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Abstract 

 

BACKGROUND Convergent research identifies a general factor (“P factor”) that confers 

transdiagnostic risk for psychopathology. However, brain functional connectivity patterns that 

underpin the P factor remain poorly understood, especially at the transition to adolescence 

when many serious mental disorders have their onset.  

 

OBJECTIVE: Identify a distributed connectome-wide neurosignature of the P factor and assess 

the generalizability of this neurosignature in held out samples.  

 

DESIGN, SETTING, AND PARTICIPANTS This study used data from the full baseline wave of the 

Adolescent Brain and Cognitive Development (ABCD) national consortium study, a prospective, 

population-based study of 11,875 9- and 10-year olds. Data for this study were collected from 

September 1, 2016 to November 15, 2018 at 21 research sites across the United States. 

 

MAIN OUTCOMES AND MEASURES We produced whole brain functional connectomes for 

5,880 youth with high quality resting state scans. We then constructed a low rank basis set of 

250 components that captures interindividual connectomic differences. Multi-level regression 

modeling was used to link these components to the P factor, and leave-one-site-out cross-

validation was used to assess generalizability of P factor neurosignatures to held out subjects 

across 19 ABCD sites.  

 

RESULTS The set of 250 connectomic components was highly statistically significantly related to 

the P factor, over and above nuisance covariates alone (ANOVA nested model comparison, 

incremental R-squared 6.05%, χ2
(250) = 412.1, p<4.6x10

-10
). In addition, two individual 

connectomic components were statistically significantly related to the P factor after Bonferroni 

correction for multiple comparisons (t(5511)= 4.8, p<1.4x10
-06

; t(5121)= 3.9, p<9.7x10
-05

). 

Functional connections linking control networks and default mode network were prominent in 

the P factor neurosignature. In leave-one-site-out cross-validation, the P factor neurosignature 

generalized to held out subjects (average correlation between actual and predicted P factor 

scores across 19 held out sites=0.13; pPERMUTATION<0.0001). Additionally, results remained 

significant after a number of robustness checks. 

 

CONCLUSIONS AND RELEVANCE: The general factor of psychopathology is associated with 

connectomic alterations involving control networks and default mode network. Brain imaging 

combined with network neuroscience can identify distributed and generalizable signatures of 

transdiagnostic risk for psychopathology during emerging adolescence.  
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1. Introduction 

 

Recent investigations into patterns of covariance across psychiatric symptoms consistently find 

a general factor of psychopathology, termed the “P factor”, that is associated with most 

prevalent psychiatric symptoms
1–4

. Concurrently, categorical diagnostic approaches that 

currently predominate encounter serious issues. Tellingly, one persistent problem has been 

excess overlap across disorders in symptoms5,6, neural mechanisms7,8, and genetic risk 

factors9,10—a problem that the could be readily explained if a domain general P factor drives co-

occurrence of symptoms irrespective of diagnostic boundaries. Despite these compelling 

features of the P factor model, key gaps in knowledge remain, especially regarding the neural 

mechanisms that produce broad liabilities to diverse psychopathologies and the developmental 

pathways through which these broad liabilities operate. 

 

Network neuroscience11–14 is well positioned to help fill in this gap in knowledge. The human 

brain is organized into a number of large-scale connectivity networks15,16, and there is growing 

understanding of distinct information processing functions implemented by these networks and 

by interacting network ensembles. Recent psychological models of the P factor emphasize 

executive dysfunction and impulsivity
3,17,18

, suggesting the possibility that deficits in control 

networks (e.g., fronto-parietal network, dorsal attention network)
19,20

, involved in attention 

and cognitive control, are implicated in producing the P factor—a possibility that awaits 

detailed investigation.  

 

Network neuroscience can also illuminate the developmental pathways that lead to 

psychopathology
21–23

. Brain networks undergo massive maturation during adolescence
24–26

. 

Importantly, this is also the time that many serious mental disorders first emerge5,21,27. A critical 

goal for psychiatric neuroscience is to develop brain-based objective markers of risk that can 

identify vulnerable youth who can most benefit from targeted interventions
21

. Because of the 

breadth of the P factor’s posited effects on diverse forms of psychiatric symptomatology, 

identification of network alterations during youth that are associated with the P factor is 

particularly pressing. 

 

The current study examines connectome-wide functional connectivity patterns associated with 

the P factor in a sample of 11,875 9 and 10-year olds in the Adolescent Brain and Cognitive 

Development (ABCD) national consortium study, Release 2.1
28,29

. Recently, our group 

constructed and validated a P factor model
30

 in ABCD from the Child Behavior Checklist
31

 

(CBCL)-parent report using bifactor modeling. For the present study, we produced resting state 

connectomes for 5,880 youth who met stringent neuroimaging quality control standards. We 

next applied a multivariate approach, brain basis set (BBS)
32–34

, to link whole-brain functional 

connectivity patterns to the P factor. BBS takes advantage of the fact that, although functional 

connectomes are large and complex, encompassing tens of thousands of connections, there is 

massive redundancy in the set of connections that differ across people. This allows a small set 

of components—we used 250 in the present study—to capture most meaningful inter-

individual variation
32,33

. To establish multivariate relationships between this basis set of 

connectomic components and the P factor, we adopted a two-pronged analysis approach that 
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leverages standard parametric statistical methods (well suited for complex multilevel designs 

with covariates and sample weighting) and newer cross-validation approaches (well suited for 

assessing generalizability to unseen data). Both analyses convergently demonstrate that the P 

factor is associated with brain-wide altered connectivity patterns prominently implicating 

connections within and between control networks and processing networks. 

 

2. Methods 

 

2.1. Sample and Data 

The ABCD study is a multisite longitudinal study with 11,875 children between 9-10 years of age 

from 21 sites across the United States. The study conforms to the rules and procedures of each 

site’s Institutional Review Board, and all participants provide informed consent (parents) or 

assent (children). Detailed description of recruitment procedures
35

, assessments
36

, and imaging 

protocols
37

 are available elsewhere. The ABCD data used in this report came from NDA Study 

721, 10.15154/1504041, which can be found at https://nda.nih.gov/study.html?id=721. 

 

2.2. Data Acquisition, fMRI Preprocessing, and Connectome Generation 

Imaging protocols were harmonized across sites and scanners. High spatial (2.4 mm isotropic) 

and temporal resolution (TR=800 ms) resting state fMRI was acquired in four separate runs 

(5min per run, 20 minutes total, full details are described in 
38

). The entire data pipeline 

described below was run through automated scripts on the University of Michigan’s high-

performance cluster, and is described below, with additional detailed methods automatically 

generated by fRMIPrep software provided in the Supplement. Code for running the analyses 

can be found at https://github.com/SripadaLab/ABCD_Resting_Psychopathology. 

 

Preprocessing was performed using fMRIPrep version 1.5.0
39

, a Nipype
40

 based tool. Full details 

of the fMRIPrep analysis can be found in supplemental materials. Briefly, T1-weighted (T1w) 

and T2-weighted images were run through recon-all using FreeSurfer v6.0.1. T1w images were 

also spatially normalized nonlinearly to MNI152NLin6Asym space using ANTs 2.2.0. Each 

functional run was corrected for fieldmap distortions, rigidly coregistered to the T1, motion 

corrected, and normalized to standard space. ICA-AROMA was run to generate aggressive noise 

regressors. Anatomical CompCor was run and the top 5 principal components of both CSF and 

white matter were retained. Functional data were transformed to CIFTI space using the method 

provided on the HCP Wiki 

(https://wiki.humanconnectome.org/display/PublicData/HCP+Users+FAQ#HCPUsersFAQ-

9.HowdoImapdatabetweenFreeSurferandHCP?). All preprocessed data were visually inspected 

at two separate stages to ensure only high-quality data was included: After co-registration of 

the functional data to the structural data and after registration of the functional data to MNI 

template space. 

 

Connectomes were generated for each functional run using the Gordon 333 parcel atlas
41

, 

augmented with parcels from high-resolution subcortical
42

 and cerebellar
43

 atlases. Volumes 

exceeding a framewise displacement threshold of 0.5mm were marked to be censored. 

Covariates were regressed out of the time series in a single step
44

, including: linear trend, 24 
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motion parameters (original translations/rotations + derivatives + quadratics, aCompCorr 5 CSF 

and 5 WM components and ICA-AROMA aggressive components, high pass filtering at 0.008Hz, 

and censored volumes. Next, correlation matrices were calculated for each run. Each matrix 

was then Fisher r-to-z transformed, and then averaged across runs for each subject yielding 

their final connectome.  
 

2.3. Constructing Structural Model of Psychopathology 

The general psychopathology factor (P-factor) used here is based on the parent-rated Child 

Behavior Checklist (CBCL; age 6 to 18 form
31

).  A bifactor model was fit to eight CBCL scales, 

with a general P factor that all scales loaded onto (average scale loading = .69) and two specific 

factors. This model is described in detail in the Supplement as well our previous studies, where 

we compared this model to 14 alternatives
30

 (finding consistent P factors across diverse model 

specifications, rs>0.90) and we delineated nomological networks of the P factor across diverse 

ABCD variables
45

.  

 

2.4. Inclusion/Exclusion 

There are 11,875 subjects in the ABCD Release 2.0.1 dataset. Screening was initially done using 

ABCD raw QC to limit to subjects with 2 or more good runs of resting data as well as a good T1 

and T2 image (QC score, protocol compliance score, and complete all =1). This resulted in 9580 

subjects with 2 or more runs that entered preprocessing. Each run was subsequently visually 

inspected for registration and warping quality, and only those subjects who still had 2 or more 

good runs were retained (N=8858). After connectome generation, runs were excluded if they 

had less than 4 minutes of uncensored data, and next subjects were retained only if they had to 

2 or more good runs (N=6568). Finally, subjects who were missing data required for regression 

modeling (P factor scores or any of the nuisance covariates) were dropped, and then sites with 

fewer than 75 subjects were dropped. This left us with N=5880 subjects across 19 sites for the 

whole sample multiple regression analysis and leave-one-site-out cross-validation. 

 

2.5. Constructing a Brain Basis Set (BBS) 

BBS is a validated multivariate method that uses principal components dimensionality 

reduction to produce a basis set of components that are then associated with phenotypes
46,32

. 

We select the top 250 components for our basis set based on previous work showing that 50-

100 components per 1000 subjects captures most meaningful variance without overfitting
32

.  

 

2.6.  Whole Sample Multiple Regression Analysis 

To assess the multivariate relationship between the 250-component brain basis set and the P 

factor, we used multi-level multiple regression modeling, with the P factor as outcome variable 

and expression scores for the 250 components as predictors. Gender, race, age, mean FD, and 

mean FD squared were entered as fixed effect covariates, with family id and ABCD site entered 

as random effects (family nested within site).  

 

To help convey overall patterns across the entire multiple regression model, we constructed a 

“consensus” component map. We multiplied each connectomic component with its associated 
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beta from the preceding multiple regression model. Next, we summed across all 250 

components yielding a single map, and thresholded the entries at z=2.  

 

2.7. Leave-One-Site-Out Cross Validation 

To assess generalizability of BBS-based regression models, we used leave-one-site-out cross-

validation. In each fold of the cross-validation, data from one of the 19 sites served as the held-

out test dataset and data from the other 18 sites served as the training dataset. Additionally, to 

ensure separation of train and test datasets, at each fold of the cross-validation, a new PCA was

performed on the training dataset yielding a 250-component basis set. 

 

2.8.  Accounting for Covariates in Cross-Validation Framework 

In each fold of cross-validation, BBS models were trained in the train partition with the 

following covariates: gender, race, age, age squared, mean FD and mean FD squared. To 

maintain strict separation between training and test datasets, regression coefficients for the 

covariates learned from the training sample are applied to the test sample, and the variance 

they explain is subtracted away. This procedure, described in detail in our previous 

publication
34

, yields an estimate of the contribution of brain components alone in predicting 

test subject P factor scores, excluding the contribution of the nuisance covariates. Note that by 

employing leave-one-site-out, members of twinships and sibships are never present in both 

training and test samples. 

 

2.9. Permutation Testing  

We assessed the significance of all cross-validation-based correlations with non-parametric 

permutation tests in which we randomly permuted the 5,880 subjects’ P factor scores 10,000 

times, as described in detail in the Supplement. 

 

3. Results 

 

3.1. A Distributed Pattern of Network Alterations Is Highly Statistically Significantly Related to

the P Factor 

 

 
Figure 1. Fitted Relationship Between 250 Connectivity Components and the P Factor in 5,880 

Youths. We conducted a multi-level regression with 250 connectivity components as predictors 

and the P Factor as outcome variable, controlling for demographic covariates and clustering due

s 

o 

e 
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to family and site. The scatter plot reflects the fitted fixed effect relationship between predictors 

and the P factor (incremental R squared of 250 components over and above a covariates-only 

model is 6.05%).  

 

 
Figure 2: Multivariate Connectomic Neurosignature of the P Factor. Using multi-level 

regression modeling, we observed a highly statistically significant relationship between an 

individual differences basis set of 250 connectivity components and the P factor. Based on the 

fitted model coefficients, we created a consensus connectome, an importance-weighted 

composite of components, that represents a multivariate neurosignature of the P factor. (Left 

Panel) Connection-level map of the consensus connectome. This map shows altered within-

network connectivity (triangles along the diagonal of the left panel) at several networks 

including DMN. It also shows altered connectivity involving control networks (FPN, CO, VAN, 

DAN) and DMN. (Right Panel) Network-level map of the consensus connectome, in which width 

of arcs reflects number of suprathreshold connections. Note, to enhance interpretability, some 

networks are not shown (see Supplement). 

 

We used multiple regression analysis to quantify the relationship between brain connectivity 

patterns and the P factor. In a multi-level regression model, we entered 250 brain components 

as predictors and the P factor as outcome variable, with race, gender, head motion, ABCD site, 

and family id as nuisance covariates. We found that compared to a covariates-only model, the 

250 brain components yielded an 6.05% increase in variance explained, a highly statistically 

significant increase (χ2
(250) = 412.1, p < 4.6x10

-10
; Figure 1). We in addition created a 

consensus connectome, an importance-weighted composite of components, that represents a 

multivariate neurosignature of the P factor (Figure 2). Two motifs are particularly prominent in 

the neurosignature: 1) altered connectivity within the 14 large-scale networks, especially in 

DMN and sensory networks; and 2) altered connectivity within control networks and between 

control networks and DMN. In particular, connections within large-scale networks (along the 

diagonal of the figure) represent 8.48% of the connectome, but 23.65% of the suprathreshold 

connections in the neurosignature. Additionally, cross-network connections involving control 

networks (FPN, CO, DAN, VAN) and DMN represent 11.58% of the connectome, but 31.83% of 

the suprathreshold connections in the neurosignature. 

 

DMN

SMH

CO
SMM

AUD

VIS

FPN
SAL

SC

VAN
DAN

CER

CP
RST

SMH – Somatomotor hand
SMM – Somatomotor mouth
CO – CinguloOpercular
AUD – Auditory
DMN – Default
VIS – Visual
FPN – Frontoparietal
SAL – Salience
SC – Subcortical
VAN – Ventral Attention
DAN – Dorsal Attention

red = increased connectivity with higher P factor 
blue = decreased connectivity with higher P factor 

CER – Cerebellum
CP – CinguloParietal
RST – RetrosplenialTemporal
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3.2. Two Connectivity Components are Statistically Significantly Related to the P factor 

 

 
Figure 3: Connectivity Components Associated with the P Factor. Two individual connectivity 

components were statistically significantly related to the P factor (after Bonferroni correction 

for 250 comparisons). Both components involve alterations in within-network connectivity, 

especially in SMH, DMN, VN, and DAN, as well as altered connectivity involving control networks 

and DMN. (Left Side) Connection-level map showing suprathreshold connections. (Right Side) 

Network-level map, in which width of arcs reflects number of suprathreshold connections. Note, 

to enhance interpretability, some networks are not shown (see Supplement). 

 

 

We next examined statistical significance of individual connectivity components within the 

multiple regression model, using Bonferroni correction to control family-wise error while 

making 250 statistical comparisons. After this correction, we found that two components 

remained statically significantly associated with the P factor (t(5511)= 4.8, p<1.4x10
-06

; t(5121)= 

3.9, p<9.7x10
-05

). Connectivity patterns from these components are shown in Figure 3 (see its 

associated figure caption for descriptions of these findings). Importantly, there were 27 

components that were significantly associated the P factor at p<0.05, uncorrected (where only 

12.5 are expected by chance), indicating that the P factor is associated with numerous relatively 

subtle connectome-wide alterations. 

 

SMH – Somatomotor hand
SMM – Somatomotor mouth
CO – CinguloOpercular
AUD – Auditory
DMN – Default
VIS – Visual
FPN – Frontoparietal

SAL – Salience
SC – Subcortical
VAN – Ventral Attention
DAN – Dorsal Attention
CER – Cerebellum
CP – CinguloParietal
RST – RetrosplenialTemporal
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3.3. Multivariate Neurosignatures of the P factor Generalize to Held Out Samples 

 

 
Figure 4. Site-Specific Correlations Between Predicted and Actual P Factor Scores in Leave-

One-Site-Out Cross-Validation Analysis.  

 

We next examined the relationship between these 250 components and the P factor using a 

predictive modeling framework with leave-one-site-out cross-validation. A regression model 

was trained for connectome-based prediction of the P factor at all sites except one, this model 

was used to derive predictions of the P factor at the held out site, and this process was 

repeated with each site held out. To maintain separation between training and testing samples, 

we learned new connectivity components and covariate regression coefficients in each training 

sample and applied them to the testing sample. The correlation between actual and predicted P

factor scores was 0.13, a value higher than all 10,000 values in a permutation-based null 

distribution (pPERM<0.0001; Figure 4).  

 

3.4. Multivariate Neurosignatures Remain Significantly Related to the P factor Across a 

Number of Tests of Robustness 

 

We next assessed the robustness of our multiple regression analysis and leave-one-site-out 

cross-validation analysis by changing key elements of the analysis streams. We tested models 

that utilized: 1) Log-transformed P factor scores to improve their distributional properties; 2) 

Additional ABCD demographic covariates (household income, highest parental education, 

household marital status); 3) An ultra-low head motion sample (mean FD<0.2; N = 2,721); 4) P 

factor models learned in the training sample and applied to the held out sample (to create total 

separation of train and test partitions); 5) Sampling weights, based on American Community 

Survey proportions
47

, which make findings more generalizable by approximating a 

 

P 
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representative population. As shown in Table 1, all models remained highly statistically 

significant across all these analyses, confirming the robustness of our analysis.  

 

 

Analysis 
Whole Sample 
Regression 

Leave-One-Site-Out 
Cross-Validation 

     Main Analysis 
R2=6.05; p<4.6x10-

10 
r=0.13; 
pPERM<0.0001* 

1. Log Transform P Factor  
R2=6.20; p<1.3x10-

11 
r=0.13; 
pPERM<0.0001* 

2. Additional Covariates 
R2=5.53; p<4.2x10-

8 
r=0.11; 
pPERM<0.0001* 

3. Low Motion Subsample 
R2=5.31; p<4.3x10-

6 
r=0.10; 
pPERM=0.0003 

4. Leave-One-Site Out P 
Factor 

-- r=0.12; 
pPERM<0.0001* 

5. With Sample Weights 
R2=8.14; p<1.9x10-

12 
-- 

 

Table 1: Summary of Additional Analyses to Assess Robustness. We assessed the sensitivity of 

our main analyses (top row) to modeling choices with a number of robustness checks (rows 

labeled 1-5). We found results remained statistically significant across all these analyses.  * = 

observed correlation was higher than all 10,000 correlations in the permutation distribution. 

 

4. Discussion 

 

This study investigated brain-wide connectomic alterations associated with the general factor 

of psychopathology (“P factor”), a broad liability for diverse forms of psychopathology, in 5,880 

9- and 10-year olds in the ABCD multi-site sample. By combining large sample size, reliable 

multivariate methods, cross-validation to assess generalizability, sampling weights to 

approximate representativeness, and a number of additional tests of model robustness, we 

provide the strongest evidence yet that the P factor is associated with distributed changes in 

connectivity patterns of the brain’s intrinsic functional architecture. We found especially 

prominent alterations in connections within large-scale networks and connections linking 

control networks and DMN. Overall, our results highlight the potential for neuroimaging to 

detect and delineate network abnormalities associated with broad liabilities for 

psychopathology during the transition to adolescence, a key developmental window in which 

many serious psychopathologies first emerge.  

 

Previous studies tended to use case control designs to characterize brain network abnormalities 

associated with individual disorders
48

, where these abnormalities were assumed to reflect 

disorder-specific pathophysiology. Accumulated results, however, suggest observed network 

alterations often lack specificity. For example, two prominent network motifs we observed in 

the present study, reduced connectivity within DMN and altered control networks/DMN 

connectivity, have elsewhere been demonstrated in a number of individual psychiatric 
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disorders, including hypoconnectivity of DMN in autism
49

, schizophrenia
50

, and ADHD
46,51,52

,   

and reduced DMN/TPN anti-correlation in schizophrenia
53–55

, bipolar disorder
56

, and ADHD
46,52

. 

The present study potentially explains this lack of specificity by linking motifs such as these 

instead to the P factor. The P factor represents a broad liability to diverse forms of 

psychopathology, and thus P-linked connectomic motifs would be expected to show up non-

specifically across diverse case-control disorder comparisons.  

 

It is noteworthy that these same two connectivity motifs, i.e., connectivity within DMN and 

control networks/DMN connectivity, are known to undergo intense maturation during 

childhood and adolescence
26

. In particular, during this developmental period, links within DMN 

exhibit massive increased connectivity
57,46

 and links involving control networks and DMN 

exhibit substantial reconfiguration
57–59,46

, with a predominant pattern of segregation 

(increasing anti-correlation)
58,46

. These observations are suggestive of graphical colocation of P-

effects and maturation-effects in the connectome, with P associated with a more immature 

connectivity pattern. Future studies should quantitatively examine this hypothesis, by using 

formal tests for graphical colocation in cross-sectional data
59

 or by quantifying P-associated 

maturation patterns in future waves of ABCD longitudinal data. Studies such as these could 

provide direct evidence that the P factor reflects neurodevelopmental dysmaturation, inviting 

further research into how to mitigate “miswired” connectivity patterns
60

 or prospectively block 

their emergence.  

 

It is interesting to interpret our results in light of recent proposals for the psychological basis of 

the P factor. We recently examined
45

 the nomological networks of the P factor in the ABCD 

sample (n=11,875), finding that P is associated with three psychological variables: higher levels 

of fear/distress emotions, higher impulsivity, and reduced neurocognition. This aligns with 

proposals from other researchers
3,17,18

 that P represents heightened generation of impulses 

(both negative fear/distress emotions as well as reward-seeking impulses) and reduced 

executive functioning. Consistent with this idea, our connectomic results highlight altered 

connectivity involving control networks (FPN, CO, DAN, VAN) and processing networks (DMN, 

visual network, auditory network). Notably other recent functional connectivity studies of the P 

factor also found alterations in processing networks, including visual network
61

 and 

somatomotor network
62

. Control networks are involved in working memory and attention and 

are sources of cognitive control signals
19,20

, while processing networks are involved in stimulus 

processing and spontaneous thought
63

 and are targets of cognitive control
64,65

. Thus, known 

functional profiles of networks found here to be associated with the P factor align well with 

current models of the psychological factors that contribute to higher levels of P.  

 

While the brain/behavior associations identified in this study are statistically reliable and 

generalize to held out samples, they are nonetheless modest in size, and several points are 

relevant. First, we systematically assessed the ability of the multivariate neurosignature of the P 

factor to generalize to brain imaging data from 19 held out sites, each employing their own 

fMRI scanners. Few studies of psychopathology seek to systematically assess cross-site 

generalizability in this way (cf. 
33

). Direct comparison of our multivariate cross-validation effect 

size with within-sample effect sizes from other studies would thus be inappropriate. Such 
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comparison would be especially inapt if the comparison study used more standard mass 

univariate analysis methods (rather than multivariate methods), because conducting thousands 

of statistical tests produces inflated p-values (which is widely known) as well as inflated effect 

sizes
66

 (which is less well appreciated). Second, this study was conducted in 9- and 10-year old 

youth, many of whom had relatively low levels of psychiatric symptomatology. It is expected 

that subjects’ psychopathology load will rise during the course of adolescence
27

, and it is 

possible that brain/behavior relationships will correspondingly increase, a hypothesis that can 

be directly tested in future waves of longitudinal ABCD data. Third, this study exclusively 

examined brain/behavior relationships with resting state functional connectomes. Other lines 

of work link the P factor to structural alterations
67

 (gray matter thinning) and white matter tract 

changes
68,69

. Thus, it is possible that multi-modal fusion methods that aggregate information 

across modalities will further boost the size of brain/behavior relationships.  

 

In sum, using a rigorous multivariate approach combined with cross-validation in held out 

samples, we established that during emerging adolescence, the P factor is associated with 

distributed alterations in control networks and DMN, critical elements of the brain’s intrinsic 

functional architecture. These findings set the stage for future studies in the ABCD sample, 

leveraging longitudinal waves of data to trace the psychological and neural progression of the P 

factor during a critical window of vulnerability to mental illness that spans adolescence to 

young adulthood. 
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Supplement 
 

 

Quality Control-Resting State Functional Connectivity Plot  

 

 
 

We used multiple procedures to control the effect of head motion on brain-behavior 

relationships, which are listed in §2.2 in the Main Manuscript. To assess the effectiveness of 

these procedures, we produced a quality control resting state functional connectivity (QC-RSFC)

plot
1,2

. This plot shows the relationship between mean framewise displacement and 

connectivity for edges binned by distance. Motion effects produce a sloped line (distance-

dependent artifact), while a flat line is indicative of minimal motion-related effects. The RSFC-

QC plot for our ABCD resting state data showed a flat line, providing additional evidence that 

our stringent motion correction strategies were effective. 

 

P Factor Modeling 

A general P-factor with two orthogonal specific factors were modeled using the parent-rated 

Child Behavior Checklist (CBCL; age 6 to 18 form 
3
). We fit a bifactor model to the eight CBCL 

scales (Withdrawn, Somatic Complaints, Anxious/Depressed, Social Problems, Thought 

Problems, Attention Problems, Delinquent Behavior, and Aggressive Behavior). In this model 

there was a general P factor that all scales loaded onto (average scale loading on P = .69), and 

internalizing and externalizing specific factors (average scale loading = .43). This model fit well 

based on conventional fit thresholds (χ
2
 = 747.73, df = 16, p < .001; RMSEA = .062; CFI = .985; 

TLI = .974; SRMR = .015) and was chosen for its good model fit and theoretical interpretability. 

Importantly, we elsewhere demonstrate that across a variety of alternative specifications of 

hierarchical models of psychopathology in ABCD, the resulting P factors that emerge yield 

highly similar rank ordering of subjects (rs>0.90)
4
, rendering decisions about which specific 

modeling strategy to adopt less consequential. 

 

) 
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Network Visualizations 

We created circular network visualizations of whole brain connectomes (see Figures 2 and 3 in 

the Main Manuscript) using the circlize software library in R. To increase interpretability, SMH 

and SMM were combined into a single somatomotor network (SM) and five networks that were 

not extensively implicated were omitted (SAL, SC, CER, CP, RST). In addition, cells in which 

suprathreshold connections were less than 7.5% of the total possible connections were 

omitted. 

 

Permutation Framework 

The distribution under chance of correlations between BBS-based predictions of neurocognitive 

scores and observed neurocognitive scores was generated by randomly permuting the 5,880 

subjects’ P factor scores 10,000 times. At each iteration, we performed the leave-one-site out 

cross validation procedure described in the main manuscript, including refitting BBS models at 

each fold of the cross-validation. We then recalculated the average correlation across folds 

between predicted versus actual P factor scores. The average correlation across folds that was 

actually observed was located in this null distribution in terms of rank, and statistical 

significance was set as this rank value divided by 10,000.  

  

Since the BBS models fit at each iteration of the permutation test included covariates, the 

procedure of Freedman and Lane
5
 was followed. In brief, a BBS model was first estimated with 

nuisance covariates alone, residuals were formed and were permuted. The covariate effect of 

interest was then included in the subsequent model, creating an approximate realization of 

data under the null hypothesis, and the statistical test of interest was calculated on this data 

(see FSL Randomise http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise/Theory for a neuroimaging 

implementation).  

 

Robustness Checks 

We performed a number of additional analyses to assess the robustness of our results under 

alternative model specifications. One alternative approach derived P factor scores with strict 

separation between training and testing partitions. In particular, for the train partition subjects, 

we fit a bifactor model to CBCL subscales as described in the Main Manuscript (§2.3) and 

derived P factor scores. We then applied this same fitted model to the held-out test subjects to 

obtain their P factor scores. This process was repeated for all folds of the leave-one-site-out 

cross-validation. 
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 Included Excluded 

N 5880 5995 

Age (mean (s.d.)) 9.97 (0.62)  9.88 (0.62) 

Female (%) 2973 (50.6) 2708 (45.2) 

Race Ethnicity (%)   

White 3543 (60.2) 2581 (43.1) 

Black 663 (11.3) 1095 (18.3) 

Hispanic 1036 (17.6) 1343 (22.4) 

Asian 86 (1.5) 177 (3.0) 

Other 552 (9.4) 642 (10.7) 

No answer -- 157 (2.6) 

Highest Parental Education (%)   

< HS Diploma 173 (2.9) 410 (6.8) 

Bachelor 1649 (28.0) 1339 (22.3) 

HS Diploma/GED 386 (6.6) 734 (12.2) 

Post Graduate Degree 2223 (37.8) 1782 (29.7) 

Some College 1449 (24.6) 1590 (26.5) 

No answer -- 140 (2.3) 

Household Marital Status – 

Married (%) 4305 (73.2) 3604(60.1) 

Household Income (%)   

<50K 1486 (25.3) 1692 (28.2) 

>=100k 2617 (44.5) 1941 (31.9) 

>=50k & <100K  1777 (30.2) 1261 (21.0) 

No answer -- 1128 (18.8) 

Supplemental Table 1: Demographic Characteristics of Included Versus Excluded Subjects 
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Supplemental Methods 

FMRIPrep Methods 

The following was generated automatically by fMRIPrep software and is copied here 

unchanged:  

Results included in this manuscript come from preprocessing performed using fMRIPrep 1.5.0 

(Esteban, Markiewicz, et al. (2018); Esteban, Blair, et al. (2018); RRID:SCR_016216), which is 

based on Nipype 1.2.2 (Gorgolewski et al. (2011); Gorgolewski et al. (2018); RRID:SCR_002502). 

Anatomical data preprocessing 

The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) with 

N4BiasFieldCorrection (Tustison et al. 2010), distributed with ANTs 2.2.0 (Avants et al. 2008, 

RRID:SCR_004757), and used as T1w-reference throughout the workflow. The T1w-

reference was then skull-stripped with a Nipype implementation of the 

antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target template. Brain 

tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter 

(GM) was performed on the brain-extracted T1w using fast (FSL 5.0.9, RRID:SCR_002823, 

Zhang, Brady, and Smith 2001). Brain surfaces were reconstructed using recon-all 

(FreeSurfer 6.0.1, RRID:SCR_001847, Dale, Fischl, and Sereno 1999), and the brain mask 

estimated previously was refined with a custom variation of the method to reconcile 

ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-matter of 

Mindboggle (RRID:SCR_002438, Klein et al. 2017). Volume-based spatial normalization 

to one standard space (MNI152NLin6Asym) was performed through nonlinear 

registration with antsRegistration (ANTs 2.2.0), using brain-extracted versions of both T1w 

reference and the T1w template. The following template was selected for spatial 

normalization: FSL’s MNI ICBM 152 non-linear 6th Generation Asymmetric Average Brain 

Stereotaxic Registration Model [Evans et al. (2012), RRID:SCR_002823; TemplateFlow ID: 

MNI152NLin6Asym]. 

Functional data preprocessing 

For each of the 10 BOLD runs found per subject (across all tasks and sessions), the 

following preprocessing was performed. First, a reference volume and its skull-stripped 

version were generated using a custom methodology of fMRIPrep. A deformation field 

to correct for susceptibility distortions was estimated based on two echo-planar imaging 

(EPI) references with opposing phase-encoding directions, using 3dQwarp Cox and Hyde 

(1997) (AFNI 20160207). Based on the estimated susceptibility distortion, an unwarped 

BOLD reference was calculated for a more accurate co-registration with the anatomical 

reference. The BOLD reference was then co-registered to the T1w reference using 
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bbregister (FreeSurfer) which implements boundary-based registration (Greve and Fischl 

2009). Co-registration was configured with six degrees of freedom. Head-motion 

parameters with respect to the BOLD reference (transformation matrices, and six 

corresponding rotation and translation parameters) are estimated before any 

spatiotemporal filtering using mcflirt (FSL 5.0.9, Jenkinson et al. 2002). The BOLD time-

series, were resampled to surfaces on the following spaces: fsaverage5. The BOLD time-

series (including slice-timing correction when applied) were resampled onto their 

original, native space by applying a single, composite transform to correct for head-

motion and susceptibility distortions. These resampled BOLD time-series will be referred 

to as preprocessed BOLD in original space, or just preprocessed BOLD. The BOLD time-

series were resampled into standard space, generating a preprocessed BOLD run in 

[‘MNI152NLin6Asym’] space. First, a reference volume and its skull-stripped version 

were generated using a custom methodology of fMRIPrep. Automatic removal of motion 

artifacts using independent component analysis (ICA-AROMA, Pruim et al. 2015) was 

performed on the preprocessed BOLD on MNI space time-series after removal of non-

steady state volumes and spatial smoothing with an isotropic, Gaussian kernel of 6mm 

FWHM (full-width half-maximum). Corresponding “non-aggresively” denoised runs were 

produced after such smoothing. Additionally, the “aggressive” noise-regressors were 

collected and placed in the corresponding confounds file. Several confounding time-

series were calculated based on the preprocessed BOLD: framewise displacement (FD), 

DVARS and three region-wise global signals. FD and DVARS are calculated for each 

functional run, both using their implementations in Nipype (following the definitions by 

Power et al. 2014). The three global signals are extracted within the CSF, the WM, and 

the whole-brain masks. Additionally, a set of physiological regressors were extracted to 

allow for component-based noise correction (CompCor, Behzadi et al. 2007). Principal 

components are estimated after high-pass filtering the preprocessed BOLD time-series 

(using a discrete cosine filter with 128s cut-off) for the two CompCor variants: temporal 

(tCompCor) and anatomical (aCompCor). tCompCor components are then calculated 

from the top 5% variable voxels within a mask covering the subcortical regions. This 

subcortical mask is obtained by heavily eroding the brain mask, which ensures it does 

not include cortical GM regions. For aCompCor, components are calculated within the 

intersection of the aforementioned mask and the union of CSF and WM masks 

calculated in T1w space, after their projection to the native space of each functional run 

(using the inverse BOLD-to-T1w transformation). Components are also calculated 

separately within the WM and CSF masks. For each CompCor decomposition, the k 

components with the largest singular values are retained, such that the retained 

components’ time series are sufficient to explain 50 percent of variance across the 

nuisance mask (CSF, WM, combined, or temporal). The remaining components are 

dropped from consideration. The head-motion estimates calculated in the correction 

step were also placed within the corresponding confounds file. The confound time 

series derived from head motion estimates and global signals were expanded with the 

inclusion of temporal derivatives and quadratic terms for each (Satterthwaite et al. 

2013). Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardised DVARS were 

annotated as motion outliers. All resamplings can be performed with a single 
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interpolation step by composing all the pertinent transformations (i.e. head-motion 

transform matrices, susceptibility distortion correction when available, and co-

registrations to anatomical and output spaces). Gridded (volumetric) resamplings were 

performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation to 

minimize the smoothing effects of other kernels (Lanczos 1964). Non-gridded (surface) 

resamplings were performed using mri_vol2surf (FreeSurfer). 

Many internal operations of fMRIPrep use Nilearn 0.5.2 (Abraham et al. 2014, 

RRID:SCR_001362), mostly within the functional processing workflow. For more details of the 

pipeline, see the section corresponding to workflows in fMRIPrep’s documentation. 

Copyright Waiver 

The above boilerplate text was automatically generated by fMRIPrep with the express intention 

that users should copy and paste this text into their manuscripts unchanged. It is released 

under the CC0 license. 
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