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ABSTRACT

Topic modeling is frequently employed for discovering structures (or patterns) in a corpus of
documents. Its utility in text-mining and document retrieval tasks in various fields of scientific
research is rather well known. An unsupervised machine learning approach, Latent Dirichlet
Allocation (LDA) has particularly been utilized for identifying latent (or hidden) topics in document
collections and for deciphering the words that define one or more topics using a generative
statistical model. Here we describe how SARS-CoV-2 genomic mutation profiles can be structured
into a ‘Bag of Words’ to enable identification of signatures (topics) and their probabilistic
distribution across various genomes using LDA. Topic models were generated using ~47000 novel
corona virus genomes (considered as documents), leading to identification of 16 amino acid
mutation signatures and 18 nucleotide mutation signatures (equivalent to topics) in the corpus of
chosen genomes through coherence optimization. The document assumption for genomes also
helped in identification of contextual nucleotide mutation signatures in the form of conventional N-
grams (e.g. bi-grams and tri-grams). We validated the signatures obtained using LDA driven method
against the previously reported recurrent mutations and phylogenetic clades for genomes.
Additionally, we report the geographical distribution of the identified mutation signatures in SARS-
CoV-2 genomes on the global map. Use of the non-phylogenetic albeit classical approaches like
topic modeling and other data centric pattern mining algorithms is therefore proposed for
supplementing the efforts towards understanding the genomic diversity of the evolving SARS-CoV-

2 genomes (and other pathogens/microbes).
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1. INTRODUCTION

A document is a thematic body of text containing a semantic structure of words. The theme of a
document, also called as the primary topic, is constituted by a specific proportion of various words.
Considering existence of a finite vocabulary, different proportions of words (and their semantic
similarity) in each document would drive the theme(s) or topic(s) of various documents. Therefore,
while words are apparent constituents of a document, topics are latent (or hidden). Topic modeling,
a statistical method, employs these characteristics of documents to discover hidden structures (or
latent topics)'. Its utility in text-mining and document retrieval/classification tasks in various fields
of scientific research is rather well known®*. In fact, Latent Dirichlet Allocation (LDA), an
unsupervised machine learning approach, is particularly known for identifying latent topics in large
document collections and deciphering the words that define the inferred topics using a generative
statistical model. LDA assumes that a document is generated by a distribution of all possible hidden
topics, while a topic is generated by the distribution of all possible apparent words. This multiplicity
of topic affiliation for documents and words is accommodated through assumption of Dirichlet
priors which can be optimized to get ideal distribution of coherent topics in a document'. The
approach can also be made akin to Markov-chains for probing the temporal evolution of a large
number of documents and document topics*.

A large number of SARS-CoV-2 genome sequences are being deposited to public
repositories like GISAID® through an unprecedented spirit of scientific collaboration across the
world. The high volume of raw data is expected to balloon further by the end of this pandemic.
Each new sequenced genome is a mutant/variant (with few exceptions) of original reference
genome i.e. Wuhan/WIV04/2019 (EPI_ISL_402124). In other words, certain mutations at
nucleotide and amino acid levels can be expected to be observed in the submitted genomes.
Understanding the evolution and diversity of these variants has been a subject of interest to a wide
spectrum of researchers. Various reports aimed at identification of clades or classification system(s)

for these genomes have in fact been outcomes of the afore-mentioned problem statement’.
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Although conventional topic modeling has been utilized to understand Covid-19 from
literature data®, can it be applied to obtain additional insights from sequenced SARS-CoV-2
genomes and to rather classify them? In other words, can we perceive each genome of SARS-CoV-

2 as a document containing words in the form of characteristic mutations (Figure 1)?
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Figure 1: Perceiving SARS-CoV-2 genomes as documents. Panel A: Classical approach towards topic modeling on
large document corpus using the generative process of Latent Dirichlet Allocation (LDA). Panel B: Each SARS-CoV-2
genome with its mutation profile is treated as a document containing words in the form of their mutations with a
potential to infer latent mutation signatures (topics)

Consequently, a genome would essentially become a bag of mutations (like bag of words in
a document). Such an assumption can potentially enable classification of the entire genome corpus
by identifying mutation signatures (equivalent to topics in document) through topic modeling.

Moreover, given the inherent temporal nature of genome collections, dynamic topic modeling (e.g.
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temporal LDA or Hidden Markov Model driven LDA) may rather provide a way to probe the
evolution of the genome variants in terms of identified mutation signatures*®. A parallel between
classical LDA on a large document corpus and a genome corpus is illustrated in plate notation

below.

N

G

where,

o is a parameter governing the distribution structure of signatures (nucleotide and amino acid mutations)
across all genomes (similar to topics across all documents)

0 is a random matrix representing Dirichlet distribution of various signatures in the genomes (similar to
topics in documents), such that 6(i,j) indicate the probability of the i th genome (document) to contain
mutations (words) pertaining to the j th signature (topic)

B is a parameter governing the distribution structure of mutations across all signatures (similar to words
across all topics)

n is a random matrix representing Dirichlet distribution of various mutations in signatures (similar to words
in topics), such that n (i,j) indicate the probability of the i th signature (topic) to contain the j th mutation
(word)

z is an identity of signature (topic) of all mutations (words) in all genomes (documents)

w refers to identity of all mutations (words) in all genomes (documents)

G refers to all genomes (documents)

N refers to all mutations (words)
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S refers to all signatures (topics)

which may be interpreted as following:
1) For each signature (topic) s, draw ns~Dirichlet([3)
2) For each genome (document) g, first draw 8g~Dirichlet(a), then for each n th mutation (word) of the

genome (document) g, draw zgn~Multinomial(1,0g) followed by wgn~Multinomial(1,1ze)

To substantiate the conjecture, a bag of mutations data structure for ~47000 SARS-CoV-2
genomes submitted to GISAID was created. Classical LDA was employed to generate topic models
leading to identification of 16 amino acid mutation signatures and 18 nucleotide mutation signatures
(equivalent to topics) in the corpus of chosen genomes through rigorous hyper-parameter tuning for
coherence optimization (Figure 2). Interestingly, most of the high weight inferred signatures had a
good overlap with the previously identified clades specific to various geographical regions (refer
Table 1). For example, the signature-11, constituted predominantly by amino acid mutations N-
P13L/ORF9b-P10S, ORF1a-L3606F, ORF1b-A88V, ORF1a-T2016K, was observed to dominate in
India and other Asian regions®. Biology agnostic, data structure driven approaches for SARS-CoV-2
genome sequences may therefore have some merit in not only handling the large amount of
genomic data, but also for identifying mutation signatures (and hence classifying genomes) that
might be of interest to clinicians/ biologists'®. Their cross validation against phylogenetic
estimations can help fine tune the performance of these machine learning algorithms, thereby

adding confidence to the use of unconventional methods for probing genomic diversity’.
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Figure2:Nucleotide and Amino acid mutation signatures identified through classical LDA and their weights across

genome corpus

2. METHODS

2.1. Mutation profiles

Approximately 47000 SARS-CoV-2 sequences, obtained from Global Initiative on Sharing Avian
Influenza Data (GISAID) between Jan-July 2020, were used. NextStrain’s Augur pipeline was
employed with default parameters to align the sequences against the reference Wuhan/WI1V04/2019
(EPI_ISL_402124)". Individual proteins of SARS-CoV-2 were extracted post alignment and
translated to the amino acid sequences. Comparisons to reference amino acid and nucleotide
sequences were performed to profile mutations for all viral genome sequences. A genome collection
(document corpus) mapped to the identified nucleotide and amino acid substitution mutations

(document vocabulary) was created. Sample mutation profile data structure have been provided in
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Supplementary Table 1. It may be noted that only those genomes were employed for topic

modelling which contained at least one amino acid mutation.

2.2. Bag of mutations

As shown in Figure 1, bag of words representation of a document in natural language processing
pertains to two aspects of the document:

i) Document vocabulary (V) represented by all words of the given document

ii) Token/Word measure (W) represented by the occurrence profile of words in the document

With an aim to develop a ‘bag of words’ model, the mutation profiles of SARS-CoV-2 genomes
used in this study was compiled such that the individual genome-specific nucleotide and amino acid
mutation vocabularies (set of mutations in a genome) could be easily comprehended
(Supplementary Table 1). Two corpus vocabularies were consequently created (one each for
nucleotide and amino acid mutations). Binary document vectors were prepared for each of the
genomes against the corpus vocabularies for these two types of mutations. Mutation-genome
matrices so computed for the two corpora represented the global picture of ‘bag of words’ models
for novel corona virus genomes. It may be noted that unlike a conventional natural language
processing task, given the non-linguistic context of observed mutations, the issues pertaining to
tokenization, stop words, lemmatization and stemming were not relevant here'.

2.2.1. Bag of mutation bi-grams

Given that most of the existing clade definitions employ two or more co-occurring mutations, a bi-
gram nucleotide mutation model was also created for the genomes. The corpus vocabulary for bi-
grams was created by taking into account the observed co-occurring pairs of mutations in the entire
corpus of nucleotide mutation vocabulary (and not all possible pairs of mutations), such that each
genome was represented by a numerically sorted list of nucleotide mutations. It is pertinent to note

that numeric sorting of mutations is critical in searching for bi-grams (or n-grams) for a meaningful
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contextual search. It may be noted that the choice of bi-gram mutations is enabled by a probabilistic

scoring procedure™ as follows:

where:

count|m, ,m,|—min(m,,m,) U

score ( mg, mZ) = count ( ml) *count ( m2)

my,m;, are mutations in a pair

Um is total unique mutations (i.e. size of mutation vocabulary)

score refers to the confidence score for the given pair

count refers to the total occurrence in the corpus

min refers to the minimum occurrence threshold for the mutation(s) in the

corpus

2.2.2. N-gram mutation signatures

The probabilistic derivation of bi-grams paves the way for an initial estimation of signatures of any

size in the corpus using the following progressive probabilistic scoring:

where:

score([n—1|,,m,|=

count|(n—1J,,m,|—min ((ﬁn_l)pmz) U
\ ) *Um

count|(n—1), |*count|m,)

(n-1);, m, are mutations in a pair, such that (n-1) refers to the (n-1) sized
mutation combination

Um is total unique mutations (i.e. size of mutation vocabulary)

score refers to the confidence score for the given pair

count refers to the total occurrence in the corpus

min refers to the minimum occurrence threshold for the mutation(s) in the

corpus
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2.3. Topic (mutation signatures) modeling through Latent Dirichlet Allocation and hyper-
parameter tuning

Python’s Gensim library was employed to estimate topic (mutation signature) models for ~47000
SARS-CoV-2 genomes through online variational Bayes (VB) algorithm as described

previously'*'

. Quality of mutation signatures (topics) inferred by LDA was assessed using a coherence
score which refers to an index of the semantic similarity between dominant mutations (words) of the
mutation signature (topic). In other words, a mutation signature (topic) with high coherence is
expected to have mutations (words) with high co-occurrence similarity score. A good overall
mutation signature extraction is therefore expected to have a high mean coherence. The coherence
measure was calculated for different numbers of mutation signature extractions between 2-30 and
an optimal score for nucleotide as well as amino acid mutations were obtained. Further
hyperparameter optimization was performed for a range of alpha and beta measures (between 0.001

— 0.1, step size of 0.009) and the number of topics, in order to maximize the coherence score, and

optimal values for all three parameters were obtained using the grid-search alogrithm'.

2.5 Implementation
The entire implementation was executed in a 20 core Xeon 51 series 2.4GHz machine with 64GB
RAM in a Python v3.7.6 kernel with Gensim v3.8.3 and Scikit-learn v0.23.1 for topic modelling

using LDA.

3. RESULTS

3.1. Word clouds of the corpus-wide bag of mutations

Word clouds provide quick visual reference to the dominant words in a bag of words. As shown in
Figure 3a, the bag of nucleotide mutations for all genomes indicated the dominance of A23403G,

C14408T, G28881A, G28882A, G28883C, C3037T and C241T amongst the 15114 unique


https://doi.org/10.1101/2020.08.20.258772
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.20.258772; this version posted August 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

mutations observed in the entire corpus (359976) vocabulary (all nucleotide mutations in the
genomes). Similarly, among the total 9583 unique amino acid mutations, predominant ones
pertained to those in Spike (S): D614G, ORF1b: P314L, ORF14: G50N and Nucleocapsid (N):
R203K, G204R (Figure 3b). This approach therefore provided a preliminary way of quickly
visualizing the global mutation signatures.

(A) Nucleotide Mutations (B) Amino Acid Mutations
GZBEBIA C27046T ORF“ b_p314l. 0RF14_GSDN ORF1b_P314L S _D614G 5

A23403G_C14408T< 5 == S_D614G ORF1b_P314L
- ﬂzlzﬁ;:ﬁi?ggz“qg 8632C8868218A8 : ZAE ~ORF14_G50N N_G204R
TSngﬁg ~% ORF'!E T2651 S D614N R203K S D6‘]4G

GhRATA A" 14408T (;3 % To ) :OPFSa“IQﬂH ORETb_P314L

-TI} C241T 6255 3T

S T ON_G204R N_R203K
C24]‘[ (;12_8883(: oresa_g2a7y Bele_Lzs0se S_D614G ORF3a Q57H

Figure 3: Word clouds of the corpus-wide bag of (A) nucleotide and (B) amino acid mutations

3.2. Bi-grams and tri-grams

At a minimum co-occurrence count of 500 genomes and threshold of 1, 28 nucleotide mutation bi-
grams were identified, the most frequent (in ~13000 genomes) bi-grams being G28882A_G28883C
and G28881A_G28882A, followed by A23403G_G25563T (9282 genomes). Supplementary
Table 2 provides a full list of the detected bi-grams along-with their respective scores and co-
occurrence counts. Similarly, Supplementary Table 3 provides a list of 12 tri-grams.
G28881A_G28882A_(G28883C was observed to be the most frequent tri-gram (12730 genomes),
followed by A23403G_G28881A_G28882A (6928 genomes) and C241T_C1059T_C3037T (6556
genomes). The probabilistic approach can be extended to co-occurring contextual mutations of any

size (n-gram) (described in methods section).

3.3. Mutation signature identification and genome classification using Latent Dirichlet

Allocation
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16 amino acid mutation signatures and 18 nucleotide mutation signatures were obtained at an alpha
(o) value of 0.005 and beta () 0.067. These hyper-parameters, as described in the Methods section,
were optimized through grid search. Figure 2 provides an overview of the Top 5 mutations
constituting each signature and the distribution trend of the signatures across various genomes.
Given that each signature has a Bayesian probabilistic estimate of occurrence in a genome, the
dominant signature of each genome was looked for. This enabled the classification of each genome
in terms of its dominant signature affiliation. A world map visualization of the sampling location of
each genome and its signature affiliation helped in obtaining an intuition regarding the global

diversity and spread of SARS-CoV-2 genomes (Figure 4).
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Figure 4: Global map of geographical spread of putative amino acid signatures

3.4. Validation of mutation signatures

Validating non-phylogenetic algorithms of genome classification against phylogenetic estimations
can provide an index of suitability of the data structure driven methods. As a qualitative cross-
checking, the dominating mutation composition of signatures inferred using LDA was compared

with the well known recurrent mutation reports and clade definitions. Table 1 provides a summary
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of the amino acid mutation signatures detected through LDA and corresponding close literature
evidence citing a similar phylogenetically estimated genome group/clade (if any). The mutations in
the signature were ordered in according to the probability of their presence in the signature.
Consequently, each signature was dominated by the first mutation, as compared to the probability of
occurrence of other mutations in the signature. Also, it is pertinent to note that given the
probabilistic nature of inference, a high total score (weight) is more likely to indicate co-occurring
mutations across large number of genomes. First five mutations, in the order of their probability of
occurrence in the signatures, have been listed in Table 1. In addition, the bi-grams and tri-grams
identified through probablistic approach in this study have already been supported with their score

and prevalence across genomes (Supplementary Table 2 and 3).

Table 1: Putative amino acid mutation signatures, their weight across genome corpus and closest literature citing the

said mutation(s). Probability of co-occurrence of these mutations in a signature was found to be low in low scoring

signatures.
Score
Mutation signature (LDA derived) (c1.1mulatlve Reference
weight across
genomes)

1. |ORF1a-T9991, ORF1b-P218L, S-A520S, ORF1a-M16471, ORFla-L642F 62 No evidence
2. S-D614G, ORF1b-P314L, ORF3a-Q57H, ORF1a-T2651, ORF1a-A3529V 8581 [16]
3. S-D614G, ORF1b-P314L, ORF3a-V13L, N-D401Y, ORF1b-H1213Y 171 [17]
4., ORF1a-L3606F, ORF3a-G251V, ORF1a-P765S, ORF1a-1739V, S-S940F 3280 [18]
5. ORF1b-A440V, ORF3a-T175I, ORF1a-D1036E, ORF1b-V2371L, S-H49Y 1051 [19]
6. ORF1a-A3615V, ORF1b-T17741, ORF1b-M3711, ORF1a-V2613F, ORF1la- (201

H110Y 801
7. ORF1a-L3606F, ORF1a-V378I, ORFla-H417R, ORF3a-G251V, ORF1a- [21]

M27961 1297
8. ORF1a-53884L, N-S194L, ORF14-Q41*, ORF1a-S2242F, ORF3a-Q185H 1350 [19]
9. ORF1a-G392D, ORF1a-A876T, ORF1a-A2249V, ORF1a-P804L, N-P199S 1389 [16]
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10. |ORF8-184S, ORF1a-F3071Y, ORF14-Q44*, N-S197L, ORF3a-G196V . [22]
11. |N-P13L, ORF9b-P10S, ORF1a-L3606F, ORF1b-A88V, ORF1a-T2016K . o1
S-D614G, ORF1b-P314L, N-G204R, N-R203K, ORF14-G50N [23]
12. 11912
13. |ORF8-V62L, ORF1b-A1844V, ORF1a-P971L, ORFl1a-D75E, ORF1b- [24]
F1757L 1064
14. |ORF1b-K2557R, ORF1a-G519S, ORE7b-C41F, ORF1a-Q2702H, ORF1a- No evidence
D139N 854
15. |ORF8-S24L, ORF1a-H3076Y, ORF1b-A2132V, S-A879S, ORF1a-P271S 050 [24]
16. |ORF8-184S, ORF1b-Y1464C, ORF1b-P1427L, N-S202N, ORF14-V491 2120 (23]
Discussion

While the mutation signatures obtained through unsupervised machine learning approaches are not
phylogenetic, right choice of algorithms can enable identification of probabilistic (and hence
reliable) markers to classify genomes based on observed mutations. In fact, an evolutionary trail
may also be established by following a temporal approach to LDA (or other methods of topic
modeling). An increase in efficiency of signature detection may further be achieved through other
topic modeling methods (e.g. short text topic modeling). Importantly, insights obtained about latent
signatures through machine learning approaches like LDA can also guide phylogenetic estimations.
This article is intended to encourage the use of unconventional data driven approaches as an avenue
that deserves attention of both data scientists and biologists alike. This, we believe, is expected to
supplement the efforts in understanding the genomic diversity of the evolving SARS-CoV-2
genomes (and other pathogens).
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Figure Legends

Figure 1: Perceiving SARS-CoV-2 genomes as documents

Panel A: Classical approach towards topic modeling on large document corpus using the generative
process of Latent Dirichlet Allocation (LDA). Panel B: Each SARS-CoV-2 genome with its
mutation profile is treated as a document containing words in the form of their mutations with a

potential to infer latent mutation signatures (topics)

Figure2: Mutation signatures in SARS-CoV-2 genomes
Nucleotide and Amino acid mutation signatures identified through classical LDA and their weights

across genome corpus

Figure 3: Mutation word clouds

Word clouds of the corpus-wide bag of (A) nucleotide and (B) amino acid mutations

Figure 4: Geographical spread of putative signatures

Global map of geographical spread of putative amino acid signatures
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