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ABSTRACT

Topic  modeling  is  frequently  employed  for  discovering  structures  (or  patterns)  in  a  corpus  of

documents.  Its  utility in text-mining and document retrieval tasks in various fields of scientific

research  is  rather  well  known.  An  unsupervised  machine  learning  approach,  Latent  Dirichlet

Allocation (LDA) has particularly been utilized for identifying latent (or hidden) topics in document

collections  and  for  deciphering  the  words  that  define  one  or  more  topics  using  a  generative

statistical model. Here we describe how SARS-CoV-2 genomic mutation profiles can be structured

into  a  ‘Bag  of  Words’ to  enable  identification  of  signatures  (topics)  and  their  probabilistic

distribution across various genomes using LDA. Topic models were generated using ~47000 novel

corona  virus  genomes  (considered  as  documents),  leading  to  identification  of  16  amino  acid

mutation signatures and 18 nucleotide mutation signatures (equivalent to topics) in the corpus of

chosen  genomes  through  coherence  optimization.  The  document  assumption  for  genomes  also

helped in identification of contextual nucleotide mutation signatures in the form of conventional N-

grams (e.g. bi-grams and tri-grams). We validated the signatures obtained using LDA driven method

against  the  previously  reported  recurrent  mutations  and  phylogenetic  clades  for  genomes.

Additionally, we report the geographical distribution of the identified mutation signatures in SARS-

CoV-2 genomes on the global map.  Use of the non-phylogenetic albeit classical approaches like

topic  modeling  and  other  data  centric  pattern  mining  algorithms  is  therefore  proposed  for

supplementing the efforts towards understanding the genomic diversity of the evolving SARS-CoV-

2 genomes (and other pathogens/microbes).
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1. INTRODUCTION

A document is a thematic body of text containing a semantic structure of words. The theme of a

document, also called as the primary topic, is constituted by a specific proportion of various words.

Considering existence of a finite vocabulary,  different proportions of words (and their  semantic

similarity) in each document would drive the theme(s) or topic(s) of various documents. Therefore,

while words are apparent constituents of a document, topics are latent (or hidden). Topic modeling,

a statistical method, employs these characteristics of documents to discover hidden structures (or

latent topics)1. Its utility in text-mining and document retrieval/classification tasks in various fields

of  scientific  research  is  rather  well  known2–4.  In  fact,  Latent  Dirichlet  Allocation  (LDA),  an

unsupervised machine learning approach, is particularly known for identifying latent topics in large

document collections and deciphering the words that define the inferred topics using a generative

statistical model. LDA assumes that a document is generated by a distribution of all possible hidden

topics, while a topic is generated by the distribution of all possible apparent words. This multiplicity

of topic affiliation for documents and words is  accommodated through assumption of Dirichlet

priors which can be optimized to get  ideal distribution of coherent topics in a document1.  The

approach can also be made akin to Markov-chains for probing the temporal evolution of a large

number of documents and document topics4. 

 A  large  number  of  SARS-CoV-2  genome  sequences  are  being  deposited  to  public

repositories  like GISAID6 through an unprecedented spirit  of scientific  collaboration across  the

world. The high volume of raw data is expected to balloon further by the end of this pandemic.

Each  new  sequenced  genome  is  a  mutant/variant  (with  few  exceptions)  of  original  reference

genome  i.e.  Wuhan/WIV04/2019  (EPI_ISL_402124).  In  other  words,  certain  mutations  at

nucleotide  and  amino  acid  levels  can  be  expected  to  be  observed  in  the  submitted  genomes.

Understanding the evolution and diversity of these variants has been a subject of interest to a wide

spectrum of researchers. Various reports aimed at identification of clades or classification system(s)

for these genomes have in fact been outcomes of the afore-mentioned problem statement7. 
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Although  conventional  topic  modeling  has  been  utilized  to  understand  Covid-19  from

literature  data5,  can  it  be  applied  to  obtain  additional  insights  from  sequenced  SARS-CoV-2

genomes and to rather classify them? In other words, can we perceive each genome of SARS-CoV-

2 as a document containing words in the form of characteristic mutations (Figure 1)? 

Figure 1: Perceiving SARS-CoV-2 genomes as documents. Panel A: Classical approach towards topic modeling on

large document corpus using the generative process of Latent Dirichlet Allocation (LDA). Panel B: Each SARS-CoV-2

genome with its mutation profile is  treated as a document containing words in the form of their mutations with a

potential to infer latent mutation signatures (topics)

Consequently, a genome would essentially become a bag of mutations (like bag of words in

a document). Such an assumption can potentially enable classification of the entire genome corpus

by identifying  mutation  signatures  (equivalent  to  topics  in  document)  through  topic  modeling.

Moreover, given the inherent temporal nature of genome collections, dynamic topic modeling (e.g.
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temporal LDA or Hidden Markov Model driven LDA) may rather  provide a  way to probe the

evolution of the genome variants in terms of identified mutation signatures4,8.  A parallel between

classical LDA on a large document corpus and a genome corpus is illustrated in plate notation

below.

where,

α is a parameter governing the distribution structure of signatures (nucleotide and amino acid mutations)

across all genomes (similar to topics across all documents)

θ is a random matrix representing Dirichlet distribution of various signatures in the genomes (similar to

topics in documents),  such that  θ(i,j)  indicate the probability of  the  i th genome (document)  to  contain

mutations (words) pertaining to the j th signature (topic)

β is a parameter governing the distribution structure of mutations across all signatures (similar to words

across all topics)

η is a random matrix representing Dirichlet distribution of various mutations in signatures (similar to words

in topics), such that η (i,j) indicate the probability of the i th signature (topic) to contain the j  th mutation

(word)

z is an identity of signature (topic) of all mutations (words) in all genomes (documents)

w refers to identity of all mutations (words) in all genomes (documents) 

G refers to all genomes (documents)

N refers to all mutations (words)
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S refers to all signatures (topics)

which may be interpreted as following:

1) For each signature (topic) s, draw ηs Dirichlet(∼ β)

2) For each genome (document) g, first draw θg Dirichlet(α), then for each ∼ n th mutation (word) of the

genome (document) g, draw zgn Multinomial(1,θ∼ g) followed by wgn Multinomial(1,∼ ηzgn)

To substantiate the conjecture, a bag of mutations data structure for  ~47000 SARS-CoV-2

genomes submitted to GISAID was created. Classical LDA was employed to generate topic models

leading to identification of 16 amino acid mutation signatures and 18 nucleotide mutation signatures

(equivalent to topics) in the corpus of chosen genomes through rigorous hyper-parameter tuning for

coherence optimization (Figure 2). Interestingly, most of the high weight inferred signatures had a

good overlap with the previously identified clades specific to various geographical regions  (refer

Table 1). For example, the signature-11, constituted predominantly by amino acid mutations N-

P13L/ORF9b-P10S, ORF1a-L3606F, ORF1b-A88V, ORF1a-T2016K, was observed to dominate in

India and other Asian regions9. Biology agnostic, data structure driven approaches for SARS-CoV-2

genome  sequences  may  therefore  have  some  merit  in  not  only  handling  the  large  amount  of

genomic data, but also for identifying mutation signatures (and hence classifying genomes) that

might  be  of  interest  to  clinicians/  biologists10.  Their  cross  validation  against  phylogenetic

estimations  can  help  fine  tune  the  performance  of  these  machine  learning  algorithms,  thereby

adding confidence to the use of unconventional methods for probing genomic diversity7. 
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Figure2:Nucleotide and Amino acid mutation signatures identified through classical  LDA and their weights across

genome corpus

2. METHODS

2.1. Mutation profiles

Approximately 47000 SARS-CoV-2 sequences, obtained from Global Initiative on Sharing Avian

Influenza  Data  (GISAID)  between  Jan-July  2020,  were  used.  NextStrain’s  Augur  pipeline  was

employed with default parameters to align the sequences against the reference Wuhan/WIV04/2019

(EPI_ISL_402124)11. Individual  proteins  of  SARS-CoV-2  were  extracted  post  alignment  and

translated  to  the  amino  acid  sequences.  Comparisons  to  reference  amino  acid  and  nucleotide

sequences were performed to profile mutations for all viral genome sequences. A genome collection

(document  corpus)  mapped  to  the  identified  nucleotide  and  amino  acid  substitution  mutations

(document vocabulary) was created. Sample mutation profile data structure have been provided in
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Supplementary  Table  1. It  may  be  noted  that  only  those  genomes  were  employed  for  topic

modelling which contained at least one amino acid mutation. 

2.2. Bag of mutations

As shown in Figure 1, bag of words representation of a document in natural language processing

pertains to two aspects of the document:

i) Document vocabulary (V) represented by all words of the given document

ii) Token/Word measure (W) represented by the occurrence profile of words in the document

With an aim to develop a ‘bag of words’ model, the mutation profiles of SARS-CoV-2 genomes

used in this study was compiled such that the individual genome-specific nucleotide and amino acid

mutation  vocabularies  (set  of  mutations  in  a  genome)  could  be  easily  comprehended

(Supplementary  Table  1).  Two  corpus  vocabularies  were  consequently  created  (one  each  for

nucleotide and amino acid mutations).  Binary document vectors  were prepared for each of the

genomes  against  the  corpus  vocabularies  for  these  two  types  of  mutations.  Mutation-genome

matrices so computed for the two corpora represented the global picture of ‘bag of words’ models

for  novel  corona  virus  genomes.  It  may  be  noted  that  unlike  a  conventional  natural  language

processing task, given the non-linguistic context of observed mutations,  the issues pertaining to

tokenization, stop words, lemmatization and stemming were not relevant here1. 

2.2.1. Bag of mutation bi-grams

Given that most of the existing clade definitions employ two or more co-occurring mutations, a bi-

gram nucleotide mutation model was also created for the genomes. The corpus vocabulary for bi-

grams was created by taking into account the observed co-occurring pairs of mutations in the entire

corpus of nucleotide mutation vocabulary (and not all possible pairs of mutations), such that each

genome was represented by a numerically sorted list of nucleotide mutations. It is pertinent to note

that numeric sorting of mutations is critical in searching for bi-grams (or n-grams) for a meaningful
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contextual search. It may be noted that the choice of bi-gram mutations is enabled by a probabilistic

scoring procedure12 as follows:

score (m1 ,m2)=
count (m1 ,m2 )−min (m1,m2 )

count (m1 )∗count (m2)
∗Um

where:

m1,m2 are mutations in a pair

Um is total unique mutations (i.e. size of mutation vocabulary)

score refers to the confidence score for the given pair

count refers to the total occurrence in the corpus

min refers to the minimum occurrence threshold for the mutation(s) in the 

corpus

2.2.2. N-gram mutation signatures

The probabilistic derivation of bi-grams paves the way for an initial estimation of signatures of any

size in the corpus using the following progressive probabilistic scoring:

score ( (n−1 )1 ,m2)=
count (( n−1 )1 ,m2 )−min ((n−1 )1,m2 )

count ( (n−1 )1 )∗count (m2 )
∗Um

where:

(n-1)1, m2 are mutations in a pair, such that (n-1) refers to the (n-1) sized 

mutation combination

Um is total unique mutations (i.e. size of mutation vocabulary)

score refers to the confidence score for the given pair

count refers to the total occurrence in the corpus

min refers to the minimum occurrence threshold for the mutation(s) in the 

corpus
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2.3. Topic (mutation signatures) modeling through Latent Dirichlet Allocation and hyper-

parameter tuning

Python’s  Gensim library was employed to estimate topic (mutation signature) models for ~47000

SARS-CoV-2  genomes  through  online  variational  Bayes  (VB)  algorithm  as  described

previously13,14.  Quality of mutation signatures (topics) inferred by LDA was assessed using a coherence

score which refers to an index of the semantic similarity between dominant mutations (words) of the

mutation signature (topic).  In other  words,  a  mutation signature (topic)  with high coherence is

expected  to  have  mutations  (words)  with  high  co-occurrence  similarity  score.  A good  overall

mutation signature extraction is therefore expected to have a high mean coherence. The coherence

measure was calculated for different numbers of mutation signature extractions between 2-30 and

an  optimal  score  for  nucleotide  as  well  as  amino  acid  mutations  were  obtained.  Further

hyperparameter optimization was performed for a range of alpha and beta measures (between 0.001

– 0.1, step size of 0.009) and the number of topics, in order to maximize the coherence score, and

optimal values for all three parameters were obtained using the grid-search alogrithm15. 

2.5 Implementation

The entire implementation was executed in a 20 core Xeon 51 series 2.4GHz machine with 64GB

RAM in a Python v3.7.6 kernel with Gensim v3.8.3 and Scikit-learn v0.23.1 for topic modelling

using LDA. 

3. RESULTS

3.1.  Word clouds of the corpus-wide bag of mutations

Word clouds provide quick visual reference to the dominant words in a bag of words. As shown in

Figure 3a, the bag of nucleotide mutations for all genomes indicated the dominance of A23403G,

C14408T,  G28881A,  G28882A,  G28883C,  C3037T  and  C241T  amongst  the  15114  unique
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mutations  observed  in  the  entire  corpus  (359976)  vocabulary  (all  nucleotide  mutations  in  the

genomes).  Similarly,  among  the  total  9583  unique  amino  acid  mutations,  predominant  ones

pertained to those in Spike (S):  D614G, ORF1b: P314L, ORF14: G50N and Nucleocapsid (N):

R203K,  G204R (Figure  3b).  This  approach  therefore  provided  a  preliminary  way  of  quickly

visualizing the global mutation signatures. 

Figure 3: Word clouds of the corpus-wide bag of (A) nucleotide and (B) amino acid mutations

3.2.  Bi-grams and tri-grams

At a minimum co-occurrence count of 500 genomes and threshold of 1, 28 nucleotide mutation bi-

grams were identified, the most frequent (in ~13000 genomes) bi-grams being G28882A_G28883C

and  G28881A_G28882A,  followed  by  A23403G_G25563T  (9282  genomes).  Supplementary

Table 2 provides a full  list  of the detected bi-grams along-with their  respective scores and co-

occurrence  counts.  Similarly, Supplementary  Table  3 provides  a  list  of  12  tri-grams.

G28881A_G28882A_G28883C was observed to be the most frequent tri-gram (12730 genomes),

followed by A23403G_G28881A_G28882A (6928 genomes) and C241T_C1059T_C3037T (6556

genomes). The probabilistic approach can be extended to co-occurring contextual mutations of any

size (n-gram) (described in methods section). 

3.3.  Mutation  signature  identification  and  genome  classification  using  Latent  Dirichlet

Allocation
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16 amino acid mutation signatures and 18 nucleotide mutation signatures were obtained at an alpha

(α) value of 0.005 and beta (β) 0.067. These hyper-parameters, as described in the Methods section,

were  optimized  through  grid  search.  Figure  2  provides  an  overview  of  the  Top  5  mutations

constituting each signature and the distribution trend of the signatures across various genomes.

Given that each signature has a Bayesian probabilistic estimate of occurrence in a genome, the

dominant signature of each genome was looked for. This enabled the classification of each genome

in terms of its dominant signature affiliation. A world map visualization of the sampling location of

each  genome and  its  signature  affiliation  helped  in  obtaining  an  intuition  regarding  the  global

diversity and spread of SARS-CoV-2 genomes (Figure 4).

Figure 4: Global map of geographical spread of putative amino acid  signatures 

3.4. Validation of mutation signatures

Validating non-phylogenetic algorithms of genome classification against phylogenetic estimations

can provide an index of suitability of the data structure driven methods. As a qualitative cross-

checking, the dominating mutation composition of signatures inferred using LDA was compared

with the well known recurrent mutation reports and clade definitions. Table 1 provides a summary
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of the amino acid mutation signatures detected through LDA and corresponding close literature

evidence citing a similar phylogenetically estimated genome group/clade (if any).  The mutations in

the  signature  were  ordered  in  according  to  the  probability  of  their  presence  in  the  signature.

Consequently, each signature was dominated by the first mutation, as compared to the probability of

occurrence  of  other  mutations  in  the  signature.  Also,  it  is  pertinent  to  note  that  given  the

probabilistic nature of inference, a high total score (weight) is more likely to indicate co-occurring

mutations across large number of genomes. First five mutations, in the order of their probability of

occurrence in the signatures, have been listed in Table 1. In addition,  the bi-grams and tri-grams

identified through probablistic approach in this study have already been supported with their score

and prevalence across genomes (Supplementary Table 2 and 3). 

Table 1:  Putative amino acid mutation signatures, their weight across genome corpus and closest literature citing the

said mutation(s). Probability of co-occurrence of these mutations in a signature was found to be low in low scoring

signatures.

Mutation signature (LDA derived)

Score 
(cumulative

weight across
genomes)

Reference

1. ORF1a-T999I, ORF1b-P218L, S-A520S, ORF1a-M1647I, ORF1a-L642F
762 No evidence

2. S-D614G, ORF1b-P314L, ORF3a-Q57H, ORF1a-T265I, ORF1a-A3529V
8581

[16]

3. S-D614G, ORF1b-P314L, ORF3a-V13L, N-D401Y, ORF1b-H1213Y
7171

[17]

4. ORF1a-L3606F, ORF3a-G251V, ORF1a-P765S, ORF1a-I739V, S-S940F
3280

[18]

5. ORF1b-A440V, ORF3a-T175I, ORF1a-D1036E, ORF1b-V2371L, S-H49Y
1051

[19]

6. ORF1a-A3615V, ORF1b-T1774I, ORF1b-M371I, ORF1a-V2613F, ORF1a-

H110Y 801

[20]

7. ORF1a-L3606F, ORF1a-V378I, ORF1a-H417R, ORF3a-G251V, ORF1a-

M2796I 1297

[21]

8. ORF1a-S3884L, N-S194L, ORF14-Q41*, ORF1a-S2242F, ORF3a-Q185H
1350

[19]

9. ORF1a-G392D, ORF1a-A876T, ORF1a-A2249V, ORF1a-P804L, N-P199S
1389

[16]
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10. ORF8-L84S, ORF1a-F3071Y, ORF14-Q44*, N-S197L, ORF3a-G196V
1507

[22]

11. N-P13L, ORF9b-P10S, ORF1a-L3606F, ORF1b-A88V, ORF1a-T2016K
1351

[9]

12.
S-D614G, ORF1b-P314L, N-G204R, N-R203K, ORF14-G50N

11912
[23]

13. ORF8-V62L, ORF1b-A1844V, ORF1a-P971L, ORF1a-D75E, ORF1b-

F1757L 1064

[24]

14. ORF1b-K2557R, ORF1a-G519S, ORF7b-C41F, ORF1a-Q2702H, ORF1a-

D139N 854

No evidence

15. ORF8-S24L, ORF1a-H3076Y, ORF1b-A2132V, S-A879S, ORF1a-P271S
950

[24]

16. ORF8-L84S, ORF1b-Y1464C, ORF1b-P1427L, N-S202N, ORF14-V49I
2420

[23]

Discussion

While the mutation signatures obtained through unsupervised machine learning approaches are not

phylogenetic,  right  choice  of  algorithms  can  enable  identification  of  probabilistic  (and  hence

reliable) markers to classify genomes based on observed mutations. In fact, an evolutionary trail

may also be established by following a temporal  approach to  LDA (or  other  methods of topic

modeling). An increase in efficiency of signature detection may further be achieved through other

topic modeling methods (e.g. short text topic modeling). Importantly, insights obtained about latent

signatures through machine learning approaches like LDA can also guide phylogenetic estimations.

This article is intended to encourage the use of unconventional data driven approaches as an avenue

that deserves attention of both data scientists and biologists alike. This, we believe, is expected to

supplement  the  efforts  in  understanding  the  genomic  diversity  of  the  evolving  SARS-CoV-2

genomes (and other pathogens).  
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Figure Legends

Figure 1: Perceiving SARS-CoV-2 genomes as documents

Panel A: Classical approach towards topic modeling on large document corpus using the generative

process  of  Latent  Dirichlet  Allocation  (LDA).  Panel  B:  Each  SARS-CoV-2  genome  with  its

mutation profile is treated as a document containing words in the form of their mutations with a

potential to infer latent mutation signatures (topics)

Figure2: Mutation signatures in SARS-CoV-2 genomes

Nucleotide and Amino acid mutation signatures identified through classical LDA and their weights

across genome corpus

Figure 3: Mutation word clouds 

Word clouds of the corpus-wide bag of (A) nucleotide and (B) amino acid mutations

Figure 4: Geographical spread of putative signatures

Global map of geographical spread of putative amino acid signatures 
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