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Abstract We introduce a straightforward, robust method for recording and analyzing spiking7

activity over timeframes longer than a single session, with primary application to the marmoset8

(Callithrix jacchus). Although in theory the marmoset’s smooth brain allows for broad deployment9

of powerful tools in primate cortex, in practice marmosets do not typically engage in long10

experimental sessions akin to rhesus monkeys. This potentially limits their value for detailed,11

quantitative neurophysiological study. Here we describe chronically-implanted arrays with a 3D12

arrangement of electrodes yielding stable single and multi- unit responses, and an analytic13

method for creating "supersessions" combining that array data across multiple experiments. We14

could match units across different recording sessions over several weeks, demonstrating the15

feasibility of pooling data over sessions. This could be a key tool for extending the viability of16

marmosets for dissecting neural computations in primate cortex.17

18

Introduction19

The marmoset has drawn attention as a complementary nonhuman primate model system for vi-20

sual neuroscience. While the dominant primatemodel system in neuroscience, the rhesusmonkey21

(Macaca mulatta), has the advantage of (relatively) rich cognitive abilities, a large body and robust22

physiology, and an aggressive work ethic, their large and convoluted (gyrified) brains currently limit23

the number of techniques that can be applied for measurements of neural activity. Thus, despite24

their excellent trainability for complex tasks and willingness to engage in lengthy experimental25

sessions, the scale and variety of neurophysiological questions that can be addressed have been26

somewhat limited by practical constraints. Recently, the common marmoset (Callithrix jacchus)27

has emerged as a complementary primate model system because of their smooth (lissencephalic)28

cortex, opening up a much larger number of cortical areas to the use of large-scale chronically29

implanted electrode arrays (in addition to other techniques). However, a major current concern30

for adopting the awake behaving marmoset for detailed quantitative studies is their tendency to31

perform far fewer trials per session compared to macaques. Such a behavioral limitation would32

result in correspondingly smaller amounts of neural data (and hence, statistical power) per exper-33

iment, undercutting the other advantages of the species, and likely limiting their applicability as a34

powerful neurophysiological complement to the sorts of quantitative neuroscience work done in35

macaques.36

To redress this fundamental potential limitation, we have developed a straightforward, user-37

friendly tool for recording from large-scale arrays in marmosets while surmounting the relatively38

short behavioral sessions performed by this smaller (and more delicate) species. First, we report39

successful long-term electrophysiological recordings using a new type of multi-electrode array for40

which primate use has not yet been reported in publication to our knowledge, but which is com-41
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mercially available. These “3D” arrays are available with customizable electrode spacing not just42

across a 2D grid, but also along the depth of individual shanks. The arrays yielded good quality43

single-unit (SUA) and multi-unit (MUA) activity, as demonstrated in two different marmoset corti-44

cal areas (area MT, and the posterior parietal cortex, PPC). Second, we introduce a transparent45

means for identifying activity recorded on these arrays, not just within individual sessions, but —46

importantly — across sessions. This integration of hardware and software solutions allowed for47

data from the same unit to be combined over multiple behavioral sessions, into what we termed48

"supersessions." This brings the statistical power of awake-behaving marmoset neurophysiology49

closer to that of macaques on a per-unit basis, while still allowing for larger scale recordings and/or50

powerful complementary tools, such as patch-clamp and optogenetics, that are more challenging51

to perform in macaques.52

Here, we describe both the physiological and computational components of this tool and dem-53

onstrate its potential usefulness for transcending the behavioral limitations of marmosets into the54

realm of detailed, quantitative assessments of neural activity at large scales. Furthermore, the55

tool we introduce here is intentionally straightforward, meaning it can be readily implemented by56

others, aswell as extendedwhenongoing updates to hardware and software emerge. We conclude57

by describing current limitations and how updates to this tool could further improve it.58

To provide a bit more detail before delving into the results, we found that implanting commer-59

cially-available 3D "N-form arrays" (ModularBionics, Berkeley, CA, USA) resulted in high quality,60

stable unit activity in marmosets. In our hands and experiences, this reflected a significant step61

forward in neural recording success, as two prior attempts usingmore common types of 2D planar62

arrays (Utah, Black rock systems) yielded lower-quality outcomes (one successful insertion without63

detectable spikes and one with spiking activity for about three months after implantation). Al-64

though our goal was simply to record neural activity and not to mechanistically understand why a65

particular array style works better or worse, our hypothesis is that there is a reduced initial damage66

due to the lower number of shanks of the N-form array, allowing to avoid vasculature and permit-67

ting a slow insertion style. In contrast to single shanks and arrays with a single row of shanks, we68

believe that long-term stability is improved by a better fixation of the brain tissue, reducing chronic69

respiratory micromotion (Prodanov and Delbeke, 2016), while eventually compromising a smaller70

brain volume for blood circulation than the larger 2D planar arrays.71

Given the success of the neural recording hardware in yielding qualitatively impressive neural72

activity over long time periods, we asked whether such recordings would yield a broad sample73

of neurons that change from experiment to experiment or if they would yield longer recordings74

of the same neurons. In the first case, we could ask how neural responses generalize across the75

population, but would overestimate generalization if we recorded from the a substantial subset76

of neurons from day to day, but did not recognize that in our analyses. In the second case, we77

could obtain longer recordings for individual units and hence a higher statistical power. We thus78

designed amethod to systematically compare andmatch (distributions of) spike waveforms across79

sessions. Our method identifies units from individual sessions independently, and then integrates80

spike clusters from new recordings into known, existing ones identified in prior sessions. Analyses81

of units can therefore be performed over multiple experimental sessions.82

In order to achieve a representation of spike shapes that was robust to potentially varying noise83

levels and/or forms across experimental sessions, we extracted simple properties of spike shapes84

in a narrow window around their peak. This was achieved by matching a family of predefined85

templates on a GPU to yield a parametric representation of local excursions in the raw voltage86

traces, which included conventional unit spiking activity, spike events fromweaker or more distant87

neural sources, and noise. Unit isolation was performed as a multivariate classification problem,88

similar to conventional approaches (Pachitariu et al., 2016; Rossant et al., 2016; Chung et al., 2017;89

Hilgen et al., 2017; Jun et al., 2017a; Lee et al., 2017; Chaure et al., 2018; Diggelmann et al., 2018;90

Yger et al., 2018). In ourmethod, we did not threshold spikes during a detection step, but clustered91

shapes of local minima in the voltage traces. The resulting clusters were then matched across92
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recording sessions. Although we are not deeply attached to this particular spike sorting approach,93

we provide it as a robust, intuitive starting point, which we validated against a more sophisticated94

and complex spike-sorting package. Its simplicity also allows for online views of sorting results95

during experiments, which could be useful for experimental decisions even if more sophisticated96

sorting routines are employed post hoc.97

Finally, in addition to laying out the hardware and software that allows for supersession-style98

electrophysiology inmarmosets with chronic recording arrays, we also provide starting-point quan-99

tifications of the performance of this system. These metrics confirm the applicability of this sys-100

tem tomany conventional neurophysiological experiments given the performance level that arises101

from the current arrays and implantation style, as well as the spike sorting algorithm. However,102

the greater value of thesemetrics is in future use, as they will allow for comparisons of relative per-103

formance (in matters such as falsely-matched units across sessions) as array technology changes,104

as surgical procedures are refined, and as different spike sorting algorithms are applied.105

Taken together, this work puts forth a synthesis of commercially-available hardware and intu-106

itive software that allows experimenters to overcome one of themajor limitations of themarmoset107

as a model species by introducing the concept of supersessions. More generally, this framework108

may support better integration of work done in marmosets and macaques, allowing these two109

awake-behaving primate preparations to have greater scientific overlap and thus to more solidly110

allow for their relative strengths and weaknesses to be considered.111

Results112

Neural activity apparent for more than 9 months on chronically-implanted 3D ar-113

rays114

We recorded single andmulti-unit (hereafter, "unit") activity in the brains of 2marmosets, one with115

a 3D N-form array in and around the middle temporal area (MT), the other with an identical array116

placed in posterior parietal cortex (PPC). For both arrays (Figure 1A, B, respectively), we were able117

to record spiking activity starting a week after insertion. Activity lasted for a duration of at least118

9 months, as depicted in Figure 1 (top rows). Figure 1 (second rows) show, in comparison, the119

relatively short durations of individual recording sessions (approximately a half hour to an hour).120

These durations likely reflect a lower bound on how longmarmosets will work, as they were largely121

determined by the animal’s preponent motivation to engage in various visual tasks with no fluid122

or food restriction.123

Signal amplitudes (Figure 1, third rows) were fairly constant over long periods of time, per-124

haps with the first two weeks after implantation yielding smaller signals before stabilizing (i.e., first125

few recording sessions, visible at the very left of the plots). A gradual decline in signal amplitude126

was further apparent after about 7 months for marmoset J. Detected events (see Methods) had a127

wide amplitude range of relatively sparse (0.1 – 10Hz) events, indicative of spiking activity (Figure128

1, bottom rows). Taken together, these descriptions of the behavior of the animals and the signals129

from the electrode arrays lay the groundwork for attempting to stitch together data frommultiple,130

subsequent recording sessions. The next critical step would be identifying unit activity that could131

conservatively be identified across such sessions.132

Spike clusters overlap in consecutive sessions133

Our goal was to identify spikes from the same units across recording sessions. This required mea-134

sures that would be robust to noise, in the sense that spikes fromother neurons would not perturb135

or distort characterization and identification of a given unit. To that aim, we focused our analysis136

on a very short temporal window, including only the depolarization phase of a spike, represented137

by a local minimum in the raw voltage traces.138

For each local minimum (i.e., putative spike) in the raw voltage trace, we determined: (a) ampli-139

tude, measured as the dot product with a template (of unit power), expressed in standard devia-140
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Figure 1. Long-term stability of arrays. (A) marmoset J. Top panel: Illustration when individual recording

sessions were performed. For clarity, the plots below and in subsequent Figures reflect individual recording

sessions rather than time. Second row: Durations of electrophysiological recordings in individual sessions.

Third row: Root-mean-squared voltage fluctuations of the common averaged, 300Hz high-pass filtered data

(scatter plots for active electrodes, average shown in red). Bottom row: Amplitude histograms of detected

events, averaged across electrodes. (B) Same statistics for marmoset B.

Figure 1–source data 1. Source data to generate this Figure
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tions (�), as calculated on the high-pass filtered voltage traces; (b) width, measured as the full width141

at half minimum; and (c) symmetry, measured as the ratio of its falling and rising phase durations142

(i.e., a 1 : 2 ratio means that recovering back to baseline took twice as long as reaching the voltage143

minimum).144

These parameterized shape characterizations of the units were put into 3D-histograms (mar-145

ginals shown in Figure 2A) for each recording session, and clustered using a watershed algorithm146

(see Methods for details). This procedure yielded shape clusters (cyan markers in Figure 2A) for147

every session in a common coordinate system to allow for cross-session comparisons of spike148

shapes. Shape clusters between consecutive sessions often looked very similar, and so we further149

tested whether they likely reflected spikes from the same or from different units.150

Specifically, if the brain tissue was held in place by the 16 electrode shanks of the array such151

that relative movements between the electrodes and the sampled neurons rarely happened, we152

would always record from the same neurons and see identical spike shapes. Otherwise, if there153

were substantial shifts in relative position between brain and electrodes, both amplitude and spike154

shape would shift with movement, and we would be unable to track units across a large number155

of sessions.156

We were indeed able to systematically match units across recordings. This was done quantita-157

tively, using the Jensen-Shannon divergence as a distance measure in the histogram shape space158

(allowing for small amplitude shifts under a penalty). Figure 2B shows an example of tracking the 3159

units observed on February 1 across multiple sessions. Cluster 1 provides an example of a clearly160

isolated unit with very large spikes with distinctive features, which lasted for about 5 weeks. For161

this cluster, averaged spike shapes were very similar across recording sessions, with smaller am-162

plitudes for the initial and final recordings (Figure 2C, cluster 1). Cluster 2 represents a cluster163

with more modest amplitude spikes and relatively common spike shapes, resulting in somewhat164

more variable sorting performance. While being reasonably well-isolated from January 29 to Febru-165

ary 1, it is contaminated to a variable degree with spikes from different units in other sessions166

and couldn’t be separated from another cluster in two intermediate recording sessions. Cluster 3167

had low spike amplitudes, but would be considered a decent multi-unit cluster from January 29 to168

February 1. For the other sessions, there is a small local maximum in the shape histograms, but169

the cluster would be considerably contaminated with unclassified, smaller amplitude spikes. Given170

that larger amplitude clusters slowly (and independently) drift over time, we can assume that the171

same happens to units in this cluster, making it difficult to obtain exact matches across recordings.172

But, the relatively moderate firing rate of the cluster would suggest that few units with defined173

shapes were involved, distinguishing it from unclassified spikes.174

These three example clusters from a brief phase of recording demonstrate both the successes175

and the challenges of this approach, leaving the real work to be quantifying the overall perfor-176

mance and aligning particular scientific questions with corresponding tradeoffs between unit iso-177

lation, data per unit, and number of total units. For example, for the assessment of basic physio-178

logical mapping and tuning in cortical areas with known columnar architecture, a mixture of singe179

units and tuned multi-units is often scientifically acceptable, and this approach could provide a180

wide array of such units, which is important for thorough functional assays. At the other extreme,181

questions regarding interneuronal correlations can require confidently isolated single units; this182

approach would provide a smaller number of units, but a large amount of data per unit (as ac-183

quired across sessions), which could provide critical statistical power for these sorts of detailed184

questions.185

In conclusion, ourmain result is thatmatching simple shape statistics of spikewaveforms across186

several recording sessions using N-form arrays in marmosets is feasible, and for some units this187

consecutive recording is possible over notably long periods of time (> 1 month). This grants us188

the capacity to combine data from multiple experimental days, which we deem "supersessions".189

Having demonstrated feasibility, we now turn to the issues of validating and quantifying the per-190

formance of this system.191
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Figure 2. Example of merging clusters across sessions. (A) Histograms for amplitudes and widths (left panel)

or symmetries right panes) of detected events on February 1. Regions outlined in blue are shown for a range

of dates in (B), using the same color code and axes. Cyan circles mark the three clusters detected in this

session. (B) Left: marginal histograms of local maxima for 20 consecutive recording sessions, labeled with

dates. Right: temporal matches of the 3 clusters found on February 1. (C) Waterfall plots of average spike

shapes, for dates as color-coded in (B). Data from marmoset B.

Figure 2–source data 1. Source data to generate this Figure
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Tuning properties on individual electrodes are stable across sessions192

We further confirmed the stability of the measured "supersession" neuronal activity by evaluating193

the cross-session consistency of physiological tuning properties. This evaluation was done for the194

MT array implanted in marmoset J, where we were able to confirm that several sites on the array195

showed directionally-tuned activity in response to moving dots in the left visual field (as expected196

when recording from area MT in the right hemisphere).197

The MT electrodes recorded strongly tuned multi-unit activity, so we focused on MUA super-198

sessions for this analysis. We again used our parameterized representation of spike shapes to199

determine a region of interest (Figure 3A, E, outlined in black) in spike shape space with strong200

directional tuning across recording sessions (Figure 3A, E). This was feasible because tuning on a201

given electrode was consistent across a wide range of spike shapes (Figure 3B, F). For the twoMUA202

sites shown as examples, the direction tuning curves measured were stable over almost 3 weeks.203

This stability of physiological properties, built on top of the stability of spike shapes themselves,204

further strengthens the case for the validity and viability of supersessions.205

We therefore created supersessions across these sessions that exhibited stable tuning and206

spike shapes, which allowed us to combine larger amounts of data for a single analysis. As an ex-207

ample here, we show that supersessions allow us to resolve the detailed time course of responses208

to individual motion directions at a high temporal resolution (Figure 3C, G). Note that transient209

aspects of the motion-driven response were very short and consisted of only a few spikes per trial,210

such that averages across many trials were beneficial. To illustrate this effect, we show the same211

analysis for responses obtained in a single session (Figure 3 I-K). Averaging over the temporal re-212

sponses, we then obtained tuning curves for individual sessions (Figure 3D, H, L).213

In this example, tuning was stable for considerably longer than one week. This demonstrates214

not only that shape clusters with high amplitudes were stable across sessions, but also that func-215

tional properties of low-amplitude activity were conserved across many sessions. Furthermore,216

being able to combine 10 or more sessions provides an order-of-magnitude increase in trial count217

that, even assuming some degree of lower-quality unit isolation, should counterweight the rela-218

tively short individual behavioral sessions. We delve into this issue in more depth at the end of the219

results sections.220

Most units in a given recording were observed for several sessions221

Having established stability of both spike waveforms and physiological tuning, we now turn to222

report a more comprehensive statistical description of recording stability and our ability to distin-223

guish spike shape clusters (i.e., to isolate one unit from another). A summary of all tracked units224

across recording sessions is shown in Figure 4. Spike clusterswere regions in 3D-shape-histograms,225

consisting of a set of voxels, which could be divided into boundary voxels (adjacent to a voxel out-226

side the cluster) and center voxels. If the average spike count in boundary voxels was less than 3/4227

of the average density in center voxels, clusters were considered as "better-isolated" and shown228

in darker colors in Figure 4.229

We further distinguished clusters that lasted for shorter numbers of sessions (<5, orange) and230

longer numbers of sessions (blue, ≥5), as many of the short-lived units had low amplitudes and231

were less reliably detected.232

We found that a large proportion of units in a given recording survived for multiple recording233

sessions (histograms in Figure 4, blue vs. orange), especially when they were considered as better-234

isolated (Figure 4, darker colors).235

A more detailed visualization of the survival of individual units is shown in the upper half of236

both panels in Figure 4. This plot can resolve whether the appearance or disappearance of units237

between two sessions happened locally (i.e., affecting only some individual units), or globally (i.e.,238

affecting most, if not all, units across the array). To further see whether the temporal separation239

(i.e., number of days) between consecutive sessions was a major factor for the loss (/turnover) of240

units, we visualized the relation between the number of long lasting units lost and the temporal241
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Figure 3. Examples of direction tuning on two electrodes. Top: Legends and stimuli for the examples below.

Moving dots were presented at (-15,-15) degrees from the fixation point (red square).

(A) Sensitivity indices and (B) maximum response directions as a function of spike shapes. (across sessions,

corrected for a cross session baseline effect). The region outlined in black was used for further analysis. (C)

Temporal firing rate responses, averaged across sessions and shown for individual tuning directions (colored

lines, black line: avg. response, 4041 trials). (D) Tuning curves obtained for individual recording sessions

(labeled above, some dates had a morning and afternoon session). (E – H) Same analysis for a second

example electrode. (I – L) Tuning observed in a single session (January 27 afternoon session, 254 trials).

Recordings in area MT (marmoset J).

Figure 3–source data 1. Source data to generate this Figure
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separation between the two sessions when the loss occurred (Figure 4, insets). Although larger242

temporal separations tended to correlate with a higher turnover of units, substantial unit turnover243

could also occur even with very short temporal separations between sessions.244

This analysis also highlights a difference between the two animals: while there are several dis-245

tinct time points of high turnover in marmoset J (Figure 4A, dotted lines mark disappearances of246

more than 16 long-term units between consecutive sessions, likely indicative of discrete changes247

in electrode array position), no such events could be identified in marmoset B (Figure 4B, dotted248

lines mark disappearances of the maximum of 5 long-term units, likely indicative of only smaller249

and/or more gradual changes in array position within the brain). Although we are not sure why250

the array stability was different in the two animals, this does show that: (a) our analysis scheme251

is capable of revealing changes and differences in stability; and (b) regardless of whether an array252

was stable over longer or short terms with or without distinct temporal changes, it is possible to253

follow units across supersessions in both regimes.254

We further quantified how often the algorithm would incorrectly classify two units as being the255

same, by attempting to merge clusters found on different channels. While such chance matches256

(Figure 4 – Figure supplements 1 and 2) were unable to explain the number and longevity of units257

we observed, they did vary considerably across clusters, as some spike shapes were more likely to258

be found in the data.259

Alternatively to asking how well units matched across sessions, we could ask how much long-260

term units varied over time. Specifically, we were interested in the variability (or coefficient of261

variation) of properties which were rather neuron and less network specific. Spike shapes or spike262

amplitudes (Figure 4 – Figure supplements 3A and 4A) were used in the process of merging units263

across sessions and variability would therefore be biased to lower values. Spiking statistics was not264

used in this process, and we estimated firing rates (Figure 4 – Figure supplements 3B and 4B), as265

theywould not be drastically influenced by experimental conditions. As independentmeasures, we266

examined spiking statistics at a fast timescale, arguing that intrinsic neuronal dynamics would be267

more relevant for the dynamics of bursting behavior than the local network activity. We estimated268

the maximum instantaneous spike rate in a 50ms temporal window after a spike, relative to the269

firing rate of a unit (referred to as ’burstiness’, (Figure 4 – Figure supplements 3C and 4C), and the270

time to reach 75% of this rate, which we refer to as ’relative refractory period’ (Figure 4 – Figure271

supplements 3D and 4D).272

All these measures are expected to fluctuate (due to different behavioral conditions, different273

levels of recording noise, homeostatic changes in neuronal properties and stochastic errors in the274

estimates), but would on average be evenmore different between different neurons. We therefore275

quantified how much of the variability of these four measures was found across sessions in the276

same unit, as fraction of the variability across sessions and units (Figure 4 – Figure supplements 3 E277

and 4E). While we have no ground truth data for how much variability to expect, we report these278

numbers here and note that further studies would be required with better constrained marmoset279

behavior or at least longer recordings in individual sessions, especially for interval statistics at a280

fast temporal scale. We note that in all cases, most of the variance observed across the population281

was explained by unit identity.282

Figure 5 shows descriptive histograms of the basic properties of all detected shape clusters283

(grayscale background). We distinguished clusters that survived short-term (upper row) and long-284

term (lower row). Several basic relations become apparent from visual inspection. First, the spread285

(avg. diameter) and firing rates of clusters tended to be larger for smaller amplitude waveforms,286

likely reflecting the effects of merging overlapping shapes from multiple units. Second, large am-287

plitude waveforms were generally more skewed than those with low amplitudes, likely reflecting288

our descriptive approach’s ability to identify the basic shape of individual unit waveforms. Third,289

waveforms from the array in MT tended to be narrower than those from the PPC array (two sided290

Wilcoxon rank sum test, short-term units: p=2e-20, median widths 0.28ms vs. 0.40ms and long-291

term units: p=4e-19 median widths 0.24ms vs. 0.32ms), perhaps revealing a biophysical difference292
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Figure 4. The majority of clusters survives for multiple sessions. (A) Clusters detected in recordings of area

MT (marmoset J). Top: temporal pattern of long-term (at least 5 sessions, blue) and short lived (<5 sessions,

orange) clusters. Better-isolated clusters are shown in darker shades. Dotted lines mark times when more

than 16 long-term units were lost. Inset: Number of disappearing units as a function of the temporal gap

between two recording sessions. Bottom: Number of clusters in each session. (B) Same plots for recordings

in PPC (marmoset B), except that dotted lines mark times when the highest observed number (five) of

long-term units were lost.

Figure 4–Figure supplement 1. False discovery rate estimates for marmoset J.

Figure 4–Figure supplement 2. False discovery rate estimates for marmoset B.

Figure 4–Figure supplement 3. Long-term statistics for marmoset J.

Figure 4–Figure supplement 4. Long-term statistics for marmoset B.

Figure 4–source data 1. Source data to generate this Figure and the associated Figure supplements
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Figure 5. Detected shape clusters are similar (at a population level) when observed for multiple sessions. (A)

Clusters detected in all recordings and electrodes of area MT (marmoset J). Grayscale represents the density

of all detected clusters without merging them across sessions. Colored circles represent individual,

better-isolated clusters, merged across sessions. These were ranked according to the corresponding overall

density of clusters (i.e. grayscale background) and this ranking is shown in color. Specifically, properties of

clusters depicted in yellow were rarely observed and those in blue were commonly found in the data.

Clusters surviving less than (top row) and at least (bottom row) 5 sessions are plotted separately for clarity.

(B) Same analysis for recordings in PPC (marmoset B).

Figure 5–source data 1. Source data to generate this Figure

that our approach is capable of picking up.293

Viewing these basic descriptive plots, we also wondered whether long term matches of spike294

clusters might be a result of detecting different units that just happen to produce similar shapes.295

To test this, we estimated how likely a given cluster might be mistaken for a different cluster by296

counting the clusters with similar spike shapes from all recording sessions. We then ranked better-297

isolated clusters according to the number of similar shaped clusters. The resulting rank a cluster298

had in the sorted array is depicted in color in Figure 5. A low rank corresponds to isolated units and299

a low likelihood to detect the same cluster by chance (Figure 5, yellow/green circles), and a high300

rank means that the corresponding spike shapes were frequently observed (Figure 5, blue circles).301

Sorting clusters in this way allows us to investigate whether clusters with commonly observed302

spike shapes would show a bias in long-term survival. We observed that many clusters with unique303

shapes survived less than 5 sessions (Figure 5, yellow circles). However, we also noticed that many304

of these clusters had uncommonly wide or narrow spike widths or very low firing rates. We there-305
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fore performed a second ranking, which only included units with an average width between 0.1 –306

0.5ms and an average firing rate above 0.5Hz and assigned the excluded units the ranks of the next307

lowest ranked included unit. This was not done to exclude units from our analysis of the relation308

between spike waveform uniqueness and lifetime, but to group them more evenly.309

In order to assess whether clusters with more or less common waveform shapes might show a310

difference in their lifespans, we analyzed cluster survival, excluding different amounts of the most311

common cluster shapes. Due to the limited amount of data, we visualized the expected additional312

lifetime at a given age, assuming a constant probability to lose a cluster in each session. Figure 6313

shows that this assumption is reasonable, as the expected lifetime does not change dramatically314

after 5 sessions. Importantly, except for clusters with the 10%most uncommon shapes, the rate at315

which spike clusters were lost over time did not depend on how common the spike shapes of that316

cluster were. This is good news, as it does not appear that the longevity of units over sessions is317

strongly confounded by the appearance and disappearance of units which happen to have similar318

spike shapes.319

This analysis also revealed an interesting difference between the two animals: For the array in320

PPC, cluster survival was about twice as long as for the array in areaMT. Although there weremore321

clusters observed for theMT array, we also observed greater variations in signal amplitude and we322

gradually lost signal in the later recordings of that array (Figure 1A). We therefore infer that the323

observed effect could have been due to a higher degree of general instability of the MT array over324

time.325

Supersessions provide the power to estimate spatial and temporal aspects of re-326

sponses across sessions327

Finally, we tested whether clearly isolated units could be matched across multiple sessions to as-328

sess their spatial and temporal properties. We therefore performed generic receptive field map-329

ping assays at regular intervals over multiple experimental sessions. As proof of concept, here, we330

describe an example in which both spatial receptive fields and temporal dynamics of responses331

were estimated using supersession data.332

Figure 7 shows two example units. The first unit had well isolated, high amplitude spike shapes333

(Figure 7C,E) and a pronounced refractory period (Figure 7 F) for at least 6 recording sessions (fir-334

ing rate (1.7 ± 0.2)Hz; avg. spike count per trial (400ms) 0.7 ± 0.4 overall and 1.5 ± 0.5 for stimuli in335

the receptive field). It consistently responded transiently to stimuli in the left visual field, 50-80ms336

after stimulus onset. The second example ((Figure 7G-L) shows a unit with an amplitude gradu-337

ally increasing and decreasing across sessions. Corresponding to an increase in SNR and lower338

contamination by false detections averaged spike shapes became sharper for sessions with large339

spikes (Figure 7K). This unit had a much faster response around 40ms, consisting of about 1 spike340

per trial (and eventually a slightly elevated sustained activity during stimulus presentation). In both341

of these cases, the response properties of the unit would have been difficult to determine using342

only a single session’s worth of data, due to the low absolute number of spikes recorded. For ex-343

ample, the total number of spikes recorded in the first 400ms in the receptive field of the unit in344

a single session was just 20-80 spikes, the total number of spikes across all trials about twice that345

amount. But by evaluating data across sessions, the supersession data shows that these units had346

clearly-localized receptive fields.347

We further investigated how these examples would generalize to a larger population of units348

with substantial inhomogeneity in both receptive fields and signal-to noise ratio. For this analysis,349

we found 172 units that were recorded across at least 4 sessions in which we mapped receptive350

fields. In order to see whether there was consistency in responses across sessions, we estimated351

receptive field locations for individual sessions and calculated a ’sensitivity index’ to quantify the352

strength of the spatial tuning.353

Units that were spatially selective generally had receptive fields that were clustered in a small354

region of the lower left visual field (Figure 7 – Figure supplement 1A,B). Importantly, we found355
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Figure 6. Cluster survival is not an effect of common spike shapes. (A) Estimated additional lifetime of

clusters after surviving the number of sessions indicated on the x-axis. Coloured lines correspond to the

fraction of clusters included in the analysis (steps of 10%, as in Figure 5), where the most yellow curve

corresponds to only including the 10% most uncommon shapes. (B) Number of units observed for a

minimum lifetime. (C) Same as in (A) when measured in days rather than sessions. Recordings in area MT

(marmoset J, left column) and PPC (marmoset B, right column).

Figure 6–source data 1. Source data to generate this Figure
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that receptive fields were even better localized across sessions in individual units than across the356

population of equally well or better tuned units (Figure 7 – Figure supplement 1C). In addition, we357

saw that the strength of tuning, (quantified as ’sensitivity index’, see Methods) generally matched358

between sessions (Figure 7 – Figure supplement 1D).359

While this final analysis outlines a strategy to perform analyses on multi-session and multi-unit360

data and quantifies consistencies in receptive fields across sessions, we don’t have an obvious ref-361

erence or gold standard that these numbers could be compared to. These results rather demon-362

strate what is currently possible, with available data. We do believe that this approach will only363

improve quantitatively, as array technology continues to improve and yield higher-quality data.364

Discussion365

Modern neurophysiological studies in primates require increasingly large amounts of data, either366

because the parameter space of relevant stimuli or behaviors grows richer (and hence, data are367

distributed across a larger number of conditions), or because the goal of the experiment itself368

is to measure more detailed aspects of population activity (and hence, more data are required369

to estimate higher order statistics). Here, we established the potential of chronically-implanted370

3D electrode arrays, coupled with a simple unit identification scheme, to allow for the creation of371

supersession datasets that transcend the standard limitations of marmoset behavior within indi-372

vidual experimental sessions. We found that high quality activity was evident on this type of array373

for many months, that a mixture of stable SUA and MUA data could be collected spanning multi-374

ple individual sessions, and that these supersessions yielded stable physiological characterizations375

that were more detailed than those from single sessions.376

Recording performance377

With the goal of making the marmoset more strongly viable for detailed quantitative studies, we378

aimed to develop an analysis pipeline that would be robust to different levels of recording quality,379

measuring single-unit activity where possible, but at the same time considering multi-unit activity.380

When applying this analysis to data recorded from implanted electrode arrays over the course of381

more than 9 months and averaging across all recording sessions, we obtained 28 better-isolated382

units/array/session. For individual arrays, these averages were 32 and 23 for marmoset J and B,383

respectively, 20 and 18 of which would be seen across a span of five or more sessions. In addi-384

tion, we found another 40 and 16 multi-unit clusters per array per session for marmosets J and B,385

respectively; 18 and 9.5 sessions of these multi-unit clusters lasting for five sessions or more).386

In comparison, previous reports of recording stability using planar (2D) ’Utah’ arrays in ma-387

caques (Dickey et al., 2009; Vaidya et al., 2014; Fraser and Schwartz, 2011) focused on single unit ac-388

tivity, which strengthened their claims to be able to track individual units, but at the cost of discard-389

ing multi-unit activity. Values reported in those prior studies were at most 137 units/array/session,390

but with large variations across arrays and with decreasing number over time, the average val-391

ues were closer to 30 units/array/session. In addition, most recordings were done in the first two392

months after implantation, possibly implying a quicker falloff in signal quality thanwe encountered393

with different arrays, and making the comparison to our unit identification and quality less direct.394

Although a complete comparison between these types of array is beyond the scope of this395

proof-of-concept tool introduction, we believe it is likely that the variations in performance ob-396

served with ’Utah’ arrays in macaques were larger than for the 3D arrays we used. In fact, in mar-397

mosets, arrays with similar sizes as the ones used in this study (but with fewer electrode contacts)398

have been reliably implanted and oftenmeasured spiking activity formonths (Debnath et al., 2018).399

We conclude this comparison by noting that we recorded from a similar number of units as400

reported for the larger 96 channel ’Utah’ arrays (Dickey et al., 2009; Vaidya et al., 2014; Fraser and401

Schwartz, 2011), but from a smaller region of the brain, largely thanks to the denser 3D geometry402

of the arrays. This is another advantage on the hardware side of this tool, as it allows for larger403
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Figure 7. Examples of receptive fields of two units near area MT. (A) Maximum firing rates in response to

presentation of a disk of moving dots (diameter scaled by 1/2 for clarity; colors indicates firing rate) at a given

location in the visual field (fixation spot indicated by a red square). The receptive field (region where the

interpolated firing rate exceeded a threshold; see Methods) is outlined in magenta. Colored circles represent

estimates of receptive field locations for individual recording sessions. (B) Average firing rate for the three

conditions (around the RF) outlined in black in (A). (C) Marginal shape histograms (as in Figure 2). (D) Close-up

for firing rates shown in (B) for each recording session. (E) Averaged spike shapes. (F) Spike triggered

averaged firing rates show a refractory period after spikes. (G-L) Same as (A-F) for a different unit. (M) Total

number of trials per session. Colors indicate recording dates (sessions) and firing rates, respectively, and are

matched across panels. Recordings near area MT (marmoset J).

Figure 7–Figure supplement 1. Statistics for aggregate data.

Figure 7–source data 1. Source data for this Figure and the associated Figure supplement
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scale recordings within small brain areas in the marmoset– arrays built for larger primate brains404

will often sparsely sample within a single area, spanning their footprint over many adjacent areas.405

Long-term stability of units406

The 3D array recordings had excellent long-term stability, which is a novel and important result for407

studies usingmarmosets. The feasibility of long term recordings is itself not totally unprecedented,408

as there are multiple approaches that align with our observations in a number of species. Here we409

review some examples, not just to bolster the case that long term stable recordings can be made410

in a number of species, but to point to the broader potential adoption of the supersession analysis411

approach we have introduced.412

For example, Jackson and Fetz (2007) used microwires and studied stability of single units in413

continuous recordings using a window discriminator, and found single units surviving for up to414

17 days in a one year experiment, where microwires were moved periodically to different neu-415

rons to improve signal quality. More systematic experiments addressing long-term stability of in-416

dividual units were done with ’Utah’ arrays by matching spike waveforms and inter-spike interval417

histograms across recording sessions (Dickey et al., 2009; Vaidya et al., 2014), eventually in combi-418

nation with correlations and firing rates (Fraser and Schwartz, 2011) to increase statistical power.419

While comprising relatively small numbers of units and recording sessions, these studies demon-420

strated a few single units being recorded for months, suggesting that there was likely no relative421

movement between the electrodes and the neural tissue. Linderman et al. (2006) used continu-422

ous recordings to study short-term changes of spike amplitudes and reportedmoderate amplitude423

fluctuations in two example units.424

The N-form arrays we used had the same spacing between shanks as the ’Utah’ type of array425

— albeit with a higher density of recording sites along a shank, and far fewer total shanks. Even426

though the N-form arrays comprised only 16 shanks, we found a similar long-term stability for427

well-isolated single units, suggesting that this number of shanks is sufficient tomitigate substantial428

array drift. The smaller "bed of nails" also permits a slow insertion method, which we hypothesize429

is important for avoiding damage associated with ballistic insertion methods, especially important430

in the smaller and more delicate marmoset brain.431

In assessing the usefulness of supersession unit data, we used relatively relaxed criteria for unit432

selection. Given this liberal approach, we did not focus on comparing session-scale average spike433

waveforms (as these are sensitive to varying amounts of other-spike contamination and noise), but434

rather distributions of a parametric representation of spikes, where contamination could be con-435

sidered as a mostly flat, additive component. Likewise, we dropped the comparison of inter-spike436

interval histograms, firing rates and correlations. While these can provide useful information about437

unit identity, they rely on a high SNR and good isolation of units in every single session and might438

even depend on the animal’s engagement in experiments. To avoid discarding large amounts of439

good data without further inspection, we argue that these measures might best be used for post-440

hoc tests. Spike shapes themselves proved to be reasonably informative about cluster identity, and441

for short experimental sessions and low firing rates, multiple sessions may be required to obtain442

useful second order estimates.443

Recent studies in rodents have been very successful in long-term tracking of neuronal activ-444

ity. However, this performance was in large part made possible by increasing the density of elec-445

trode contacts, and therefore the number of observables available for spike sorting. Specifically,446

Okun et al. (2016) successfully sorted concatenated data for a small number of sessions and im-447

mobile NeuroNexus silicon probes with 4-8 tetrodes (slow insertion). Tetrode recordings in mouse448

(Dhawale et al., 2017) have been used for continuous tracking over weeks. Continuous tracking449

seems required here due to larger fluctuations in electrical coupling of neurons to electrodes. Re-450

cent work with high density arrays (Chung et al., 2019) in rats showed smaller fluctuations and451

allowed sorting segments of data and linking these together. Other recent high-density record-452

ing techniques using ultraflexible mesh electronics (Fu et al., 2016, 2017) and silicon high-density453
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arrays (Jun et al., 2017b) have not yet been systematically studied for unit longevity. In primates,454

heptodes have been used in acute recordings, in marmoset cerebellum (Sedaghat-Nejad et al.,455

2019) and in macaques Kaneko et al. (2007), and single unit tracking was done in the latter case.456

In terms of stability of units, the following general picture emerges: wires and tetrodes drift457

within days, but stability is better when they are left in place without an attachedmicromanipulator458

Okun et al. (2016) or when they are continuously tracked (Dhawale et al., 2017), approaches which459

can yield stability for days to weeks. Multiple shanks likely reduce electrode drift and units can be460

tracked for weeks to months (’Utah’ arrays potentially for months if no degrading signal quality,461

Vaidya et al. (2014); Fraser and Schwartz (2011)), while ultraflexible, polymer based electrodes462

might remain stable even longer. Our results fit well into this picture.463

Implications for experimental planning and spike sorting methods464

Long-term stability offers the potential to generate detailed characterizations of neuronal behav-465

ior, but it also requires more careful experimental planning. In the two sections below, we high-466

light conceptual differences for experimental planning and spike sorting compared to the classical467

single-session approach.468

Experimental Planning469

While the general long-term stability and the observation of single- and multi-unit activity did sup-470

port more data-rich analyses than would have been possible from a single session, the fashion in471

which units ended up being sampled across recordings crucially affects the planning of possible ex-472

periments. If, at one extreme, we had recorded from a different set of neurons in every recording473

session, we would have ended up with a large sample of recorded neurons, but not more data per474

unit. Such a scenario would allow us to estimate distributions of neuronal behavior in a given area.475

At the other extreme, if we were to always record from the same set of neurons, we would end up476

with a small sample, but would be able to measure their responses in many different conditions477

and further quantify the higher-order statistical interactions between them.478

In reality, we found ourselves in a fruitful middle regime: Units were recorded for variable du-479

rations, in which a small fraction of units both appeared and was lost between recording sessions.480

This process was not entirely random, as we saw that most units disappeared during the initial ses-481

sions after their appearance. This means that the chance for a unit to survive for another session482

increased with the number of sessions that this neuron had already been observed. Hence, if we483

were to ask which of the units we would most likely observe in a future session, the best bet would484

be those units that were already observed for the most sessions in the past.485

The variable lifetimes of units also provide an additional tool for raising the standard for isola-486

tion. Restricting an analysis to only long-lasting units would likely reduce the chance of including487

less clearly isolated units. Such units may not be found in some of the recordings due to variations488

in signal amplitude.489

The exact timescales at which units were lost between sessions varied slightly across our two490

test arrays/animals. However, there may be two different mechanisms involved: while we found a491

relatively low, constant turnover of units on both arrays, in marmoset J we additionally saw a few492

events where a large fraction of units was lost between subsequent recordings (Figure 4). These493

events could not be explained by a long temporal gap between the recordings, suggesting a rela-494

tively fastmechanism for that, with a timescale of hours to days (as opposed to weeks andmonths).495

We believe that these findings can impact the planning of experiments using chronic arrays.496

In the classical single session approach, experimenters devote part of the experimental time for497

general characterization of receptive fields and tuning of neurons, in order to target a neuron and498

adapt the stimulus properties to efficiently sample responses, avoiding stimuli without an expected499

effect on the neuron’s firing behavior. In the case of chronic array recordings, we record from500

many neurons with potentially different receptive fields and tuning properties, suggesting the use501

ofmore general stimuli, e.g. sampling a larger visual area and different tuning directions. Especially502
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when studying interactions between a small number of units, one should keep inmind that someof503

these units may disappear during the course of an experiment and it would be advisable to start504

with a larger group of candidate units. In this regard, chronic arrays would be ideally suited for505

continuous tasks and naturalistic stimuli (e.g. Huk et al. (2018); Knöll et al. (2018)), which efficiently506

sample a large parameter space, allowing for simultaneous characterization of units with different507

tuning properties.508

If, however, an experimental design requires finding persistent units in order to adapt focused509

studies to suit their tuning, we recommend choosing units that have already been observed for510

at least 3 sessions, as these units have a high chance to survive the next sessions. In our experi-511

ments, such units had a conditional (additional) lifespan of 6 and 14 sessions (for marmoset J and512

B, respectively, cf. Figure 6A). Likewise, studies of changes in firing behaviour of single units across513

sessions (e.g. while an animal is learning a task, or after drug treatment) are in principle feasible.514

However, such experiments can usually not be repeated in the same animal, and few units will be515

clearly isolatable, resulting in a rather inefficient use of the acquired data. In this case, the sug-516

gested approach is to perform several consecutive studies on an animal, which is possible given517

the longevity of the arrays used here.518

Importantly, we have shown that it is feasible to combine data across multiple sessions to infer519

tuning properties of neurons from multiple sessions. When looking at a population of recorded520

units, wewould encounter a relatively high variability in both signal-to-noise ratio and physiological521

properties across the population. Such variations would generally result in different requirements522

on the amount of data needed for statistical tests (e.g. a weak tuning requires more data to deter-523

mine a receptive field). It was therefore useful to sort units according to their tuning strength, and524

to perform a relatively focused analysis to specifically detect changes in receptive field locations525

with high statistical power, using data from single sessions. This strategy would then allow to ask526

the more detailed questions for data pooled across sessions in a second step.527

The same type of analysis should be possible for inter-neuronal correlations. Our results also528

highlight that, in many cases, it would be incorrect to assume that units with similar spike shapes529

recorded on the same electrode in subsequent sessions would correspond to different neurons.530

We conclude that chronically implanted electrode arrays allow for both sampling of a large set531

of neurons and detailed analysis of a few long-term units, but different timescales need to be con-532

sidered when planning experiments. If the objective is to sample the population of neurons across533

a brain area, experimental sessions could be separated by a month to take advantage of appear-534

ance and disappearance of neurons on the array. If instead the objective is a detailed analysis of535

a smaller set of neurons and their interactions, daily recordings for 2-4 weeks are ideal.536

Features of the spike sorting method537

We adopted a modular strategy for spike sorting, where individual sessions were processed inde-538

pendently and could be iteratively merged to form ’supersessions’. In this way, experimenters can539

perform preanalyses as data are generated and determine receptive fields and tuning properties540

of neurons to guide stimulus selection aswell asmonitor recording quality. Thismodular approach541

further facilitates excluding particularly noisy segments in individual sessions, which might impair542

or bias the clustering algorithm.543

The primary reason for eschewing existing spike sorting methods was a general concern about544

robustnesswhen stationarity assumptionswere notmet across recording sessions. This is a known545

challenge to even cutting-edge algorithms (Jun et al., 2017a). We instead chose a simple paramet-546

ric representation that was designed to be robust to noise and artifacts, which can differ from547

session to session. Our focus was on characterizing the peak of the depolarization phase using548

unimodal templates where the SNR would be highest. While spike shapes can be strongly bimodal,549

depending on the relative position of the electrode and neuron, the shapes for spikes with highest550

amplitudes near the soma have been shown to be largely unimodal in theoretical studies (Lindén551

et al., 2011; Quian Quiroga, 2009; Camuñas-Mesa and Quiroga, 2013). As we recorded spikes on552
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single electrodes and could expect a large number of neurons in the vicinity of an electrode (Pe-553

dreira et al., 2012), high amplitude spikes would be easiest to separate from other units. This554

situation would certainly be different for high-density probes. The process of estimating parame-555

ters of the spike shapes was essentially an optimization. We would shift a template temporally at556

sub-sampling resolution and change its width and symmetry to best match a local minimum in the557

raw voltage traces. In practice, this step was implemented by running the raw data through a large558

filter bank on a GPU.559

Our spike sorting approach did not solve the problem of overlapping spikes. However, it greatly560

reduced the problem as the time interval needed for detection was reduced to the width of the561

spike and thus, due to zero padding, much smaller than the the width of the templates in the fil-562

ter bank. In addition, for cases where overlapping spikes exist, we should see them in the shape563

histograms as somewhat isolated shapes that are a bit wider and of higher amplitude than an ad-564

jacent cluster. In our data, we did not find evidence for significant numbers of overlapping spikes565

near isolated clusters. Overlapping spikes would generally lead to wider and larger observed spike566

shapes, and such shapes would be reflected as asymmetries in the histograms, where larger and567

wider than average spikes would be found with a low probability. We didn’t observe such asymme-568

tries, so we can conclude that overlapping spikes were small enough that they wouldn’t affect the569

observed spike shapes to a greater extent than noise. This situationwas different for low amplitude570

events which could not be separated into distinct clusters, but clearly showed stimulus dependent571

modulations (as in Figure 3C, G). These events would necessarily overlap in many cases, as their572

baseline rate was in the order of 100Hz and peak rates in single trials therefore likely an order of573

magnitude higher. Hence, firing rate estimates for low amplitude spikes should be read as a lower574

bound, providing useful (slightly distorted) information about tuning in sustained responses, while575

truncating transient responses.576

In this work, we used the parametric representation of local mimina as a spike sorting method.577

But we could certainly perform spike sorting with an existing method and obtain these parametric578

representations for spikes in order to subsequentlymatch spike clusters across recording sessions.579

Likewise, as current sorting techniques are validatedwith respect to stability over long time frames,580

it would be straightforward to replace our sorting approach. However, our sorting approach could581

still be used for fast, online assessments of recording quality, neuronal yield and tuning properties582

as it does not require manual curation.583

Application to data584

In many cases, we observed that shape clusters appeared and disappeared gradually over time,585

such that the observed spike amplitudes were highest around the middle of their lifetime. We586

could thus have a situation where some shape clusters of a given unit were clearly isolated single587

unit activity, and others were contaminated (e.g. Figure 7 I). Although this effect means that some588

of the unit data from ’supersessions’ is less well-isolated than conventional singe-session data, the589

framework can also be used to estimate the impact of contamination for a given analysis, and590

hence to determine in a principled manner how high an isolation standard is required.591

To give an example how such analysis could look, assume thatwehave a number of sessions (W)592

where a unit was well-isolated, and some sessions (C), where the same unit was contaminated with593

low amplitude spikes from other neurons and some of its spikes were lost due to low amplitudes.594

Wewould then pool data from each group (W and C) of sessions to obtain a larger sample size and595

estimate firing rates and interspike interval histograms.596

Assuming that low amplitude spikes from other neurons are uncorrelated (alternatively, the597

interspike interval distribution of low amplitude spikes could be estimated with sufficient data)598

and uniformly distributed, we would fit the ISI histograms of group C as a linear combination of599

the ISI histogram of groupW and a uniform distribution. The component explained by the uniform600

distribution could then be translated into an estimate of the spike count for the low amplitude601

spikes from other neurons (i.e., dividing the rate of the uniform component by spike count of602
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group C and multiply with the total recording duration of group C). To obtain an estimate of the603

number of spikesmissed in group C due to low spike amplitudes, one canmultiply the difference in604

firing rates between group W and C with the total recording duration of group C and add the spike605

count for the low amplitude spikes determined above. After doing a given analysis separately for606

groups W and C, one could then compare the results and see how they are affected for a known607

contamination and signal loss.608

Furthermore, if one looked into the datasets of group W, one would likely find spikes that are609

statistically similar to the contaminating spikes in group C, simply by identifying identically shaped610

spikes at much lower amplitudes. Therefore, it is possible to create surrogate datasets with known611

contamination (and, by removing spikes, signal loss) and treat them as a model to predict effects612

on a given analysis. The above analysis would then provide independent data to test this model.613

Apart from spike clusters, our sorting approach also gives access to low amplitude spikes that614

do show tuned responses to visual stimulation, but likely arise from amultitude of units with a con-615

tinuum of corresponding spike shapes (e.g. Figure 3). For the purpose of decoding neural activity,616

such low amplitude spikes can be of great value. In fact, results from other groups indicate that617

lowering the detection threshold increased the performance of a decoder despite losing informa-618

tion about the neuronal identity (Trautmann et al., 2019; Kloosterman et al., 2013; Todorova et al.,619

2014). Our work suggests that we can define a detection threshold (or region of interest) post-hoc,620

based on responsiveness to stimuli known to drive neural activity. We refer to this activity as multi-621

unit hash (MUH), creating a third category alongside withMUA, which should form clusters that are622

separable from MUH, and SUA which would additionally show a clear refractory period. We need623

to stress here that MUH is still distinct from the ’unsorted spikes’ often left behind by most sorting624

algorithms.625

In summary, we were able to create ’supersessions’ for individual units on a timescale of sev-626

eral days to a few weeks. This allows for more statistical power than a single session’s worth of627

data can provide, and hence could put the awake marmoset preparation more on par with that of628

macaques. This is important because the marmoset is also a "pivot species" to richer and more629

powerful techniques that are more difficult to apply to the macaque. Such supersessions do re-630

quire reconsidering the design of experiments to handle the comings-and-goings of identified units.631

Such experiments will likely have a long term structure where basic characterization of neural re-632

sponse properties is performed approximately once a week, with the remainder of experimental633

data collection being dedicated to more sophisticated experiments.634

Methods and Materials635

Electrophysiology preparation636

Two marmosets were implanted with N-Form arrays (Modular Bionics, Berkeley, CA, USA) in area637

MT (marmoset J) or PPC (marmoset B). Prior to placing the chronically implanted array, we drilled a638

grid of 9 burr-holes over and surrounding the desired brain area based on stereotaxic coordinates639

from Paxinos et al. (2012). We performed extracellular recordings using single tungsten electrodes640

in each burr-hole to fine tune the placement of the array based on the physiological response.641

The MT array was placed based on high response to direction of motion, while the LIP array was642

placed based on high eye-movement related activity. A small craniotomy and duratomyweremade643

surrounding the desired area for array placement.644

The N-form array was mounted on a stereotax arm andmanually lowered till tips of the shanks645

had entered the brain. The brain dimpled slightly, then the tissue relaxed around the implant.646

The array was then slowly lowered until the baseplate was just above the brain’s surface. The647

array was stabilized and sealed with KwikCast before being closed entirely with dental cement and648

acrylic. The array connectors were enclosed in a custom 3D-printed box embedded in the acrylic649

implant.650

Animal procedures described in this study were approved by the UT Austin Institutional Care651
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and Use Committee (IACUC, Protocol AUP-2017-00170). All of the animals were handled in strict652

accordance with this protocol.653

The N-form arrays (Modular Bionics, Berkeley, CA, USA) consisted of a 4x4 grid of electrode654

shanks, spaced by 400 µm. Each shank was 1.5mm long and had 4 electrode contacts, one at its655

tip, and three more at 250 µm, 375 µm and 500 µm distance from the tip. Extracellular signals were656

recorded at all 64 electrode contacts with sampling rate of 30 kHz, using the OpenEphys recording657

system (Siegle et al., 2017). For marmoset J, seven of the electrode contacts were found damaged658

after the surgery and ignored for further analyses.659

Visual tasks and stimuli660

All stimuli were presented using custom MATLAB (Mathworks) code with the Psychophysics Tool-661

box (Brainard, 1997) and a Datapixx I/O box (Vpixx) for precise temporal registration of stimulus,662

behavioral, and electrophysiological events (Eastman and Huk, 2012).663

Marmosets were trained to fixate a central dot in the presence of peripheral visual stimuli. The664

animals fixated the dot within a window of 1.5 degree radius for the whole trial to obtain liquid665

reward in the form of marshmallow juice. If the marmoset broke fixation, the trial was aborted.666

Fixation was acquired and held for 200ms before a stimulus appeared.667

To measure MT receptive fields, we presented a circular cloud of randomly moving dots for668

350ms at one of 35 different screen locations during controlled fixation. The diameter of the stim-669

ulus aperture scaled with the eccentricity of its center.670

Tomeasure direction tuning, we presented coherent motion in 12 possible directions at a fixed671

location based on previously measured receptive fields. Each trial contained motion in one direc-672

tion for a duration of 500ms.673

For PPC recordings, marmosets were trained to perform a memory guided saccade task. The674

animals fixated the central dot while a target dot was briefly flashed at a random location in the pe-675

riphery. After a delay of 400-1000ms, the central dot was extinguished and themarmosets received676

liquid reward for saccades to the remembered location of the target. Memory guided saccades are677

well known to generate PPC activity in primates (Andersen et al., 1990). The task itself was not part678

of the investigations in this work. We outline it here as context for the behavioral engagement of679

the animal in the experiments and to emphasize its potential to drive neuronal activity in PPC.680

On average, recording durations of individual sessions were (26 ± 13)min for marmoset J and681

(41 ± 12)min for marmoset B.682

Pre-processing683

We filtered a 60Hz component out of the raw data for each electrode using a custom made al-684

gorithm. We also performed common average referencing by subtracting (projections onto) the685

median of high-pass filtered signals over all electrodes from each channel. We further up-sampled686

data to 60 kHz before feeding into Kilosort (Pachitariu et al., 2016). For this, values between sam-687

ples were obtained by linear interpolation and values at samples were smoothed with a [1/6 2/3688

1/6] smoothing kernel to obtain a uniform variance across data points for the case of Gaussian689

white noise.690

Spike sorting691

Code for the spike sorting pipeline is available at https://github.com/HukLab/SuperSessioning and692

will further be made available within the SpikeInterface project (https://github.com/SpikeInterface,693

Buccino et al. (2020)).694

We aimed at jointly sorting spike data from tens of recording sessions (marmoset J: N=154,695

marmoset B: N=95) under the following constraints:696

1. Marmosets were head-fixed, but able to move their bodies within the chair, creating tempo-697

rally variable amounts of noise in the data.698
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2. Electrodes were separated by at least ≥125 µm and spikes were not generally expected to be699

seen on multiple electrodes.700

3. We observed only few separable units (0-3) per electrode.701

4. There was no apparent electrode drift within recording sessions.702

5. Spike clusters needed to be matched across recordings.703

If spike shapes are known, then template matching would be the best way to detect spikes. How-704

ever, if spikes are to be sorted, information in the raw data needs to be used to separate spike705

clusters, and especially to separate them from fluctuations in the background noise level and low-706

amplitude events of neuronal origin. A good sorting algorithm therefore needs to make estimates707

that are maximally invariant when subjected to noise. Potential issues are:708

1. Baseline estimate: errors could change the match of bimodal templates. This may especially709

become a problem when the noise level is temporally varied.710

2. Sampling frequency and temporal resolution for peak detection: Misaligned spikes differ in711

shape. This can be resolved by upsampling the data, but results in longer templates.712

3. Temporally overlapping spikes: Need to be detected and fitted.713

To address these three issues, we generated a bank of unimodal templates (essentially triangles714

with a tip rounded off by a cosine function) which varied in phase (to effectively yield 180 kHz sam-715

pling frequency), width and symmetry (see examples in Figure 8 B), covering a wide range of pos-716

sible shapes. Each template was normalized to have an energy (sum of squared entries) of one.717

Using this bank of templates in a template matching strategy reduces baseline errors, temporal718

misalignment and the chance of fitting overlapping spikes, but does sacrifice somedetection power719

(when compared to using templates generated from the data, about 10% of the signal power).720

We determined local maxima (in time and width, but global in symmetry to avoid double de-721

tections) for the match (dot product) between our templates and the preprocessed voltage traces.722

In this setting, we were fitting the peak of the depolarization phase of a spike. While an error in723

the baseline estimate would have an effect on the detected spike power, it would have little effect724

on both the estimated spike width and symmetry. Temporally overlapping spikes were less likely725

as the temporal interval for detection was restricted the duration of the depolarization phase (i.e.726

0.5msor less) and a linear combination fittingwas not necessary in our recordings. Note thatwedid727

not capture the repolarization phase of a spike at all, however, we argue that due to smoothness728

constraints, the shape of the repolarization phase covaried with its symmetry, and its duration was729

hard to estimate due to potential drifts in baseline. Matching a large set of potential templates was730

computationally expensive, but also well suited to run on a GPU. Our implementation ran about731

twice as long as recording the data for 64 electrodes sampled at 30 kHz. Marginal histograms of732

shapes obtained for an example recording are shown in Figure 8C.733

Clusters of spike shapes were then determined with a density based approach, using the wa-734

tershed algorithm, which required some amount of smoothing and a step to reduce global density735

gradients. In more detail, we aimed constraining the number of spikes to average, rather than736

setting a fixed kernel size for smoothing. For a given number of spikes, we could then estimate737

the radius required to find that number of spikes, and the watershed algorithm would yield clus-738

ters. This approach tends to fail when there are global gradients in spike density and further use739

extremely small volumes for high spike densities. Therefore, we instead determined the area of a740

number of spikes that scaled sublinearly with a local firing rate baseline R. This baseline was es-741

timated by smoothing with a trivariate Hanning kernel (width 13 bins, truncated first and last bin,742

and sheared a bit, by 0.5 bins in amplitude per bin in width, such that larger spike widths would be743

combined with lower amplitudes, to reduce a potential bias due to spike clusters, which were often744

tilted in the opposite direction). We applied a sublinear scaling and added a small offset to that745

baseline to determine a firing rate (and therefore the number of spikes), given by 0.015Hz +0.7R0.9
746

for which we determined the required radius. We excluded areas from the analysis for which that747
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Figure 8. Spike detection and sorting. Raw voltage traces from single electrodes (A) are matched in a sliding window to a set of triangular,

unimodal templates (examples in B, upper left) differing in width, symmetry and phase offset. Local maxima of template - raw trace matches in

this parameter space (right plots, dots colored as in left panel) are then detected as putative spikes with a shape characterized by the

corresponding width, symmetry and signal power (dot product of template and raw trace). (C) Histograms of shapes for an example electrode

and recording (marginal distributions). Locations of clusters determined by a watershed algorithm are marked with cyan circles. (D) Shapes of

events detected by Kilosort on the same electrode, grouped into clusters by an automated procedure. (E) Clusters determined by the watershed

algorithm (corresponding to the cyan circles in (C)).

Figure 8–source data 1. Source data to generate this Figure

radius was larger than 5 bins. To avoid instances where the watershed algorithm would turn indi-748

vidual voxels into clusters, we determined a sliding median across 3x3x3 voxels. We further note749

that there is a dependency between the recording duration and the resolution of this method (i.e.750

higher resolution for longer recordings).751

For clusters obtained from the watershed algorithm (using a three-dimensional 18-connected752

neighborhood), we excluded clusters that systematically had extreme values for spike width or753

symmetry or very low amplitudes. Specifically, we ensured that clusters had their center at least754

half a standard deviation above the lowest or below the highest bin. As there were many events755

with wide shapes, we lowered the exclusion threshold for wide spikes to half a standard deviation756

below the second highest bin. For amplitudes we included clusters with and amplitude of at least757

half a standard deviation above 2.7� for lowest spike widths and 5.9� for highest widths (linear758

cutoff in the histograms).759

To show that these spike clusters indeed corresponded to units found in a conventional spike760

sorting approach, we sorted spikes with a widely used spike sorting algorithm (Kilosort, Pachitariu761

et al. (2016)). For that, we used a low threshold for splitting clusters in the Kilosort algorithm762

and extracted the shapes of the corresponding spikes from our template matching strategy. This763

allowed us to perform the manual step of merging clusters in an automated procedure, using the764

Jensen-Shannon divergence between shape histograms as a distance metric.765

We obtained three dimensional histograms of shape parameters for spikes from each Kilosort766
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cluster (Figure 8D). We compared Kilosort clusters to clusters obtained by running the watershed767

algorithm on shape histograms and found a good match for high amplitude clusters (Figure 8 E).768

The latter clusters were (by construction) better localized in our histograms and we decided to use769

them instead of Kilosort clusters in the following analyses.770

Possible extensions771

We implemented the spike sorting for the case of single, isolated electrodes. An extension to dense772

arrays is beyond the scope of this article, but wewill briefly discuss potential implementation issues773

here.774

1. Linear arrays/stereotrodes: can be treated as another dimension, like the phase. This just775

requires one to set a spatial extent of spikes, creating spatially shifted templates. With this776

method, one could determine maxima at each time frame for each spatial shift, and do a777

recursive maximization in a second step to obtain spatially isolated maxima.778

2. Spatial grids: memory constraints on the GPU will currently require chunking the array into779

rows of electrodes.780

Our current implementation does not include a template generation andmatching step, poten-781

tially resulting in suboptimal detection performance. A potential improvement, while still avoiding782

the baseline issue, could be to generate templates, smooth them with a kernel and generate tem-783

plate versions with different widths and phases by interpolation. We would need to normalize the784

templates to unit power and reduce positive (repolarization) parts of the templates (e.g. divide785

by 2), to reduce a potential baseline effect. Then we would replace the predefined templates of786

a given cluster (obtained from the watershed algorithm) with these templates, while keeping the787

other predefined templates as alternative options (for events that do not match a particular tem-788

plate). Next, we could rerun the detection with the modified set of templates, considering events789

which are best matching the inserted templates as spikes.790

Cross-session merges791

We computed pairwise Jensen-Shannon divergences between existing clusters from the previous792

2 sessions and clusters from the current session allowing for small shifts in amplitude, width and793

symmetry for a penalty. Specifically, we did multiply the Jensen-Shannon divergence with the in-794

verse of Hanning kernels with a half-width of 7 (for amplitude) and 3 (width and symmetry) bins.795

Each cluster from the current session was then merged with the existing cluster with the smallest796

Jensen-Shannon divergence if this was below a threshold of 0.3 ln(2), otherwise it was labeled as a797

new cluster. To allow for slow temporal drifts, the merged cluster was then assigned a shape den-798

sity equal to the average of the previous and current density (resulting in effective down-weighting799

of earlier densities).800

Motion direction tuning801

Tuning of spiking activity to themotion direction of a visual stimulus was examined as a function of802

the width and amplitude of spike shapes, rather than for well isolated clusters, to systematically in-803

vestigate howmuch of the low amplitude events was affected by visual stimulation. To this aim, we804

marginalized over the symmetry parameter of spike shapes, and used a sliding window of 5x5 pix-805

els for amplitudes and widths, to obtain samples of spikes around each spike width and amplitude.806

For a temporal window from 20-470ms from stimulus onset, we computed mean and standard de-807

viation of spike counts for trials from each stimulus condition, excluding the 3 highest and lowest808

spike counts from the analysis for robustness of the estimate. The difference between opposing809

motion directions in the stimulus was then divided by the root mean squared standard deviations810

to obtain a sensitivity index for each direction. We maximized the sensitivity index across motion811

directions and, for a sample session, visualized the argument of the maximum as tuned direction812

in Figure 3 J and themaximum value as sensitivity index in Figure 3 I. To average these sensitivity in-813

dices and directions across sessions, we treated the tuning in each session as vectors in the tuned814
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direction with a length equal to the sensitivity index, and averaged them, to obtain an interpolated815

tuning direction and averaged sensitivity index, shown in Figures 3B, F and A, E, respectively. To816

obtain a region of interest for analysis of all stimulus dependent events found on a given electrode,817

we thresholded the averaged sensitivity indices at 0.3 and determined connected regions exceed-818

ing this threshold. The largest connected region was then used as a region of interest (outlined in819

Figures 3A,B,E,F,I,J) for the cross session analysis performed in Figure 3C, D, G, H, as well as the820

single session spike time histograms and tuning curves in Figure 3K, L. All spikes within that region821

of interest were used to compute spike time histograms with a bin width of 1ms and temporally822

smoothed with an 20ms wide Hanning kernel (Figure 3C,G,K).823

To see how tuning responses at a given electrode site change across sessions, we determined824

tuning curves for each session (Figure 3D,H,L). Theoretically, a drift in firing rate or sensitivity could825

signal a change in coupling between neurons and the electrode, eventually caused by z-drift. Like-826

wise, due to the spatial organization of areaMT, a change in phase could reflect a lateralmovement827

of the electrode.828

Cluster survival829

Spike shapes were very similar for a large fraction of clusters. It could be that clusters only ap-830

peared to last across sessions, but in fact represented multiple different clusters that just hap-831

pened to have matching shapes. Therefore we wanted to test for a bias in longevity for units with832

common spike shapes. We computed histograms of amplitudes, widths, symmetry and volume of833

shape clusters, and the average of these quantities for each better-isolated unit across sessions.834

We then ranked units according to the local density of shape clusters. A lot of short-lived units had835

uncommonly wide or narrow spike widths or very low firing rates. We therefore performed a rank-836

ing, which only included units with an average width between 0.1 – 0.5ms and an average firing837

rate above 0.5Hz and assigned the excluded units the ranks of the next lowest ranked included838

unit. This was not done to exclude units from our analysis of the relation between spike waveform839

uniqueness and lifetime, but to group them more evenly. For all units with ranks smaller than a840

given percentile, we then estimated the conditional probability that a unit was lost in the subse-841

quent session after having survived at least until that session (N). With li denoting the measured842

lifetimes of units, and Θ the Heaviside step function, that probability estimate was843

̂pN = 1 −

∑

i
(li − N − 1)Θ(li − N − 1)
∑

i
(li − N)Θ(li −N)

. (1)

It assumes that after the N-th session, unit losses are described by a Poisson process with a fixed844

rate. The estimated additional lifetime (in sessions) �N was then given by845

̂�N = −
1

ln( ̂pN )
(2)

and shown in Figure 6A. The same analysis (replacing ’sessions’ by ’days’) was performed to assess846

temporal lifetimes.847

Receptive fields848

Firing rate responses were averaged across sessions and smoothed using a 41ms Hanning kernel.849

Maximum responses were obtained for each stimulus condition and visualized. The receptive field850

was then determined as the regionwhere the spatially interpolated response exceeded a threshold851

of twice the interquartile range above the median across conditions. Data were insufficient for852

estimating the size of the receptive field for individual sessions. To visualize the cross-session853

variation of receptive field locations, we assumed periodic boundary conditions and calculated the854

circular mean eccentricity and direction (colored circles in Figure 7A, G). Temporal firing responses855

of individual sessions (Figure 7D, J) were smoothed using an 18ms Hanning kernel.856
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Figure supplements857

Figure 4 — False discovery rate estimates858

Spike shapes from different neurons can be similar, or even indistinguishable. To estimate how859

often we would falsely match a cluster from different units, we tried to match each cluster with860

clusters found on different channels within 3 sessions before and after its detection. The fraction861

of chancematches obtained frompairwise comparisons was then scaled by the number of clusters862

found on the same electrode to obtain an expected number of chance matches. This estimate863

assumes that the clusterwould in fact be absent in the subsequent recording session (andwould be864

lower otherwise). We further determined the dissimilarity threshold at which each pair of clusters865

would be matched to obtain a threshold dependence of the (pairwise) fraction of chance matches.866

Figure 4 — Statistics for long-term units867

We determined variations in spike amplitude, rate and inter-spike intervals for long-term units868

by estimating relative standard deviations. For inter-spike intervals, specifically, we focused on869

short intervals, as these would more likely reflect intrinsic dynamics of a single neuron, rather870

than overall network behavior or stimulus dependent responses. In addition, these would also be871

more robust to potential contamination with noise.872

We computed spike triggered spike count histograms in an interval from 0.2 - 50ms after a873

spike. The first 0.2ms were ignored as it would merely reflect noise in a few particularly noisy874

sessions, which were not the subject of this analysis. The histograms were converted into firing875

rates, smoothed using a 2ms Hanning window, and normalized by the estimated firing rate of a876

given session, yielding an instantaneous, relative firing rate. Bursts of spikes would be reflected by877

an increased instantaneous firing rate shortly after a spike. For quantification, we measured the878

maximum of the instantaneous, relative firing rate, which was referred to as ’burstiness’ in Figure879

4 – Figure supplements 3C and 4C. As an estimate for a relative refractory period, we computed880

the temporal lag after a spike required to reach 3/4 of this maximum instantaneous firing rate.881

As a summary statistic, we computed the fraction of the total variance across all clusters (from882

either group of long-term units), that the variation within units (and across sessions) could explain.883

This analysis was performed with logarithmized values in order to more equally weight clusters884

with lower averages.885

Figure 7 — Statistics for aggregate data886

This analysis aimed at testing whether receptive field locations of identified units were consistent887

over time. Due to the retinotopic organization of area MT and the small size of the array, we888

expected similar receptive field locations across the array. Importantly, our sampling of space was889

relatively sparse and not perfectly homogeneous (few (i.e. 0-10) trials per condition). Additionally,890

there were few spikes per trial, as we analysed spiking in a short temporal window from 20 to891

120ms after stimulus onset.892

To obtain a robust estimate of RF location with a high spatial resolution, we converted the sam-893

pled eccentricity and direction to unit vectors on a circle, to perform circular statistics (compute a894

resultant vector and compare to a uniform Poisson noisemodel). This approachmay distort actual895

RF locations, but in the same manner for every dataset, and can therefore be used for comparing896

responses across sessions at a higher resolution. Specifically, we estimated receptive field loca-897

tions by mapping the 5x7 grid of stimulus eccentricities and directions to circular variables equally898

spaced on unit circles. Summing up response vectors for different stimuli allowed forming a re-899

sultant vector with approximate multivariate Gaussian distribution for uniform responses (as null900

hypothesis), with a variance given by half the number of spikes in each of the 4 dimensions.901

To account for different trial numbers for different conditions, we smoothed responses and902

trial numbers across directions and eccentricities using a [0.25 0.5 0.25] kernel (to ensure that903

there were no conditions without trials). We normalized each condition to reflect an average, per904

trial spike count and computed its variance under the assumption of probabilistic firing. Variances905
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were then summed across conditions and divided by 2 (2 dimensions) to obtain an approximation906

of the variance of (each dimension of) the resultant vector under the null hypothesis.907

Comparing the resultant vector with the null hypothesis yields two numbers:908

(1) a sensitivity index, specific for a given receptive field location and independent of the number909

of trials. When treating the null hypothesis as a noise model and the resultant vector as the signal;910

both would have a variance of half the number of spikes, and hence the sensitivity index would be911

the length of the resultant vector divided by the square root of half the number of spikes. To obtain912

a sensitivity index independent of the number of trials, spike counts and resultant vectors were913

averaged across trials, allowing to compare individual sessions with the cross-session average.914

(2) a p-value for accepting the null hypothesis of no spatial modulation. The half squared length915

of the resultant vector, divided by the total number of spikes is Chi-squared distributed with 4916

degrees of freedom under the null hypothesis. Computing percentiles yielded p-values for each917

session.918

It is a curiosity that units with larger sensitivity indices (Figure 7 A,B, red) tended to have re-919

ceptive fields closer to the center of the region of detected receptive fields from the population920

than units with lower sensitivity indices (Figure 7 A,B, blue). We do not have an explanation for this921

observation, and neither did we have the statistical power to examine it in more detail.922

Acknowledgments923

This work was supported by the US BRAIN Initiative (U01 NS094330) to ACH, the University of Texas924

at Austin (College of Natural Sciences Catalyst Award) to ACH, the National Institute on Drug Abuse925

(T32 DA018926) to AJL and HCC and the National Eye Institute (T32 EY021462) to AJL. We thank John926

P. Liska for comments on the manuscript.927

Competing interests928

The authors declare that no competing interests exist.929

References930

AndersenRA, Bracewell RM, Barash S, Gnadt JW, Fogassi L. Eye position effects on visual, memory, and saccade-931

related activity in areas LIP and 7a of macaque. Journal of Neuroscience. 1990 Apr; 10(4):1176–1196. https:932

//www.jneurosci.org/content/10/4/1176, doi: 10.1523/JNEUROSCI.10-04-01176.1990, publisher: Society for933

Neuroscience Section: Articles.934

Brainard DH. The Psychophysics Toolbox. Spatial Vision. 1997 Jan; 10(4):433–436. https://brill.com/view/935

journals/sv/10/4/article-p433_15.xml, doi: 10.1163/156856897X00357, publisher: Brill Section: Spatial Vision.936

Buccino AP, Hurwitz CL, Garcia S, Magland J, Siegle JH, Hurwitz R, Hennig MH. SpikeInterface, a uni-937

fied framework for spike sorting. eLife. 2020 Nov; 9:e61834. https://doi.org/10.7554/eLife.61834, doi:938

10.7554/eLife.61834, publisher: eLife Sciences Publications, Ltd.939

Camuñas-Mesa LA, Quiroga RQ. A Detailed and Fast Model of Extracellular Recordings. Neural Computation.940

2013 Mar; 25(5):1191–1212. https://doi.org/10.1162/NECO_a_00433, doi: 10.1162/NECO_a_00433.941

Chaure FJ, Rey HG, Quian Quiroga R. A novel and fully automatic spike-sorting implementation with variable942

number of features. Journal of Neurophysiology. 2018 Jul; 120(4):1859–1871. https://journals.physiology.org/943

doi/full/10.1152/jn.00339.2018, doi: 10.1152/jn.00339.2018, publisher: American Physiological Society.944

Chung JE, Joo HR, Fan JL, Liu DF, Barnett AH, Chen S, Geaghan-Breiner C, Karlsson MP, Karlsson M, Lee945

KY, Liang H, Magland JF, Pebbles JA, Tooker AC, Greengard LF, Tolosa VM, Frank LM. High-Density,946

Long-Lasting, and Multi-region Electrophysiological Recordings Using Polymer Electrode Arrays. Neu-947

ron. 2019 Jan; 101(1):21–31.e5. http://www.sciencedirect.com/science/article/pii/S0896627318309930, doi:948

10.1016/j.neuron.2018.11.002.949

Chung JE, Magland JF, Barnett AH, Tolosa VM, Tooker AC, Lee KY, Shah KG, Felix SH, Frank LM, Greengard LF. A950

Fully Automated Approach to Spike Sorting. Neuron. 2017 Sep; 95(6):1381–1394.e6. http://www.sciencedirect.951

com/science/article/pii/S0896627317307456, doi: 10.1016/j.neuron.2017.08.030.952

27 of 29

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2021. ; https://doi.org/10.1101/2020.08.09.243279doi: bioRxiv preprint 

https://www.jneurosci.org/content/10/4/1176
https://www.jneurosci.org/content/10/4/1176
https://www.jneurosci.org/content/10/4/1176
10.1523/JNEUROSCI.10-04-01176.1990
https://brill.com/view/journals/sv/10/4/article-p433_15.xml
https://brill.com/view/journals/sv/10/4/article-p433_15.xml
https://brill.com/view/journals/sv/10/4/article-p433_15.xml
https://doi.org/10.7554/eLife.61834
10.7554/eLife.61834
10.7554/eLife.61834
10.7554/eLife.61834
https://doi.org/10.1162/NECO_a_00433
https://journals.physiology.org/doi/full/10.1152/jn.00339.2018
https://journals.physiology.org/doi/full/10.1152/jn.00339.2018
https://journals.physiology.org/doi/full/10.1152/jn.00339.2018
10.1152/jn.00339.2018
http://www.sciencedirect.com/science/article/pii/S0896627318309930
10.1016/j.neuron.2018.11.002
10.1016/j.neuron.2018.11.002
10.1016/j.neuron.2018.11.002
http://www.sciencedirect.com/science/article/pii/S0896627317307456
http://www.sciencedirect.com/science/article/pii/S0896627317307456
http://www.sciencedirect.com/science/article/pii/S0896627317307456
10.1016/j.neuron.2017.08.030
https://doi.org/10.1101/2020.08.09.243279
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to eLife

Debnath S, Prins NW, Pohlmeyer E, Mylavarapu R, Geng S, Sanchez JC, Prasad A. Long-term stability of neural953

signals from microwire arrays implanted in common marmoset motor cortex and striatum. Biomedical954

Physics & Engineering Express. 2018 Aug; 4(5):055025. https://doi.org/10.1088%2F2057-1976%2Faada67, doi:955

10.1088/2057-1976/aada67.956

Dhawale AK, Poddar R, Wolff SB, Normand VA, Kopelowitz E, Ölveczky BP. Automated long-term recording and957

analysis of neural activity in behaving animals. eLife. 2017 Sep; 6:e27702. https://doi.org/10.7554/eLife.27702,958

doi: 10.7554/eLife.27702.959

Dickey AS, Suminski A, Amit Y, Hatsopoulos NG. Single-Unit Stability Using Chronically Implanted Multielec-960

trode Arrays. Journal of Neurophysiology. 2009 Aug; 102(2):1331–1339. https://journals.physiology.org/doi/961

full/10.1152/jn.90920.2008, doi: 10.1152/jn.90920.2008.962

Diggelmann R, Fiscella M, Hierlemann A, Franke F. Automatic spike sorting for high-density microelectrode963

arrays. Journal of Neurophysiology. 2018 Sep; 120(6):3155–3171. https://journals.physiology.org/doi/full/10.964

1152/jn.00803.2017, doi: 10.1152/jn.00803.2017, publisher: American Physiological Society.965

Eastman KM, Huk AC. PLDAPS: A Hardware Architecture and Software Toolbox for Neurophysiology Requiring966

Complex Visual Stimuli and Online Behavioral Control. Frontiers in Neuroinformatics. 2012; 6. https://www.967

frontiersin.org/articles/10.3389/fninf.2012.00001/full, doi: 10.3389/fninf.2012.00001.968

Fraser GW, Schwartz AB. Recording from the same neurons chronically in motor cortex. Journal of Neuro-969

physiology. 2011 Dec; 107(7):1970–1978. https://journals.physiology.org/doi/full/10.1152/jn.01012.2010, doi:970

10.1152/jn.01012.2010.971

Fu TM, Hong G, Viveros RD, Zhou T, Lieber CM. Highly scalablemultichannel mesh electronics for stable chronic972

brain electrophysiology. Proceedings of the National Academy of Sciences. 2017 Nov; 114(47):E10046–973

E10055. https://www.pnas.org/content/114/47/E10046, doi: 10.1073/pnas.1717695114.974

Fu TM, Hong G, Zhou T, Schuhmann TG, Viveros RD, Lieber CM. Stable long-term chronic brain mapping at975

the single-neuron level. Nature Methods. 2016 Oct; 13(10):875–882. https://www.nature.com/articles/nmeth.976

3969/, doi: 10.1038/nmeth.3969.977

Hilgen G, Sorbaro M, Pirmoradian S, Muthmann JO, Kepiro IE, Ullo S, Ramirez CJ, Encinas AP, Maccione A,978

Berdondini L, Murino V, Sona D, Zanacchi FC, Sernagor E, Hennig MH. Unsupervised Spike Sorting for Large-979

Scale, High-Density Multielectrode Arrays. Cell Reports. 2017 Mar; 18(10):2521–2532. https://www.cell.com/980

cell-reports/abstract/S2211-1247(17)30236-X, doi: 10.1016/j.celrep.2017.02.038, publisher: Elsevier.981

Huk A, Bonnen K, He BJ. Beyond Trial-Based Paradigms: Continuous Behavior, Ongoing Neural Activity, and982

Natural Stimuli. Journal of Neuroscience. 2018 Aug; 38(35):7551–7558. https://www.jneurosci.org/content/38/983

35/7551, doi: 10.1523/JNEUROSCI.1920-17.2018, publisher: Society for Neuroscience Section: TechSights.984

JacksonA, Fetz EE. CompactMovableMicrowire Array for Long-TermChronic Unit Recording in Cerebral Cortex985

of Primates. Journal of Neurophysiology. 2007 Nov; 98(5):3109–3118. https://journals.physiology.org/doi/full/986

10.1152/jn.00569.2007, doi: 10.1152/jn.00569.2007.987

Jun JJ, Mitelut C, Lai C, Gratiy SL, Anastassiou CA, Harris TD. Real-time spike sorting platform for high-density988

extracellular probes with ground-truth validation and drift correction. bioRxiv. 2017 Jan; p. 101030. https:989

//www.biorxiv.org/content/10.1101/101030v2, doi: 10.1101/101030, publisher: Cold SpringHarbor Laboratory990

Section: New Results.991

Jun JJ, Steinmetz NA, Siegle JH, Denman DJ, Bauza M, Barbarits B, Lee AK, Anastassiou CA, Andrei A, Aydın992

C, Barbic M, Blanche TJ, Bonin V, Couto J, Dutta B, Gratiy SL, Gutnisky DA, Häusser M, Karsh B, Ledochow-993

itsch P, et al. Fully integrated silicon probes for high-density recording of neural activity. Nature. 2017 Nov;994

551(7679):232–236. https://www.nature.com/articles/nature24636, doi: 10.1038/nature24636.995

Kaneko H, Tamura H, Suzuki SS. Tracking Spike-Amplitude Changes to Improve the Quality of Multi-996

neuronal Data Analysis. IEEE Transactions on Biomedical Engineering. 2007 Feb; 54(2):262–272. doi:997

10.1109/TBME.2006.886934.998

Kloosterman F, Layton SP, Chen Z, Wilson MA. Bayesian decoding using unsorted spikes in the rat hippocam-999

pus. Journal of Neurophysiology. 2013 Oct; 111(1):217–227. https://journals.physiology.org/doi/full/10.1152/1000

jn.01046.2012, doi: 10.1152/jn.01046.2012.1001

Knöll J, Pillow JW, Huk AC. Lawful tracking of visual motion in humans, macaques, and marmosets in a natu-1002

ralistic, continuous, and untrained behavioral context. Proceedings of the National Academy of Sciences of1003

the United States of America. 2018; 115(44):E10486–E10494. doi: 10.1073/pnas.1807192115.1004

28 of 29

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2021. ; https://doi.org/10.1101/2020.08.09.243279doi: bioRxiv preprint 

https://doi.org/10.1088%2F2057-1976%2Faada67
https://doi.org/10.7554/eLife.27702
10.7554/eLife.27702
https://journals.physiology.org/doi/full/10.1152/jn.90920.2008
https://journals.physiology.org/doi/full/10.1152/jn.90920.2008
https://journals.physiology.org/doi/full/10.1152/jn.90920.2008
10.1152/jn.90920.2008
https://journals.physiology.org/doi/full/10.1152/jn.00803.2017
https://journals.physiology.org/doi/full/10.1152/jn.00803.2017
https://journals.physiology.org/doi/full/10.1152/jn.00803.2017
10.1152/jn.00803.2017
https://www.frontiersin.org/articles/10.3389/fninf.2012.00001/full
https://www.frontiersin.org/articles/10.3389/fninf.2012.00001/full
https://www.frontiersin.org/articles/10.3389/fninf.2012.00001/full
10.3389/fninf.2012.00001
https://journals.physiology.org/doi/full/10.1152/jn.01012.2010
10.1152/jn.01012.2010
10.1152/jn.01012.2010
10.1152/jn.01012.2010
https://www.pnas.org/content/114/47/E10046
10.1073/pnas.1717695114
https://www.nature.com/articles/nmeth.3969/
https://www.nature.com/articles/nmeth.3969/
https://www.nature.com/articles/nmeth.3969/
10.1038/nmeth.3969
https://www.cell.com/cell-reports/abstract/S2211-1247(17)30236-X
https://www.cell.com/cell-reports/abstract/S2211-1247(17)30236-X
https://www.cell.com/cell-reports/abstract/S2211-1247(17)30236-X
10.1016/j.celrep.2017.02.038
https://www.jneurosci.org/content/38/35/7551
https://www.jneurosci.org/content/38/35/7551
https://www.jneurosci.org/content/38/35/7551
10.1523/JNEUROSCI.1920-17.2018
https://journals.physiology.org/doi/full/10.1152/jn.00569.2007
https://journals.physiology.org/doi/full/10.1152/jn.00569.2007
https://journals.physiology.org/doi/full/10.1152/jn.00569.2007
10.1152/jn.00569.2007
https://www.biorxiv.org/content/10.1101/101030v2
https://www.biorxiv.org/content/10.1101/101030v2
https://www.biorxiv.org/content/10.1101/101030v2
https://www.nature.com/articles/nature24636
10.1109/TBME.2006.886934
10.1109/TBME.2006.886934
10.1109/TBME.2006.886934
https://journals.physiology.org/doi/full/10.1152/jn.01046.2012
https://journals.physiology.org/doi/full/10.1152/jn.01046.2012
https://journals.physiology.org/doi/full/10.1152/jn.01046.2012
10.1152/jn.01046.2012
10.1073/pnas.1807192115
https://doi.org/10.1101/2020.08.09.243279
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to eLife

Lee J, Carlson D, Shokri H, Yao W, Goetz G, Hagen E, Batty E, Chichilnisky EJ, Einevoll G, Paninski L. YASS: Yet1005

Another Spike Sorter. bioRxiv. 2017 Jun; p. 151928. https://www.biorxiv.org/content/10.1101/151928v1, doi:1006

10.1101/151928, publisher: Cold Spring Harbor Laboratory Section: New Results.1007

Linderman MD, Gilja V, Santhanam G, Afshar A, Ryu S, Meng TH, Shenoy KV. Neural Recording Stability of1008

Chronic Electrode Arrays in Freely Behaving Primates. In: 2006 International Conference of the IEEE Engineering1009

in Medicine and Biology Society; 2006. p. 4387–4391. doi: 10.1109/IEMBS.2006.260814, iSSN: 1557-170X.1010

Lindén H, Tetzlaff T, Potjans TC, Pettersen KH, Grün S, Diesmann M, Einevoll GT. Modeling the spatial reach of1011

the LFP. Neuron. 2011; 72(5):859–872. doi: 10.1016/j.neuron.2011.11.006.1012

OkunM, Lak A, Carandini M, Harris KD. Long Term Recordings with Immobile Silicon Probes in the Mouse Cor-1013

tex. PLoS ONE. 2016 Mar; 11(3). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4784879/, doi: 10.1371/jour-1014

nal.pone.0151180.1015

Pachitariu M, Steinmetz N, Kadir S, Carandini M, D HK. Kilosort: realtime spike-sorting for extracellular elec-1016

trophysiology with hundreds of channels. bioRxiv. 2016 Jun; p. 061481. https://www.biorxiv.org/content/10.1017

1101/061481v1, doi: 10.1101/061481.1018

Paxinos G, Watson C, Petrides M, Rosa M, Tokuno H. The Marmoset Brain in Stereotaxic Coordinates. El-1019

sevier Academic Press; 2012. https://espace.curtin.edu.au/handle/20.500.11937/40725, accepted: 2017-01-1020

30T14:45:05Z.1021

Pedreira C, Martinez J, Ison MJ, Quian Quiroga R. How many neurons can we see with current spike sorting1022

algorithms? Journal of NeuroscienceMethods. 2012Oct; 211(1):58–65. http://www.sciencedirect.com/science/1023

article/pii/S0165027012002749, doi: 10.1016/j.jneumeth.2012.07.010.1024

Prodanov D, Delbeke J. Mechanical and Biological Interactions of Implants with the Brain and Their Impact on1025

Implant Design. Frontiers in Neuroscience. 2016; 10. https://www.frontiersin.org/articles/10.3389/fnins.2016.1026

00011/full, doi: 10.3389/fnins.2016.00011, publisher: Frontiers.1027

Quian Quiroga R. What is the real shape of extracellular spikes? Journal of Neuroscience Meth-1028

ods. 2009 Feb; 177(1):194–198. http://www.sciencedirect.com/science/article/pii/S0165027008005797, doi:1029

10.1016/j.jneumeth.2008.09.033.1030

Rossant C, Kadir SN, Goodman DFM, Schulman J, Hunter MLD, Saleem AB, Grosmark A, Belluscio M, Denfield1031

GH, Ecker AS, Tolias AS, Solomon S, Buzsáki G, Carandini M, Harris KD. Spike sorting for large, dense elec-1032

trode arrays. Nature Neuroscience. 2016 Apr; 19(4):634–641. https://www.nature.com/articles/nn.4268, doi:1033

10.1038/nn.4268, number: 4 Publisher: Nature Publishing Group.1034

Sedaghat-Nejad E, Herzfeld DJ, Hage P, Karbasi K, Palin T, Wang X, Shadmehr R. Behavioral training of mar-1035

mosets and electrophysiological recording from the cerebellum. Journal of Neurophysiology. 2019 Aug;1036

122(4):1502–1517. https://journals.physiology.org/doi/full/10.1152/jn.00389.2019, doi: 10.1152/jn.00389.2019.1037

Siegle JH, López AC, Patel YA, Abramov K, Ohayon S, Voigts J. Open Ephys: an open-source, plugin-based1038

platform for multichannel electrophysiology. Journal of Neural Engineering. 2017 Jun; 14(4):045003. https:1039

//doi.org/10.1088%2F1741-2552%2Faa5eea, doi: 10.1088/1741-2552/aa5eea.1040

Todorova S, Sadtler P, Batista A, Chase S, Ventura V. To sort or not to sort: the impact of spike-sorting on1041

neural decoding performance. Journal of Neural Engineering. 2014 Aug; 11(5):056005. https://doi.org/10.1042

1088%2F1741-2560%2F11%2F5%2F056005, doi: 10.1088/1741-2560/11/5/056005.1043

Trautmann EM, Stavisky SD, Lahiri S, Ames KC, Kaufman MT, O’Shea DJ, Vyas S, Sun X, Ryu SI, Gan-1044

guli S, Shenoy KV. Accurate Estimation of Neural Population Dynamics without Spike Sorting. Neu-1045

ron. 2019 Jul; 103(2):292–308.e4. http://www.sciencedirect.com/science/article/pii/S0896627319304283, doi:1046

10.1016/j.neuron.2019.05.003.1047

Vaidya M, Dickey A, Best MD, Coles J, Balasubramanian K, Suminski AJ, Hatsopoulos NG. Ultra-long term1048

stability of single units using chronically implanted multielectrode arrays. In: 2014 36th Annual Inter-1049

national Conference of the IEEE Engineering in Medicine and Biology Society; 2014. p. 4872–4875. doi:1050

10.1109/EMBC.2014.6944715, iSSN: 1558-4615.1051

Yger P, Spampinato GL, Esposito E, Lefebvre B, Deny S, Gardella C, StimbergM, Jetter F, Zeck G, Picaud S, Duebel1052

J, Marre O. A spike sorting toolbox for up to thousands of electrodes validated with ground truth recordings1053

in vitro and in vivo. eLife. 2018 Mar; 7:e34518. https://doi.org/10.7554/eLife.34518, doi: 10.7554/eLife.34518,1054

publisher: eLife Sciences Publications, Ltd.1055

29 of 29

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2021. ; https://doi.org/10.1101/2020.08.09.243279doi: bioRxiv preprint 

https://www.biorxiv.org/content/10.1101/151928v1
10.1109/IEMBS.2006.260814
10.1016/j.neuron.2011.11.006
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4784879/
10.1371/journal.pone.0151180
10.1371/journal.pone.0151180
10.1371/journal.pone.0151180
https://www.biorxiv.org/content/10.1101/061481v1
https://www.biorxiv.org/content/10.1101/061481v1
https://www.biorxiv.org/content/10.1101/061481v1
https://espace.curtin.edu.au/handle/20.500.11937/40725
http://www.sciencedirect.com/science/article/pii/S0165027012002749
http://www.sciencedirect.com/science/article/pii/S0165027012002749
http://www.sciencedirect.com/science/article/pii/S0165027012002749
10.1016/j.jneumeth.2012.07.010
https://www.frontiersin.org/articles/10.3389/fnins.2016.00011/full
https://www.frontiersin.org/articles/10.3389/fnins.2016.00011/full
https://www.frontiersin.org/articles/10.3389/fnins.2016.00011/full
10.3389/fnins.2016.00011
http://www.sciencedirect.com/science/article/pii/S0165027008005797
10.1016/j.jneumeth.2008.09.033
10.1016/j.jneumeth.2008.09.033
10.1016/j.jneumeth.2008.09.033
https://www.nature.com/articles/nn.4268
10.1038/nn.4268
10.1038/nn.4268
10.1038/nn.4268
https://journals.physiology.org/doi/full/10.1152/jn.00389.2019
10.1152/jn.00389.2019
https://doi.org/10.1088%2F1741-2552%2Faa5eea
https://doi.org/10.1088%2F1741-2552%2Faa5eea
https://doi.org/10.1088%2F1741-2552%2Faa5eea
https://doi.org/10.1088%2F1741-2560%2F11%2F5%2F056005
https://doi.org/10.1088%2F1741-2560%2F11%2F5%2F056005
https://doi.org/10.1088%2F1741-2560%2F11%2F5%2F056005
http://www.sciencedirect.com/science/article/pii/S0896627319304283
10.1016/j.neuron.2019.05.003
10.1016/j.neuron.2019.05.003
10.1016/j.neuron.2019.05.003
10.1109/EMBC.2014.6944715
10.1109/EMBC.2014.6944715
10.1109/EMBC.2014.6944715
https://doi.org/10.7554/eLife.34518
10.7554/eLife.34518
https://doi.org/10.1101/2020.08.09.243279
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to eLife

0 0.05 0.1 0.15 0.2 0.25 0.3
fraction of chance matches

0

200

400

600

800

1000

# 
cl

us
te

rs

pairwise comparisons

>= 5 sessions, better-isolated
>= 5 sessions
<5 sessions, better-isolated
<5 sessions
median

0 0.1 0.2 0.3 0.4 0.5
expected number of chance matches per session

0

5

10

15

20

# 
lo

ng
-t

er
m

 u
ni

ts

0

100

200

300

400

500

600

700

# 
sh

or
t-

te
rm

 u
ni

ts

individual units

0 50 100 150
session id

0

0.05

0.1

0.15

0.2

0.25

0.3

fr
ac

tio
n 

of
 c

ha
nc

e 
m

at
ch

es

clusters
session median

0 0.5 1
fraction of chance matches

0

500

1000

1500

2000

2500

3000

3500

# 
cl

us
te

rs

0.1

0.2

0.3

0.4

0.5

0.6

th
re

sh
ol

d 
fo

r 
di

ss
im

ila
rit

y 
(J

S
 d

iv
er

ge
nc

e)

A B

C D

Figure 4–Figure supplement 1. False discovery rate estimates for marmoset J. Spike shapes from

different neurons can be similar, or even indistinguishable. To estimate how oftenwewould falsely

match a cluster from different units, we tried to match each cluster with clusters found on differ-

ent channels within 3 sessions before and after its detection. (A) Histograms of the fraction chance

matches in pairwise comparisons. Units were classified as in Figure 4 and the corresponding his-

tograms were colored accordingly. Dashed lines mark median values. (B) Histograms of the aver-

age expected number of chancematches per session, when accounting for the number of detected

clusters on the same electrode. (C) Pairwise false discovery rates across recording sessions. Red

dots depict median values for each session. (D) False discovery rates in dependence of the dissim-

ilarity threshold (blue line depicts threshold used in this work). Clusters were sorted according to

the fraction of chance matches when using a fixed threshold.
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Figure 4–Figure supplement 2. False discovery rate estimates formarmoset B. Spike shapes from

different neurons can be similar, or even indistinguishable. To estimate how oftenwewould falsely

match a cluster from different units, we tried to match each cluster with clusters found on differ-

ent channels within 3 sessions before and after its detection. (A) Histograms of the fraction chance

matches in pairwise comparisons. Units were classified as in Figure 4 and the corresponding his-

tograms were colored accordingly. Dashed lines mark median values. (B) Histograms of the aver-

age expected number of chancematches per session, when accounting for the number of detected

clusters on the same electrode. (C) Pairwise false discovery rates across recording sessions. Red

dots depict median values for each session. (D) False discovery rates in dependence of the dissim-

ilarity threshold (blue line depicts threshold used in this work). Clusters were sorted according to

the fraction of chance matches when using a fixed threshold.
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Figure 4–Figure supplement 3. Long-term statistics for marmoset J. (A) Relative amplitude vari-

ations of long-term clusters. Larger symbols represent clusters observed in more experimental

sessions, darker shades correspond to better-isolated units (as in Figure 4). (B) Relative firing rate

variations. (C-D) Averages and variability of relative spike triggered averaged firing rates. To quan-

tify the propensity of spiking in a short window after a spike, we computed spike triggered spike

count histograms in an interval from 0.2 - 50ms after a spike. These were converted into firing

rates, smoothed using a 2ms Hanning window, and normalized by the estimated firing rate of a

given session. Themaximum relative spike triggered firing ratewas termed ’burstiness’, and its vari-

ability for individual units is shown in (C). A high value would correspond to an increased chance

of firing shortly after a spike, and a value around one would reflect no burst firing. As an estimate

for a relative refractory period (variability shown in (D)), we computed the temporal lag after a

spike required to reach 3/4 of this maximum firing rate. (E) Fraction of the total variance explained

by within unit and across session variability. In order to more equally weight clusters with lower

averages, this analysis was performed on a logarithmic scale.
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Figure 4–Figure supplement 4. Long-term statistics for marmoset B. (A) Relative amplitude vari-

ations of long-term clusters. Larger symbols represent clusters observed in more experimental

sessions, darker shades correspond to better-isolated units (as in Figure 4). (B) Relative firing rate

variations. (C-D) Averages and variability of relative spike triggered averaged firing rates. To quan-

tify the propensity of spiking in a short window after a spike, we computed spike triggered spike

count histograms in an interval from 0.2 - 50ms after a spike. These were converted into firing

rates, smoothed using a 2ms Hanning window, and normalized by the estimated firing rate of a

given session. Themaximum relative spike triggered firing ratewas termed ’burstiness’, and its vari-

ability for individual units is shown in (C). A high value would correspond to an increased chance

of firing shortly after a spike, and a value around one would reflect no burst firing. As an estimate

for a relative refractory period (variability shown in (D)), we computed the temporal lag after a

spike required to reach 3/4 of this maximum firing rate. (E) Fraction of the total variance explained

by within unit and across session variability. In order to more equally weight clusters with lower

averages, this analysis was performed on a logarithmic scale.
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Figure 7–Figure supplement 1. Statistics for aggregate data. Receptive field locations were esti-

mated bymapping the 5x7 grid of stimulus eccentricities and directions to circular variables equally

spaced on unit circles. Summing up response vectors for different stimuli allowed forming a resul-

tant vector with approximate Gaussian distribution for uniform responses (as null hypothesis), and

mapping the preferred stimulus location back to world coordinates. (A,B) Receptive field locations

of units observed for at least 4 sessions with receptive field mapping (filled circles). Size/color re-

lates to sensitivity indices (red: high, blue:low, gray:<0.3). Open circles denote estimated receptive

field locations in individual sessions, linked to the corresponding unit with a solid line for sessions

with a significant (p<0.01) spatial modulation of firing rates and and dotted line for a tendency

(p<0.2) of a spatial modulation. (C) Variation of receptive field locations across at least 4 sessions

from the same unit with good (p<0.01, purple) and weak (p<0.2, green) spatial modulation, nor-

malizing individual session resultant vectors and computing the circular variance across sessions.

The circular variance of a population of clusters from units with a given minimum sensitivity in-

dex is shown as a reference (colored lines). (D) Scatterplot comparing sensitivity indices of units

computed across sessions and the corresponding single session estimates.
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