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Abstract

Computational methods are key in microbiome research, and obtaining a quantitative and
unbiased performance estimate is important for method developers and applied researchers.
For meaningful comparisons between methods, to identify best practices, common use cases,
and to reduce overhead in benchmarking, it is necessary to have standardized data sets,
procedures, and metrics for evaluation. In this tutorial, we describe emerging standards in
computational metaomics benchmarking derived and agreed upon by a larger community of
researchers. Specifically, we outline recent efforts by the Critical Assessment of Metagenome
Interpretation (CAMI) initiative, which supplies method developers and applied researchers
with exhaustive quantitative data about software performance in realistic scenarios and
organizes community-driven benchmarking challenges. We explain the most relevant
evaluation metrics to assess metagenome assembly, binning, and profiling results, and
provide step-by-step instructions on how to generate them. The instructions use simulated
mouse gut metagenome data released in preparation for the second round of CAMI challenges
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and showcase the use of a repository of tool results for CAMI data sets. This tutorial will serve
as a reference to the community and facilitate informative and reproducible benchmarking in

microbiome research.

Introduction

Since the release of the first shotgun metagenome from the Sargasso Sea by
metagenomics (see glossary in Table 1) pioneer Craig Venter?, the field has witnessed
an explosive growth of data and methods. Microbiome data repositories?® host
hundreds of thousands of data sets and numbers are still rising rapidly.

Metagenomics created new computational challenges, such as reconstructing the
genomes of community members from a mixture of reads originating from potentially
thousands of microbial, viral, and eukaryotic taxa* These taxa differ in their
relatedness to each other, are often absent from sequence databases, and present at
varying abundances. Genomes can be reconstructed by metagenome assembly,
which creates longer, contiguous sequence fragments, followed by binning, which is
usually a clustering method placing fragments into genome bins. There have been
spectacular successes in recovering thousands of metagenome assembled genomes,
or MAGs, for uncultured taxa®”. Identifying the taxa and their abundances for a
community is known as taxonomic profiling, while taxonomic binners assign taxonomic
labels to individual sequence fragments. Both tasks are challenging particularly for
lower taxonomic ranks®. Another challenge is the de novo assembly of closely related
genomes (>95% average nucleotide identity)8. Finally, fragmentary assemblies with
many short contigs obtained from short read sequence data in metagenomics have
required adaptation of gene finding methods and complicate operon-level functional
analyses of genes. The maturation of long-read sequencing technologies®'°, which for
many years were characterized by low throughput, high cost, and high error rates, has
sparked further development and is expected to lead to better solutions for some of
these challenges.
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Table 1: Glossary

Term Definition

Metagenomics |A set of techniques for recovering and sequencing of the genetic
material of microbial communities and their functional and
taxonomic characterization.

Benchmarking [Systematic comparison of (computational) techniques using
performance metrics in specific scenarios.

Assembly Reconstruction of complete or partial genomes or DNA sequence
fragments, often by merging sequence reads into longer pieces
called contigs.

Binning Clustering or classification of sequences or contigs into bins
representing genomes (genome binning) or taxa (taxonomic
binning) of the underlying microbial community.

Profiling Microbial community characterization from a metagenomic sample
in terms of presence and absence of taxa and their relative
abundances.

Coverage Number of reads that cover a certain genomic position.

Docker A software tool designed to make it easy to distribute and run

applications by using software packages (containers) and
operating system-level virtualization.

The relevance of standards for performance evaluation and benchmarking

Methodological development is oftentimes accompanied by performance evaluations.
This has historically been done on an ad hoc basis by developers, often using different
data sets and performance metrics, which are both critical choices regarding
performance evaluation. This practice made it difficult to compare results across
publications and to identify suitable techniques for specific data sets and tasks. It also
made performance benchmarking for developers very tedious and ineffective. For
instance, performance might differ substantially for reference-based methods using
public databases across data sets, depending on evolutionary divergence between
the sampled and database taxa®. Similarly, organismal complexity, strain-level
diversity, realistic community genome abundance distributions, the presence of non-
bacterial genomic information, as well as sequencing error profiles of data sets may

affect method performances, to list some factors.

It became evident, as in other fields''-'3, that standards would greatly facilitate
comparisons across methods and articles and univocal determination of appropriate
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solutions and open challenges. To satisfy this need, CAMI, the community-driven
initiative for the Critical Assessment of Metagenome Interpretation, was founded in
2014 by A. Sczyrba, T. Rattei, and A.C. McHardy'* during the metagenomics
programme at the Isaac Newton Institute in Cambridge'®>. CAMI design decisions are
based on feedback gathered in community workshops, which ensures inclusion of a
wide range of expert inputs and establishes a community consensus. By regularly
interacting with scientists in workshops, hackathons and at conferences, such as the
Microbiome track of ISMB, CAMI aims to identify and implement best practices for
benchmarking in microbiome research, including (i) key properties of benchmark data
sets (see also'®'7 for an overview of general benchmarking practices), (i) appropriate
performance metrics for different tasks, (iii) benchmarking procedures, i.e. how to run
benchmarking challenges, and (iv) performance evaluation procedures, to allow the
most realistic, fair, and unbiased assessment. Reproducibility and reusability (v) have
been identified as the fifth key criterion. We provide further details on these key

aspects below.

The first CAMI challenge took place in 2015 and provided an extensive performance
overview for commonly used data processing methods, namely assembly, genome
and taxonomic binning, and taxonomic profiling®. The six benchmark data sets
reflecting a range of complexities have since been used extensively for further
benchmarking in the field. These include three “toy” data sets created from public data
and provided before the challenge, as well as three challenge data sets derived
exclusively from genomic data that were not publicly available at the time. These data
are now in public databases. Further benchmarking studies have also provided
valuable insights'®2!, The second CAMI challenge (CAMI Il) was launched in 2019
and offered challenges for the same tasks on two large, multi-sample data sets
reflecting specific environments (marine, rhizosphere) and an extremely high strain
diversity data set (strain madness). In addition, a clinical pathogen detection challenge
was offered. The challenges are expected to provide insights on important questions
such as the potential of long-read data for metagenomics?.

Benchmark data sets

Benchmark data sets should be as realistic and representative for real metaomics data
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as possible. For CAMI challenges, experimental groups contribute unpublished
genomes, including some organisms from poorly characterized phyla without any
genomes of close relatives publicly available. These genomes are used for benchmark
data creation and published only after the challenge. Because many taxa present in
real environmental samples have unknown cultivation conditions and no isolate
genomes are available in reference databases, measuring performance on novel
organisms is essential. This is particularly true for a comprehensive evaluation of
reference-based methods such as taxonomic profilers and binners, which perform best
for genomes closely related to those in public databases®. The challenge data sets
have been created from these (and public, in CAMI II) genomes with the CAMISIM
microbial community and metagenome simulator?3. This allows to incorporate many
key properties in data sets, such as varying experimental designs (number of samples,
sequencing depth, insert sizes, type of experiment, such as differential abundances,
time series), sequencing technologies and community properties (organismal
complexity, different genome abundance distributions, strain diversity, taxa from
different domains of life, viruses, mobile circular elements). An alternative way to
create benchmark data is to sequence lab-created DNA mixtures as in?#, which would
enable a more realistic assessment of technical variation and biases introduced in
data generation. However, creating communities with realistic organismal complexities
for many environments, with hundreds to thousands of genomes at highly varying
abundances, is currently impractical. All CAMI benchmark data sets are made
available after the challenges with Digital Object Identifiers?® (Table 2).

Table 2: CAMI benchmark data sets and respective Digital Object Identifiers

(DOI). All data sets are also downloadable from the CAMI portal at https://data.cami-
challenge.org/.

CAMI benchmark data sets DOI

(SDQQ/II I: low, medium, high complexity, and “toy” data 10.5524/100344

CAMI II: mouse gut “toy” data set 10.4126/FRL01-006421672
CAMI II: marine, strain madness, rhizosphere, and DOl available after
pathogen detection challenge data sets challenges
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Metrics for performance evaluation

Choosing the appropriate (combination) of metrics for comparing method
performances is a key task in benchmarking that directly influences the ranking of
methods. The metrics used in CAMI challenges?® are decided on in public workshops
and reassessed regularly. They should be easy to interpret and meaningful to both
developers and applied scientists. A comprehensive assessment is achieved by
including multiple metrics that highlight strengths of different approaches — see below.
Furthermore, assessing properties such as runtime, disk space, and memory

consumption is important.

Advantages of benchmarking challenges

Challenges provide insights into method performances, suggesting best practices as
well as identifying open problems in the field. They can also further the development
and adoption of standards, such as data input and output formats, or choice of
reference data sets, such as the NCBI taxonomy. Once standards are realized,
benchmarking competitions offer a low-effort opportunity for extensive benchmarking,
as data sets, other method results, and evaluation methods do not have to be created
by the developer of a new metagenome analysis method.

Some participants might worry about publishing poor performances, which is why
CAMI challenge participants can opt out of result publication and use them only for
their own benefit. Defining the evaluation metrics is also open for the field, thus all labs
participating in these discussions can contribute to the challenge evaluation.
Participants can thus suggest and define metrics that highlight the expected benefits
of their techniques with these simultaneously being subjected to peer group review.
To ensure a maximum of objectivity in these evaluations, CAMI challenges are
performed blinded in two ways. The standard of truth for the challenge data set is only
provided after challenges end, preventing performance optimization in any way on
these particular data sets. Challenge data sets include many genomes that will only
become publicly available after the challenge. “Toy” data sets, where a standard of
truth is made available at the outset, are provided before the actual challenges to
enable teams to familiarize themselves with the data structure and its properties. The
evaluation of the different challenge submissions is also performed blindly, such that
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the evaluation panel does not know the names and information about the submitted
techniques, to tackle evaluator biases. Evaluations are open to anyone wishing to

participate and a consensus is reached in a workshop with a group of experts.

Reproducibility and FAIR principles

Imagine running a benchmarking contest and identifying the top performing technique
by key criteria, potentially representing the new state-of-the-art for future studies.
However, the submitting team has unfortunately lost track of the software version and
parameter settings used, and is unable to reproduce its own results. To avoid such
issues, reproducibility has been elected as a core principle in CAMI, for all steps of
benchmarking, from data generation with CAMISIM?3, to running software
benchmarked in the contest, and to evaluating results. Evaluation metrics are
extensively tested and implemented in the MetaQUAST?6, AMBER?7, and OPAL?%®
benchmarking packages (see Table 3) available via Bioconda?®. All software released
by CAMI is open source under appropriate licenses such as Apache 2 or GPL. A key
result of the first challenge was that parameter settings substantially affect program
performances. A minimal requirement for public CAMI challenge results is therefore
documenting the exact program versions and command line calls or, even better,
using a workflow manager such as GNU make, Snakemake?°, Nextflow3!, or CWL%2.
The ideal, though time-consuming, approach is to containerize the program, e.g. in
Docker, Bioboxes®®, or BioContainers34, as well as to document and bundle
dependencies to facilitate installation with pip or Bioconda®®.

To maximize the scientific value, not only the methods, but also all data required for
reproducing and building on the results of a study should be made available. CAMI
commits to the FAIR (Findable, Accessible, Interoperable, Reusable) principles for
scientific data management and stewardship®. CAMI benchmark and reference data
sets, program results, and computed metrics are provided with DOIs on Zenodo
(https://zenodo.org/communities/cami) and GigaDB?%. This improves reusability and

sustainability of the efforts, as others can directly build on a study, for instance by
adding their own method’s results to the existing results of a benchmarking effort, or

adding calculation of new metrics to a benchmark study for more sophisticated


https://paperpile.com/c/nZQG67/lkwR
https://paperpile.com/c/nZQG67/a4wG
https://paperpile.com/c/nZQG67/63nh
https://paperpile.com/c/nZQG67/OQgO
https://paperpile.com/c/nZQG67/u3qW
https://paperpile.com/c/nZQG67/CRGd
https://paperpile.com/c/nZQG67/rGRO
https://paperpile.com/c/nZQG67/qujc
https://paperpile.com/c/nZQG67/9pRM
https://paperpile.com/c/nZQG67/JJjK
https://paperpile.com/c/nZQG67/u3qW
https://paperpile.com/c/nZQG67/KkU0
https://zenodo.org/communities/cami
https://paperpile.com/c/nZQG67/aiWz
https://doi.org/10.1101/2020.08.11.245712
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.11.245712; this version posted August 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Table 3: CAMI benchmarking software

Software Description

CAMISIM2®  |A microbial community and metagenome simulator that models
different microbial abundance profiles, multi-sample time series, and
differential abundance studies, real and simulated strain-level
diversity, and generates second and third-generation sequencing
data from taxonomic profiles or de novo. CAMISIM was used to

generate several benchmark data sets for CAMI challenges.

MetaQUAST?6|A quality assessment tool for metagenome assembly evaluation. It
computes various quality metrics based on alignment of assemblies
to a standard of truth or close reference genomes. The first option
is used in CAMI.

AMBER?” Software for the comparative assessment of genome reconstructions
and taxonomic assignments from metagenome benchmark data
sets. It calculates performance metrics such as (rank-specific taxon)
bin completeness and purity, average Rand index, assignment
accuracy, and comparative visualizations used in CAMI challenges.

OPAL?28 A tool for computing performance metrics and creating visualizations
for assessing taxonomic metagenome profilers. The metrics include
presence-absence metrics (number of true and false positives, false
negatives, completeness, purity, F1 score, Jaccard index) as well as
abundance metrics such as UniFrac, L1 norm and the Bray-Curtis

distance.

Bioboxes3? Docker containers with standardized interfaces facilitating
interchange of software in bioinformatics pipelines, distribution of
specific software versions with predefined parameter settings, and
therefore reproducibility of results and benchmarking. The Bioboxes
standard was used to containerize the methods benchmarked in the
CAMI | challenges and are continuously used along with
BioContainers® and workflow and package managers such as
Snakemake®, Nextflow3'!, and Bioconda?°.

interpretation. A schematic representation of CAMI’'S benchmarking workflow is shown
8
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in Fig. 1. In the following, we demonstrate this principle of convenient benchmarking
by extending previous results for the four software categories (assembly, genome and
taxonomic binning, and profiling) benchmarked on the CAMI Il multi-sample mouse

gut data set, creating a flexible benchmarking resource for individual studies.

— Sequence CAMI Challenges — Assess & Compare =
Database P MetaQUAST
. b Misassemblies Conligs Largest Contig Total Len
ACTGATTGALAGA| — — o
AACGTGLCAACT... .
S\muﬁ:ﬁ gﬁﬁﬁ;?ﬁmes Critical Assessment of — Results RepOSItory =
Metagenome Interpretation (On Zenodo)
Benchmark Data Repositories Deposit -
Data Set ‘559'“"'3"[
@ @ @ @ melle{u e
Blnmng-[ 0 AMBER
. . Class| Completeness - Contamination
Mouse Gut Strain . Low ) o High ) Mouse Gut cDr:::%quty
Madness omplexity omplexity Upload Results Results =
Dol Dol Dol Dol New Dol Dol s
Results 32
Download 8 <
Download Data Set Data <5
Software Tool 85
— Mouse Gut — Results
Benchmark Data Mouse Other Results Index of Bin
Reads P o o o o o AP o o oo n — Tool W — ToO X
— - — 1 Assembly X 11 Assembly Y Assembly Z mmm Tool Y mm Tool Z
= | {iHfiH=—= 1 _ 1] — 1 AMBER
_ — —— 1 — 1 - — 1 Quality for Sample
Sample.1.fastq.qz Sample.1.fastq.qz 1 1 1 (2]
Gold Standard Assembly 1 Genome Binning Results11 Genome Binning Results 1 8 o e J
(000) ' " - il oo e
- 1 = i 1 = e 1 5 o e
Gold Standard Genome Binning _@_. = — [ — —= |, E o ®o
- - — = —— = © °
V) Run | L= — il — — 1 Run °
. Software 1 Bin 1 Binn Bin1.Binn  Bin 1..Binn, 1 Analysis
Gold Sta’—\ndard Taxon Binning Tools | Taxon Blnnlng Results |, Taxon Binning Results Tools L)
MR ‘Taxon B Y @ Binning Result W @ Binning Result Y
| .y ) Taxon C 1 , = Jaxon B | (,,—,\) 5 | @Binning Result X @ Binning Result Z
Gold Standard Taxonomic Profile ! mmA Taxonc ! S L OPAL
9 Y I Taxonomic Profiling !lTaxonomic Profiling Resuilts ! class
o, 1 Results - X 1 1 Profile W y Profile X
o Y z
L7 S EE 1 5 1] 1 )
! 3 3 1 % ] I I I | | | I I | I 1 e Profile Y
= Purit
® ITaxonABCD ABCD";'_.‘AB?)HDABCD AECD ABCD] z -cgf#.’,’um.
NN BN N BN B BN I BN B BN BN OB OB BN OB BN ol ness

Fig. 1: CAMI benchmarking workflow. The initial step is the simulation of
metagenome data from a sequence database with CAMISIM?3 (1), which includes the
microbial community design and generation of standards of truth. The simulated
metagenome data are stored in benchmark data repositories with Digital Object
Identifiers (DOIs) (2) or temporarily without DOIs for ongoing CAMI challenges, as the
standards of truth are only provided after the challenges. The data can then be
downloaded (3) and software tools like metagenome assemblers, genome and
taxonomic binners, and profilers run on the data (4). This leads to the creation of a
pool of software tool results. These results can be submitted to an ongoing challenge
or uploaded to a public repository, like Zenodo (5). Already existing results can be
downloaded (6) and integrated in benchmark analyses with MetaQUAST?¢, AMBER?,
and OPAL?8 (7).
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Benchmarking demonstration

We demonstrate how to benchmark in practice using the benchmarking software and
standards (Table 3) from previous studies on CAMI data sets for different
computational challenges. We analyse the mouse gut metagenome “toy” data set®?
provided to prepare for CAMI Il (Table 2), starting below with a description of its
simulation. Analyses of this data set with several taxonomic profiling and assembly
methods were previously described?®28. The benchmarked assemblers, taxonomic
and genome binners, and taxonomic profilers were chosen based on popularity and
performance in the first CAMI challenge®. All method results for this and other
benchmark data sets can be obtained from a new resource on Zenodo at
https://zenodo.org/communities/cami, and curated metadata is provided at

https://qithub.com/CAMI-challenge/data. Users can continue to add results to these

repositories, thus building a growing method result collection for benchmarking.

Simulation of benchmark data set

The mouse gut metagenome “toy” data set was generated with CAMISIM version 0.2%3
(Table 3) using a microbial community genome abundance distribution modelled from
791 public prokaryotic genomes marked as at least “scaffolds” in the NCBI RefSeq?s®.
They comprise 8 phyla, 18 classes, 26 orders, 50 families, 157 genera, and 549
species. The community genome abundance distribution matches as close as possible
the 16S taxonomic profiles for 64 mouse gut samples. As such, this data set allows us
to assess how well sequenced community members can be characterized with
different techniques from metagenomes of similar communities. In each of the 64
samples, 91.8 genomes are represented on average. Both long (PacBio) and short-
read (lllumina HiSeq 2000) metagenome sequencing data are available, with 5 GB of
sequences per sample leading to an average genome coverage of 4.723. The runtime
to generate these data was approximately 3 weeks using eight CPU cores of a
computer with an AMD Opteron 6378 CPU and 968 GB of main memory.

CAMISIM can be installed according to the instructions at https://github.com/CAMI-
challenge/CAMISIM/ or using Docker with the command:

docker pull cami/camisim

10
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To generate the mouse gut data set, the following command was used:

./metagenome from profile -p profile.biom -o out/

profile.biom iS @ BIOM® file storing the microbial community genome abundance
distribution for the 64 samples. It can be obtained together with the data set (Table 2).

Per default, CAMISIM simulates 5 GB of sequences per sample.

If CAMI benchmark data generated with CAMISIM have been downloaded, the
following files and folders should appear:
e One folder per sample
o Reads (anonymized and shuffled) as FASTQ
o Contigs (gold standard assembly) as FASTA
o Gold standard mappings (binning) in BAM and CAMI formats (see format
specifications at https://github.com/CAMI-

challenge/contest information)

e For multi-sample simulations:
o File containing contigs (gold standard assembly) as FASTA
o File containing gold standard mappings (binning and profiling) in CAMI
format
e Profiling gold standard per sample in CAMI format
e One folder (called “source genomes”) containing all reference genome
sequences as FASTA
e One folder (called “distributions”) containing files with the absolute abundances
per genome for every sampled microbial community
e One folder (called “internal”) containing the input metadata and a list of unused
genomes
e Metadata (CAMISIM .ini config file)

Assembly

Cross-sample co-assemblies of the first 10 of 64 metagenome samples were
performed with MEGAHIT3® versions 1.0.3, 1.1.3, and 1.2.9, and metaSPAdes?®
3.18.0, as the computer main memory was insufficient to run metaSPAdes on more
than 10 samples. The choice of the first 10 samples was analogous to the CAMI I
challenge specifications. All results and commands used are available on Zenodo
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(Supplementary Table 1). The computer specifications, memory usage, and runtimes
are available in Supplementary Tables 2 and 3.

Assemblies were evaluated by mapping them against the gold standard assembly,
defined as the fraction of the genome covered by at least one read in the set of
analyzed samples, using MetaQUAST?¢ 5.0.2. The gold standard genomes are known
through the simulation with CAMISIM and provided to MetaQUAST for the evaluation.
In case the underlying genomes are unknown, such as when assessing de novo
assemblies from less studied environments, reference-free methods*®4?> can be

considered.

MetaQUAST can be installed with Bioconda using the command:

conda create --name quast quast

This requires Conda to be installed and the Bioconda channel configured — see
https://bioconda.qgithub.io/user/install.html| for details. Other installation methods are
described in the MetaQUAST GitHub repository at https://github.com/ablab/quast/. To
run MetaQUAST, type:

conda activate quast

metaquast -r /path/to/set0-9/ref-genomes \

-t 24 --unique-mapping --no-icarus -o /path/to/output dir \
-1 megahit-103-df,megahit-113-df,megahit-113-ml, \
megahit-113-ms, megahit-129-df, metaSPAdes \
/path/to/megahitl103-Sample0-9-default/final.contigs.fa \
/path/to/megahitl13-Sample0-9-default/final.contigs.fa \
/path/to/megahitll13-Sample0-9-meta-large/final.contigs.fa \
/path/to/megahitl13-Sample0-9-meta-sensitive/final.contigs.fa \
/path/to/megahitl129-Sample0-9-default/final.contigs.fa \
/path/to/metaSPAdes3130-Sample0-9/contigs.fasta

For evaluating assembly quality, we rely on the metrics provided by MetaQUAST.
Table 4 shows the metrics we focus on here, whereas Supplementary results
(report.html) shows all metrics computed by MetaQUAST. The genome fraction is
the total number of aligned bases in the reference, divided by the genome size;
#contigs is the number of contigs in the assembly; NG5O0 is the contig length such
that contigs of that length or longer covers half (50%) of the bases of the reference
genome; and NGA50 is NG50 such that the lengths of aligned blocks are counted
instead of contig lengths. Performance values are calculated for the whole assembly

vs. the combined reference (i.e. concatenation of all provided references).
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Table 4: MetaQUAST assembly benchmarking metrics

K .

Worst Median Best

Genome statistics MEGAHIT1.03di ~ MEGAHIT1.1.3df ~ MEGAHIT1.1.3ml ~MEGAHIT1.13ms ~MEGAHIT 1.2.9df ~ metaSPAdes 3.13.0
Genome fraction (%) 23.507 26.164 26.039 26.292 26.691 23.262
Duplication ratio 1.023 1.037 1.046 1.05 1.034 1.017
Largest alignment 904953 859640 753008 787657

Total aligned length 436725459 492514960 493969107 500306789 500 856 984 429280747
NGAS50

LGAS0

Misassemblies

# misassemblies 5770 8685 5336 9381 8807 3488
Misassembled contigs length 10879967 43068359 34576388 56221107 50536 067 25409676
Mismatches

# mismatches per 100 kbp 542.07 580.14 EE ST sss.26

#indels per 100 kbp 2.39 417 3.92 4.75 4.3 2.57

#N's per 100 kbp 0 0 0 0 0 0

Statistics without reference

# contigs 225585 220757 278807 282136 225167 174693
Largest contig 904 953 859640 754056 788697

Total length 438032656 494653238 496722592 503491159 503073431 430847014
Taotal length (>= 1000 bp) 342669622 399682035 368806791 372764886 354794894
Total length (>= 10000 bp) 154 362921 228640882 192818790 198110070 236255 195 225930387
Total length (>= 50000 bp) [esE2EIE 102990325 82724532 83865010 106551 070 119684054

Overall, the performance of the MEGAHIT and MetaSPAdes assemblers is quite
similar. MEGAHIT version 1.0.3 shows poor performance for high coverage (i.e. high
abundance) genomes. This effect has been described for earlier versions of MEGAHIT
before®. The more recent versions of MEGAHIT (1.1.3 and 1.2.9) handle high
coverage genomes much better and show similar performance to MetaSPAdes. For
coverages of 16 and above, the fraction of the recovered genomes is above 75% with
some outliers for coverage higher than 250x. The NGA50 metric shows similar
performance for MEGAHIT and metaSPAdes, reaching 32 kb and more for coverage
of 32x and above (Fig. 2a-c). MetaSPAdes delivers fewer fragmented assemblies
(fewer contigs and higher NGA50, Fig. 2d-e) than the newer MEGAHIT versions with
only slightly lower genome fraction (Fig. 2d).

When assessing different settings for MEGAHIT version 1.1.3 (Fig. 2d-f), smaller, but
notable differences were found. For instance, the settings “meta-sensitive” (ms) and
“‘meta-large” (ml) delivered higher genome fractions for low coverage genomes, at the

cost of higher genome fragmentation rates (decreased NGA50 and more contigs).
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Fig. 2: Assessing metagenome cross-sample assembly quality with MetaQUAST
for the CAMI Il mouse gut data set. a-c Genome-wide MetaQUAST metrics for
assemblies generated with MEGAHIT versions 1.0.3, 1.1.3, 1.2.9 and metaSPAdes
3.13.0 vs. sum of read coverages for individual genomes (dots) in ten cross-sample
gold standard assemblies. The higher the genome fraction and NGA50, the better is
assembly quality. Higher #contigs can indicate a higher amount of assembled data,
but also more fragmented assemblies, whereas lower #contigs can indicate
aggressive traversal of repeats by an assembler leading to incorrect junction of
sequence fragments and thus misassemblies. d-f MetaQUAST metrics for assemblies
generated with MEGAHIT 1.1.3 and metaSPAdes 3.13.0. All lines are fitted with local
regression using the R stats::loess function.
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Genome binning

Genome binning can be seen as a clustering problem, where sequences are grouped
into bins without taxon labels. We reconstructed genome bins from the cross-sample
gold standard assembly with the popular binners MaxBin 2.2.743, MetaBAT 2.12.144,
CONCOCT 1.0.0%, and DAS Tool 1.1.246. DAS Tool combines the genome bins of
individual methods to further improve bin quality. All results and commands used are
available on Zenodo (Supplementary Table 4). Runtimes and memory usage are
provided in Supplementary Table 5. Binning quality was evaluated with AMBER
2.0.127 (Table 3), which computes binning performance metrics for metagenome data
with a ground truth available. To reproduce the evaluation, the binning results must
first be downloaded from Zenodo, then AMBER installed using Bioconda:

conda create —--name amber cami-amber

Other installation methods are described in https:/github.com/CAMI-
challenge/AMBER/. To run AMBER, type:

conda activate amber

amber.py --gold standard file /path/to/cami2 mouse gut gsa pooled.binning \
/path/to/cami2 mouse gut maxbin2.2.7.binning \
/path/to/cami2 mouse gut metabat2.12.l.binning \
/path/to/cami2 mouse gut concoctl.0.0.binning \
/path/to/cami2 mouse gut dastooll.l.2.binning \

--labels "MaxBin 2.2.7, MetaBAT 2.12.1, CONCOCT 1.0.0, DAS Tool 1.1.2" \
--genome_coverage /path/to/cami2_mouse_gut_average_genome_coverage.tsv \
--output _dir /path/to/output dir

File cami2 mouse gut average genome coverage.tsv above contains the average
coverage of the genomes in the CAMI Il mouse gut data set and is also available on
Zenodo (Supplementary Table 4). This file is optional and used by AMBER to generate

performance plots relative to the average genome coverage (Fig. 3a,b).

In the evaluation of genome binning, several metrics are often jointly assessed. For
each genome, completeness, or recall, is evaluated from the predicted bin containing
the largest number of base pairs (bp) of the genome. It is the number of bp (or contigs)
of the genome in that bin divided by the genome size (in bp or contigs). Sequences of
that genome assigned to other bins are considered false positives for those bins.
Completeness can be zero, in case no part of a genome has been binned by the

respective binner. Purity denotes how “clean” predicted bins are in terms of their
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assigned content. It is computed as the fraction of contigs, or bp, coming from one
genome, for the most abundant genome in that bin. Contamination is defined as
100% minus purity. As genomes can differ in their abundances, it is also common to
consider sample-wise metrics, such as the overall percentage of assigned bp and
the adjusted Rand index (ARI) on that assigned fraction. The ARI reflects the overall
resolution of the underlying ground truth genomes by a binner on the binned part of
the sample. The ARI gives more importance to “large” bins, i.e. bins of large and/or
abundant genomes, than averaging over completeness and purity, where each gold
standard genome (for completeness) and predicted bin (for purity) contributes the
same, irrespective of its size. In the following, all evaluations are based on base pair

counts.

Completeness was high for all methods, and highest for CONCOCT. Binners
recovered the abundant genomes better, with average completeness above 90% for
genomes at more than 3-fold coverage (Fig. 3a). Purity was also high (Fig. 3b), except
for CONCOCT, and highest for MetaBAT, which was further improved by DAS Tool.
Completeness was above 90% for predicted genomes bins with an average of 3.5 to
4.6 million bp for most binners and 11.4 million bp for CONCOCT, which along with
MetaBAT predicted bins that were larger than their true sizes (Fig. 3c,d). Purity was
above 90% for predicted genomes bins with an average of 2.6 to 3.5 million bp (Fig.
3d). Both purity and completeness were much lower for smaller and larger bins.
CONCOCT assigned the most bp (Fig. 3e), though into fewer bins. Low purity and
fewer bins indicate “underbinning”, i.e. multiple genomes being placed together in one
bin. The other extreme, “overbinning”, occurs when genomes are split across multiple
bins, resulting in low completeness. After DAS Tool, MaxBin predictions had the
highest ARI, followed by MetaBAT. DAS Tool substantially improved bin purity and
ARl relative to the individual methods, at the cost of completeness and assigning less
than two methods. MaxBin and DAS Tool recovered the most high-quality genomes,
defined as genomes with more than 50% completeness and less than 10%
contamination (Table 5). The total number of predicted bins per method was 867
(MaxBin), 592 (MetaBAT), 344 (CONCOCT), and 577 (DAS Tool).
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Fig. 3: Assessing genome binners on the gold standard assembly of the CAMI
Il mouse gut data set. a Average genome coverage (x axis) vs. completeness per
genome (y axis). b Average genome coverage (x axis) vs. purity per bin (y axis). The
lines in a and b show the rolling average completeness or purity over 50 bins. ¢
Genome size in thousands of bp (x axis) vs. completeness per genome (y axis). d Bin
size in thousands of bp (x axis) vs. purity per bin (y axis). e Adjusted Rand index (x
axis) vs. percentage of assigned base pairs (y axis). f Average purity (x axis) vs.
average completeness (y axis) of all predicted bins per method assessed with AMBER
(circles) and CheckM (diamonds), with the whiskers showing the variance. All metrics,
except genome and bin sizes, range between 0% (worst) and 100% (best).

We compared the bin quality metrics to those returned by the commonly used CheckM
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software version 1.1.2, which assesses bin quality based on the presence of lineage
specific marker genes*’ (Fig. 3f, Supplementary information). Results are largely
consistent. CheckM overestimated purity by 4% (MetaBAT and DAS Tool) to 21%
(MaxBin) and completeness by 2% (MetaBAT and CONCOCT) to 7% (MaxBin) (Fig.
3f, Supplementary Tables 6 and 7). Due to CheckM’s known bias of overestimating
completeness and underestimating contamination*’, we also computed the averages
of only those bins with more than 90% completeness and less than 10% contamination
according to AMBER’s assessment. In this case, CheckM's purity overestimates
dropped to only up to 3% for all methods except CONCOCT, for which it increased to
29%. On the other hand, completeness was underestimated for most methods, by 9%
(CONCOCT) to 17% (MaxBin).

Table 5: Number of high-quality genomes and corresponding percentages
recovered from the gold standard assembly of the CAMI Il mouse gut data set.
The best performing individual method and best performer overall are indicated in
bold.

Predicted bins
% completeness

>70°/o

Genome binner % contamination

>50% >90%

Gold standard

. < 100/0
MaxBin 2.2.7 < 5%
MetaBAT 2.12.1 <10%

< 5°/o
coNcocT1.00  <10%

< 5/0
DAS Tool 1.1.2 <10%

(ensemble method) < 5%

791 (100%)

439 (55%)
401 (51%)

353 (45%)
339 (43%)

95 (12%)
88 (11%)

460 (58%)
422 (53%)
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791 (100%)

419 (53%)
386 (49%)

318 (40%)
309 (39%)

95 (12%)
88 (11%)

449 (57%)
416 (53%)

791 (100%)

342 (43%)
319 (40%)

240 (30%)
236 (30%)

84 (11%)
79 (10%)

354 (45%)
334 (45%)
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Taxonomic binning

A taxon bin is a set of sequences, either contigs or reads, with the same taxonomic
label. Taxonomic binning can be evaluated as a multi-class classification problem at
individual taxonomic ranks, where one of many possible taxon labels from a reference
taxonomy is assigned to every metagenomic sequence. The quality of a taxon binning
is assessed by comparing predicted and ground truth taxon bins with each other.

We predicted taxon bins from the cross-sample gold standard assembly with
DIAMOND 0.9.2448 Kraken 2.0.8 beta*®, PhyloPythiaS+ 1.4%0, CAT 4.6%', and
MEGAN 6.15.2%. All results and commands used are available on Zenodo
(Supplementary Table 8). Runtimes and memory usage are given in Supplementary
Table 9. The release date of the NCBI taxonomy used by each method is indicated on
Zenodo and can vary slightly, depending on the reference database of the method.
Method performances were assessed with AMBER 2.0.1, for all major taxonomic
ranks (Figs. 4 and 5), using the NCBI taxonomy database from 2018/02/26. This
reference taxonomy is provided with the mouse gut data set of the CAMI |l challenge
(Table 2). To run AMBER, type:

amber.py --gold standard file /path/to/cami2 mouse gut gsa pooled.binning \
--desc "CAMI 2 toy mouse gut data set" \
/path/to/cami2 mouse gut diamond0.9.24.binning \
/path/to/cami2 mouse gut kraken2.0.8beta.binning \
/path/to/cami2 mouse gut ppspl.4.binning \
/path/to/cami2 mouse gut cat4.6.binning \
/path/to/cami2 mouse gut megan6.15.2.binning \

--labels "DIAMOND 0.9.24, Kraken 2.0.8 beta, PhyloPythiaS+ 1.4, CAT 4.6, MEGAN 6.15.2"
\

--ncbi nodes file /path/to/nodes.dmp \

--ncbi names_file /path/to/names.dmp \

--ncbi merged file /path/to/merged.dmp \

--filter 1 \

--output dir /path/to/output dir

For comparing predicted taxon bins to the ground truth, completeness and purity can
be calculated. The completeness, or recall for a taxon bin found in the ground truth is
the fraction of ground truth contigs, or bp, that have been assigned to that taxon by a
method. Completeness is averaged over all ground truth taxon bins at a particular rank
and undefined for predicted taxon bins not present in the ground truth. The purity of a
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predicted taxon bin is the fraction of contigs, or bp, belonging to that taxon in the
ground truth. Taxon bins without any correctly assigned sequences accordingly have
a purity of zero. Purity is averaged over all predicted taxon bins at a particular rank.
Contamination is defined as 100% minus purity. Finally, the accuracy is the fraction
of contigs, or bp, that have been assigned by a method to the correct taxa for a rank.
Accuracy is a sample-specific metric to which larger taxon bins contribute more

strongly than small ones, different from average completeness and purity.

DIAMOND and CAT, which relies on DIAMOND’s output, obtained the highest average
completeness for all ranks. This was above 90% from superkingdom to order and
continuously dropped at lower ranks (Fig. 4a). MEGAN, which also uses DIAMOND,
achieved lower completeness for phylum level and below, but the highest average
purity at all ranks, except for superkingdom, at which PhyloPythiaS+ performed best.
As purity can be reduced for small bins, we filtered out the smallest predicted bins per
method and rank, removing overall 1% of the binned data in bp. This can be done with
AMBER (option -filter 1) on the predicted bins, requiring no knowledge of the
underlying gold standard. Across all ranks, the average size of the removed taxon bins
was 0.35 Mb, whereas the average size of all bins was 235.79 Mb (Supplementary
Table 10), with larger bins accumulating at higher ranks. DIAMOND and CAT profited
most from this, with CAT reaching almost 100% filtered purity at all ranks.
Researchers interested in taxa with small genomes, such as viruses, should keep in
mind that filtering could remove these along with false positive bins. Purity and
completeness were also influenced by contig length and overall higher for longer
contigs (Supplementary Fig. 1). In terms of accuracy, all methods performed similarly
well, with PhyloPythiaS+ being the most accurate at the species level.

Based on a quality score defined as completeness - 5 X contamination, as in 73, we

determined the number of high-quality bins found by each method with a score of more
than 90, 70, and 50 at different taxonomic ranks (Fig. 5). DIAMOND, CAT, and
PhyloPythiaS+, in this order, identified the most high-quality bins (>50) at all taxonomic
ranks. CAT, followed by DIAMOND, found the most bins with a score higher than 90.
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Fig. 4: Assessing taxonomic binning results on the CAMI Il mouse gut data set.
a Average completeness and purity (1% filtered and unfiltered, see main text) and
accuracy per taxonomic rank for each binner. The shaded bands show the standard
deviation of a metric. b Score (i.e. completeness - 5 X contamination, y axis) and
number of predicted taxon bins (x axis) for the phylum to species ranks. The higher
the number of high-scoring bins, the better is the binning performance. Only positive
scores are shown. The dotted lines indicate the 90, 70, and 50 score thresholds.
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Fig. 5: Number of high-quality taxon bins predicted from the CAMI Il mouse gut
data set for the phylum to species ranks. Counted are the bins with score (i.e.
completeness - 5 X contamination) higher than 90, 70, and 50. A number of bins

closer to the number of taxa per rank in the gold standard (i.e. 8 phyla, 18 classes, 26
orders, 50 families, 157 genera, and 549 species) is better.

Taxonomic profiling

Taxonomic profiling can be considered a multi-label problem at a given rank, where
multiple taxon labels are assigned to a single sample and the relative taxon
abundances are estimated. Profiling differs from binning in that individual reads are
not necessarily assigned taxon labels. We predicted taxonomic identities and relative
abundances of microbial community members for the 64 short read samples of the
mouse gut data set with MetaPhlAn 2.9.215% mOTUs 2.5.1%, and Bracken 2.5%. We
assessed these together with results for MetaPhlAn 2.2.0, mOTUs 1.1, MetaPalette
1.0.0, MetaPhyler 1.25, FOCUS 0.31, TIPP 2.0.0, and CAMIARKQuikr 1.0.0 from 28.
The profiling results and commands used can be obtained from Zenodo
(Supplementary Table 11). Runtimes and memory usage are given in Supplementary
Table 12. Performance metrics and result visualizations were calculated with OPAL?®
1.0.8 (Table 3), which can be installed with the following command if Bioconda is
configured:
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conda create --name opal cami-opal

Other installation methods are described in the OPAL GitHub repository at
https://github.com/CAMI-challenge/OPAL/. We then ran OPAL as:

conda activate opal

opal.py --gold standard file /path/to/cami2 mouse gut gs.profile \
/path/to/cami2 mouse gut metaphlan2.2.0.profile \
/path/to/cami2 mouse gut metaphlan2.9.21.profile \
/path/to/cami2 mouse gut motusl.l.profile \
/path/to/cami2 mouse gut motus2.5.l1.profile \
/path/to/cami2 mouse gut bracken2.5.profile \
/path/to/cami2 mouse gut metapalettel.0.0.profile \
/path/to/cami2 mouse gut metaphylerl.25.profile \
/path/to/cami2 mouse gut focus0.31l.profile \
/path/to/cami2 mouse gut tipp2.0.0.profile \
/path/to/cami2 mouse gut camiarkquikrl.0.0.profile \

--labels "MetaPhlAn 2.2.0, MetaPhlAn 2.9.21, mOTUs 1.1, mOTUs 2.5.1, Bracken 2.5,
MetaPalette 1.0.0, MetaPhyler 1.25, FOCUS 0.31, TIPP 2.0.0, CAMIARKQuikr 1.0.0" \
-d "2nd CAMI Challenge Mouse Gut Toy Dataset" \

--metrics plot c,p,1l,w \

--filter 1 \

--output dir /path/to/output dir

OPAL computes performance metrics and creates visualizations for profiling results
on a benchmark data set. It also generates weighted summary scores for ranking
methods based on these metrics (see®® for a complete overview and formal
definitions). For a taxonomic rank, the purity and completeness assess how well a
profiler identified the presence and absence of taxa, without considering relative
abundances. Purity, or precision, denotes the ratio of correctly predicted taxa to all
predicted taxa predicted at a taxonomic rank, whereas completeness, or recall, is the
ratio of correctly identified taxa to all ground truth taxa at a taxonomic rank. To explore
the effect of heuristic post-processing of predictions on purity, we filtered low
abundance taxon predictions as we did for taxonomic binners®: by removing
predictions with the lowest relative abundances, summing up to one percent of the
total predicted organismal abundances per taxonomic rank.

For quantifying relative abundance estimates, the L1 norm and weighted UniFrac
error are determined. The L1 norm assesses relative abundance estimates of taxa at
a taxonomic rank, based on the sum of the absolute differences between the true and
predicted abundances across all taxa. The weighted UniFrac error computed by OPAL
uses a taxonomic tree storing the predicted abundances at the appropriate nodes for
eight major taxonomic ranks. The UniFrac error is the total amount of predicted
abundances that must be moved along the edges of the tree to cause them to overlap
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with the true relative abundances. Branch lengths in the taxonomic tree can be set to
1 or any function of the depth of the edge in the taxonomic tree. This choice is
motivated by the fact that harmonizing phylogenetic trees (which express evolutionary
distance with branch lengths) and taxonomic trees (which do not inherently have
branch length information) remains an open problem under active investigation57-60. A
low UniFrac error indicates good accuracy of abundance estimates. Prior to computing
the L1 norm and weighted UniFrac error, OPAL, per default (as used here), normalizes
all relative abundance estimates, which may be less than one if some data remains
taxonomically unassigned, such that their sum equals 1 at each rank. Normalization
can simplify the comparison of the L1 norm between methods

(https://github.com/CAMI-challenge/firstchallenge evaluation/tree/master/profiling),

however, may skew results for profilers with low recall that left many taxa unassigned.
Assessment results with unnormalized relative abundance estimates are available in
the OPAL GitHub repository.

Using all these metrics, OPAL ranks the assessed profilers by their relative
performance. For each metric, sample, and major taxonomic rank (from superkingdom
to species), the best performing profiler is assigned score 0, the second best, 1, and
so on. These scores are then added over the taxonomic ranks and samples to produce
a single score per metric for each profiler. OPAL can also assign different weights to
the metrics, such that the importance of a metric, defined by the user, is reflected in
the overall score and rank of a profiler. In our assessment, all metrics were weighted

equally.

mOTUs 2.5.1, Bracken 2.5, MetaPhyler 1.25, and TIPP 2.0.0, in this order, achieved
the overall highest completeness (Fig. 6). mOTUs 2.5.1 achieved high completeness
up to genus level, whereas the other profilers performed well with this metric up to
family level. Along with completeness, purity also drops for lower taxonomic ranks.
Filtering low abundant taxon predictions greatly improved purity, most strongly for
MetaPhyler and Bracken 2.5, which was ranked 7th instead of last with this metric.
MetaPhlAn 2.2.0 and mOTUs 1.1 had the highest filtered purity across ranks, followed
by mOTUs 2.5.1 and MetaPhlAn 2.9.21. mOTUs 2.5.1 showed both high (filtered and
unfiltered) purity and completeness and improved considerably in terms of
completeness compared to its previous version. mOTUs 2.5.1, MetaPhlAn 2.9.21,
MetaPhlAn 2.2.0, and MetaPhyler 1.25, in this order, best estimated the relative
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abundances measured with the L1 norm, with MetaPhlAn 2.9.21 outperforming all
methods at the species level. mMOTUs 2.5.1 also obtained a low UniFrac error, followed
by MetaPhlAn 2.9.21 and MetaPhlAn 2.2.0. Considering all metrics, mOTUs 2.5.1
ranked first, followed by MetaPhlAn 2.2.0 and 2.9.21. Notably, normalization of
abundance estimates had almost no effect on the L1 norm error of the methods
(Supplementary Fig. 2), as the estimates covered almost 100% of the data
(Supplementary Table 13). We note that performance estimates may differ strongly
depending on metric definitions. For instance, contrary to the findings reported here,
mOTUs and MetaPhlAN were reported to perform poorly in terms of the fraction of
sample reads that they classified?', which is a task that they were not designed for.
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Fig. 6: Assessing profiling results on the CAMI Il mouse gut data set. a
Comparison per taxonomic rank of methods in terms of completeness, purity (1%
filtered, see main text), L1 norm, and weighted UniFrac error. b Performance per
method at all major taxonomic ranks, with the shaded bands showing the standard
deviation of a metric. In a and b, completeness, purity, and L1 norm error range
between 0 and 1. The L1 norm error is normalized to this range and is also known as
Bray-Curtis distance. The weighted UniFrac error is rank-independent and normalized
by the maximum value obtained by the profilers. The higher the completeness and
purity, and the lower the L1 norm and weighted UniFrac error, the better the profiling
performance. ¢ Methods rankings and scores obtained for the different metrics over
all samples and taxonomic ranks. For score calculation, all metrics were weighted

equally.
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Summary and conclusions

Microbiome research using metaomics technologies is a rapidly progressing field
producing highly complex and heterogeneous data. For developing and assessing
data processing techniques, adoption of benchmarking standards in the field is
essential. We here outlined key elements of benchmarking and best practices
developed by a larger group of scientists within CAMI for common computational
analyses in metagenomics. Community-driven benchmarking challenges are a key
component of unbiased performance evaluations, in addition to the assessments by
individual developers that are commonly done. To facilitate the latter, we describe a
benchmarking tool resource and the mechanisms to use and add to this resource, as
indicated in &, in a flexible way. We show how to apply the CAMI standards and data
for performance assessment using a benchmarking toolkit developed in large part
within CAMI. For profiling methods, we demonstrated the value of incremental
benchmarking by reusing and combining tool results from different studies and saving
these in the CAMI tool result repositories on Zenodo

(https://zenodo.org/communities/cami). Curated metadata and instructions on how to

contribute  reproducible results are provided at https:/github.com/CAMI-

challenge/data. As these new resources grow, individual benchmarks of metaomics

software will become increasingly more efficient, informative and reproducible.

Using the 64 sample simulated metagenome data set from mouse guts as an example,
we performed a comparative evaluation of metagenome assembly (for the first 10
samples), genome binning, taxonomic binning and profiling on these data. Overall, the
evaluation included 25 results for 19 computational methods: 2 assemblers, with 6
different settings and versions evaluated, 4 genome and 5 taxon binners, as well as 8
profilers, including 2 different versions. Seven of the profiling results originate from a
previous evaluation study on the data, demonstrating the value of incremental data
analysis. Notably, as the data set was generated from genomes included in public
databases, the results for reference-based methods, such as taxonomic binning and
profiling techniques, are to be taken as representative only for microbial community
members represented by close relatives in public database content. This is only true
for a fraction of most microbial communities, if not considering computationally

reconstructed MAGs as a reference. Accordingly, for reference-based techniques, i.e.
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taxonomic binners and profilers, results were consistent with prior studies on data
generated from publicly available genomes??, and less congruent with performances
on benchmark data including genomes more distantly related to public database
content®. Performance on species that are distantly to those with genomes in public
databases continues to be an important point to keep in mind when selecting the most
suitable method for analysis.

With the CAMI benchmarking resources in place, we invite researchers to make full
use of these for tackling the big challenges in the field®'. These include developing
strain-resolved assembly, binning and profiling techniques for strain-specific genome
reconstructions263, making use of long-read metagenomic sequencing data®,
evaluating methods for other metaomics, e.g. metatranscriptomics, metaproteomics®,
and metametabolomics. The applications of metagenomics are diverse and growing,
and the best way to tackle this is via a large collaborative framework supported by
good collaborative infrastructure, which CAMI aims to provide.

Data availability

The results of all benchmarked methods and gold standards are available at

https://zenodo.org/communities/cami. Links to individual results and DOls are

available in Supplementary Tables 1, 4, 8, and 11. The gold standard assembly is
provided with the CAMI Il mouse gut data set (Table 2). Assembly results and code
used to generate Fig. 2 are available at hitps:/github.com/CAMI-

challenge/BenchmarkingToolkitTutorial. Genome and taxonomic binning, and

taxonomic profiling results used in Figs. 3-6 are available, respectively, in the AMBER
and OPAL GitHub repositories at https://github.com/CAMI-challenge/AMBER and
https://github.com/CAMI-challenge/OPAL.

References

1. Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso
Sea. Science 304, 66—74 (2004).

2. Mitchell, A. L. et al. EBI Metagenomics in 2017: enriching the analysis of

28


https://paperpile.com/c/nZQG67/OQgO
https://paperpile.com/c/nZQG67/h7pJ
https://paperpile.com/c/nZQG67/oMUb
https://paperpile.com/c/nZQG67/QloZ
https://paperpile.com/c/nZQG67/wiaY
https://paperpile.com/c/nZQG67/kCwu
https://paperpile.com/c/nZQG67/yu3t
https://zenodo.org/communities/cami
https://github.com/CAMI-challenge/BenchmarkingToolkitTutorial
https://github.com/CAMI-challenge/BenchmarkingToolkitTutorial
https://github.com/CAMI-challenge/AMBER
https://github.com/CAMI-challenge/OPAL
http://paperpile.com/b/nZQG67/pYwx
http://paperpile.com/b/nZQG67/pYwx
http://paperpile.com/b/nZQG67/pYwx
http://paperpile.com/b/nZQG67/pYwx
http://paperpile.com/b/nZQG67/pYwx
http://paperpile.com/b/nZQG67/pYwx
http://paperpile.com/b/nZQG67/pYwx
http://paperpile.com/b/nZQG67/pYwx
http://paperpile.com/b/nZQG67/1Yp1
http://paperpile.com/b/nZQG67/1Yp1
http://paperpile.com/b/nZQG67/1Yp1
https://doi.org/10.1101/2020.08.11.245712
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.11.245712; this version posted August 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

10.

11.

12.

made available under aCC-BY 4.0 International license.

microbial communities, from sequence reads to assemblies. Nucleic Acids Res.
46, D726-D735 (2018).

Chen, I.-M. A. et al. IMG/M v.5.0: an integrated data management and
comparative analysis system for microbial genomes and microbiomes. Nucleic
Acids Res. 47, D666-D677 (2019).

Quince, C., Walker, A. W., Simpson, J. T., Loman, N. J. & Segata, N. Shotgun
metagenomics, from sampling to analysis. Nat. Biotechnol. 35, 833-844 (2017).
Pasolli, E. et al. Extensive Unexplored Human Microbiome Diversity Revealed
by Over 150,000 Genomes from Metagenomes Spanning Age, Geography, and
Lifestyle. Cell 176, 649-662.e20 (2019).

Almeida, A. et al. A new genomic blueprint of the human gut microbiota. Nature
(2019) doi:10.1038/s41586-019-0965-1.

Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes
substantially expands the tree of life. Nat Microbiol 2, 1533—-1542 (2017).
Sczyrba, A. et al. Critical Assessment of Metagenome Interpretation—a
benchmark of metagenomics software. Nat. Methods 14, 1063—1071 (2017).
Bansal, V. & Boucher, C. Sequencing Technologies and Analyses: Where Have
We Been and Where Are We Going? iScience 18, 37-41 (2019).

Mantere, T., Kersten, S. & Hoischen, A. Long-Read Sequencing Emerging in
Medical Genetics. Front. Genet. 10, 426 (2019).

Mosimann, S., Meleshko, R. & James, M. N. A critical assessment of
comparative molecular modeling of tertiary structures of proteins. Proteins 23,
301-317 (1995).

Andreoletti, G., Pal, L. R., Moult, J. & Brenner, S. E. Reports from the fifth

edition of CAGI: The Critical Assessment of Genome Interpretation. Hum. Mutat.

29


http://paperpile.com/b/nZQG67/1Yp1
http://paperpile.com/b/nZQG67/1Yp1
http://paperpile.com/b/nZQG67/1Yp1
http://paperpile.com/b/nZQG67/1Yp1
http://paperpile.com/b/nZQG67/1Yp1
http://paperpile.com/b/nZQG67/1Yp1
http://paperpile.com/b/nZQG67/rinV
http://paperpile.com/b/nZQG67/rinV
http://paperpile.com/b/nZQG67/rinV
http://paperpile.com/b/nZQG67/rinV
http://paperpile.com/b/nZQG67/rinV
http://paperpile.com/b/nZQG67/rinV
http://paperpile.com/b/nZQG67/rinV
http://paperpile.com/b/nZQG67/rinV
http://paperpile.com/b/nZQG67/rinV
http://paperpile.com/b/nZQG67/HCAJ
http://paperpile.com/b/nZQG67/HCAJ
http://paperpile.com/b/nZQG67/HCAJ
http://paperpile.com/b/nZQG67/HCAJ
http://paperpile.com/b/nZQG67/HCAJ
http://paperpile.com/b/nZQG67/HCAJ
http://paperpile.com/b/nZQG67/OrMe
http://paperpile.com/b/nZQG67/OrMe
http://paperpile.com/b/nZQG67/OrMe
http://paperpile.com/b/nZQG67/OrMe
http://paperpile.com/b/nZQG67/OrMe
http://paperpile.com/b/nZQG67/OrMe
http://paperpile.com/b/nZQG67/OrMe
http://paperpile.com/b/nZQG67/OrMe
http://paperpile.com/b/nZQG67/OrMe
http://paperpile.com/b/nZQG67/EJvJ
http://paperpile.com/b/nZQG67/EJvJ
http://paperpile.com/b/nZQG67/EJvJ
http://paperpile.com/b/nZQG67/EJvJ
http://paperpile.com/b/nZQG67/EJvJ
http://paperpile.com/b/nZQG67/EJvJ
http://dx.doi.org/10.1038/s41586-019-0965-1
http://paperpile.com/b/nZQG67/EJvJ
http://paperpile.com/b/nZQG67/lG0a
http://paperpile.com/b/nZQG67/lG0a
http://paperpile.com/b/nZQG67/lG0a
http://paperpile.com/b/nZQG67/lG0a
http://paperpile.com/b/nZQG67/lG0a
http://paperpile.com/b/nZQG67/lG0a
http://paperpile.com/b/nZQG67/lG0a
http://paperpile.com/b/nZQG67/lG0a
http://paperpile.com/b/nZQG67/h7pJ
http://paperpile.com/b/nZQG67/h7pJ
http://paperpile.com/b/nZQG67/h7pJ
http://paperpile.com/b/nZQG67/h7pJ
http://paperpile.com/b/nZQG67/h7pJ
http://paperpile.com/b/nZQG67/h7pJ
http://paperpile.com/b/nZQG67/h7pJ
http://paperpile.com/b/nZQG67/h7pJ
http://paperpile.com/b/nZQG67/fFxv
http://paperpile.com/b/nZQG67/fFxv
http://paperpile.com/b/nZQG67/fFxv
http://paperpile.com/b/nZQG67/fFxv
http://paperpile.com/b/nZQG67/fFxv
http://paperpile.com/b/nZQG67/fFxv
http://paperpile.com/b/nZQG67/TS0y
http://paperpile.com/b/nZQG67/TS0y
http://paperpile.com/b/nZQG67/TS0y
http://paperpile.com/b/nZQG67/TS0y
http://paperpile.com/b/nZQG67/TS0y
http://paperpile.com/b/nZQG67/TS0y
http://paperpile.com/b/nZQG67/uqM2
http://paperpile.com/b/nZQG67/uqM2
http://paperpile.com/b/nZQG67/uqM2
http://paperpile.com/b/nZQG67/uqM2
http://paperpile.com/b/nZQG67/uqM2
http://paperpile.com/b/nZQG67/uqM2
http://paperpile.com/b/nZQG67/uqM2
http://paperpile.com/b/nZQG67/bLBM
http://paperpile.com/b/nZQG67/bLBM
http://paperpile.com/b/nZQG67/bLBM
http://paperpile.com/b/nZQG67/bLBM
https://doi.org/10.1101/2020.08.11.245712
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.11.245712; this version posted August 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

made available under aCC-BY 4.0 International license.

40, 1197-1201 (2019).

Dessimoz, C., Skunca, N. & Thomas, P. D. CAFA and the open world of protein
function predictions. Trends Genet. 29, 609—610 (2013).

The Critical Assessment of Metagenome Interpretation (CAMI) competition.
http://blogs.nature.com/methagora/2014/06/the-critical-assessment-of-
metagenome-interpretation-cami-competition.html (2014).

Mathematical, Statistical and Computational Aspects of the New Science of
Metagenomics, Isaac Newton Institute for Mathematical Sciences.
https://www.newton.ac.uk/event/mtgw01.

Weber, L. M. et al. Essential guidelines for computational method
benchmarking. Genome Biol. 20, 125 (2019).

Mangul, S. et al. Systematic benchmarking of omics computational tools. Nat.
Commun. 10, 1393 (2019).

Mavromatis, K. et al. Use of simulated data sets to evaluate the fidelity of
metagenomic processing methods. Nat. Methods 4, 495-500 (2007).
Lindgreen, S., Adair, K. L. & Gardner, P. P. An evaluation of the accuracy and
speed of metagenome analysis tools. Sci. Rep. 6, 19233 (2016).

Mclintyre, A. B. R. et al. Comprehensive benchmarking and ensemble
approaches for metagenomic classifiers. Genome Biol. 18, 182 (2017).

Ye, S. H., Siddle, K. J., Park, D. J. & Sabeti, P. C. Benchmarking Metagenomics
Tools for Taxonomic Classification. Cell 178, 779-794 (2019).

Bremges, A. & McHardy, A. C. Critical Assessment of Metagenome
Interpretation Enters the Second Round. mSystems 3, (2018).

Fritz, A. et al. CAMISIM: simulating metagenomes and microbial communities.

Microbiome 7, 17 (2019).

30


http://paperpile.com/b/nZQG67/bLBM
http://paperpile.com/b/nZQG67/bLBM
http://paperpile.com/b/nZQG67/0ZJe
http://paperpile.com/b/nZQG67/0ZJe
http://paperpile.com/b/nZQG67/0ZJe
http://paperpile.com/b/nZQG67/0ZJe
http://paperpile.com/b/nZQG67/0ZJe
http://paperpile.com/b/nZQG67/0ZJe
http://paperpile.com/b/nZQG67/my8k
http://paperpile.com/b/nZQG67/my8k
http://blogs.nature.com/methagora/2014/06/the-critical-assessment-of-metagenome-interpretation-cami-competition.html
http://blogs.nature.com/methagora/2014/06/the-critical-assessment-of-metagenome-interpretation-cami-competition.html
http://paperpile.com/b/nZQG67/my8k
http://paperpile.com/b/nZQG67/XPmO
http://paperpile.com/b/nZQG67/XPmO
https://www.newton.ac.uk/event/mtgw01
http://paperpile.com/b/nZQG67/XPmO
http://paperpile.com/b/nZQG67/hC56
http://paperpile.com/b/nZQG67/hC56
http://paperpile.com/b/nZQG67/hC56
http://paperpile.com/b/nZQG67/hC56
http://paperpile.com/b/nZQG67/hC56
http://paperpile.com/b/nZQG67/hC56
http://paperpile.com/b/nZQG67/hC56
http://paperpile.com/b/nZQG67/hC56
http://paperpile.com/b/nZQG67/sI69
http://paperpile.com/b/nZQG67/sI69
http://paperpile.com/b/nZQG67/sI69
http://paperpile.com/b/nZQG67/sI69
http://paperpile.com/b/nZQG67/sI69
http://paperpile.com/b/nZQG67/sI69
http://paperpile.com/b/nZQG67/sI69
http://paperpile.com/b/nZQG67/sI69
http://paperpile.com/b/nZQG67/GIjf
http://paperpile.com/b/nZQG67/GIjf
http://paperpile.com/b/nZQG67/GIjf
http://paperpile.com/b/nZQG67/GIjf
http://paperpile.com/b/nZQG67/GIjf
http://paperpile.com/b/nZQG67/GIjf
http://paperpile.com/b/nZQG67/GIjf
http://paperpile.com/b/nZQG67/GIjf
http://paperpile.com/b/nZQG67/qd2U
http://paperpile.com/b/nZQG67/qd2U
http://paperpile.com/b/nZQG67/qd2U
http://paperpile.com/b/nZQG67/qd2U
http://paperpile.com/b/nZQG67/qd2U
http://paperpile.com/b/nZQG67/qd2U
http://paperpile.com/b/nZQG67/VOe5
http://paperpile.com/b/nZQG67/VOe5
http://paperpile.com/b/nZQG67/VOe5
http://paperpile.com/b/nZQG67/VOe5
http://paperpile.com/b/nZQG67/VOe5
http://paperpile.com/b/nZQG67/VOe5
http://paperpile.com/b/nZQG67/VOe5
http://paperpile.com/b/nZQG67/VOe5
http://paperpile.com/b/nZQG67/vE7t
http://paperpile.com/b/nZQG67/vE7t
http://paperpile.com/b/nZQG67/vE7t
http://paperpile.com/b/nZQG67/vE7t
http://paperpile.com/b/nZQG67/vE7t
http://paperpile.com/b/nZQG67/vE7t
http://paperpile.com/b/nZQG67/IBI7
http://paperpile.com/b/nZQG67/IBI7
http://paperpile.com/b/nZQG67/IBI7
http://paperpile.com/b/nZQG67/IBI7
http://paperpile.com/b/nZQG67/IBI7
http://paperpile.com/b/nZQG67/IBI7
http://paperpile.com/b/nZQG67/lkwR
http://paperpile.com/b/nZQG67/lkwR
http://paperpile.com/b/nZQG67/lkwR
http://paperpile.com/b/nZQG67/lkwR
http://paperpile.com/b/nZQG67/lkwR
http://paperpile.com/b/nZQG67/lkwR
http://paperpile.com/b/nZQG67/lkwR
http://paperpile.com/b/nZQG67/lkwR
https://doi.org/10.1101/2020.08.11.245712
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.11.245712; this version posted August 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

made available under aCC-BY 4.0 International license.

Singer, E. et al. Next generation sequencing data of a defined microbial mock
community. Sci Data 3, 160081 (2016).

Sczyrba, A. et al. Benchmark data sets, software results and reference data for
the first CAMI challenge. http://gigadb.org/dataset/100344 doi:10.5524/100344.
Mikheenko, A., Saveliev, V. & Gurevich, A. MetaQUAST: evaluation of
metagenome assemblies. Bioinformatics 32, 1088—1090 (2016).

Meyer, F. et al. AMBER: Assessment of Metagenome BinnERs. GigaScience 7,
(2018).

Meyer, F. et al. Assessing taxonomic metagenome profilers with OPAL.
Genome Biol. 20, 51 (2019).

Grining, B. et al. Bioconda: sustainable and comprehensive software
distribution for the life sciences. Nat. Methods 15, 475-476 (2018).

Koster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow
engine. Bioinformatics 28, 2520-2522 (2012).

Di Tommaso, P. et al. Nextflow enables reproducible computational workflows.
Nat. Biotechnol. 35, 316-319 (2017).

Amstutz, P. et al. Common Workflow Language, v1.0. (2016)
doi:10.6084/M9.FIGSHARE.3115156.V2.

Belmann, P. et al. Bioboxes: standardised containers for interchangeable
bioinformatics software. Gigascience 4, 47 (2015).

da Veiga Leprevost, F. et al. BioContainers: an open-source and community-
driven framework for software standardization. Bioinformatics 33, 2580-2582
(2017).

Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data

management and stewardship. Sci Data 3, 160018 (2016).

31


http://paperpile.com/b/nZQG67/GJSL
http://paperpile.com/b/nZQG67/GJSL
http://paperpile.com/b/nZQG67/GJSL
http://paperpile.com/b/nZQG67/GJSL
http://paperpile.com/b/nZQG67/GJSL
http://paperpile.com/b/nZQG67/GJSL
http://paperpile.com/b/nZQG67/GJSL
http://paperpile.com/b/nZQG67/GJSL
http://paperpile.com/b/nZQG67/aiWz
http://paperpile.com/b/nZQG67/aiWz
http://paperpile.com/b/nZQG67/aiWz
http://paperpile.com/b/nZQG67/aiWz
http://gigadb.org/dataset/100344
http://paperpile.com/b/nZQG67/aiWz
http://dx.doi.org/10.5524/100344
http://paperpile.com/b/nZQG67/aiWz
http://paperpile.com/b/nZQG67/a4wG
http://paperpile.com/b/nZQG67/a4wG
http://paperpile.com/b/nZQG67/a4wG
http://paperpile.com/b/nZQG67/a4wG
http://paperpile.com/b/nZQG67/a4wG
http://paperpile.com/b/nZQG67/a4wG
http://paperpile.com/b/nZQG67/63nh
http://paperpile.com/b/nZQG67/63nh
http://paperpile.com/b/nZQG67/63nh
http://paperpile.com/b/nZQG67/63nh
http://paperpile.com/b/nZQG67/63nh
http://paperpile.com/b/nZQG67/63nh
http://paperpile.com/b/nZQG67/63nh
http://paperpile.com/b/nZQG67/63nh
http://paperpile.com/b/nZQG67/OQgO
http://paperpile.com/b/nZQG67/OQgO
http://paperpile.com/b/nZQG67/OQgO
http://paperpile.com/b/nZQG67/OQgO
http://paperpile.com/b/nZQG67/OQgO
http://paperpile.com/b/nZQG67/OQgO
http://paperpile.com/b/nZQG67/OQgO
http://paperpile.com/b/nZQG67/OQgO
http://paperpile.com/b/nZQG67/u3qW
http://paperpile.com/b/nZQG67/u3qW
http://paperpile.com/b/nZQG67/u3qW
http://paperpile.com/b/nZQG67/u3qW
http://paperpile.com/b/nZQG67/u3qW
http://paperpile.com/b/nZQG67/u3qW
http://paperpile.com/b/nZQG67/u3qW
http://paperpile.com/b/nZQG67/u3qW
http://paperpile.com/b/nZQG67/CRGd
http://paperpile.com/b/nZQG67/CRGd
http://paperpile.com/b/nZQG67/CRGd
http://paperpile.com/b/nZQG67/CRGd
http://paperpile.com/b/nZQG67/CRGd
http://paperpile.com/b/nZQG67/CRGd
http://paperpile.com/b/nZQG67/rGRO
http://paperpile.com/b/nZQG67/rGRO
http://paperpile.com/b/nZQG67/rGRO
http://paperpile.com/b/nZQG67/rGRO
http://paperpile.com/b/nZQG67/rGRO
http://paperpile.com/b/nZQG67/rGRO
http://paperpile.com/b/nZQG67/rGRO
http://paperpile.com/b/nZQG67/rGRO
http://paperpile.com/b/nZQG67/qujc
http://paperpile.com/b/nZQG67/qujc
http://paperpile.com/b/nZQG67/qujc
http://paperpile.com/b/nZQG67/qujc
http://dx.doi.org/10.6084/M9.FIGSHARE.3115156.V2
http://paperpile.com/b/nZQG67/qujc
http://paperpile.com/b/nZQG67/9pRM
http://paperpile.com/b/nZQG67/9pRM
http://paperpile.com/b/nZQG67/9pRM
http://paperpile.com/b/nZQG67/9pRM
http://paperpile.com/b/nZQG67/9pRM
http://paperpile.com/b/nZQG67/9pRM
http://paperpile.com/b/nZQG67/9pRM
http://paperpile.com/b/nZQG67/9pRM
http://paperpile.com/b/nZQG67/JJjK
http://paperpile.com/b/nZQG67/JJjK
http://paperpile.com/b/nZQG67/JJjK
http://paperpile.com/b/nZQG67/JJjK
http://paperpile.com/b/nZQG67/JJjK
http://paperpile.com/b/nZQG67/JJjK
http://paperpile.com/b/nZQG67/JJjK
http://paperpile.com/b/nZQG67/JJjK
http://paperpile.com/b/nZQG67/JJjK
http://paperpile.com/b/nZQG67/KkU0
http://paperpile.com/b/nZQG67/KkU0
http://paperpile.com/b/nZQG67/KkU0
http://paperpile.com/b/nZQG67/KkU0
http://paperpile.com/b/nZQG67/KkU0
http://paperpile.com/b/nZQG67/KkU0
http://paperpile.com/b/nZQG67/KkU0
http://paperpile.com/b/nZQG67/KkU0
https://doi.org/10.1101/2020.08.11.245712
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.11.245712; this version posted August 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

36.

37.

38.

39.

40.

41.

42.

43.

44.

made available under aCC-BY 4.0 International license.

Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI reference sequences (RefSeq):
a curated non-redundant sequence database of genomes, transcripts and
proteins. Nucleic Acids Res. 35, D61-5 (2007).

McDonald, D. et al. The Biological Observation Matrix (BIOM) format or: how |
learned to stop worrying and love the ome-ome. Gigascience 1, 7 (2012).

Li, D. et al. MEGAHIT v1.0: A fast and scalable metagenome assembler driven
by advanced methodologies and community practices. Methods 102, 3—11
(2016).

Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new
versatile metagenomic assembler. Genome Res. 27, 824-834 (2017).
Mineeva, O., Rojas-Carulla, M., Ley, R. E., Schélkopf, B. & Youngblut, N. D.
DeepMASED: evaluating the quality of metagenomic assemblies. Bioinformatics
36, 3011-3017 (2020).

Clark, S. C., Egan, R., Frazier, P. |. & Wang, Z. ALE: a generic assembly
likelihood evaluation framework for assessing the accuracy of genome and
metagenome assemblies. Bioinformatics 29, 435-443 (2013).

Kuhring, M., Dabrowski, P. W., Piro, V. C., Nitsche, A. & Renard, B. Y.
SuRankCo: supervised ranking of contigs in de novo assemblies. BMC
Bioinformatics 16, 240 (2015).

Wu, Y.-W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning
algorithm to recover genomes from multiple metagenomic datasets.
Bioinformatics 32, 605-607 (2016).

Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for
accurately reconstructing single genomes from complex microbial communities.

PeerJ 3, e1165 (2015).

32


http://paperpile.com/b/nZQG67/nYRI
http://paperpile.com/b/nZQG67/nYRI
http://paperpile.com/b/nZQG67/nYRI
http://paperpile.com/b/nZQG67/nYRI
http://paperpile.com/b/nZQG67/nYRI
http://paperpile.com/b/nZQG67/nYRI
http://paperpile.com/b/nZQG67/nYRI
http://paperpile.com/b/nZQG67/zWf2
http://paperpile.com/b/nZQG67/zWf2
http://paperpile.com/b/nZQG67/zWf2
http://paperpile.com/b/nZQG67/zWf2
http://paperpile.com/b/nZQG67/zWf2
http://paperpile.com/b/nZQG67/zWf2
http://paperpile.com/b/nZQG67/zWf2
http://paperpile.com/b/nZQG67/zWf2
http://paperpile.com/b/nZQG67/57Pw
http://paperpile.com/b/nZQG67/57Pw
http://paperpile.com/b/nZQG67/57Pw
http://paperpile.com/b/nZQG67/57Pw
http://paperpile.com/b/nZQG67/57Pw
http://paperpile.com/b/nZQG67/57Pw
http://paperpile.com/b/nZQG67/57Pw
http://paperpile.com/b/nZQG67/57Pw
http://paperpile.com/b/nZQG67/57Pw
http://paperpile.com/b/nZQG67/Lyy5
http://paperpile.com/b/nZQG67/Lyy5
http://paperpile.com/b/nZQG67/Lyy5
http://paperpile.com/b/nZQG67/Lyy5
http://paperpile.com/b/nZQG67/Lyy5
http://paperpile.com/b/nZQG67/Lyy5
http://paperpile.com/b/nZQG67/nFb4
http://paperpile.com/b/nZQG67/nFb4
http://paperpile.com/b/nZQG67/nFb4
http://paperpile.com/b/nZQG67/nFb4
http://paperpile.com/b/nZQG67/nFb4
http://paperpile.com/b/nZQG67/nFb4
http://paperpile.com/b/nZQG67/nFb4
http://paperpile.com/b/nZQG67/26EY
http://paperpile.com/b/nZQG67/26EY
http://paperpile.com/b/nZQG67/26EY
http://paperpile.com/b/nZQG67/26EY
http://paperpile.com/b/nZQG67/26EY
http://paperpile.com/b/nZQG67/26EY
http://paperpile.com/b/nZQG67/26EY
http://paperpile.com/b/nZQG67/GUtb
http://paperpile.com/b/nZQG67/GUtb
http://paperpile.com/b/nZQG67/GUtb
http://paperpile.com/b/nZQG67/GUtb
http://paperpile.com/b/nZQG67/GUtb
http://paperpile.com/b/nZQG67/GUtb
http://paperpile.com/b/nZQG67/GUtb
http://paperpile.com/b/nZQG67/JG9Y
http://paperpile.com/b/nZQG67/JG9Y
http://paperpile.com/b/nZQG67/JG9Y
http://paperpile.com/b/nZQG67/JG9Y
http://paperpile.com/b/nZQG67/JG9Y
http://paperpile.com/b/nZQG67/JG9Y
http://paperpile.com/b/nZQG67/JiyN
http://paperpile.com/b/nZQG67/JiyN
http://paperpile.com/b/nZQG67/JiyN
http://paperpile.com/b/nZQG67/JiyN
http://paperpile.com/b/nZQG67/JiyN
http://paperpile.com/b/nZQG67/JiyN
https://doi.org/10.1101/2020.08.11.245712
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.11.245712; this version posted August 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

45. Alneberg, J. et al. Binning metagenomic contigs by coverage and composition.
Nat. Methods 11, 1144—1146 (2014).

46. Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a
dereplication, aggregation and scoring strategy. Nat Microbiol 3, 836—843
(2018).

47. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W.
CheckM: assessing the quality of microbial genomes recovered from isolates,
single cells, and metagenomes. Genome Res. 25, 1043—-1055 (2015).

48. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using
DIAMOND. Nature Methods vol. 12 59-60 (2015).

49. Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence
classification using exact alignments. Genome Biol. 15, R46 (2014).

50. Gregor, I., Drége, J., Schirmer, M., Quince, C. & McHardy, A. C. PhyloPythiaS+:
a self-training method for the rapid reconstruction of low-ranking taxonomic bins
from metagenomes. PeerJ 4, 1603 (2016).

51. von Meijenfeldt, F. A. B., Arkhipova, K., Cambuy, D. D., Coutinho, F. H. & Duitilh,
B. E. Robust taxonomic classification of uncharted microbial sequences and
bins with CAT and BAT. Genome Biol. 20, 217 (2019).

52. Huson, D. H. et al. MEGAN Community Edition - Interactive Exploration and
Analysis of Large-Scale Microbiome Sequencing Data. PLoS Comput. Biol. 12,
1004957 (2016).

53. Almeida, A. et al. A unified sequence catalogue of over 280,000 genomes
obtained from the human gut microbiome. bioRxiv (2019).

54. Truong, D. T. et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling.

Nat. Methods 12, 902-903 (2015).

33


http://paperpile.com/b/nZQG67/KMaM
http://paperpile.com/b/nZQG67/KMaM
http://paperpile.com/b/nZQG67/KMaM
http://paperpile.com/b/nZQG67/KMaM
http://paperpile.com/b/nZQG67/KMaM
http://paperpile.com/b/nZQG67/KMaM
http://paperpile.com/b/nZQG67/KMaM
http://paperpile.com/b/nZQG67/KMaM
http://paperpile.com/b/nZQG67/M93S
http://paperpile.com/b/nZQG67/M93S
http://paperpile.com/b/nZQG67/M93S
http://paperpile.com/b/nZQG67/M93S
http://paperpile.com/b/nZQG67/M93S
http://paperpile.com/b/nZQG67/M93S
http://paperpile.com/b/nZQG67/M93S
http://paperpile.com/b/nZQG67/M93S
http://paperpile.com/b/nZQG67/M93S
http://paperpile.com/b/nZQG67/ZILd
http://paperpile.com/b/nZQG67/ZILd
http://paperpile.com/b/nZQG67/ZILd
http://paperpile.com/b/nZQG67/ZILd
http://paperpile.com/b/nZQG67/ZILd
http://paperpile.com/b/nZQG67/ZILd
http://paperpile.com/b/nZQG67/ZILd
http://paperpile.com/b/nZQG67/HPPO
http://paperpile.com/b/nZQG67/HPPO
http://paperpile.com/b/nZQG67/HPPO
http://paperpile.com/b/nZQG67/HPPO
http://paperpile.com/b/nZQG67/6UwA
http://paperpile.com/b/nZQG67/6UwA
http://paperpile.com/b/nZQG67/6UwA
http://paperpile.com/b/nZQG67/6UwA
http://paperpile.com/b/nZQG67/6UwA
http://paperpile.com/b/nZQG67/6UwA
http://paperpile.com/b/nZQG67/cxsA
http://paperpile.com/b/nZQG67/cxsA
http://paperpile.com/b/nZQG67/cxsA
http://paperpile.com/b/nZQG67/cxsA
http://paperpile.com/b/nZQG67/cxsA
http://paperpile.com/b/nZQG67/cxsA
http://paperpile.com/b/nZQG67/cxsA
http://paperpile.com/b/nZQG67/Vk1H
http://paperpile.com/b/nZQG67/Vk1H
http://paperpile.com/b/nZQG67/Vk1H
http://paperpile.com/b/nZQG67/Vk1H
http://paperpile.com/b/nZQG67/Vk1H
http://paperpile.com/b/nZQG67/Vk1H
http://paperpile.com/b/nZQG67/Vk1H
http://paperpile.com/b/nZQG67/6gYJ
http://paperpile.com/b/nZQG67/6gYJ
http://paperpile.com/b/nZQG67/6gYJ
http://paperpile.com/b/nZQG67/6gYJ
http://paperpile.com/b/nZQG67/6gYJ
http://paperpile.com/b/nZQG67/6gYJ
http://paperpile.com/b/nZQG67/6gYJ
http://paperpile.com/b/nZQG67/6gYJ
http://paperpile.com/b/nZQG67/6gYJ
http://paperpile.com/b/nZQG67/wBC6
http://paperpile.com/b/nZQG67/wBC6
http://paperpile.com/b/nZQG67/wBC6
http://paperpile.com/b/nZQG67/wBC6
http://paperpile.com/b/nZQG67/wBC6
http://paperpile.com/b/nZQG67/wBC6
http://paperpile.com/b/nZQG67/Q5nO
http://paperpile.com/b/nZQG67/Q5nO
http://paperpile.com/b/nZQG67/Q5nO
http://paperpile.com/b/nZQG67/Q5nO
http://paperpile.com/b/nZQG67/Q5nO
http://paperpile.com/b/nZQG67/Q5nO
http://paperpile.com/b/nZQG67/Q5nO
http://paperpile.com/b/nZQG67/Q5nO
https://doi.org/10.1101/2020.08.11.245712
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.11.245712; this version posted August 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

made available under aCC-BY 4.0 International license.

Milanese, A. et al. Microbial abundance, activity and population genomic
profiling with mOTUs2. Nat. Commun. 10, 1014 (2019).

Lu, J., Breitwieser, F. P., Thielen, P. & Salzberg, S. L. Bracken: estimating
species abundance in metagenomics data. (2017) doi:10.7717/peerj-cs.104.
Parks, D. H. et al. A standardized bacterial taxonomy based on genome
phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996—1004
(2018).

Ciccarelli, F. D. et al. Toward automatic reconstruction of a highly resolved tree
of life. Science 311, 1283-1287 (2006).

Konstantinidis, K. T. & Tiedje, J. M. Towards a genome-based taxonomy for
prokaryotes. J. Bacteriol. 187, 6258-6264 (2005).

McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for
ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610—
618 (2012).

Segata, N. On the Road to Strain-Resolved Comparative Metagenomics.
mSystems 3, (2018).

Quince, C. et al. DESMAN: a new tool for de novo extraction of strains from
metagenomes. Genome Biol. 18, 181 (2017).

Truong, D. T., Tett, A., Pasolli, E., Huttenhower, C. & Segata, N. Microbial
strain-level population structure and genetic diversity from metagenomes.
Genome Res. 27, 626—638 (2017).

Moss, E. L., Maghini, D. G. & Bhatt, A. S. Complete, closed bacterial genomes
from microbiomes using nanopore sequencing. Nat. Biotechnol. (2020)
doi:10.1038/s41587-020-0422-6.

Sajulga, R. et al. Survey of metaproteomics software tools for functional

34


http://paperpile.com/b/nZQG67/S1fR
http://paperpile.com/b/nZQG67/S1fR
http://paperpile.com/b/nZQG67/S1fR
http://paperpile.com/b/nZQG67/S1fR
http://paperpile.com/b/nZQG67/S1fR
http://paperpile.com/b/nZQG67/S1fR
http://paperpile.com/b/nZQG67/S1fR
http://paperpile.com/b/nZQG67/S1fR
http://paperpile.com/b/nZQG67/llx1
http://paperpile.com/b/nZQG67/llx1
http://dx.doi.org/10.7717/peerj-cs.104
http://paperpile.com/b/nZQG67/llx1
http://paperpile.com/b/nZQG67/RIeb
http://paperpile.com/b/nZQG67/RIeb
http://paperpile.com/b/nZQG67/RIeb
http://paperpile.com/b/nZQG67/RIeb
http://paperpile.com/b/nZQG67/RIeb
http://paperpile.com/b/nZQG67/RIeb
http://paperpile.com/b/nZQG67/RIeb
http://paperpile.com/b/nZQG67/RIeb
http://paperpile.com/b/nZQG67/RIeb
http://paperpile.com/b/nZQG67/TjQD
http://paperpile.com/b/nZQG67/TjQD
http://paperpile.com/b/nZQG67/TjQD
http://paperpile.com/b/nZQG67/TjQD
http://paperpile.com/b/nZQG67/TjQD
http://paperpile.com/b/nZQG67/TjQD
http://paperpile.com/b/nZQG67/TjQD
http://paperpile.com/b/nZQG67/TjQD
http://paperpile.com/b/nZQG67/RPM4
http://paperpile.com/b/nZQG67/RPM4
http://paperpile.com/b/nZQG67/RPM4
http://paperpile.com/b/nZQG67/RPM4
http://paperpile.com/b/nZQG67/RPM4
http://paperpile.com/b/nZQG67/RPM4
http://paperpile.com/b/nZQG67/JmJd
http://paperpile.com/b/nZQG67/JmJd
http://paperpile.com/b/nZQG67/JmJd
http://paperpile.com/b/nZQG67/JmJd
http://paperpile.com/b/nZQG67/JmJd
http://paperpile.com/b/nZQG67/JmJd
http://paperpile.com/b/nZQG67/JmJd
http://paperpile.com/b/nZQG67/JmJd
http://paperpile.com/b/nZQG67/JmJd
http://paperpile.com/b/nZQG67/oMUb
http://paperpile.com/b/nZQG67/oMUb
http://paperpile.com/b/nZQG67/oMUb
http://paperpile.com/b/nZQG67/oMUb
http://paperpile.com/b/nZQG67/oMUb
http://paperpile.com/b/nZQG67/oMUb
http://paperpile.com/b/nZQG67/QloZ
http://paperpile.com/b/nZQG67/QloZ
http://paperpile.com/b/nZQG67/QloZ
http://paperpile.com/b/nZQG67/QloZ
http://paperpile.com/b/nZQG67/QloZ
http://paperpile.com/b/nZQG67/QloZ
http://paperpile.com/b/nZQG67/QloZ
http://paperpile.com/b/nZQG67/QloZ
http://paperpile.com/b/nZQG67/wiaY
http://paperpile.com/b/nZQG67/wiaY
http://paperpile.com/b/nZQG67/wiaY
http://paperpile.com/b/nZQG67/wiaY
http://paperpile.com/b/nZQG67/wiaY
http://paperpile.com/b/nZQG67/wiaY
http://paperpile.com/b/nZQG67/kCwu
http://paperpile.com/b/nZQG67/kCwu
http://paperpile.com/b/nZQG67/kCwu
http://paperpile.com/b/nZQG67/kCwu
http://paperpile.com/b/nZQG67/kCwu
http://dx.doi.org/10.1038/s41587-020-0422-6
http://paperpile.com/b/nZQG67/kCwu
http://paperpile.com/b/nZQG67/yu3t
http://paperpile.com/b/nZQG67/yu3t
http://paperpile.com/b/nZQG67/yu3t
https://doi.org/10.1101/2020.08.11.245712
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.11.245712; this version posted August 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

microbiome analysis. bioRxiv 2020.01.07.897561 (2020)

doi:10.1101/2020.01.07.897561.

Acknowledgements

The authors thank P.B. Pope for helpful comments. A.E.D.’s contribution was
facilitated in part by the Australian Research Council’s Discovery Projects funding
scheme (project DP180101506). A.G.’s contribution was facilitated by St. Petersburg
State University, Russia (grant ID PURE 51555639).

Author contributions

F.M. and T.R.L. performed the experiments; F.M., A.F., T.R.L., and A.S. prepared the
data; A.C.M., A.B., and A.S. conceived the experiments; A.C.M., F.M., and A.B. wrote
the manuscript with comments by others; all authors interpreted the results, and read
and approved the final manuscript.

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary information: Supplementary Tables 1-13, Supplementary Figs. 1 and
2, Bin quality metrics for CheckM

Supplementary results: MetaQUAST metrics (report.html)

35


http://paperpile.com/b/nZQG67/yu3t
http://paperpile.com/b/nZQG67/yu3t
http://paperpile.com/b/nZQG67/yu3t
http://paperpile.com/b/nZQG67/yu3t
http://dx.doi.org/10.1101/2020.01.07.897561
http://paperpile.com/b/nZQG67/yu3t
https://doi.org/10.1101/2020.08.11.245712
http://creativecommons.org/licenses/by/4.0/

