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Abstract

Owing to their plasticity, intrinsically disordered and multidomain proteins require
descriptions based on multiple conformations, thus calling for techniques and analysis
tools that are capable of dealing with conformational ensembles rather than a single
protein structure. Here, we introduce DEER-PREdict, a software to predict Double
Electron-Electron Resonance distance distributions as well as Paramagnetic Relaxation
Enhancement rates from ensembles of protein conformations. DEER-PREdict uses an
established rotamer library approach to describe the paramagnetic probes which are
bound covalently to the protein. DEER-PREdict has been designed to operate
efficiently on large conformational ensembles, such as those generated by molecular
dynamics simulation, to facilitate the validation or refinement of molecular models as
well as the interpretation of experimental data. The performance and accuracy of the
software is demonstrated with experimentally characterized protein systems: HIV-1

protease, T4 Lysozyme and Acyl-CoA-binding protein. DEER-PREdict is open source
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(GPLv3) and available at github.com/KULL-Centre/ DEERpredict| and as a Python
PyPI package pypi.org/project/ DEERPREdict.

Introduction

A detailed understanding of protein function often requires an accurate description of
the structure and dynamics of a protein. The characterization of protein complexes as
well as multi-domain and disordered proteins is typically achieved by combining
experimental techniques of distinct spatial resolution [1]. Among the many different
experimental techniques that may be used, we focus here on (i) a pulsed electron
paramagnetic resonance (EPR) technique called double electron-electron resonance
(DEER) and (ii) a nuclear magnetic resonance (NMR) method called paramagnetic
relaxation enhancement (PRE). While the two methods differ substantially in their
physics and applications, they have in common that they generally involve adding
so-called spin-labels to the protein of interest.

DEER, also sometimes known as pulsed electron-electron double resonance
(PELDOR), |2H6] relies on probing magnetic dipole-dipole interactions that are sensitive
to distributions of residue-residue distances ranging from ~1.8 nm to ~8 nm, and up to
16 nm in deuterated soluble proteins |7H10|. For proteins, DEER generally requires
site-directed spin labeling (SDSL) to functionalize a pair of selected residues with
paramagnetic probes, e.g. 1-Oxyl-2,2,5,5-tetramethylpyrroline-3-methyl
methanethiosulfonate (MTSSL) [4].

PRE NMR also makes use of SDSL to provide information on the average proximity
of protein backbone nuclei up to ~3.5 nm away from the unpaired electron of the
paramagnetic probe [11]. The dependence of the rate of relaxation enhancement on the
electron-proton distance, r, scales as (r~°), making the measurement particularly
sensitive to contributions from different probe conformations [11].

Since spin labels are conformationally dynamic, both protein and paramagnetic
probes need to be described by conformational ensembles to obtain accurate predictions
of DEER and PRE observables from molecular models [12H14]. Molecular dynamics

(MD) simulations are one approach to obtain conformational ensembles that model the

structure and dynamics of spin-labels for the calculation of EPR and NMR data |15H18].
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While such analyses can provide unique insight into the motions of and interactions
between protein and spin-label [19], they may be relatively expensive computationally.
Further, many studies integrate results from multiple probe positions, or pairs thereof,
which may be difficult to represent in a single MD simulation with explicit
representations of the probes.

Another approach is to use conformational analysis of the spin-label combined with
modelling of the dynamics [20H23]. Such analyses suggest that the conformational
variation of spin-labelled sites is rotameric, i.e. it can be relatively well described by a
finite number of defined structures. Thus, in the calculation of DEER data, rapid
modeling of dynamic paramagnetic probes was made possible with the introduction of
the rotamer library approach (RLA) applied to the MTSSL probe by Polyhach et
al. [24].

Here, building and expanding on earlier work [3}[24/27], we developed a software tool
for fast predictions of DEER and PRE observables from large conformational ensembles
using the RLA. We present our implementation, distributed as the DEER-PREdict
software, and test it against experimental data on HIV-1 Protease, T4 Lysozyme and
the Acyl-CoA-Binding Protein. This software has been previously used for the
calculation of both intra- and intermolecular DEER and PRE NMR data [28,/29], and
has some overlap with the features in RotamerConvolveMD [25]
(github.com/MDAnalysis/RotamerConvolveMD)). DEER-PREdict is open-source,

documented (deerpredict.readthedocs.io) and open to contributions from the community.

Design and Implementation

DEER-PREdict is written in Python and is available as a Python API, which facilitates
its integration within larger data pipelines. Predictions of DEER and PRE data are
carried out via the DEERpredict and PREpredict classes. Both classes are initialized
with protein structures (provided as MDAnalysis |[30] Universe objects) and spin-labeled
positions (residue numbers and chain IDs). As shown in the Results section, the
calculations are triggered by the run function, which also sets additional attributes such
as the paths of input and output files as well as experiment-specific parameters.

Per-frame data is saved in compressed binary files (HDF5 and pickle files) to allow for
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fast calculations of ensemble averages in reweighting schemes.

For the presented software, we adopt a procedure of rotamer placement and
evaluation of labeled sites which is analogous to the RLA of Polyhach et al. [24], and we
build on this previous work to implement fast calculations of DEER and PRE

observables from large structural ensembles, such as MD trajectories.

Rotamer Library Approach

Rotamer libraries have a long history in protein structural analysis [31], with an early
application being to study side-chain packing [32]. Several other applications of this
approach were later employed, e.g. in homology modeling and protein design [33}34]. In
our implementation, the RLA is used to insert the rotamer conformations of a
paramagnetic probe at the spin-labeled site and to calculate the Boltzmann weight of
each conformer. By default, we use the MTSSL 175 K rotamer library by Polyhach et
al. [24], which was filtered to include only the x;x2 conformations that are most
commonly found in crystal structures of T4 Lysozyme [35]. As shown by Klose et
al. [26], this selection criterion increases the accuracy of the calculated electron-electron
distance distributions. The code is, however, general and it is possible to add new
rotamer libraries by providing a text file containing the Boltzmann weights of each
rotamer state pi", a topology file (PDB format) and a trajectory file (DCD format)
where rotamers are aligned with respect to the the plane defined by Ca atom and C-N
peptide bond. These files should be included in the lib folder and listed in the yaml file
DEERPREdict/lib/libraries.yml. The default MTSSL 298 K MC/UFF CasSd rotamer
libraries of the Matlab-based MMM modeling toolbox [13] are also provided in the
DEER-PREdict package.

Following the alignment of the rotamer to the protein backbone (Ca, C and N

int
70

atoms), the calculation of the Boltzmann weights is based on the sum of internal, e

ext
%

and external, e$*", energy contributions. The internal contribution is taken from

Polyhach et al. [24] and results from the clustering of representative dihedral
combinations from MD simulations. The normalized frequency of each cluster
throughout the MD trajectory was used to determine the Boltzmann probability, pi™t,

3

of a given i*" state, which readily can be converted into an internal energy contribution,
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€™t via Boltzmann inversion. On the other hand, the external energy contribution is
calculated on the fly as the dispersion interaction energy between heavy atoms of
rotamer and protein residues within a 1-nm cutoff, using the pairwise 6-12
Lennard-Jones potential of the CHARMM36 force field.

The overall probability of the i rotamer state is then calculated as

. ) _ cext kT
pi = piripeTt = pgntMZz/) (1)

where Z = >, pi"t exp (—e¥** /kT) is the steric partition function quantifying the fit of
the rotamer in the embedding protein conformation. Low values of Z result from large
probe-protein van der Waals interaction energies, suggesting a tight placement of the
spin label either due to a displacement of the rotamers or indicative of a wild-type
conformation made inaccessible by the presence of the MTSSL probe. Especially in
folded proteins, probes located in closely packed regions are likely to induce changes in
the ensemble of the spin-labeled protein compared to the native form, and should be
avoided in designing SDSL experiments. Therefore, in the calculation of DEER or PRE
NMR observables, frames with Z < 0.05 are discarded to preclude spurious conformers
from contributing to the ensemble average [24]. For the MTSSL 175 K rotamer library,
a Z cutoff of 0.05 is compatible with distributions of €f** values where at most one of
the 46 rotamers has €¢”* ~ 3 kpT while the rest has e¢** <7 kpT. We observed that
the results shown in this paper are virtually insensitive to the choice of the Z cutoff

between 0.05 and 0.5 (see Figure S1), therefore, in DEER-PREdict the default Z cutoff

can be conveniently replaced by a user-provided value.

Predicting the DEER signal from structural ensembles

Electron-electron distance distributions extracted from DEER experiments, e.g. using
the DeerLab package [36], have previously routinely been compared with distributions
predicted using the RLA implemented in the Matlab-based MMM modeling toolbox
(http://www.epr.ethz.ch/software) [13]. Since MMM intrinsically operates on single
structures, we and others had to resort to wrapper scripts to compute distance
distributions of large ensembles, such as MD trajectories [325,[37]. With the program

presented herein, we provide a tool to conveniently predict DEER distance distributions
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from large conformational ensembles, which can be easily integrated in reweighting
schemes such as the Bayesian/maximum entropy procedure [1,/14,/38}(39].

For each trajectory frame or conformation of a given ensemble, the rotamers from
the library are placed at the spin-labeled position (Figure ) and the distances
between all pair combinations of N-O paramagnetic centers are calculated. The
resulting matrix of pair-wise distances is then used to compute the distance distribution
weighted by the combined probability of each probe conformation, p; x p;, with p; and
p; being the conformation probabilities of rotamers ¢ and j. After averaging over all the

frames, a low-pass filter is applied to the distance distribution for noise reduction [40],

P(r)=F {]—"1 [P(r)] x F~ {eXp (—J;ﬂ } (2)

where F and F~! are the Fourier transform and inverse Fourier transform operators,
respectively, whereas o is the standard deviation of the low-pass filter. The resulting
P(r) is a smooth curve even for the analysis of a single protein conformation
(Figure ) The standard deviation of the low-pass filter can readily be provided by the
user through the option filter_stdev of the run function in the DEFERpredict class,
overriding the default value of 0.5 A. The average over the trajectory frames can be
weighted by a user-specified list of weights e.g. to remove the bias from enhanced
sampling simulations.

The dipolar modulation signal can be back-calculated from the distance distribution,

P(r), via the following integral [41]

S(t) = /0 " dr PO K(r1). 3)

K(r,t) is the DEER kernel

K(r,t) = % [COS(W) FrC ( 6::t> + sin(Dt) FrS (ﬁ)] (4)

where FrC and FrS are Fresnel cosine and sine functions, and w is the dipolar frequency

_ po pRy’ 5)
" Arxh 13
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where 1 is the permeability of free space, up is the Bohr magneton and g is the electron
g-factor. The inter-probe distances and the time range from [0, ryaz] and [tmin, tmaz)
with increments dr = 0.05 nm and dt, respectively. The default values 7,4, = 12 nm,
tmin = 0.01 us, tmaee = 5.5 ps and dt = 0.01 us can be overridden by the user.
Following the correction of the experimental DEER time trace for the intermolecular

background [36}/42], the resulting form factor can directly be compared with

V() =1+ A[S(t) — 1] (6)

where 0.02 < A < 0.5 is the modulation depth of the experimental signal [43],

quantifying the efficiency of the DEER pump pulse [3].

B — e | 15

Probability Density

MTSSL HIV-1PR L

K55-K55' Distance / nm

Fig 1. Probe placement scheme and comparison to DEER data. (A) A pool of 46
conformations of the MTSSL probe from the rotamer library are aligned to the backbone
of residues K55 and K55’ of HIV-1 protease. The color code represent the Boltzmann
weights of each rotamer, increasing from blue to red. (B) Electron-electron distance
distribution for HIV-1 protease spin labeled at residues K55 and K55’. The blue line is
the experimental data from Torbeev et al. [44] whereas the red line is the prediction
using DEER-PREdict and a crystal structure of HIV-1 protease (PDB code 3BVB).

Prediction of PRE rates and intensity ratios

In analogy to the calculations of electron-electron distances to predict DEER
distributions, we extended the use of the RLA to electron-proton separations to improve
the accuracy of PRE predictions. We focus here is on PRE NMR experiments that

probe the increase in transverse relaxation rates of any backbone proton due to the
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dipolar interaction with the unpaired electron of the paramagnetic probe:
R3® = Ry 4T (7)

where R$” and R5°? are the transverse relaxation rates in the presence of the spin label
in the oxidized or reduced (diamagnetic) state, respectively. We note that it is also
possible to measure PREs on other atoms and to probe longitudinal relaxation
enhancement, and it would be possible to include such measurements in future versions
of DEER-PREdict.

A description of the enhancement of the transverse relaxation due to dipole-dipole
interactions in paramagnetic solutions was first proposed by Solomon and
Bloembergen [45,/46]

P = & (22)" g2 s + 1) 170) + 37(en). )

where 7 and w; are the gyromagnetic ratio and the Larmor frequency of the proton,
respectively, whereas s, is the electron spin quantum number, equal to 1/2 for nitroxide
probe systems. The spectral density function J(wy) can be described using a model-free
formalism [47H50], which takes into account the overall molecular tumbling in the
external magnetic field as well as the internal motion of the spin label:

S2r.,

2.2
14+ wyts

(1 — 52)7}
1+w%7'tz
where

(10)

and

(11)

T, is the rotational correlation time of the protein, 75 is the effective electron correlation
rate and 7; is the correlation time of the internal motion (effective correlation time of

the spin label). For MTSSL probes, 75 > 7. and 7. ~ 7, [51]. The value of 7. depends
on protein size and structure and is generally of the order of 1-10 ns [27,52H55]. For 7,

values between 100 to 500 ps can be assumed, based on e.g. °N spin relaxation rates
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and MD simulations [56},/57]. In general, 7. and 7; can be specified as user input in
DEER-PREdict.
For the generalized order parameter, .S, we use the factorization into contributions

from radial and angular internal motions introduced by Briischweiler et al. [49],

S2

angular:

5% = 5?2

o dial The expressions for 52, . . and S? were derived from a

radia angular

jump model that treats the NV conformers of the rotamer library as N discrete states
with equal probabilities (1/N) [50]. In reality, the various dihedral angles of the spin
label have different free energy barriers, resulting in residence times between jumps
ranging from less than 1 to several ns [17].

r—3)2
S?’adial = <<T‘6>> (12)

where r is the proton-electron distance and the brackets denote averages over the

conformers weighted by the respective Boltzmann weights, p;, i.e. (r=3) = Ziv r i

and (r=6) = ZZN r;6pi.

N 2
3 1 3 /r;-r; 1
2 _ /2 20+ ZE : e (] N rn. 1
Sangular <2 cos” 2> [2 ( rir; ) 2] Dipj ( 3)

%]

where () is the angle between the vectors r; and rj, connecting a backbone proton with
the ith and jth rotamer states, respectively. The relaxation enhancement rate for a
single protein structure is calculated using Equation |8, and assuming that the motion of
the paramagnetic label is much faster than the protein conformational changes, the

ensemble average is estimated as

M
(Tg) = Zkaz,k- (14)
%

where M is the number of configurations or frames of the simulation trajectory. In the
case of unbiased simulations, the statistical weights, w;, are simply 1/M. Optionally, a
list of weights can be provided by the user, e.g. to reweight a biased MD

simulation [58}[59] or to incorporate the prediction of the PRE rates into a
Bayesian/maximum entropy reweighting scheme [1].

For samples with particularly high PRE rates it can be infeasible to obtain I'y from
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multiple time-point measurements [60]. In such and other cases, the PRE is sometimes
probed indirectly from the ratio of the peak intensities in 'H,>N-HSQC spectra of the
spin-labeled protein in the oxidized and reduced state. Assuming that the intensity of
the proton magnetization decays exponentially — by transverse relaxation only —

during the total INEPT time of the HSQC measurement [61], ¢4, the intensity ratio is

estimated as
Ipara _ Rged exp (—Datyq)
Tiia Ryed + Ty

(15)

Requirements and Installation

The main requirements are Python 3.6-3.8 and MDAnalysis 1.0 [30,/62]. In an
environment with Python 3.6-3.8, DEER-PREdict can readily be installed through the

package manager PIP by executing

pip install DEERPREdict

Package Stability

Tests reproducing DEER and PRE data for the protein systems studied in this article,
as well as for a nanodisc [29], are performed automatically using Travis CI
(travis-ci.com/github/KULL-Centre/ DEERpredict) every time the code is modified on
the GitHub repository. The same tests can also be run locally using the test running

tool pytest.

Results

In the following, we present applications of our tool to the prediction of DEER distance
distributions and PRE intensity ratios of three folded proteins.

The code snippets reported in this section pertain to DEER-PREdict version 0.1.4.
A Jupyter Notebook to reproduce the results shown below (article.ipynbd) can be found
in the tests/data folder on the GitHub repository. The up-to-date documentation is

available at deerpredict.readthedocs.iol
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Case study 1: DEER data for HIV-1 Protease

HIV-1 protease (HIV-1PR) is a homodimeric aspartic hydrolase involved in the cleavage
of the gag-pol polyprotein complex. The inhibition of this process affects the life cycle
of the HIV-1 virus, rendering it noninfectious [63]. The HIV-1PR monomer is composed

of 99 residues and presents a structurally stable core region (residues 1-43 and 58-99)

and a dynamic region characterized by a S-hairpin turn, called the flap (residues 44-57).

The active site is located at the interstice between the core regions of the two
monomers, in proximity to the catalytic D25 residues. This cavity is closed off by the
dynamic flap regions, which are considered to act as a gate controlling the access to the
active site. The dynamics of the flap regions are of utmost importance for the
development of inhibitors, and have been extensively studied, both experimentally and
in silico |441/64H69]. Based on the relative position of the flaps, three main
conformational states have been proposed. In X-ray crystallography, the closed state is
typically observed for the ligand-bound enzyme (e.g. PDB codes 3BVB [70] and
2BPX |71]), the semi-open state is predominant for the apo form (e.g. PDB code
1HHP [72]) whereas the wide-open state has been observed for variants (e.g. PDB codes
1TW7 73] and 1RPI [74]) [69]. In DEER measurements, these conformational states
can be resolved by spin-labeling sites K55 and K55’ (see Figure S2).

To assess the predictive ability of DEER-PREdict, we generated conformational
ensembles of the HIV-1PR homodimer via two different approaches: (a) a single 500-ns
unbiased MD simulation, and (b) four independent 125-ns MD simulations restrained
with experimental residual dipolar couplings (RDC) data [58l[75] from Roche et
al. [651|66] (see ST for methodological details). The initial configuration of our
simulations is the X-ray crystal structure of the active-site mutant D25N bound to the
inhibitor Darunavir (PDB code 3BVB).

Figure [2] presents a comparison of experimental DEER distance distributions and
echo intensity curves with predictions from simulation trajectories of 1,000 frames
sampled every 0.5ns. The echo intensity curves are calculated using Equation [6] where
the A is estimated to 0.0922 by fitting the experimental dipolar evolution function to
the corresponding curve derived from the experimental P(r) via Equation 3| For a

single trajectory, the analysis is performed in 40s on a 1.7 GHz processor by running
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the following code:

import MDAnalysis

from DEERPREdict.DEER import DEERpredict

u = MDAnalysis.Universe(’conf.pdb’,’traj.xtc’)

DEER = DEERpredict(u,residues =[55,55],chains=[’A’, ’B’],temperature=298)
DEER.run ()

The third line generates the MDAnalysis Universe object from an XTC trajectory and a
PDB topology. The fourth line initializes the DEERpredict object with the spin-labeled
residue numbers and the respective chain IDs. The fifth line runs the calculations and
saves per-frame and ensemble-averaged data to res-55-55.hdf5 and res-55-55.dat,

respectively, as well as the steric partition functions of sites K55 and K55’ to the file

res-Z-55-55.dat.

150 1 Experiment [ 1.00
125 Unbiased A B
’ == Restrained - 0.98
2
£ | >
) 1.00 006 3
2 0.75 = Experiment 2
o Unbiased |} 0.94 o
®© <
© 0.50 - = Restrained 8
o - 0.92
0.25 4
- 0.90
0.00 +
T T T T T T
2 3 4 0.0 0.5 1.0 1.5
Distance / nm Time / ps

Fig 2. Comparing experiments and simulations for HIV1-PR. DEER distance
distributions (A) and echo intensity curves (B) obtained by Torbeev et al. from
DEER experiments (blue), and calculated using DEER-PREdict from unbiased (orange)
and RDC ensemble-biased MD simulations (red).

In the experimental distance distribution, the main peak at ~ 3.3 nm corresponds to
the closed state whereas the second peak between 4 and 5 nm is characteristic of the
wide-open state. The shoulder peak at ~ 2.8 nm has been identified as an open-like
state known as the curled/tucked conformation [9,[76[77]. The results of our unbiased
and restrained simulations are in substantial agreement with the findings of Roche et
al. , indicating that the flaps of the inhibitor-free HIV-1PR are predominantly in
closed conformation. Compared to the distance distribution calculated from the starting

configuration of PDB code 3BVB (see Figure , predictions based on MD trajectories
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more accurately reproduce the shape of the shoulder and the main peak of the
experimental P(r). Moreover, using the RDC data as restraints leads to a significant

improvement in the agreement between simulations and experiments, with the RMSD

decreasing from 0.07 for the unbiased to 0.03 for the RDC ensemble-biased simulations.

However, in the simulations we do not observe the wide-open state. This discrepancy
could be due to insufficient sampling or could be attributed to the difference in

sequence between the simulated protein and the experimental construct.

Case study 2: DEER data for T4 Lysozyme

Lysozyme from the T4 bacteriophage (T4L) has long been used as a model system in
the study of protein structure and dynamics [78-83]. Here, we focus on the LI9A and
the triple L99A-G113A-R119P mutants which are structurally similar and mainly differ
in the relative populations of their major conformational states. The LL99A variant
presents a 150 A hydrophobic pocket capable of binding hydrophobic ligands and has
been thoroughly studied to further our understanding of the dynamics and selectivity of
the binding pocket [78,84]. The LIJA variant occupies two distinct conformational
states: the ground state (G) and the transient excited state (E), amounting for 97% and
3% of the population, respectively. The large-scale motions converting the G into the E
state occur on the millisecond time scale and result in the occlusion of the cavity, which
is occupied by the side chain of F114 in the E state [82]. The additional G113A and
R119P mutations in the triple-mutant variant interconvert the populations of the
conformational states to 4% for the G state and 96% for the E state [82] — note that,
here and in the following, we refer to the G and E states based on their structural
similarity to the L99A variant rather than on their relative populations. These
conformational equilibria have been studied by DEER for various pairs of spin-labeled
sites, which effectively resolve the G and E states as separate peaks of the P(r) [83].
Here, we compare DEER distance distributions calculated with DEER-PREdict for
two pairs of probe positions (D89C-T109C and T109C-N140C) with the corresponding
experimental data by Lerch et al. [83]. First, we calculate the P(r) of the single states
using PDB code 3DMYV for the G states and PDB codes 2LCB and 2LC9 for the E

states of single and triple mutants, respectively. Second, the P(r)’s are linearly
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combined based on the experimentally derived ratios of G and E populations (97:3 for
L99A and 4:96 for L99A-G113A-R119P) [82]. Additionally, we predict DEER distance
distributions from previously reported metadynamics MD simulations of L99A and
L99A-G113A-R119P [80]. In these calculations, the average over the trajectory is
weighted by exp (Fpias/kpT), where Fy;qs is the final static bias for each frame and
kpT is the thermal energy. The analysis of a trajectory of 6,670 frames is performed in

11 min on a 1.7 GHz processor executing the following lines of code:

import MDAnalysis
from DEERPREdict.DEER import DEERpredict
import numpy as np
u = MDAnalysis.Universe(’conf.pdb’,’traj.xtc’)
for residues in [[89, 109],[109, 140]1]:
DEER = DEERpredict(u,residues=residues,temperature=298,z_cutoff=0.1)

DEER.run(weights=np.exp(Fbias/(0.298%8.3145)))
In line six, we specify the positions of the spin-labels, the temperature at which the
metadynamics simulations were performed and a non-default value for the Z cutoff. In
line seven, we provide the weights of each trajectory frame, generated from the array of
Fpius values.

Figure |3| shows a comparison between the experimental distance distributions
obtained by Lerch et al. [83] and our predictions. In general, the calculated
distributions fall within the experimental ranges of inter-probe distances and are
particularly accurate for the D89C-T109C spin-labeled pair in metadynamics
simulations. The sharper shape of the experimental P(r)’s, relative to the calculated
distributions, could be due to the cryogenic temperatures at which DEER experiments
are conducted, whereas simulations were performed at room temperature. For the
T109C-N140C spin-labeled pair of the triple variant, the discrepancy between predicted
and calculated P(r)’s might be explained by considering that distances shorter than
1.5nm fall below the range probed by DEER experiments. On the other hand, the
inaccurate predictions of the T109C-N140C P(r) for the single (L99A) variant is
greater than expected. Such discrepancies may be due both to errors in the protein
structure or in the DEER-calculations. While our results cannot distinguish between
these scenarios, we follow previous work [14] by examining whether the discrepancies

can can be attributed to the error on the Boltzmann probabilities of the rotamer states,
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pi™. We thus use a Bayesian/maximum entropy procedure to show that a small change
in the original rotamer weights can lead to a substantial improvement of the agreement

with the experimental data (see Figure S3).

25 25
89-109 109-140

204 3DMV:2LCB 3DMV:2LCB B 50
o «+= 3DMV:2LC9 «+= 3DMV:2LC9 c
B — = MTD L99A — = MTD L99A B
C C
g 159 =~ MTD Triple -~ MTD Triple -15 ¢
Z =z
S 1.0 A s
Q Q
2 o
o o

0.5

00 4= == == -l S

T T T
0 1 2 3 4 0

Distance / nm Distance / nm

Fig 3. Comparing experiments with simulations and structures of T4 Lysozyme
variants. DEER distance distributions for probe positions (A) D89C-T109C and (B)
T109C-N140C of the single (blue) and the triple variant (red). Solid lines are the
experimental data by Lerch et al. [83], dotted lines are calculated from PDB codes and
dashed lines are predictions from metadynamics (MTD) simulations by Wang and
coworkers [80].

Case study 3: PRE data for Acyl-CoA-Binding Protein

The RLA is well known in the EPR community and generally favored over e.g. a
Ca-based approach as discussed elsewhere [3}[13[26]. In the presented software, we
apply the same improved modeling of the probe flexibility also to the prediction of PRE
rates and intensity ratios.

Our test data is the PRE data for the bovine Acyl-coenzyme A Binding Protein
(ACBP) reported by Teilum et al. [53]. In this study the structural behavior of ACBP
under native and mildly-denaturing conditions was investigated via the SDSL of five
positions in the amino acid the sequence: T17C, V36C, M46C, S65C and I86C. Here,
we focus on the native state of ACBP for which an NMR structure comprising 20
conformers has been refined from residual dipolar couplings (RDC) and deposited in the
Protein Data Bank (PDB code 1INTI). Figure |4| shows a comparison between the
experimental data and the intensity ratios calculated from the I'y values averaged over

the 20 conformations of the PDB entry. A good overall agreement is achieved across the
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different probe positions. Notably, using the RDC-refined structure, we reproduce most
of the structural features observed in the PRE experiments, including the proximity of
residues 24, 27, 31 and 34 to the spin-labeled residue 86, which is consistent with a

helix-turn-helix motif. The predicted intensity ratios are generated in 2s on a 1.7 GHz

processor executing the following code:

import MDAnalysis
from DEERPREdict.PRE import PREpredict
u = MDAnalysis.Universe(’1inti.pdb’)
for res in [17,36,46,65,86]:
PRE = PREpredict(u,res,temperature=298,atom_selection="H’)
PRE.run(tau_c=2e-09,tau_t=2%1le-10,delay=1e-2,r_2=12.6,wh=750)
At line three, we load PDB code 1NTTI as an MDAnalysis Universe object. We then use
a for loop to calculate the PRE data from the distances between amide protons and the
spin-label N-O group at five different positions along the amino acid sequence. In the
last line we specify 7, = 2ns, 7, = 0.2ns, t4 = 10ms, Ry = 12.6s5~! and
wy = 27 X 750 MHz. Per-frame and ensemble-averaged PRE data are automatically
saved to files named res-*.pkl and res-*.dat, respectively, whereas per-frame steric
partition functions are saved to res-Z-*.dat.

As detailed in Figure S4, the steric partition functions provided by DEER-PREdict
can be used to predict whether a position in the sequence is likely to accommodate the
paramagnetic probe within the wild-type structure. Besides aiding the interpretation of
experimental data, this feature can be instrumental to designing and enhancing the
success-rate of time- and labor-intensive SDSL experiments.

As previously discussed, the explicit treatment of the paramagnetic probe may be
crucial for the accurate back-calculation of DEER data, and even more so for PRE
predictions, due to the (r~%)-dependence of the PRE. A common way to restrain MD
simulations or to back-calculate PRE experimental data without explicitly simulating
the paramagnetic probe is to approximate the electron location to the position of the
Cg atom of the spin-labeled residue [85]. The advantage of this approach is that
(a) multiple labeling sites can be analyzed in a single simulation and (b) the explicit
atom is present in the simulation making the calculation of PREs straightforward.

CpB-based calculations may, however, be prone to over- or underestimating
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Fig 4. Calculated and experimental PRE HSQC intensity ratios for the T17C, V36C,
M46C, S65C and I86C mutants of ACBP. Blue lines represent the experimental

data , with the associated +0.1 error shown by the blue shaded areas. Red lines
represent intensity ratios calculated from PDB code INTI with 7. = 2ns, 7w = 0.2ns,
tqg =10ms, Ry = 12.6s57 1.

electron-proton distances by several A, thereby introducing a systematic error. The
impact of the CS-approximation on the accuracy of PRE predictions is illustrated in

Figure S5 and Figure S6 for the case of ACBP.

Conclusion

We have introduced an open-source software solution with a fast implementation of the

RLA in tandem with protein ensemble averaging, for the calculation of DEER and PRE

data. Using three examples, we have highlighted the capabilities of our implementation:

(a) the extension of the RLA for DEER data from a protein ensemble and (b) the
calculation of PRE rates and intensity ratios with the same approach.

The structural interpretation of DEER and PRE measurements requires an accurate
treatment of the structure and conformational heterogeneity of the spin labels. In the
presented software, this is achieved using the RLA and, in the case of the PRE, a
model-free approach to describe the dynamics. Relative to simulations of the explicitly
spin-labeled mutants, the RLA presents the particular advantage of enabling the

prediction for multiple SDSL experiments from a single simulation of the wild type
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sequence.

Availability and Future Directions

The software is implemented using the popular trajectory analysis package MDAnalysis,

version 1.0 [30] and is available on GitHub at github.com/KULL-Centre/DEERpredict.

DEER-PREdict is also distributed as a PyPI package (pypi.org/project/DEERPREdict)
and archived on Zenodo (DOTI: 10.5281/zenodo.3968394). DEER-PREdict and
MDAnalysis are published and distributed under GPL licenses, version 3 and 2,
respectively.

DEER-PREdict has a general framework and can be readily extended to encompass

non-protein biomolecules as well as additional rotamer libraries of paramagnetic groups.

Moreover, the software can be augmented with a module to predict Forster resonance
energy transfer data, combining the insertion routines already implemented for MTSSL

probes with rotamer libraries for fluorescent dyes.
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Supporting Information

Molecular Dynamics Simulations
HIV-1 protease

All simulations were performed using GROMACS 5.1 [86] with the PLUMED 2 [85]
plugin. Unbiased and RDC-biased metadynamics |75L|87] simulations where performed
starting from a closed conformer after removal of the inhibitor from the X-ray crystal
structure (PDB code 3BVB) [88]. The simulated protein is the wild type subtype B
from isolate BRU/LAI, which differs from the construct of the reference

experiments [44] by the following mutations: M36norleucine, S37N,
R41pseudo-homoglutamine, M46norleucine, 163P, 164V, A67a-aminobutyric acid and

A95a-aminobutyric acid. The protein was simulated in a cubic box with a side length of

8.677 nm containing 22,228 water molecules, 59 sodium cations, and 67 chloride anions.

Although the K55C mutations have been shown to have a negligible impact on
enzymatic activity [64], we maintained the lysine residues at the spin-labeled positions
with the aim of capturing the conformational ensemble of the wild type.

The system was equilibrated for 10 ns with a 2-fs time step in the NPT ensemble,
using the Berendsen barostat [89] with 0.5-ps coupling constant and isothermal
compressibility of 4.5e-5 bar~!. Starting from the equilibrated structure, a production
run of 500 ns was performed in the NVT ensemble for the unbiased MD simulation. For
the restrained simulations, we obtained the backbone N-H RDCs for the inhibitor-free
HIV-1PR from Roche et al. |[66] and applied a linear potential (force constant 25,000
kJ/mol) between the experimental data and the RDCs calculated as averages over 4
independent simulations. Each replica was simulated for 125 ns in the NVT ensemble.
We used the AMBER {f99SB*-ILDN force field [90,/91] for all simulations. First, the
structure was minimized with the steepest descent algorithm to a tolerance of

10kJ mol~! nm~! with restrained water molecules. Second, we simulated the system

the for 5ns in the NVT ensemble using the leap-frog integrator with a time step of 1fs.

A 1.2nm cutoff was used for van der Waals interactions, with a force-switch
modification at 1.0nm. Coulomb interactions were treated with the particle-mesh

Ewald method [92] with direct space cutoff of 1.2nm. The temperature was set to 208 K
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using the v-rescale thermostat [93] with a 5 ps coupling constant. All the bonds

involving hydrogen atoms were constrained using the LINCS algorithm [94].

T4 Lysozyme

The simulations of the LI9A single mutant and the LI9A-G113A-R119P triple mutant
of T4 Lysozyme analysed in this study have been reported previously by Wang et

al. [80]. The X-ray crystal structure of PDB code 3DMV was used as the initial
configuration for the G states of both single and triple mutants. Simulations of the E
states were started from chemical-shift-derived Rosetta-calculated structures, i.e. PDB
code 2LLCB and PDB code 2LC9 for single and triple mutant, respectively. Further

simulations details can be found in the original article [80].

Fig. S1 Influence of the Z cutoff on predicted DEER and PRE NMR

data.
150 N A ZCUtOff B I~ 10
— 0.05
1.25 - 05 - 0.8
2 — 08
§ 1.00 7 Z cutoff L 06 =
o 6 3
> — 0.05 =
2 0.75 0 =~
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(A) DEER distance distributions calculated from RDC ensemble-biased MD simulations
of HIV-1PR. (B) Predicted intensity ratios for ACBP spin-labeled at position 86
obtained from PDB code INTI with 7. = 2ns, 7% = 0.2ns, t4 = 10ms, Ry = 12.6s7 .
DEER and PRE predictions are performed using three different cutoff values of the
steric partition function, Z, namely 0.05 (blue lines), 0.5 (orange lines) and 0.8 (red
lines).
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Fig. S2 Comparison of DEER data from Torbeev et al. [44] with X-ray
crystal structures deposited in the Protein Data Bank. This figure shows that
although the DEER data is calculated from single X-ray crystal structures, the RLA
results in multimodal distance distributions. For example, the K55-K55’ separation
between the ammonium groups in 1TW7 is ~ 3.6 nm, which is consistent with the
semi-open conformation, however, the distances between the nitroxide groups of the

MTSSL conformers span a wide range between 3.3 and 4.4 nm.

- 1.00
a1 A B
= - 0.98
@ 2
o 34 = Experiment — Experiment | .96 g
2 2BPX 2BPX g
£, ] = 1HHP = 1HHP L 0.94 =
2 —_— 1TW7 —_— 1TW7 I
g &
3 | - 0.92 0
a 11
- 0.90
0 Vi
2 3 4 0.0 0.5 1.0 1.5
Distance / nm Time / ps

DEER distance distributions (A) and echo intensity curves (B) obtained by Torbeev et
al. [44] from DEER experiments (blue), and calculated using X-ray crystal structures
representative of closed (PDB code 2BPX, orange), semi-open (PDB code 1HHP, green)
and wide-open (PDB code 1TW7, red) HIV-1PR conformations.
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Fig. S3 Optimization of rotamer weights using a Bayesian/maximum
entropy procedure. We use a Bayesian/maximum entropy (BME) procedure to find
a modified set of rotamer weights for the MTSSL 175 K rotamer library [24], w, which
improves the agreement between predicted and experimental T109C-N140C P(r)’s for
the single variant of T4L. The prediction is based on the 97:3 linear combination of
P(r)’s from PDB codes 3DMV and 2LCB (corresponding to the populations of these
two states) whereas the experimental data is from Lerch et al. [83]. Simulated annealing
is used to minimize the cost function £(w) = x?(w) — 6.5 (w) where x?(w) is the sum of
the squared differences between predicted and experimental P(r)’s, # quantifies the
confidence in the original weights, w®, and S(w) = — Zf\; w; In Z:—é is the relative
entropy defined as the negative of the Kullback-Leibler divergence between the modified
weights of the N = 46 rotamers, w;, and the initial w®. The effective fraction of
rotamers used in the reweighted ensemble, compared to the original library, is quantified
as Perf(w) = exp [S(w)]. We scan various values of 6 and select the weights obtained
using 6 = 4 as the smallest modification resulting in a substantial decrease in 2. It is
noteworthy that the change in weights has a lesser impact on the triple variant than on
the single variant. Moreover, albeit being optimized against the T109C-N140C P(r) of
the single variant, the modified weights lead to an overall improvement in accuracy,

with the average x? over the four P(r)’s decreasing from 7.5 to 5.9.
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(A) X% vs ¢y for various values of the confidence parameter, §. (B) Distance
distributions calculated from PDB codes 3DMV and 2LCB, using optimized weights
obtained for various 6 values. (C) Original and modified weights of the MTSSL 175
K rotamer library after BME reweighting with § = 4. DEER distance distributions for
probe positions (D) D89C-T109C and (E) T109C-N140C of the single (blue) and the
triple variant (red). Solid lines are the experimental data by Lerch et al. ; dotted
and dashed lines are from PDB codes 3DMV, 2LC9 and 2LCB using the original and
the BME-reweighted (§ = 4) MTSSL 175 K rotamer library.
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Fig. S4 Steric partition function quantifying the fitness of the rotamers 496
at the spin-labeled site. While for most spin-label sites of ACBP the steric partition a0
function, Z, varies between 1 and 1.5, for the placement of the probe at residue 86, Z s
drops below the cutoff of 0.05 proposed by Polyhach et al. [24] in five conformers out of s
20. The significantly lower Z values indicate that residue 86 is in a tightly packed 500
region in the protein structure and that spin-labeling position 86 can lead to structural su
deformations or changes in the populations of the conformational ensemble. This 502
observation is consistent with stability experiments performed by Teilum et al. on wild s
type and spin-labeled mutants [53], showing that I86C is the least stable of the studied s
spin-labeled mutants. Although the RLA assumes that the overall protein conformation s
is unaffected by the presence of the spin-label, the case of the I86C mutant of ACBP 506
highlights how DEER-PREdict can help to identify spin-labeled sites that are likely to  sor

violate this assumption in folded proteins.
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Steric partition function calculated from rotamer-protein van der Waals interactions for
five spin-labeled mutants of ACBP. The horizontal dashed line indicates the cutoff used
in the criterion for discarding protein conformations where the placement of the rotamer
is characterized by steric clashes with the surrounding residues.
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Fig. S5 Comparison with Cp-based PRE Predictions The C3 approximation  so
may overestimate the effect of transient tertiary contacts on the PRE rates of ACBP, 510
yielding experimentally consistent predictions only when the time scales for the s11

reorientational dynamics is artificially made fast.
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PRE intensity ratios for ACBP spin labeled at position 65 calculated for (A) 7. = 2ns
and (B) 7. = 0.5 ns. Blue lines represent the experimental data , with the associated
40.1 error shown by the blue shaded areas. Orange and red lines represent Cg3-based
and RLA-based predictions, respectively.

512

PLOS

26/138


https://doi.org/10.1101/2020.08.09.243030
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.09.243030; this version posted November 7, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

®PLOS

SUBMISSION

Fig. S6 Comparison of optimal 7. values for RLA vs. Cp-based approach. s

This figure illustrates the systematic time-scale difference when using explicit MTSSL 51

probes instead of approximating the location of the unpaired electron with the position sis

of the C3 atom of the spin-labeled residue. Compared with the Cg-based approach, the s

RLA improves the accuracy in reproducing the experimental PRE data, as shown by 517

the generally lower RMSD values. When using the RLA, the 7. values that minimise 518

the RMSD are found in the range of typical reorientational correlation time constants s

for proteins of ~ 100 residues (2-5 ns), and closer to the experimentally-derived value of s

4ns , whereas the Cf-based approach underestimates the optimal 7.

RMSD
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Dependence on 7. of the RMSD between experimental and predicted PRE ratios of
ACBP. Red and blue lines are obtained using the RLA and approximating the electron
location with the position of the CS atom, respectively. Solid and dashed lines represent
the RMSD values calculated from all the data points and from intensity ratios in the
dynamic range 0.1 < Ipgrq / Igia < 0.9.
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