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Abstract

Single-cell RNA sequencing (scRNA-seq) enables the detailed examination of a cell’s
underlying regulatory networks and the molecular factors contributing to its identity. We
developed scRFE with the goal of generating interpretable gene lists that can accurately
distinguish observations (single-cells) by their features (genes) given a metadata category
of the dataset. scRFE is an algorithm that combines the classical random forest classifier
with recursive feature elimination and cross validation to find the features necessary and
sufficient to classify cells in a single-cell RNA-seq dataset by ranking feature importance.
It is implemented as a Python package compatible with Scanpy, enabling its seamless
integration into any single-cell data analysis workflow that aims at identifying minimal
transcriptional programs relevant to describing metadata features of the dataset. We
applied scRFE to the Tabula Muris Senis and reproduced established aging patterns
and transcription factor reprogramming protocols, highlighting the biological value of
scRFE’s learned features.

Author summary

scRFE is a Python package that combines a random forest classifier with recursive
feature elimination and cross validation to find the features necessary and sufficient to
classify cells in a single-cell RNA-seq dataset by ranking feature importance. scRFE was
designed to enable straightforward integration as part of any single-cell data analysis
workflow that aims at identifying minimal transcriptional programs relevant to describing
metadata features of the dataset.

Introduction 1

Single-cell RNA sequencing (scRNA-seq) facilitates newfound insights into the long 2

withstanding challenge of relating genotype to phenotype by resolving the tissue com- 3

position of an organism at single-cell resolution [1]. Moreover, scRNA-seq enables 4

the delineation of the constituents contributing to the homeostasis of an organism by 5

understanding the widely varying functional heterogeneity of every cell [2]. 6

Tremendous efforts have been put towards developing methods for cell reprogramming 7

both computationally and experimentally. Cell types are historically characterized 8

by morphology and functional assays, but one of the main advantages of single-cell 9
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transcriptomics is their ability to define cell identities and their underlying regulatory 10

networks [30]. As an example, transcription factors (TFs) mediate cell fate conversions 11

[3, 14], which could address the need for specific cell types in regenerative medicine and 12

research [5,8]. A panoply of biological experiments has been performed to further validate 13

and understand the role that transcription factors play in determining cell subpopulations, 14

demonstrating that it is possible to transform the fate of a cell with a unique group of 15

TFs [6,7]. Furthermore, several computational methods exist for finding those particular 16

sets of TFs [8]. However, these models often rely on an exceptionally well-characterized 17

target cell type population and a ‘background population’ [8], hindering generalizability. 18

These approaches are limited by noisy data and high sensitivity to technical differences 19

in experimentation methods, yielding a large list of TFs to be considered and hampering 20

their usability by bench scientists [8]. 21

Here we present scRFE (single-cell identity definition using random forests and 22

recursive feature elimination, pronounced ‘surf’), a method that combines the classical 23

random forest algorithm with recursive feature elimination and cross validation to find 24

the features necessary and sufficient to classify single-cell RNA-seq data by ranking 25

feature importance. A random forest is an ensemble of uncorrelated decision trees, where 26

for a given split in a given tree, a random subset of the feature space is considered [11]. 27

Random forests are ideal for single-cell data given their effective performance on sparse, 28

high dimensional data with collinear features and straightforward understandability [11]. 29

The goal of scRFE is to produce interpretable gene lists for all cell types in a given 30

dataset that can be used to design experiments or to further aid with biological data 31

mining. The out-of-the-box compatibility of scRFE with Scanpy [9] enables its seamless 32

integration into any single-cell data analysis workflow that aims at identifying minimal 33

sets of genes relevant to describing metadata features of the dataset. Thus, scRFE has 34

potential applications not only in finding transcription factors suitable for reprogramming 35

analysis, but more generally in identifying gene sets and their importances for a given 36

subpopulation of cells. 37

Results 38

scRFE Overview 39

scRFE (Fig. 1) takes as input an AnnData object and a class of interest which 40

corresponds to a metadata column of the dataset. The algorithm iterates over the set 41

of labels (specific values) in the class of interest (category to split observations by). 42

scRFE utilizes a random forest with recursive feature elimination and cross validation to 43

identify each feature’s importance for classifying the input observations. Downsampling 44

is performed separately for each label in the class of interest, ensuring that the groups 45

are balanced at each iteration (implementation described in Methods). In this work, each 46

observation is a single-cell, each feature is a gene, and the data are the expression levels 47

of the genes in the entire feature space. In order to learn the features to discriminate 48

a given cell type from the others in the dataset, scRFE was built as a one versus all 49

classifier. Recursive feature elimination was used to avoid high bias in the learned forest 50

and to address multicollinearity [26]. In this way, scRFE learns the features for a given 51

label in the class of interest and returns the mean decrease in Gini score for the top 52

learned features. This is a numerical measure of the feature’s importance in the entire 53

model by quantifying node purity [16]. Recursive feature elimination removes the bottom 54

20% of features with the lowest mean decrease in Gini scores at each iteration. We 55

incorporated k-fold cross validation (default = 5), to minimize variance and reduce the 56

risk of overfitting [12]. scRFE returns the Gini importances [16] ranking the top features 57

for each label in the class of interest, which are the selected features necessary and 58
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sufficient to describe the metadata feature of the dataset due to the implementation of 59

recursive feature elimination and cross validation. 60

scRFE identifies concordance between FACS and droplet tech- 61

niques in Tabula Muris Senis 62

We have applied scRFE to the Tabula Muris Senis (TMS) dataset [13]. TMS is a 63

comprehensive atlas of cells from 23 tissues over the murine lifespan. The dataset’s 64

deep characterization of the cell types comprising these tissues over time allowed us to 65

explore TF reprogramming protocols for a diverse range of cell ontologies [14] and aging 66

signatures [15] on the scale of hundreds of thousands of cells. 67

Comparing the top-performing genes for both the 10X/droplet and Smart-Seq2/FACS 68

datasets from TMS indicates that scRFE’s performance is independent of technical 69

aspects of experimentation (Fig. 2, Supplementary Table 1). Looking at the tissue- 70

specific results (Supplementary Table 2), we saw that scRFE output on the mammary 71

gland-specific FACS and droplet objects with age as the class of interest outputs ≥58% 72

of shared genes for the 3-month mice (Fig. 2a). scRFE run on the lung-specific FACS 73

and droplet objects with age as the class of interest outputs ≥61% of shared features 74

for the 18-month old mice (Fig. 2b). This finding remained true when scRFE was run 75

on cell types (Supplementary Table 3), as the FACS and droplet liver-specific objects 76

shared ≥74% of selected features for hepatocyte cells (Fig. 2c). However, perfect overlap 77

between results is still not achieved due to the inherent experimental differences between 78

the FACS and droplet techniques, with the FACS method generating full-length cDNAs 79

with a greater ability to detect rare cells, compared to the droplet method, an end-to-end 80

solution with high cell capture efficiency [20]. A future interesting approach would be 81

combining the independent datasets to create a more robust characterization of the class 82

of interest. 83

scRFE learns biologically consistent transcriptional programs 84

Specific sets of transcription factors determine a cell’s fate [3] and our method finds 85

concordance with known marker genes for different cell ontologies coming from a variety 86

of tissues. For example, Lmcd1, Foxf2, Tbx2, Nr1h3, and Nr2f1 are linked to pericyte 87

cells [7]. scRFE found Foxf2, Tbx2,and Nr1h3 in the top four selected features for 88

pericyte cells when run on the lung droplet object, splitting observations by cell type. 89

For NK cells from the same output, scRFE found Tbx21, Runx3, and Gata3 in the 90

top 22 selected features, three of the five TFs linked to NK cells [7]. Additionally, 91

Sox10, Olig2, and Zfp536 are reprogramming factors for oligodendrocytes [17] and scRFE 92

found all three TFs in the top eleven selected features for oligodendrocytes when run 93

on the brain non-myeloid FACS dataset, splitting observations by cell type. Not only 94

was scRFE able to recapitulate sets of genes for identifying TFs (Table 1), but the 95

numerical feature rankings also followed existing literature [7, 17–19]. The features with 96

high mean decrease in Gini scores were often already experimentally validated and/or 97

computationally derived as shown by the colored genes in Fig. 3 [3, 17–19]. 98

Top feature importances reveal gene ontology patterns by age 99

The aging phenotype is associated with notable transcriptional changes [27], and we 100

used scRFE to learn the top ranked genes associated with each age. When considering 101

the unique age-specific genes, we found that Ppp1c is the gene with the highest mean 102

decrease in Gini score that is specific to the 24-month mice and not in the 3- or 18- 103

month lists (FACS dataset). Ppp1cb is associated with aging and mortality [28]. The 104

second-highest ranked gene that is specific to only the 24-month list is Sfpq, a gene 105
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linked to diseases such as familial amyotrophic lateral sclerosis (ALS) [4]. Additionally, 106

mutations in Sfpq and the dysregulation of the Sfpq-dependent energy metabolism may 107

be connected to sarcopenia, also known as biological aging [10]. 574 genes (out all the 108

mouse protein coding genes) were shared between the 3-, 18-, and 24-month old mice 109

(Supplementary Table 4). 110

In order to understand the underlying biology of the scRFE aging results, we 111

performed Gene Set Enrichment Analysis (GSEA) [24,25] and found that the selected 112

features exclusive for 3-month mice are associated with regular biological processes, 113

such as amino-acid metabolism and cell adhesion (Fig. 4a). When looking at either 114

the 18-month (Fig. 4b) or 24-month (Fig. 4c) selected features, excluding the 3-month 115

selected features, we observed a dramatic switch towards a disease signature. For the 18- 116

month and 24-month lists, the top KEGG pathways are associated with both infections 117

and neurological diseases, reiterating scRFE’s ability to recover biologically relevant 118

signatures in the form of minimal transcriptional sets. 119

Conclusion 120

scRFE is a robust and reproducible solution to the problem of identifying cell type 121

marker genes and biological transcriptional programs in single-cell RNA sequencing. 122

The code is available on GitHub (https://github.com/czbiohub/scRFE) and it has been 123

included in PyPI (https://pypi.org/project/scRFE/) to facilitate its integration with 124

current scRNA-seq workflows. 125

When applied to the TMS dataset, scRFE identifies concordance between FACS and 126

droplet techniques, highlighting its potential in detecting biological over technical signals. 127

scRFE also learns transcription factor reprogramming methods which follow biological 128

results. This underscores scRFE’s effectiveness at recognizing reprogramming protocols 129

and potentially finding novel ones. 130

scRFE allows for the discovery of new associations between genotype and phenotype 131

by finding top marker genes for cell populations. As proof of concept, we demonstrate 132

that scRFE produces results that match commonly known aging patterns, highlighting 133

developmental pathways in young murine models and moving towards canonical aging 134

and disease related pathways in older murine models. Future work may include utilizing 135

scRFE to discover genes and pathways biologically inherent to young versus old organisms, 136

furthermore examining the underlying mechanisms of aging. In sum, scRFE identifies 137

the top genes for a given cell population and validates existing conclusions, underscoring 138

its broad utility as a means of finding novel marker genes. 139
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Methods 153

Implementation 154

scRFE is built in Python using methods from the scikit-learn [21] and Scanpy [9] 155

libraries. We chose to use Python over R given its compatibility with Scanpy/AnnData 156

objects. For R users, we recommend using the varSelRF package [22]; example of 157

applications to single-cell dataset in Tabula Muris [14]). scRFE’s direct compatibility 158

with Scanpy makes it easy to integrate as a part of any single-cell data analysis workflow 159

interested in identifying minimal sets of genes relevant to describing metadata features 160

of the dataset. 161

We define classOfInterest as the column of the metadata (adata.obs) that scRFE 162

will split observations by. We call each specific value within the classOfInterest a 163

“label.” We refer to the input AnnData object as adata. We use the term “mean decrease 164

in Gini score” interchangeably with “Gini importance.” 165

Datasets and gene lists 166

We used Tabula Muris Senis (TMS) for our analysis [13]. TMS comprises the gene 167

expression of over 350,000 cells across 23 organs and tissues from mice aged 1 month to 168

30 months. By understanding tissue composition at single-cell resolution and the widely 169

varying functional heterogeneity of each cell, a deep exploration of transcription factor 170

reprogramming protocols and aging signatures was possible. TMS was generated using 171

both the FACS and droplet methods which allowed us to explore scRFE’s performance 172

with different experimental techniques. 173

TMS was downloaded from FigShare (processed official FACS and droplet Ann- 174

Data objects found at https://figshare.com/projects/Tabula Muris Senis/64982). We 175

ran scRFE on the TMS AnnData objects using the processed data. Users may 176

choose to remove cells or genes that do not meet a minimum requirement, or to 177

use raw data prior to running scRFE. The GO mouse transcription factors list was 178

defined as the 1,140 genes annotated by the Gene Ontology term ‘DNA binding tran- 179

scription factor activity,’ downloaded from the Mouse Genome Informatics database 180

(http://www.informatics.jax.org/mgihome/GO/projects.html). 181

scRFE function 182

scRFE receives adata, an AnnData object (.h5ad), as input. The data are used as is 183

in the .X attribute. scRFE also receives as input classOfInterest, a column of the .obs 184

attribute of adata that is the category to split observations by. 185

scRFE begins by removing observations that had a missing (NaN) annotation for 186

the classOfInterest from the inputted AnnData object. Next, scRFE splits the data 187

for one versus all classification. For every unique label in the specified classOfInterest, 188

scRFE iterates through each observation and distinguishes between observations that 189

match the given label of interest in the class, versus observations with other labels. 190

scRFE downsamples to the smallest category, meaning it randomly selected the same 191

number of observations that the classOfInterest had from the rest of the observations, 192

allowing for a balanced one versus all comparison. 193

scRFE sets the X value of the random forest to adata.X, the observations by variables 194

matrix. The y value of the random forest are the labels created from the previous step. 195
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Then, scRFE uses sklearn to create a random forest (clf) and recursive feature eliminator 196

(selector). The random forest splits observations (cells) based on what features (genes) 197

are expressed until all observations are classified. Feature importances are calculated 198

using the mean decrease in Gini score, a numerical measurement of node impurity [16]. 199

At each iteration, the selector removes the bottom percent (default = 20%) of features 200

with the lowest mean decrease in Gini importances to avoid high bias and to address 201

multicollinearity [26]. The selector also incorporates k-fold cross validation (default = 202

5) to minimize variance and reduce the risk of overfitting [12]. Thus, the data are split 203

randomly into 5 folds, where at each iteration, 4 folds are trained. This combination 204

of recursive feature elimination and cross validation allows for not only a robust model 205

to be learned, but an elegant and concise model with only the necessary and sufficient 206

features to describe the data selected. scRFE has several tunable parameters (Table 207

2) and they should be adjusted given a particular dataset. For the most part, we used 208

scRFE’s default parameters, unless stated otherwise. 209

scRFE output 210

Upon running, scRFE returns two values. The first is a Pandas dataframe with the 211

top ranked features in descending order and their corresponding mean decrease in Gini 212

scores for each label within the classOfInterest. This can be saved as a csv or used for 213

downstream analysis as-is. The second value scRFE returns is a dictionary containing 214

the score of the underlying estimator for each label within the classOfInterest including 215

only the selected features. 216

Running scRFE to generate TF and aging results 217

We ran scRFE on the TMS [13] processed official FACS and droplet AnnData objects 218

on a variety of combinations of tissues, cell types, and ages. We used scRFE’s default 219

parameters and sweeped the number of trees (scRFE argument nEstimators) to assess 220

model performance. We observed how the results changed with different values of 221

nEstimators to determine 1,000 as our default parameter (Fig. 5). 222

An example of calling scRFE (here, learning top transcription factors per cell type) 223

is presented below; a detailed overview is in the GitHub repository. 224

import scanpy as sc 225

import pandas as pd 226

from scRFE.scRFE import scRFE 227

228

# read in adata and transcription factor list 229

230

adata = read_h5ad("data.h5ad") 231

tfs = pd.read_csv("geneList.csv")["Symbol"] 232

233

# subset feature space 234

adataTF = adata[:, tfs] 235

236

#call scRFE to split observations by cell type (class of interest) 237

topFeaturesDF, score = scRFE(adata = adataTF, classOfInterest = 238

"cell_ontology_class") 239

A detailed list of the experiments we discussed in this manuscript can be found in 240

the supplementary tables. 241
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gProfiler and GSEA analysis 242

We ran scRFE on the global FACS dataset with age as the classOfInterest. For the 243

ages 3-, 18-, and 24-months, we took the lists of features selected and inputted them to 244

gProfiler [23] (Supplementary Table 5). This returned a dataframe highlighting significant 245

pathways (sorted by p-value) for different gene ontologies based on the inputted gene 246

lists (Supplementary Table 6). The intersection of the lists of features selected was 247

analyzed using Gene Set Enrichment Analysis (GSEA MGSig Database) [24,25] and the 248

results were summarized in Fig.4. 249

Code availability 250

The scRFE code is at https://github.com/czbiohub/scRFE (GitHub). The documen- 251

tation/user manual is at https://scRFE.readthedocs.io/en/latest/. Pip installation is 252

available at https://pypi.org/project/scRFE/ (PyPI). 253
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Figure Legends

Fig. 1: scRFE overview.

Given an input AnnData object and specified value for ‘classOfInterest,’ the metadata
category of the dataset to split observations by, scRFE performs one vs all classification.
scRFE downsamples to the number of observations in smallest category to provide an
equal sized comparison for every label within the classOfInterest. For each label, scRFE
learns a random forest with recursive feature elimination, where the bottom percent
(default = 20%) of features were removed at each iteration. scRFE leverages k-fold
cross validation (default k = 5). scRFE outputs a pandas dataframe with columns
corresponding to each label within the classOfInterest, storing the selected features and
their respective mean decrease in Gini importances.

Fig. 2: scRFE finds consistency between FACS and droplet meth-

ods.

Venn diagrams visualizing the intersection of scRFE results with default parameters,
run on tissue-specific FACS versus droplet objects.
a) Mammary gland with classOfInterest = ‘age.’ Here, we selected the results for
3-month. Majority of the selected genes for both datasets were shared. The two results
overlapped ≥ 58% of the time with 157 shared genes, 56 droplet specific genes, and 57
FACS specific genes.
b) Lung with classOfInterest = ‘age.’ Here, we selected the results for 18-month. Majority
of the selected genes for both datasets were shared. The two results overlapped ≥ 61%
of the time with 163 shared genes, 50 droplet specific genes, and 51 FACS specific genes.
c) Liver with classOfInterest = ‘cell ontology class.’ Here, we selected the results for
hepatocytes. Majority of the selected genes for both datasets were shared. The two
results overlapped ≥ 74% of the time with 360 shared genes, 60 droplet specific genes,
and 65 FACS specific genes.

Fig. 3: scRFE learns biologically consistent transcriptional pro-

grams.

a) Sox10, Olig2, and Zfp536 are necessary to reprogram cells into oligodendrocytes [17].
scRFE found all three transcription factors in the top eleven selected features as shown
in green.
b) ‘Synergistic identity core’ of transcription factors for pericyte cells in the murine liver
includes Lmcd1, Foxf2, Tbx2, Nr1h3, and Nr2f1 [7]. scRFE found three out of these five
TFs in the top four selected features as shown in green.
c) ‘Synergistic identity core’ of transcription factors for NK cells in the murine liver
includes Tbx21, Runx3, Gata3, Ikzf3, and Tcf7 [7]. scRFE found three of these in the
top 22 selected features as shown in green.

Fig. 4: KEGG pathway analysis for scRFE aging results.

a) Statistically significant KEGG pathways for the scRFE selected features for 3-month
excluding 18-month and 24-month.
b) Statistically significant KEGG pathways for the scRFE selected features for 18-month
excluding 3-month.
c) Statistically significant KEGG pathways for the scRFE selected features for 24-month
excluding 3-month.
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Fig. 5: scRFE run on global FACS object with classOfInterest =

‘age’ and different values for nEstimators. 18-month results.
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Table Legends

Table 1

Examples of scRFE identifying biologically consistent transcription programs.

Table 2

scRFE parameters default values and descriptions.

Supplementary Tables

Note: scRFE default parameters were used unless stated otherwise.

Supplementary Table 1

scRFE results for FACS and droplet tissue and age-specific objects subsetted for TFs as
features with classOfInterest = ‘cell ontology class.’ (cell type).

Supplementary Table 2

scRFE results for FACS and droplet tissue-specific objects subsetted for TFs as features
with classOfInterest = ‘age.’ nEstimators = 5000.

Supplementary Table 3

scRFE results for FACS and droplet tissue-specific objects subsetted for TFs as features
with classOfInterest = ‘cell ontology class’ (cell type).

Supplementary Table 4

scRFE results for FACS and droplet global objects subsetted for TFs as features with
classOfInterest = ‘age.’ nEstimators = 50, 100, 500, 1000, 2000, and 5000.

Supplementary Table 5

gProfiler Results for Supplementary Table 2 lists.

Supplementary Table 6

scRFE results for FACS global object with classOfInterest = ‘age.’
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Cell Type Transcription Factors
*Bolded are ones scRFE found

 in top 25 selected features

Reference

Pericyte Cells Lmcd1, Foxf2, Tbx2, 

Nr1h3, Nr2f1 

Okawa, S., et al.

Nucleic Acids Res 2019.

NK Cells Tbx21, Runx3, Gata3,

Ikzf3, Tcf7 

Okawa, S., et al.

Nucleic Acids Res 2019.

Oligodendrocytes  Sox10, Olig2, Zfp536 Yang, N., et al. 

Nat Biotechnol 2013.

Skeletal Muscle 

Cells

Myod1 Davis, R.L., et al. 

Cell 1987.

Neuronal Stem

Cells

Sox2 Ring, K.L., et al.

Cell Stem Cell 2012.
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scRFE parameter DescriptionDefault

adata

classOfInterest

nEstimators

randomState

min_cells

keep_small

_categories

nJobs

oobScore

Step

Cv

verbosity

anndata object

str

int, 1000

int, 0

int, 15

bool, True

bool, True

int, -1

float, 0.2

int, 5

bool, True

.h5ad input file

# of trees in the forest

class to classify obs by

controls random number 

being used

min number of cells in a
given class to downsample

whether to keep classes
with small #observations

# jobs to run in parallel

whether to use

out-of-bag samples

fraction of features to
remove at each iteration

determines k-fold cv strategy

whether to print statements

Detailed descriptions of our parameters can be found at

scRFE.readthedocs.io/en/latest/
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