
390 Coronavirus Disease 2019 in China. *N Engl J Med* 382:1708-1720.

391 3. Liu K, Chen Y, Lin R, Han K. 2020. Clinical features of COVID-19 in elderly patients: A
392 comparison with young and middle-aged patients. *J Infect* 80:e14-e18.

393 4. Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, Cuomo-Dannenburg G,
394 Thompson H, Walker PGT, Fu H, Dighe A, Griffin JT, Baguelin M, Bhatia S, Boonyasiri A, Cori A,
395 Cucunuba Z, FitzJohn R, Gaythorpe K, Green W, Hamlet A, Hinsley W, Laydon D, Nedjati-
396 Gilani G, Riley S, van Elsland S, Volz E, Wang H, Wang Y, Xi X, Donnelly CA, Ghani AC,
397 Ferguson NM. 2020. Estimates of the severity of coronavirus disease 2019: a model-based
398 analysis. *Lancet Infect Dis* 20:669-677.

399 5. Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, Levantovsky R, Malle L, Moreira A,
400 Park MD, Pia L, Risson E, Saffern M, Salome B, Esai Selvan M, Spindler MP, Tan J, van der
401 Heide V, Gregory JK, Alexandropoulos K, Bhardwaj N, Brown BD, Greenbaum B, Gumus ZH,
402 Homann D, Horowitz A, Kamphorst AO, Curotto de Lafaille MA, Mehandru S, Merad M,
403 Samstein RM, Sinai Immunology Review P. 2020. Immunology of COVID-19: Current State of
404 the Science. *Immunity* 52:910-941.

405 6. Malyshkina A, Littwitz-Salomon E, Sutter K, Zelinskyy G, Windmann S, Schimmer S, Paschen
406 A, Streeck H, Hasenkrug KJ, Dittmer U. 2017. Fas Ligand-mediated cytotoxicity of CD4+ T cells
407 during chronic retrovirus infection. *Sci Rep* 7:7785.

408 7. Wiesel M, Walton S, Richter K, Oxenius A. 2009. Virus-specific CD8 T cells: activation,
409 differentiation and memory formation. *APMIS* 117:356-381.

410 8. Schmidt ME, Varga SM. 2018. The CD8 T Cell Response to Respiratory Virus Infections.
411 *Frontiers in Immunology* 9:678.

412 9. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, Wang T, Zhang X, Chen H, Yu H, Zhang X,
413 Zhang M, Wu S, Song J, Chen T, Han M, Li S, Luo X, Zhao J, Ning Q. 2020. Clinical and
414 immunological features of severe and moderate coronavirus disease 2019. *J Clin Invest*
415 130:2620-2629.

416 10. Nie S, Zhao X, Zhao K, Zhang Z, Zhang Z, Zhang Z. 2020. Metabolic disturbances and
417 inflammatory dysfunction predict severity of coronavirus disease 2019 (COVID-19): a
418 retrospective study. *medRxiv* doi:10.1101/2020.03.24.20042283:2020.03.24.20042283.

419 11. Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, Cheng L, Li J, Wang X, Wang F, Liu L, Amit I, Zhang
420 S, Zhang Z. 2020. Single-cell landscape of bronchoalveolar immune cells in patients with
421 COVID-19. *Nature Medicine* 26:842-844.

422 12. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, Tai Y, Bai C, Gao T,
423 Song J, Xia P, Dong J, Zhao J, Wang F-S. 2020. Pathological findings of COVID-19 associated
424 with acute respiratory distress syndrome. *The Lancet Respiratory Medicine* 8:420-422.

425 13. Anft M, Paniskaki K, Blazquez-Navarro A, Doevelaar AAN, Seibert F, Hoelzer B, Skrzypczyk S,
426 Kohut E, Kurek J, Zapka J, Wehler P, Kaliszczak S, Bajda S, Thieme C, Roch T, Konik MJ,
427 Brenner T, Tempfer C, Watzl C, Dolff S, Dittmer U, Westhoff T, Witzke O, Stervbo U, Babel N.

428 2020. COVID-19 progression is potentially driven by T cell immunopathogenesis. medRxiv
429 doi:10.1101/2020.04.28.20083089:2020.04.28.20083089.

430 14. Ni L, Ye F, Cheng ML, Feng Y, Deng YQ, Zhao H, Wei P, Ge J, Gou M, Li X, Sun L, Cao T, Wang P,
431 Zhou C, Zhang R, Liang P, Guo H, Wang X, Qin CF, Chen F, Dong C. 2020. Detection of SARS-
432 CoV-2-Specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals.
433 Immunity 52:971-977 e3.

434 15. Thieme CJ, Anft M, Paniskaki K, Blazquez-Navarro A, Doevelaar A, Seibert FS, Hoelzer B, Konik
435 MJ, Brenner T, Tempfer C, Watzl C, Dolff S, Dittmer U, Westhoff TH, Witzke O, Stervbo U,
436 Roch T, Babel N. 2020. The SARS-CoV-2 T-cell immunity is directed against the spike,
437 membrane, and nucleocapsid protein and associated with COVID 19 severity. medRxiv
438 doi:10.1101/2020.05.13.20100636:2020.05.13.20100636.

439 16. Weiskopf D, Schmitz KS, Raadsen MP, Grifoni A, Okba NMA, Endeman H, van den Akker JPC,
440 Molenkamp R, Koopmans MPG, van Gorp ECM, Haagmans BL, de Swart RL, Sette A, de Vries
441 RD. 2020. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with
442 acute respiratory distress syndrome. Sci Immunol 5.

443 17. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, Rawlings SA,
444 Sutherland A, Premkumar L, Jadi RS, Marrama D, de Silva AM, Frazier A, Carlin AF,
445 Greenbaum JA, Peters B, Krammer F, Smith DM, Crotty S, Sette A. 2020. Targets of T Cell
446 Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed
447 Individuals. Cell 181:1489-1501.e15.

448 18. Le Bert N, Tan AT, Kunasegaran K, Tham CYL, Hafezi M, Chia A, Chng MHY, Lin M, Tan N,
449 Linster M, Chia WN, Chen MI, Wang LF, Ooi EE, Kalimuddin S, Tambyah PA, Low JG, Tan YJ,
450 Bertoletti A. 2020. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and
451 uninfected controls. Nature doi:10.1038/s41586-020-2550-z.

452 19. Snow AL, Pandiyan P, Zheng L, Krummey SM, Lenardo MJ. 2010. The power and the promise
453 of restimulation-induced cell death in human immune diseases. Immunological Reviews
454 236:68-82.

455 20. Voskoboinik I, Whisstock JC, Trapani JA. 2015. Perforin and granzymes: function, dysfunction
456 and human pathology. Nature Reviews Immunology 15:388-400.

457 21. David P, Drabczyk-Pluta M, Pastille E, Knuschke T, Werner T, Honke N, Megger DA,
458 Akhmetzyanova I, Shaabani N, Eyking-Singer A, Cario E, Kershaw O, Gruber AD, Tenbusch M,
459 Dietze KK, Trilling M, Liu J, Schadendorf D, Streeck H, Lang KS, Xie Y, Zimmer L, Sitek B,
460 Paschen A, Westendorf AM, Dittmer U, Zelinskyy G. 2020. Combination immunotherapy with
461 anti-PD-L1 antibody and depletion of regulatory T cells during acute viral infections results in
462 improved virus control but lethal immunopathology. PLoS Pathog 16:e1008340.

463 22. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, Tai Y, Bai C, Gao T,
464 Song J, Xia P, Dong J, Zhao J, Wang FS. 2020. Pathological findings of COVID-19 associated
465 with acute respiratory distress syndrome. Lancet Respir Med 8:420-422.

466 23. Vicente R, Mausset-Bonnefont A-L, Jorgensen C, Louis-Plence P, Brondello J-M. 2016. Cellular
467 senescence impact on immune cell fate and function. Aging Cell 15:400-406.

468 24. Phetsouphanh C, Pillai S, Zaunders JJ. 2017. Editorial: Cytotoxic CD4+ T Cells in Viral
469 Infections. Frontiers in Immunology 4:1729.

470 25. Huppert F, Solomou W, O'Connor S, Morgan K, Sussams P, Brayne C. 1998. Aging and
471 lymphocyte subpopulations: whole-blood analysis of immune markers in a large population
472 sample of healthy elderly individuals. Experimental Gerontology 33:593-600.

473 26. Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, Chen L, Li M, Liu Y, Wang G, Yuan Z, Feng Z,
474 Zhang Y, Wu Y, Chen Y. 2020. Reduction and Functional Exhaustion of T Cells in Patients With
475 Coronavirus Disease 2019 (COVID-19). Front Immunol 11:827.

476 27. Chikuma S, Terawaki S, Hayashi T, Nabeshima R, Yoshida T, Shibayama S, Okazaki T, Honjo T.
477 2009. PD-1-mediated suppression of IL-2 production induces CD8+ T cell anergy in vivo. J
478 Immunol 182:6682-9.

479 28. Simon S, Labarriere N. 2018. PD-1 expression on tumor-specific T cells: Friend or foe for
480 immunotherapy? *OncolImmunology* 7:e1364828.

481 29. Jubel JM, Barbati ZR, Burger C, Wirtz DC, Schildberg FA. 2020. The Role of PD-1 in Acute and
482 Chronic Infection. *Frontiers in Immunology* 24:11:487.

483 30. Zelinskyy G, Myers L, Dietze KK, Gibbert K, Roggendorf M, Liu J, Lu M, Kraft AR, Teichgraber
484 V, Hasenkrug KJ, Dittmer U. 2011. Virus-specific CD8+ T cells upregulate programmed death-
485 1 expression during acute friend retrovirus infection but are highly cytotoxic and control virus
486 replication. *J Immunol* 187:3730-7.

487 31. Liu J, Li S, Liu J, Liang B, Wang X, Wang H, Li W, Tong Q, Yi J, Zhao L, Xiong L, Guo C, Tian J, Luo
488 J, Yao J, Pang R, Shen H, Peng C, Liu T, Zhang Q, Wu J, Xu L, Lu S, Wang B, Weng Z, Han C, Zhu
489 H, Zhou R, Zhou H, Chen X, Ye P, Zhu B, Wang L, Zhou W, He S, He Y, Jie S, Wei P, Zhang J, Lu
490 Y, Wang W, Zhang L, Li L, Zhou F, Wang J, Dittmer U, Lu M, Hu Y, Yang D, Zheng X. 2020.
491 Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral
492 blood of SARS-CoV-2 infected patients. *EBioMedicine* 55:102763.

493 32. Odak I, Barros-Martins J, Bošnjak B, Stahl K, David S, Wiesner O, Busch M, Hoeper MM, Pink I,
494 Welte T, Cornberg M, Stoll M, Goudeva L, Blasczyk R, Ganser A, Prinz I, Förster R, Koenecke C,
495 Schultze-Florey CR. 2020. Reappearance of effector T cells is associated with recovery from
496 COVID-19. *EBioMedicine* 57:102885.

497 33. Melendi GA, Zavala F, Buchholz UJ, Boivin G, Collins PL, Kleeberger SR, Polack FP. 2007.
498 Mapping and characterization of the primary and anamnestic H-2(d)-restricted cytotoxic T-
499 lymphocyte response in mice against human metapneumovirus. *J Virol* 81:11461-7.

500 34. Topham DJ, Tripp RA, Doherty PC. 1997. CD8+ T cells clear influenza virus by perforin or Fas-
501 dependent processes. *J Immunol* 159:5197-200.

502 35. Schmidt ME, Varga SM. 2018. The CD8 T Cell Response to Respiratory Virus Infections. *Front
503 Immunol* 9:678.

504 36. Hasenkrug KJ, Chouquet CA, Dittmer U. 2018. Regulatory T cells in retroviral infections. *PLoS
505 Pathog* 14:e1006776.

506 37. Xu W, Larbi A. 2017. Markers of T Cell Senescence in Humans. *Int J Mol Sci* 18.

507 38. David P, Megger DA, Kaiser T, Werner T, Liu J, Chen L, Sitek B, Dittmer U, Zelinskyy G. 2019.
508 The PD-1/PD-L1 Pathway Affects the Expansion and Function of Cytotoxic CD8(+) T Cells
509 During an Acute Retroviral Infection. *Front Immunol* 10:54.

510 39. Di Cosimo S, Malfettone A, Pérez-García JM, Llombart-Cussac A, Miceli R, Curiel G, Cortés
511 J. 2020. Immune checkpoint inhibitors: a physiology-driven approach to the treatment of
512 coronavirus disease 2019. *European journal of cancer (Oxford, England : 1990)* 135:62-65.

513 40. Dietze KK, Zelinskyy G, Gibbert K, Schimmer S, Francois S, Myers L, Sparwasser T, Hasenkrug
514 KJ, Dittmer U. 2011. Transient depletion of regulatory T cells in transgenic mice reactivates
515 virus-specific CD8+ T cells and reduces chronic retroviral set points. *Proc Natl Acad Sci U S A*
516 108:2420-5.

517

518

519

520

521

522

523 **Figure Legends**

524 **Fig. 1. CD4⁺ T cells in COVID-19 patients.**

525 CD4⁺ T cells in blood of patients with mild COVID-19 and healthy donors were analyzed by flow
526 cytometry. The concentration of CD4⁺ T cells in peripheral blood of patients at the day of
527 hospitalization and values of healthy donors of different age (**A**). The differentiation status of CD4⁺ T
528 cells was determined by the expression of CD45RO, CCR7, and CD28. CD3⁺CD4⁺ T cells were
529 divided in naïve (N, CD45RO⁻ CCR7⁺ CD28⁺), central memory (CM, CD45RO⁺ CCR7⁺ CD28⁺),
530 transitional memory (TM, CD45RO⁺ CCR7⁻ CD28⁺), effector memory (EM, CD45RO⁺ CCR7⁻ CD28⁻),
531 and terminally differentiated effector (E, CD45RO⁻ CCR7⁻ CD28⁻) subpopulations (**B**). The production
532 of GzmA, GzmB, and perforin in CD3⁺CD4⁺ T cells is shown in representative dot plots (**C**).
533 Percentages of CD4⁺ T cells producing GzmA (**D**), GzmB (**E**), and perforin (**F**). Each dot represents an
534 individual patient. Statistically significant differences are indicated by asterisks (* < 0.05; ** < 0,01;
535 Unpaired t-test with Welch's correction).

536

537 **Fig. 2. Reduced numbers of circulating CD8⁺ T cells in elderly COVID-19 patients.**

538 CD8⁺ T cells in the blood of patients with mild COVID-19 were analyzed by flow cytometry. The
539 concentration of CD8⁺ T cells in peripheral blood of patients at the day of hospitalization and values of
540 healthy donors of different age (**A**). Correlation of age with concentration of CD8⁺ T cells in the blood
541 of acute COVID-18 patients (**B**). Each dot represents an individual patient. The differentiation status of
542 CD8⁺ T cells was determined by the expression of CD45RO, CCR7, and CD28. CD3⁺CD8⁺ T cells
543 were divided in naïve (N, CD45RO⁻ CCR7⁺ CD28⁺), central memory (CM, CD45RO⁺ CCR7⁺ CD28⁺),
544 transitional memory (TM, CD45RO⁺ CCR7⁻ CD28⁺), effector memory (EM, CD45RO⁺ CCR7⁻ CD28⁻),
545 and terminally differentiated effector (E, CD45RO⁻ CCR7⁻ CD28⁻) subpopulations. Statistically
546 significant differences are indicated by asterisks (* < 0.05; Unpaired t-test with Welch's correction,
547 Pearson's correlation coefficient).

548

549 **Fig. 3. Production of cytotoxic molecules by CD8⁺ T cells.**

550 Production of cytotoxic molecules in CD8⁺ T cells in the blood from patients with mild COVID-19 and
551 healthy donors was characterized by flow cytometry. Representative dot plots show the production of
552 GzmA, GzmB, and Perforin in CD8⁺ T cells (**A**). Percentage of CD8⁺ T cells producing GzmA (**B**),
553 GzmB (**C**), and perforin (**D**). Each dot represents an individual patient. Statistically significant
554 differences are indicated by asterisks (* < 0.05; ** < 0.001; Non-parametric Mann-Whitney U test).

555

556 **Fig. 4. Production of cytotoxic molecules by PD-1⁺ CD8⁺ T cells.**

557 Expression of PD-1 and the production of cytotoxic molecules in PD-1⁺ CD8⁺ T cells in the blood of
558 patients with mild COVID-19 was characterized by flow cytometry. Percentages of CD8⁺PD-1⁺ T cells
559 (**A**) and of PD-1⁺CD8⁺ T cells producing GzmA (**B**), GzmB (**C**), and perforin (**D**) were calculated. Each
560 dot represents an individual patient. (** < 0.01; Non-parametric Mann-Whitney U test).

561

562 **Fig. 5. Production of cytotoxic molecules in different subpopulations of CD8⁺ T cells from**

563 COVID-19 patients.

564 Differentiation of CD8⁺ T cells in the blood of patients with mild COVID-19 was analyzed by flow
565 cytometry. Representative histograms of the production of GzmA, GzmB, and Perforin in CD8⁺ T cells
566 on different stages of differentiation (**A**). The frequencies of transitional memory (TM, CD45RO⁺
567 CCR7⁻ CD28⁺), effector memory (EM, CD45RO⁺ CCR7⁻ CD28⁻), and terminally differentiated effector
568 (E, CD45RO⁻ CCR7⁻ CD28⁻) CD8⁺ T cells producing GzmA, GzmB, and perforin in blood of patients
569 with mild COVID-19 disease were detected by flow cytometry. TM CD8⁺ T cells producing GzmA (**B**),
570 GzmB (**C**), and perforin (**D**); EM CD8⁺ T cells producing GzmA (**E**), GzmB (**F**), and perforin (**G**), E
571 CD8⁺ T cells producing GzmA (**H**), GzmB (**I**), and perforin (**J**). Each dot represents an individual
572 patient. Statistically significant differences are indicated by asterisks (* < 0.05; Dunn test with the
573 Benjamini–Hochberg correction for multiple testing).

574

575 **Fig. 6. Simultaneous production of GzmA, GzmB, and perforin by CD8⁺ T cells from COVID-19**

576 patients.

577 Differentiation of CD8⁺ T cells in blood of patients with mild COVID-19 was characterized by flow
578 cytometry. The frequencies of CD8⁺ T cells simultaneously producing GzmA, GzmB, and Perforin
579 from patients in the 29-66 years, 70-79 years, 80-96 years age groups were calculated for transitional
580 memory (TM, CD45RO⁺ CCR7⁻ CD28⁺) (**A-C**), effector memory (EM, CD45RO⁺ CCR7⁻ CD28⁻) (**D-F**),
581 and terminally differentiated effector (E, CD45RO⁻ CCR7⁻ CD28⁻) (**G-I**) CD8⁺ T cells. Each dot
582 represents an individual patient.

583

584 **Supplement Table 1. Laboratory characteristics of patients according to age.**

585 30 patients with mild COVID-19 cases were recruited directly after hospitalization, which occurred
586 approximately one week after symptom onset and at least one positive SARS-CoV-2 PCR result was
587 available. Patients were stratified into two age groups of 29-79 and 80-96 years.

588

589 **Supplement Fig. S1. Gating strategy for CD4⁺ T cell subpopulations.**

590 Exemplary gating strategy for definition of CD4⁺ T cell subpopulations. Naïve (N, CCR7⁺CD45RO⁻CD28⁺), central memory (CM, CCR7⁺CD45RO⁺CD28⁺), transitional memory (TM, CCR7⁻CD45RO⁺CD28⁺), effector memory (EM, CCR7⁻CD45RO⁺CD28⁻), and effector (E, CCR7-CD45RO⁻CD28⁻) CD4⁺ T cell subpopulations were characterized using CCR7, CD45RO, and CD28.

594

595 **Supplement Fig. S2. Gating strategy for CD8⁺ T cell subpopulations and simultaneous**
596 **production of cytotoxic molecules.**

597 Exemplary gating strategy for definition of CD8⁺ T cell subpopulations and the simultaneous
598 production of GzmA, GzmB and perforin. Naïve (N, CCR7⁺CD45RO⁻CD28⁺), central memory (CM,
599 CCR7⁺CD45RO⁺CD28⁺), transitional memory (TM, CCR7⁻CD45RO⁺CD28⁺), effector memory (EM,
600 CCR7⁻CD45RO⁺CD28⁻), and effector (E, CCR7-CD45RO⁻CD28⁻) CD8⁺ T cell subpopulations were
601 characterized using CCR7, CD45RO, and CD28.

602

603 **Supplement Fig. S3. Simultaneous production of GzmA, GzmB, and Perforin in CD8⁺ T cells**
604 **from COVID-19 patients and healthy controls.**

605 The simultaneous production of GzmA, GzmB, and perforin by CD8⁺ T cells in blood of patients with
606 mild COVID-19 and healthy controls was characterized by flow cytometry. The frequencies of CD8⁺ T
607 cells producing GzmA, GzmB, and perforin from patients in the 29-79 years and 80-96 years age
608 groups were calculated for effector memory (EM, CD45RO⁺ CCR7⁻ CD28⁺) (**A, B**), and terminally
609 differentiated effector (E, CD45RO⁻ CCR7⁻ CD28⁻) (**C, D**) CD8⁺ T cells. Statistically significant
610 differences are indicated by asterisks (* < 0.05; ** < 0.01; *** < 0.001; Non-parametric Mann-Whitney
611 U test).

612

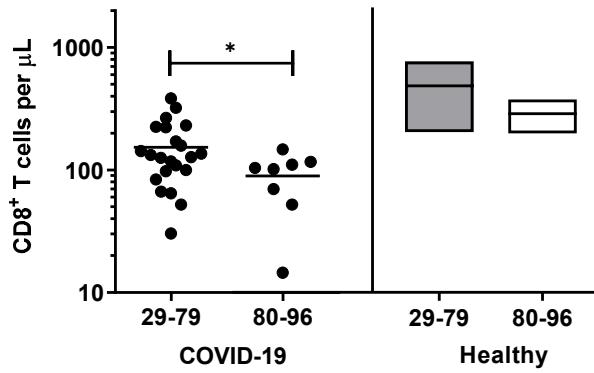

613

Figure 1

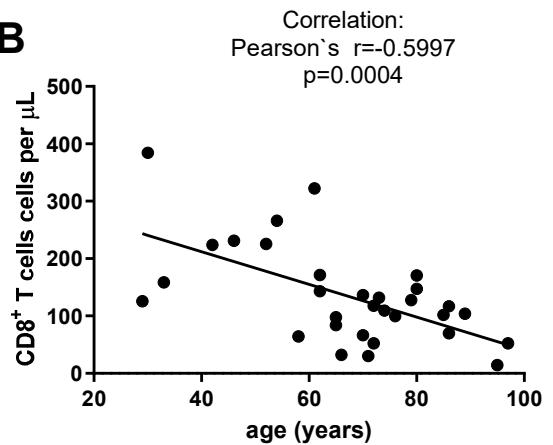
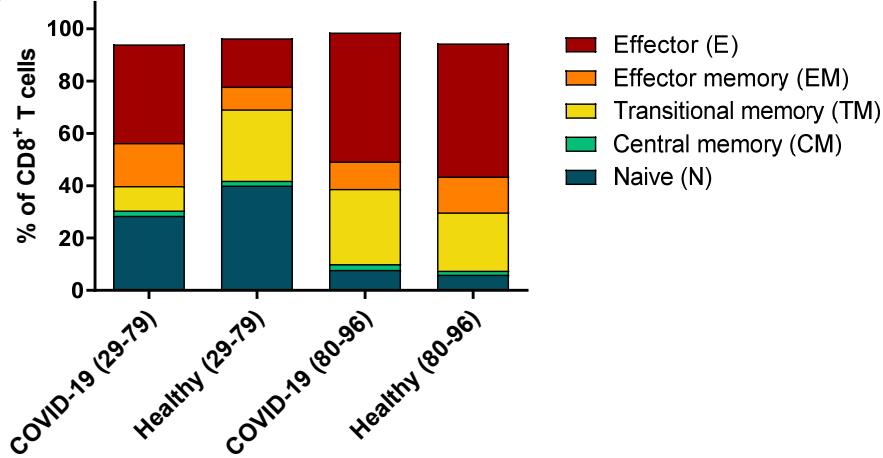
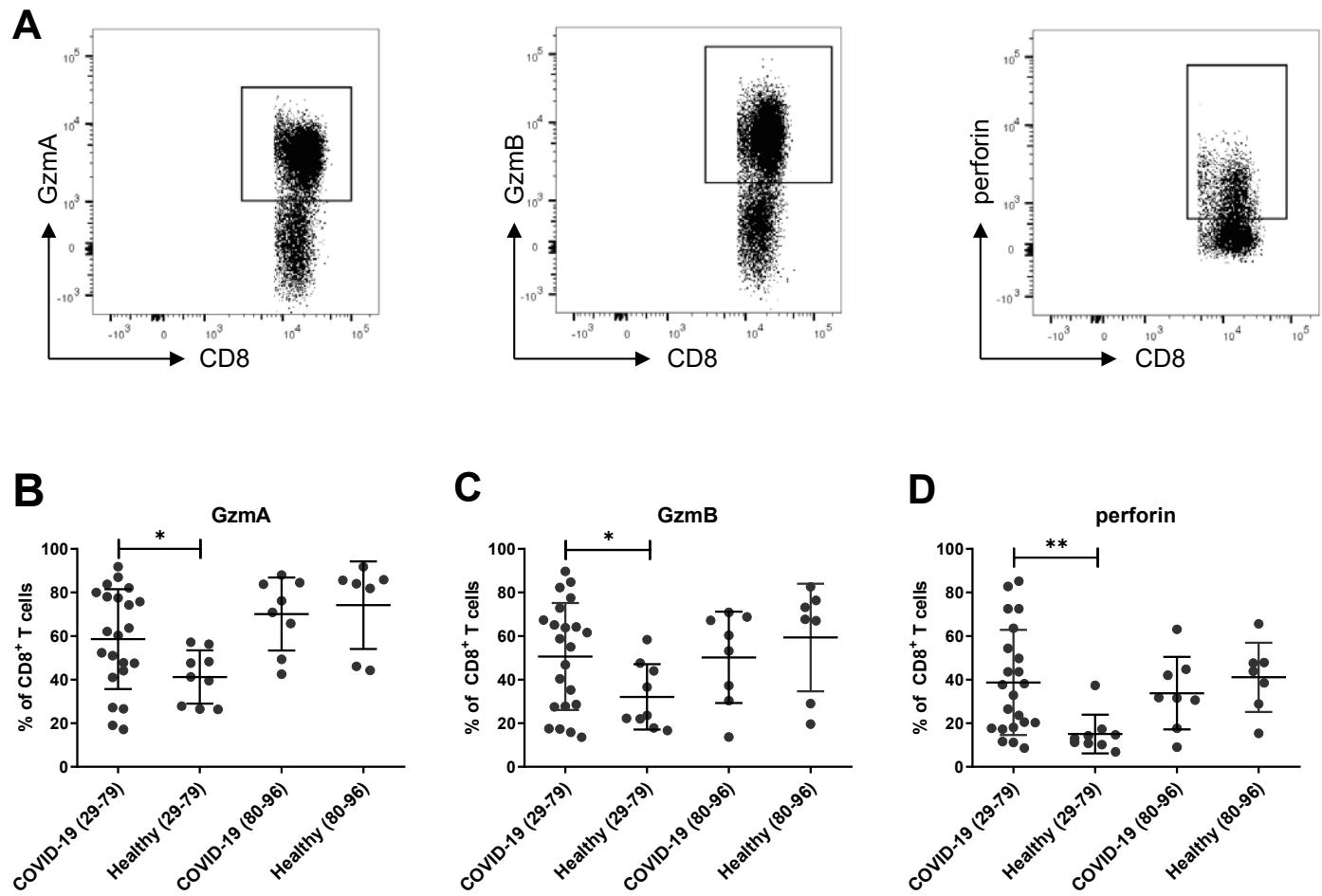
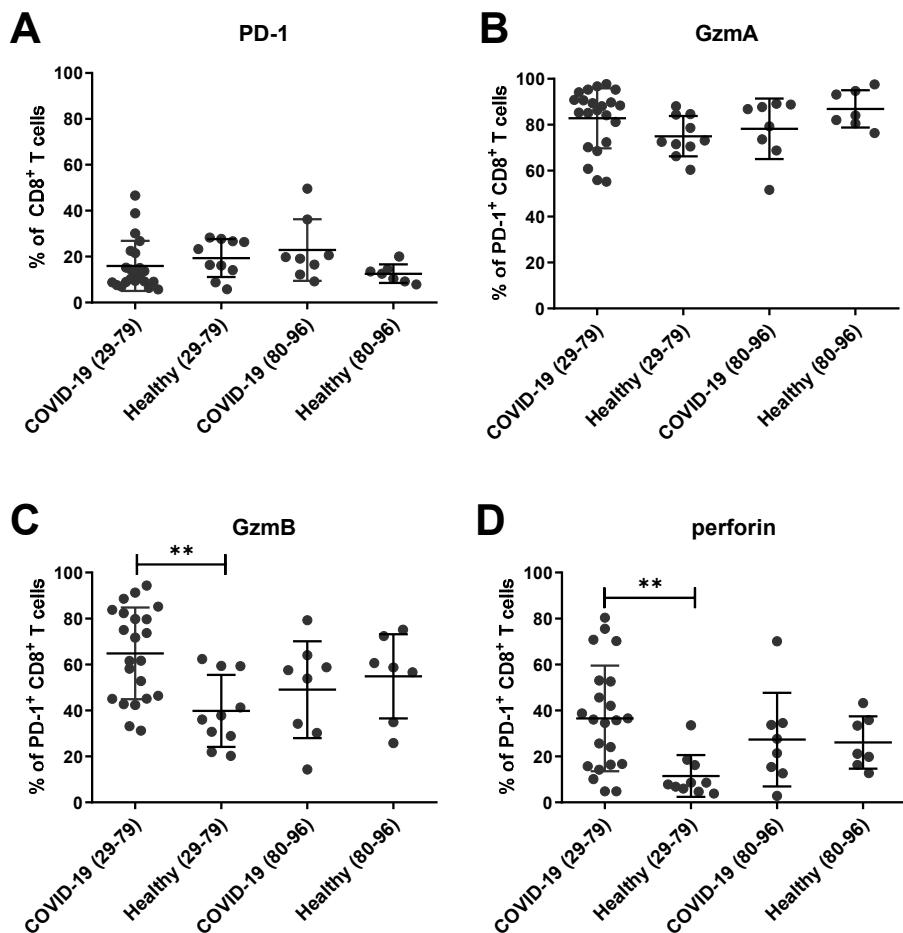
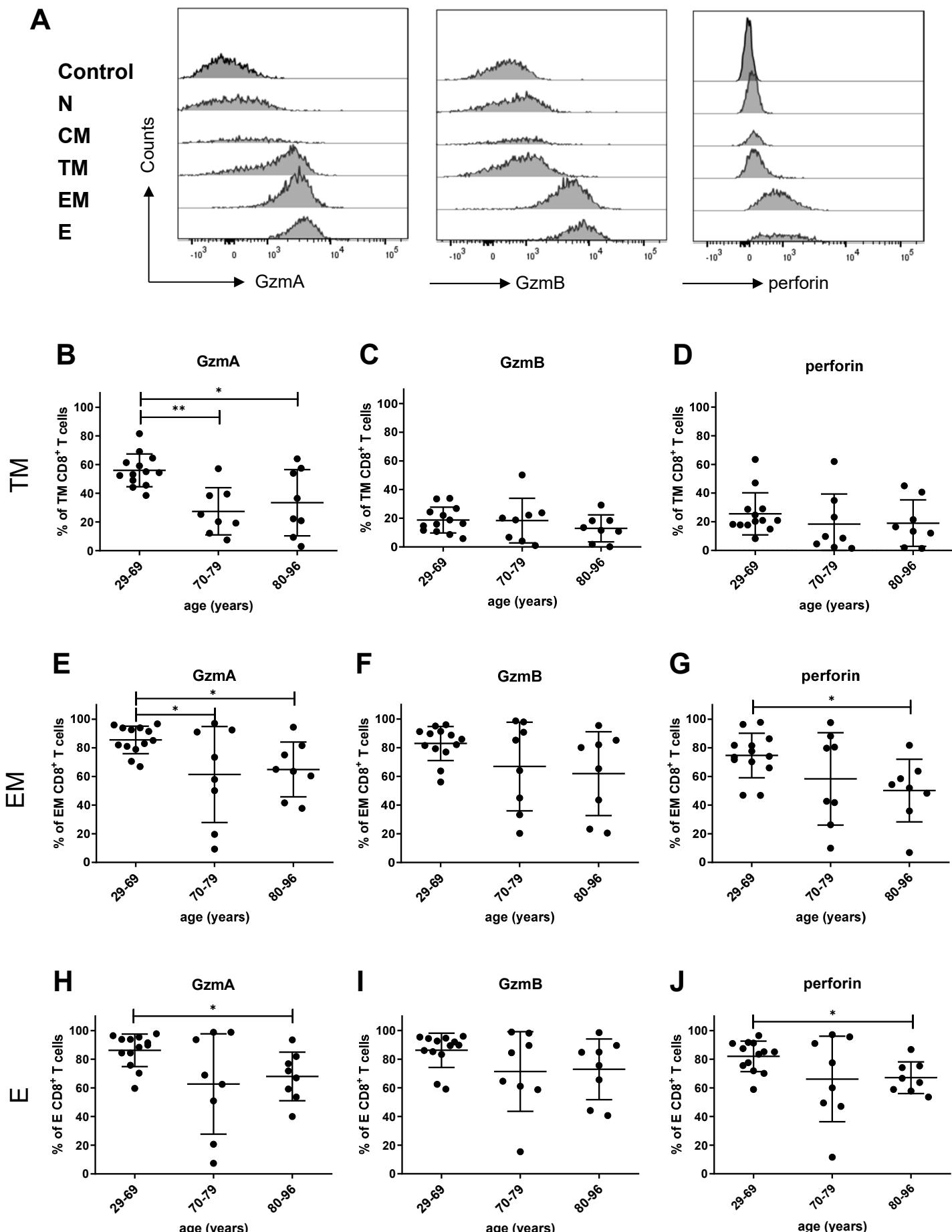


Figure 2


A


B


C


Figure 3

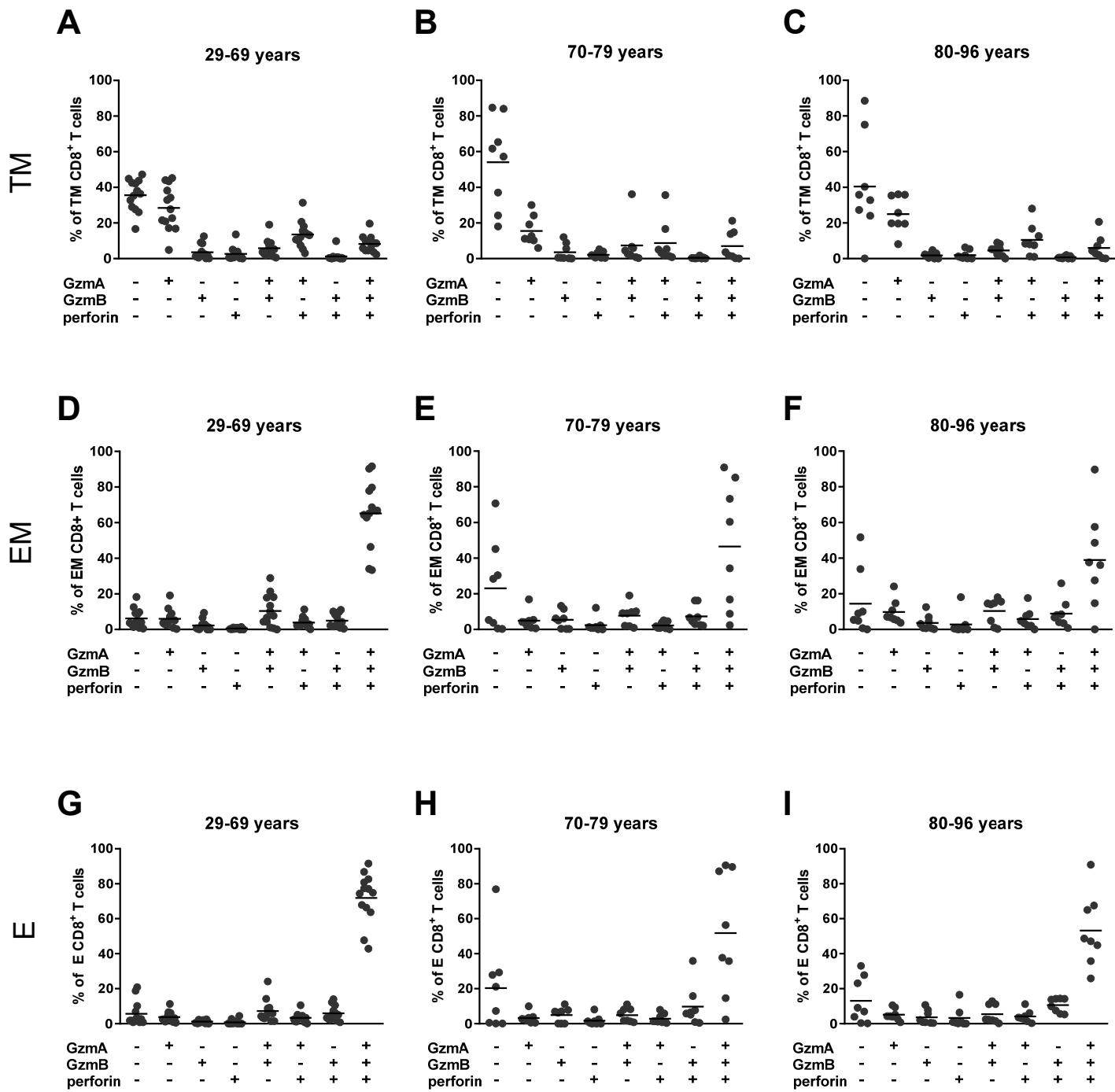

Figure 4

Figure 5

Figure 6

