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Abstract 

Sex is an important biological variable often used in analyzing and describing the functional organization 

of the brain during cognitive and behavioral tasks. Several prior studies have shown that blood-oxygen-level-

dependent (BOLD) functional MRI (fMRI) functional connectivity (FC) can be used to differentiate sex 

among individuals. Herein, we demonstrate that sex can be further classified with high accuracy using the 

intrinsic BOLD signal fluctuations from resting-state fMRI (rs-fMRI). We adopted the amplitude of low-

frequency fluctuation (ALFF), and the fraction of ALFF (fALFF) features from the automated anatomical 

atlas (AAL) and Power9s functional atlas as an input to different machine learning (ML) methods. Using 

datasets from five independently acquired subject cohorts and with eight fMRI scanning sessions, we 

comprehensively assessed unbiased performance using nested-cross validation for within-sample and across 

sample accuracies. The results demonstrated high prediction accuracies for the Human Connectome Project 

(HCP) dataset (area under cure (AUC) > 0.89). The yielded accuracies suggest that sex difference is 

embodied and well-pronounced in the low-frequency BOLD signal fluctuation. The performance degrades 

with the heterogeneity of the cohort and suggests that other factors,.e.g. psychiatric disorders and 

demographics influences the BOLD signal and may interact with the classification of sex. In addition, the 

results revealed high learning generalizability with the HCP scan, but not across different datasets. The 

intraclass correlation coefficient (ICC) across HCP scans showed moderate-to-good reliability based on atlas 

selection (ICC = 0.65 [0.63-0.67] and ICC= 0.78 [0.76-0.80].). We also assessed the effect of scan duration 

on the predictability of sex and showed that sex differences could be detected even with a short rs-fMRI scan 

(e.g., 2 minutes). Moreover, we provided statistical maps of the brain regions differentially recruited by or 

predicting sex using Shapely values and determined an overlap with previous reports of brain response due 

to sex differences.  Altogether, our analysis suggests that sex differences are well-pronounced in rs-fMRI  

and should be considered seriously in any study design, analysis, or interpretation.   

 

Keywords: resting-state, fMRI, ALFF, fALFF, sex, classification, machine learning, deep learning, human 

connectome project.     
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I. INTRODUCTION 

Resting-state functional magnetic resonance imaging (rs-fMRI) is a non-invasive approach allowing for 

studies of brain functions by measuring hemodynamic flow within the resting brain.  rs-fMRI has been proven 

to be an effective approach to discovering and studying consistent brain functional network organization 

(Biswal, 2012; Damoiseaux et al., 2006; Mantini, Perrucci, Del Gratta, Romani, & Corbetta, 2007). In 

particular, rs-fMRI has been used to identify differences across subjects based on demographic data and 

biological factors, including gender. Many studies have identified differences between males and females in 

terms of cognitive performance (Miller & Halpern, 2014), but these results do not provide a comprehensive 

and consistent view of sex differences (Del Giudice, 2009; Hyde & Plant, 1995). While there has been 

evidence of sex differences in some cognitive processes like language and emotional processing (Besson, 

Magne, & Schön, 2002; Schirmer, Kotz, & Friederici, 2005; Schirmer, Striano, & Friederici, 2005), other 

works could not found any conclusive evidence of such differences (Russell, Tchanturia, Rahman, & 

Schmidt, 2007; Wallentin, 2009). Similar to functional organization, sex differences were found in the 

structural organization of the brain (Chekroud, Ward, Rosenberg, & Holmes, 2016; Del Giudice et al., 2016; 

Rosenblatt, 2016). Research has shown that males have larger total brain volume, gray matter, and white 

matter tissues (Ingalhalikar et al., 2014). Also, intra- and inter-hemispheric connections have been shown to 

vary between males and females with a tendency for males to have higher intra-hemispheric connectivity 

(Ingalhalikar et al., 2014). In contrast, females showed high inter-hemispheric connectivity (Ingalhalikar et 

al., 2014). Moreover, brain regions like the insula, amygdala, and hippocampus have also been shown to 

structurally differ based on sex (Ruigrok et al., 2014). Similarly, authors in (Liu, Seidlitz, Blumenthal, Clasen, 

& Raznahan, 2020) reported consistent sex differences of gray matter volume (GMV) in the cortex and 

subcortical foci, brain regions associated with social and reproductive behaviors. This study also 

demonstrated a strong spatial coupling between brain regions showing GMV differences and brain expression 

of sex chromosome genes in adulthood. Despite the evidence of the brain structural differences, others have 

argued that both brain and behavior sex differences can be described as a mosaic of male and female 
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properties with no clear binary distinction (Joel et al., 2015; Joel & Fausto-Sterling, 2016). Similarly, fMRI 

functional connectivity (FC) has been widely used to study sex differences. For instance, (Bluhm et al., 2008) 

reported an overall higher FC within the Default Mode Network (DMN) in the medial prefrontal and posterior 

cingulate cortices in females. Other work showed stronger inter-network FC in males and stronger intra-

network FC in females (Allen et al., 2011). While there is much other evidence about sex differences in the 

resting state connectivity (Biswal et al., 2010; Tian, Wang, Yan, & He, 2011; Zuo, Kelly, et al., 2010), other 

works did not replicate nor consistently find any sex effects (Weis, Hodgetts, & Hausmann, 2019; Weissman‐

Fogel, Moayedi, Taylor, Pope, & Davis, 2010). Thus, investigating sex differences at the level of BOLD 

fluctuation may reveal if there is strong evidence of sex differences.  Recently, machine learning (ML) 

techniques have been used widely to perform classification and regression on neuroscience data (Al Zoubi, 

Awad, & Kasabov, 2018; Al Zoubi, Ki Wong, et al., 2018; Campbell et al., 2020; Cohen, Chen, Parker Jones, 

Niu, & Wang, 2020; Du, Fu, & Calhoun, 2018; Garner et al., 2019; Kazeminejad & Sotero, 2019; Saccà et 

al., 2019). Some works focused on using ML for classifying subjects into male and female using functional 

(Ktena et al., 2018; Smith et al., 2013; Zhang, Dougherty, Baum, White, & Michael, 2018) and structural 

data (Chekroud et al., 2016; Feis, Brodersen, von Cramon, Luders, & Tittgemeyer, 2013; Rosenblatt, 2016). 

In this work, we focused on investigating sex classification using BOLD fMRI signal fluctuations. More 

specifically, BOLD can be characterized by the amplitude of the low-frequency fluctuation (ALFF) (Yu-

Feng et al., 2007), which measures the extent of spontaneous fluctuation of the BOLD signal. ALFF has been 

linked to low-frequency oscillations from spontaneous neuronal activity and may manifest in the rhythmic 

activity and interaction of processing information across the brain (Cordes et al., 2001). ALFF is calculated 

by computing the power of the signal within [0.01-0.08] Hz or[0.01-0.1]  Hz ranges (Li et al., 2017; Yu-Feng 

et al., 2007). In addition, other information can be derived from BOLD fluctuation like the fraction of ALFF 

(fALFF), which is defined as the ratio of the power within [0.01-0.08] Hz or [0.01-0.1] Hz ranges  (Li et al., 

2017; Q.-H. Zou et al., 2008) to the entire power within [0-0.25] Hz range. ALFF and fALFF have been used 

before to understand how intrinsic resting-state activity interacts at during cognitive task and resting-state 
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activity(Fox, Snyder, Vincent, & Raichle, 2007; Mennes et al., 2011; Q. Zou et al., 2013). Furthermore, 

ALFF has been used to study different mental illnesses like schizophrenia (Alonso-Solís et al., 2017; 

Hoptman et al., 2010), attention deficit hyperactivity disorder(ADHD) (Yu-Feng et al., 2007), acute mild 

traumatic brain injury (Zhan et al., 2016), mild cognitive impairment (Bai et al., 2011) major depressive 

disorder (Wang et al., 2012) and many others.  

Here, we provide comprehensive analyses on resting-state fMRI data, independently acquired from multiple 

large cohorts of individuals, to evaluate sex classification based on ALFF and fALFF features. To avoid the 

dimensionality problem (e.g., voxels from the whole brain vs. localized locations), we extracted ALFF and 

fALFF features averaged in the automated anatomical labeling atlas (AAL) (Tzourio-Mazoyer et al., 2002) 

and Power9s functional atlas (Power et al., 2011). We systematically compared various ML methods 

approaches for assessing sex classification for within-sample and across samples accuracies. We utilized a 

nested-cross-validation approach to avoid biased results that may arise from the use of traditional cross-

validation. We studied the feasibility of deploying deep learning (DL) for sex classification in extension for 

emerged evidence of the utility of DL to analyze neuroscience data (He et al., 2020; Nguyen, Sun, Alexander, 

Feng, & Yeo, 2018; Pereira, Pinto, Alves, & Silva, 2016; Plis et al., 2014; van der Burgh et al., 2017; Vieira, 

Pinaya, & Mechelli, 2017). We assessed the importance of each feature using Shapley values (Lundberg & 

Lee, 2017) from both atlases. Then, we mapped the feature importance on the brain along with the direction 

of prediction. Recently, concerns about the test-retest reliability of rs-fMRI were raised (Noble, Scheinost, 

& Constable, 2019; Noble et al., 2017). Unlike the FC measures, ALFF has been shown to be reliable and 

reproducible across sessions (Zuo, Di Martino, et al., 2010). Thus, we examined the test-rest reliability of 

sex classification by calculating the Intraclass Correlation Coefficient (ICC) of sex classification from the 

HCP dataset. The effect of scan duration on sex classification was also assessed for the HCP dataset. Finally, 

the results from our comprehensive analyses will be discussed and summarized. The analyses offered here 

will allow to quantify the differences between males and females and evaluate the effect of psychiatric 

disorders on the ALFF and fALFF from the perspective of sex.  
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II. METHODS 

A. Datasets 

Five datasets were used in this work to assess sex classification: 

1- ABIDE Autism Brain Imaging Data Exchange database investigates the neural basis of autism (Di 

Martino et al., 2014). The data was collected from 16 international imaging sites and composed of 

539 individuals suffering from autism spectrum disorders (ASD) and 573 typical controls. The data 

were preprocessed using the neuroimaging analysis kit (NIAK) pipeline described (Bellec et al., 

2012), and only subjects with good data were used in this work. It should be noted that scan 

parameters, including the number of volumes, fMRI sequence repetition time (TR), and MRI scanners 

were different across the sites of data collection. 

2- HCP Human Connectome Project dataset (S1200 release) is comprised of imaging data, including 

resting-state fMRI, from a large population of healthy young adults (Van Essen et al., 2013; Van 

Essen et al., 2012). We included the data from two rsfMRI sessions obtained over the course of two 

days. Each session consists of two scans with left-to-right (LR) and right-to-left (RL) phase encoding. 

We refer to the four scans as Ses11-RL, Ses1-LR, Ses2-RL, and Ses2-LR, respectively. The scan 

parameters were TR=720 ms, TE=33.1 ms and the number of volumes =1200.  It should be noted that 

data were recorded using a multiband echo-planar imaging pulse sequence allowing for the 

simultaneous acquisition of multiple slices (Xu et al., 2013).  

3- ACPI: Addiction Connectome Preprocessed Initiative dataset assess the effect of using cannabis on 

children diagnosed with ADHD. The readily preprocessed subjects were available through a 

Multimodal treatment study of ADHD (MTA). Scan parameters were TR=2170 ms, TE=4.33 ms, and 

the number of volumes=180. 

4- COBRE-MIND: Center for Biomedical Research Excellence 3 Multimodal Neuroimaging of 

Neuropsychiatric Disorders (Calhoun et al., 2012; Mayer et al., 2013) dataset from 72 patients with 

schizophrenia and 75 healthy controls. Preprocessed subjects were available through the NIAK 
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preprocessing pipeline. Scan parameters were TR=2000 ms, TE=29 ms, and the number of volumes 

=150.  

5- T1000: We used the first 500 subjects of the Tulsa 1000 (T-1000), a naturalistic study assessing and 

longitudinally following 1000 individuals, including healthy individuals and treatment-seeking 

individuals with substance use, eating disorders, and mood disorders and/or anxiety (Victor et al., 

2018). Scan parameters: TR=2000, TE=27 ms, and a number of volumes =240.  

In addition, Table 1 shows the final number of samples and the sex distribution across the five datasets. 

Table 1. Datasets used to predict sex from fMRI resting scans. 

Dataset # Samples Female/Male Population 

T1000 426 272/154 Healthy controls, mood/anxiety, substance use, and 

eating disorders 

HCP-Session1-RL 1047 566/481 Healthy young subjects 

HCP-Session1-LR 1065 573/492 Healthy young subjects 

HCP-Session2-RL 1004 537/467 Healthy young subjects 

HCP-Session2-LR 987 526/461 Healthy young subjects 

ABIDE 871 144/727 Healthy control and autism spectrum disorders 

COBRE-MIND 146 37/109 Schizophrenia and healthy controls 

ACPI 126 25/101 Substance use and ADHD 

 

B. Preprocessing pipelines 

We relied on publicly available preprocessed datasets, if existing, to avoid any biases that could arise from 

reprocessing data. If possible, we tried to match the preprocessing pipelines as well. For ABIDE and COBRE-

MIND datasets, the preprocessed data were obtained through the NIAK pipeline (Bellec et al., 2012) without 

global signal regression options. For ACPI, the preprocessed data were available through the configurable 

pipeline for the analysis of the connectomes (C-PAC) pipeline (Craddock et al., 2013; Lurie et al., 2013) 

without motion scrubbing and no global signal regression. For HCP, we used ICA-FIX denoised rs-fMRI 

volumetric data available in (HCP S1200 release). The data were spatially normalized to MNI152 at the time 
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of download. We did not apply any additional noise corrections to the data. Subjects with relative Root Mean 

Square (RMS) motion>0.2 were further excluded. Finally, for T1000, we applied the following preprocessing 

steps, including despike, cardiac- and respiration-induced noise reduction RETROICOR (Glover, Li, & Ress, 

2000), Linear warping to the MNI space. We also applied another layer of noise reduction by regressing out 

low-frequency, 12 motion parameters, local white matter average signal (ANATICOR) (Jo, Saad, Simmons, 

Milbury, & Cox, 2010), and three principal components of the ventricle signal from the signal time course. 

As mentioned above, subjects with RMS motion larger than 0.2 were also excluded from the analysis.   

 

C. ROI definition  

In this analysis, we relied on predefined anatomical and functional atlases. First, we used Automated 

Anatomical Labeling (AAL) (Tzourio-Mazoyer et al., 2002), which includes 116 ROIs that expand across 

the whole brain. On the other hand, we used Power9s ROIs compromised of  264 ROIs (Power et al., 2011). 

For each atlas, we extracted the average time series from ROI voxels after detrending the signal. 

D. ROI-based Features  

The ALFF was computed as the signal power within 0.01 and 0.1 Hz range of the average time series of each 

ROI. The fALFF was calculated as the ratio of signal power within  0.01 to 0.1 Hz range to the total  power 

within 0 and 0.25 Hz range. This resulted in 264 (ALFF, fALFF) pair of values for Power ROIs atlas and 116 

(ALFF, fALFF) pair values for AAL atlas.  

E. Machine Learning Method 

Classical Machine Learning (ML) methods: We considered several ML methods, including support vector 

classification (svc) with both linear and radial basis function (RBF), Random Forests Classifier (RandomF), 

logistic regression with ℓ1-norm (logistic_l1) or ℓ2-norm (logisitc_l2), gaussian naive bayes (GaussianNB) 

and extreme gradient boosting (xgboost) algorithm (Chen & Guestrin, 2016). The Scikit-learn machine 

learning package (Pedregosa et al., 2011) was used to implement each classifier. 
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Deep Learning (DL) methods: We adopted three models to obtain spatial information from the rsfMRI 

feature. The architectures deployed one-dimensional convolution (Conv 1D) layers while treating each sub-

feature as a different channel. We used kernel size of k=3, stride s=1 and filter size with an order of f=16. 

The activation was set 8ReLU9 function. In addition, we used Max Pooling layers before dropout layers 

(p=0.4) to improve the generalizability of the DL models. The models were generated by increasing the 

number of blocks from 1 to 3. Each time we added a new block, we increased the number of by 16×N with 

N as the block number. We also increased the number of neurons in the fully-connected layer based on the 

number of added blocks to have 100, 200, and 400, respectively. TensorFlow with Keras backend was used 

to build and train the three models. Adam optimizer with early stopping callback (patience =10, validation 

=30%) was utilized after setting the maximum number of epochs to 500 and batch size =64.  

 

Figure 1. Deep Learning architecture for sex classification. The architecture consists of N-block of stacked 

of a convolutional layer, max pooling, and dropout layers. The previous architecture resulted in three models 

based on N=1,2 and 3.  

 

F. Evaluation strategy 

We utilized the area under the curve (AUC) for reporting the results. AUC is less sensitive for imbalanced 

classes and offers a robust measure for binary classification problems (Ling, Huang, & Zhang, 2003). Using 

10 repeats, the average AUC is adopted to select the best classifier or atlas. In addition, we used stratified 
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nested-cross-validation (sNCV) instead of the classical cross-validation to preserve the ratio of samples 

between the groups while providing unbiased estimation. The sNCV avoids biased results by isolating testing 

data from any parameter optimization. We used an inner loop of three-fold cross-validation to optimize each 

classifier9s parameters. Then, the model with the best performance was used to extract the prediction from 

the testing set. We always report the AUC for the testing set and refer to it as an out-of-sample performance. 

We followed three evaluation strategies to evaluate sex classification. First, we assessed the performance of 

each ML approach on each dataset (within-sample evaluation). Secondly, we used leave-one-scan-out (across 

samples evaluation) to test the reproducibility of predicting sex across different datasets. Thirdly, we focused 

on HCP to evaluate the effect of scanning time on the predictability of sex. More specifically, we varied the 

number of samples [32, 150, 300, 600, 900, 1200] and calculated the AUC accordingly. The analysis was 

applied to both atlases for only the best classifiers found from previous analyses. Finally, we investigated the 

ICC from HCP to evaluate the consistency of predictions across HCP scans. ICC measures the amount of 

variability that can be explained by an objective of measurement, such as subject (Shrout & Fleiss, 1979). 

We reported the ICC (2,1), which is used to estimate the agreements (predicted probabilities) when the 

sources of error are known (multiple scans from HCP). To offer an accurate estimation of ICC, we split each 

scan9s data into 50-fold sNCV and estimated the probability of each sample in the testing set. We repeated 

the probability estimation for all scans using AAL and Power9s atlases. It should be noted that only the best 

ML method found from previous analyses was used to estimate the predicted probability of sex.  

 

G. Feature importance 

In order to reveal and map the important features for sex classification, while providing interpretable results, 

we propose using the Shapley Additive (SHAP) approach (Lundberg & Lee, 2017; Štrumbelj & Kononenko, 

2014). SHAP deploys a game-theoretical approach to estimate Shapley Values (SHV) of a cooperative game 

while assuming each feature as an independent player. To compute SHV, each feature goes under random 

sampling and substantiation to assess the impact of those features on the overall prediction. In our analysis, 
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we used the best classifier obtained in the analysis as an Explainer. The process was done in 10-fold-cross 

validation with five repeats. The final SHV values were obtained as the average of out-of-sample prediction 

within each scan. The sign and strength of SHV values represent the importance of predicting and direction 

of prediction (positive is males, and negative is females based on our class encoding). 

  

III. RESULTS 

First, we investigated the performance of the classical ML and DL in predicting sex across all the five 

datasets. Figure 2 shows a boxplot of the area under the curve AUCs classification performance using 

classical ML and DL models (10 repeats with 10-fold sNCV). 

 

Figure 2. Binary classification performance of individual classifiers from classical ML and DL models. 

Performance is reported across and within-sample validation. Across samples (left panel), each point 

represents the AUC value of the leave-one-scan-out for each classifier using each atlas and each scan (2 

atlases × 8 scans). For within-sample (right panel), each point is the out-of-sample AUCs values after 

running classifiers on each atlas and each scan with repeats (10 repeates×10 folds × 2 atlases × 8 scans). 
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Logistic regression methods with ℓ2-norm and ℓ1-norm yielded, on average, the best AUCs of 76% (±15%)  

74.1% (±13.7%), respectively, for within-sample classification. Other classifiers achieved the following 

accuracies: svc with linear kernel [74.1% (±17.3)], svc with RBF kernel [72.9% (±19)],  xgboost  [71.6% 

(±15.1)], random forest  [70.2% (±11.8)] and Gaussian Naive Bayes [59.5% (±7.3)]. Similarly, logistic 

regression with ℓ2-norm achieved the best accuracy of 72.8% (±19.4) for Across sample evaluation, followed 

by xgboost. Thus, we selected and used logistic regression with ℓ2-norm for our further analysis. 

 

Figure 3. The yielded out-of-sample AUC values using logistic regression with ℓ2-norm based on each 

atlas.  The left panel represents the across samples evaluation, while the right panel represents the within-

sample evaluation from each of the 10 repeats.    

 

In Figure 3, we show the performance of logistic regression with ℓ2-norm performance on the individual 

datasets using across and within-sample evaluation.  

We also compared the performance of classifiers based on the adopted atlas (Figure 4). From the analysis, 

Power9s functional atlas achieved the highest average AUC of 71.8% (±20) and 71.6% (±15.6) for across 

and within-sample evaluation. AAL achieved 68.2% (15.7) for across sample evaluation and 70.6% (±14.5) 

for within-sample evaluation. 
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Figure 4. The effect of atlas selection of the performance of sex classification. The left panel represents the 

out-of-sample AUC values, averaged across all classifiers (10 classifiers × 8 scans).  The right panel 

represents the within-sample AUC values across all classifiers (10 repeates×10 folds × 10 classifiers × 8 

scans). 

 

The effect of the number of samples on the prediction accuracies is shown in Figure 5. Power9s functional 

atlas performed better than AAL when fixing the number of samples. The accuracy does not seem to 
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improve after 600 to 900 time points for Power9s atlas; however, the AAL improves over the number of 

samples but does not reach Power9s atlas performance. 

 

Figure 5. The effect of the number of volumes on sex classification from HCP scans. For each of the 

number of volumes, we ran 10-repeat of 10-fold sNCV on the data and reported the out-of-sample AUC 

values using logistic regression with the ℓ2-norm classifier. The left panel represents the AAL atlas 

performance, and the right panel shows the Power9s atlas performance. The error bars represent the 

standard deviation of AUCs from the 10-repeats (10 repeates×10 folds). 

 

 

We also assessed the test-retest reliability by calculating the ICC using the four scans of the HCP dataset.  

We used the logistic regression with the ℓ2-norm to estimate the predicted probabilities of sex with sNCV 

configuration (testing set). As in the previous analyses, we used combined ALFF and fALFF features as an 

input for the logistic regression with the ℓ2-norm.  The results indicated moderate reliability for AAL with 

ICC=0.65 [0.63-0.67] and good reliability for Power9s atlas with ICC=0.78 [0.76-0.80].  

 

Feature importance for AAL and Power9s atlases is shown in Figure 6 and Figure 7. For Power9s ROIs, the 

size and color of the nodes represent the importance of those nodes in predicting sex from the five datasets. 

The importance was computed using SHAP values from logistic regression with the ℓ2-norm explainer. The 

red color represents the importance of predicting females, while blue represents predicting males. Similarly, 
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we mapped the SHAP values for AAL on the surface of the brain while using the same color-coding used in 

Power9s atlas. It should be noted that the SHAP values were calculated for the out-of-sample prediction and 

averaged over 5-repeats.  

 

 

Figure 6. ALFF and fALFF feature maps and importance in sex classification using SHAP values (SHV) for 

AAL atlas. The colors are mapped based on the SHV values and reveal the contribution of each region in sex 

classification. The bar plot shows the top 20 features ordered based on the absolute SHV values.  
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Figure 7. ALFF and fALFF feature maps and importance in sex classification using SHAP values (SHV) 

for Power9s functional atlas. The colors are mapped based on the SHAP values and reveal the contribution 

of sex classification. For the bar plot, the 264 regions were aggregated based on the assigned brain system 

(Power et al., 2011) and ordered based on the mean absolute SHV values.  

 

 

IV. DISCUSSION  

We conducted comprehensive analyses to predict sex from rsfMRI across five independent acquired 

datasets and structured discussion as follows. 
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A. Predictability of Sex 

We show that males and females can be classified with high accuracy in healthy young adults when using 

intrinsic BOLD fluctuation properties while deteriorating in heterogenous datasets (Figure 2). To avoid the 

<curse of dimensionality,= we focused on the region-of-interest (ROI) approach to characterize the BOLD 

fluctuation properties rather than using whole-brain data. This allowed us to have a robust prediction and 

avoid potential overfitting (Guyon & Elisseeff, 2003; Hua, Tembe, & Dougherty, 2009; Mwangi, Tian, & 

Soares, 2014). We derived ROIs of interests from two atlases, namely, Power9s functional atlas and AAL 

anatomical atlas. Both atlases are widely used in analyzing rsfMRI data and manifest different methodologies 

in parcellating the brain. While Power9s atlas uses the functional organizations of the brain, dividing it into 

264 ROIs, AAL atlas relies on the anatomical distribution of the brain, categorizing it into 116 brain regions. 

Overall, we found that sex is predictable with the highest accuracy in healthy young adults (HCP dataset). 

The more heterogeneous the dataset becomes, including the mental illness factor, the less predictable the sex 

is. Other used datasets varied in population and mixed clinical symptoms, with the best sex prediction 

performance achieved in the T1000 dataset. Our findings support and extend the good sex classification 

results based on fMRI functional connectivity, as shown in (Weis et al., 2020; Zhang et al., 2018). 

Additionally, it supports the notation that mental illnesses disrupt the properties of BOLD fluctuation as it 

has been shown in several clinical populations like autism (Itahashi et al., 2015; Noonan, Haist, & Müller, 

2009),  ADHD (Tang, Wei, Zhao, & Nie, 2018), schizophrenia (Hoptman et al., 2010; Yu et al., 2014), bipolar 

disorder (Meda et al., 2015; Yang et al., 2019) and depression (Jing et al., 2013). Altogether, the results may 

suggest that sex difference is primarily encoded in the low-frequency BOLD fluctuations as characterized in 

the ALFF and fALFF measures and can be potentially used as a biomarker for analyzing different clinical 

populations.  

B. Effect of Classifier on Sex Predictability  

        We investigated the choice of the classifier on the performance of sex classification using several 

classical ML methods in addition to DL.  The results revealed that linear classifiers outperformed both non-
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linear classifiers and DL models with the best average AUC value using logistic regression with ℓ2-norm, 

followed by logistic regression with ℓ1-norm regularization. The performance of classifiers was evaluated 

using across and within samples. The performance of predicting sex varied across the datasets and scans with 

the best performance using the four scans of HCP4the performance of classification degraded as a function 

of the heterogeneity of the sample. Thus, BOLD fluctuation properties may be largely impacted by the 

clinical diagnosis and can thus potentially be biomarkers for clinical symptoms.  

C. Effect of ROI Selection 

Both atlases yielded close accuracies with an advantage for Power9s atlas. More specifically, Power9s atlas 

achieved higher average AUC than AAL atlas for all datasets except for T1000 and ABIDE datasets (using 

l2-nom logistic regression).  Similarly, Power9s atlas resulted in better AUC for all datasets except for T1000, 

ABIDE, and COBRE-MIND datasets when using across sample evaluation. The difference in the 

performance may be attributed to the disease-specific alteration for brain structural and functional 

originations of the brain.   

D. Generalizability 

 We tested the generalizability of sex classification by using an across datasets evaluation approach; we 

trained on all scans except one, which was then used for testing. The analysis resulted in one AUC per dataset 

and atlas. We compared both classical ML and DL to investigate the generalizability of each classifier. The 

results indicated poor generalizability across datasets except for HCP. The fact that HCP is comprised of 

multiple scans recorded from the same subjects has contributed to high AUC within each scan. As in the 

within-sample evaluation, linear classifiers outperformed non-linear classifiers with the advantage of ℓ2-

norm logistic regression over other classifiers. DL models did not generalize very well, yielding results 

similar to the non-linear classical ML methods. Thus, further research should be conducted in order to find 

suitable ML techniques for brain imaging data that account for variability across subjects, a limited number 

of samples, and high dimensional data.  
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E. The effect of the number of samples  

The effect of the number of samples (e.g., resting fMRI scan duration) on sex classification was evaluated 

on HCP scans since they have the longest scan time (~ 15 minutes). For each scan, we took the first s= [32, 

75, 150, 300, 600,900, 1200] samples and extracted ALFF and fALFF features. Each time, we accessed the 

AUC for within-sample 10-repeats of 10-fold NCV.  Using only the first 32 samples from HCP scans, AUCs 

were between 0.66 to 0.72. The performance for Power9s atlas seems to plateau between 600 and 900 samples 

with little improvement after adding more samples. AAL atlas performance was lower than Power9s atlas for 

the same number of points. Thus, researchers should account for sex differences for experiments with even 

short innervation design (e.g., block design experiments). 

F. Test-Retest Reliability  

The test-rest reliability of sex classification was assessed by calculating the ICCs from HCP scans. The results 

indicated moderate reliability for AAL with ICC=0.65 [0.63-0.67] and good reliability for Power9s atlas with 

ICC=0.78 [0.76-0.80].  The moderate and good reliability from the HCP dataset offers promising results for 

using ML to analyze rs-fMRI instead of the traditional FC analysis of rs-fMRI.  The reliability of ALFF and 

fALFF has been shown to be reliable across sessions (Zuo, Di Martino, et al., 2010), unlike the reliability of 

the classical FC analysis of rs-fMRI (Noble et al., 2019; Noble et al., 2017), which lead many researchers to 

endorse the notion of the <reproducibility crisis= for FC (Baker, 2016).  Thus, the reliability of low-frequency 

fluctuation properties across sessions, along with moderate to good prediction reliability, make them better 

measures to study and characterize brain functional responses in health and disease.    

G. Spatial distribution and feature importance  

We adopted the SHAP approach to assessing feature importance and directionality in predicting each sex.  

For AAL atlas, we mapped the SHAP values on the surface of the brain. The results revealed that sex 

classification is not associated with one specific region, but varies across the brain and sub-features set. Also, 

there are no regions that are associated explicitly with differentiating females from males. However, some 
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brain regions are consistently among the top important parts in predicting sex, like the cerebellum and 

temporal pole for ALFF and fALFF. Top features in our case span over part of the DMN, temporal pole, 

precuneus, and insular cortex regions. Additionally, we observed an overlap for top brain regions 

differentiating sex - in our case sex difference analysis using  GVM analysis (Liu et al., 2020) and FC analysis 

(Weis et al., 2020). Also, we replicated the observation that the DMN is one of the top features in 

differentiating sex, in line with the findings from (Biswal et al., 2010; Zhang et al., 2018).  

For the Power9s functional atlas, we plotted the top features using node size and color. Some ROIs overlap 

with top important features from the AAL, like in the DMN and temporal pole. We reported average SHAP 

values by averaging them by the brain system (Power et al., 2011) and showed that brain regions involved in 

memory retrieval constitute the top predicting features in both ALFF and fALFF features (Figure 7). Overall, 

the obtained distribution of feature importance supports the notion that the brain consists of mosaic features 

(Joel et al., 2015; Joel & Fausto-Sterling, 2016), where some features are more pronounced in one sex than 

in the other. In our case, the mosaic features are not only spatially distributed but also span across ALFF and 

fALFF features.   

V. LIMITATIONS 

In this work, we explored using rs-fMRI to predict sex from five independent datasets. The datasets were 

collected at various sites using different MRI scanners, populations, preprocessing pipelines, and other 

configurations. The effect of these factors on predicting sex is still not apparent nor well characterized 

(Botvinik-Nezer et al., 2020). In addition, we used two AAL and Power9s atlas only. There are many other 

functional and anatomical atlases that can be adopted. We used several ML and DL methods, but there are 

many other ML methods and DL architectures that have not been explored here. We used ALFF and fALFF 

for describing BOLD signal fluctuations; however, other features can be defined and used.   
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VI. CONCLUSION  

Machine learning (ML) has gained popularity in predicting different outcomes in human brain neuroimaging 

data. In this work, we have shown that sex can be predicted with high accuracy from resting-state fMRI using 

various ML methods. The results demonstrated that sex difference is embedded in the properties of low-

frequency BOLD signal fluctuation and extends the previous findings of sex difference reported based on 

fMRI functional connectivity. We assessed the sex classification on of five different and independent datasets 

that vary in population, including healthy young adults to other clinical populations. The highest archived 

results occurred when using healthy young adults only and may reflect the effect of the mental illnesses on 

the properties of the BOLD signal. The best classification performance was obtained with the use of linear 

classifiers, and we did not find an advantage of using Deep Learning methods. The spatial distribution of the 

important features was consistent with the previous finding, but we showed that sex classification did not 

rely on a specific brain region nor one sub-feature set. The results presented here suggest that sex distribution 

should be seriously considered in any brain imaging study including studies that investigate functional 

connectivity, BOLD activation or structural analyses.    
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