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Abstract

Single-cell RNA sequencing (scRNA-seq) enables the detailed examination of a cell’s
underlying regulatory networks and the molecular factors contributing to its identity. We
developed scRFE with the goal of generating interpretable gene lists that can accurately
distinguish observations (single-cells) by their features (genes) given a metadata category
of the dataset. scRFE is an algorithm that combines the classical random forest classifier
with recursive feature elimination and cross validation to find the features necessary and
sufficient to classify cells in a single-cell RNA-seq dataset by ranking feature importance.
It is implemented as a Python package compatible with Scanpy, enabling its seamless
integration into any single-cell data analysis workflow that aims at identifying minimal
transcriptional programs relevant to describing metadata features of the dataset. We
applied scRFE to the Tabula Muris Senis and reproduced established aging patterns
and transcription factor reprogramming protocols, highlighting the biological value of
scRFE’s learned features.

Author summary

scRFE is a Python package that combines a random forest classifier with recursive
feature elimination and cross validation to find the features necessary and sufficient to
classify cells in a single-cell RNA-seq dataset by ranking feature importance. scRFE was
designed to enable straightforward integration as part of any single-cell data analysis
workflow that aims at identifying minimal transcriptional programs relevant to describing
metadata features of the dataset.

Introduction

Single-cell RNA sequencing (scRNA-seq) facilitates newfound insights into the long
withstanding challenge of relating genotype to phenotype by resolving the tissue com-
position of an organism at single-cell resolution [1]. Moreover, scRNA-seq enables
the delineation of the constituents contributing to the homeostasis of an organism by
understanding the widely varying functional heterogeneity of every cell [2].

Tremendous efforts have been put towards developing methods for cell reprogramming
both computationally and experimentally. Cell types are historically characterized
by morphology and functional assays, but one of the main advantages of single-cell
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transcriptomics is their ability to define cell identities and their underlying regulatory
networks [30]. As an example, transcription factors (TFs) mediate cell fate conversions
[3,14], which could address the need for specific cell types in regenerative medicine and
research [5,8]. A panoply of biological experiments has been performed to further validate
and understand the role that transcription factors play in determining cell subpopulations,
demonstrating that it is possible to transform the fate of a cell with a unique group of
TFs [6,7]. Furthermore, several computational methods exist for finding those particular
sets of TFs [8]. However, these models often rely on an exceptionally well-characterized

target cell type population and a ‘background population’ [8], hindering generalizability.

These approaches are limited by noisy data and high sensitivity to technical differences
in experimentation methods, yielding a large list of TF's to be considered and hampering
their usability by bench scientists [8].

Here we present scRFE (single-cell identity definition using random forests and
recursive feature elimination, pronounced ‘surf’), a method that combines the classical
random forest algorithm with recursive feature elimination and cross validation to find
the features necessary and sufficient to classify single-cell RNA-seq data by ranking
feature importance. A random forest is an ensemble of uncorrelated decision trees, where

for a given split in a given tree, a random subset of the feature space is considered [11].

Random forests are ideal for single-cell data given their effective performance on sparse,

high dimensional data with collinear features and straightforward understandability [11].

The goal of scRFE is to produce interpretable gene lists for all cell types in a given
dataset that can be used to design experiments or to further aid with biological data
mining. The out-of-the-box compatibility of scRFE with Scanpy [9] enables its seamless
integration into any single-cell data analysis workflow that aims at identifying minimal
sets of genes relevant to describing metadata features of the dataset. Thus, scRFE has
potential applications not only in finding transcription factors suitable for reprogramming
analysis, but more generally in identifying gene sets and their importances for a given
subpopulation of cells.

Results

scRFE Overview

scRFE (Fig. 1) takes as input an AnnData object and a class of interest which
corresponds to a metadata column of the dataset. The algorithm iterates over the set
of labels (specific values) in the class of interest (category to split observations by).
scRFE utilizes a random forest with recursive feature elimination and cross validation to
identify each feature’s importance for classifying the input observations. Downsampling
is performed separately for each label in the class of interest, ensuring that the groups
are balanced at each iteration (implementation described in Methods). In this work, each
observation is a single-cell, each feature is a gene, and the data are the expression levels
of the genes in the entire feature space. In order to learn the features to discriminate
a given cell type from the others in the dataset, scRFE was built as a one versus all
classifier. Recursive feature elimination was used to avoid high bias in the learned forest
and to address multicollinearity [26]. In this way, scRFE learns the features for a given
label in the class of interest and returns the mean decrease in Gini score for the top
learned features. This is a numerical measure of the feature’s importance in the entire
model by quantifying node purity [16]. Recursive feature elimination removes the bottom
20% of features with the lowest mean decrease in Gini scores at each iteration. We
incorporated k-fold cross validation (default = 5), to minimize variance and reduce the
risk of overfitting [12]. scRFE returns the Gini importances [16] ranking the top features
for each label in the class of interest, which are the selected features necessary and
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sufficient to describe the metadata feature of the dataset due to the implementation of
recursive feature elimination and cross validation.

scRFE identifies concordance between FACS and droplet tech-
niques in Tabula Muris Senis

We have applied scRFE to the Tabula Muris Senis (TMS) dataset [13]. TMS is a
comprehensive atlas of cells from 23 tissues over the murine lifespan. The dataset’s
deep characterization of the cell types comprising these tissues over time allowed us to
explore TF reprogramming protocols for a diverse range of cell ontologies [14] and aging
signatures [15] on the scale of hundreds of thousands of cells.

Comparing the top-performing genes for both the 10X /droplet and Smart-Seq2/FACS
datasets from TMS indicates that scRFE’s performance is independent of technical
aspects of experimentation (Fig. 2, Supplementary Table 1). Looking at the tissue-
specific results (Supplementary Table 2), we saw that scRFE output on the mammary
gland-specific FACS and droplet objects with age as the class of interest outputs >58%
of shared genes for the 3-month mice (Fig. 2a). scRFE run on the lung-specific FACS
and droplet objects with age as the class of interest outputs >61% of shared features
for the 18-month old mice (Fig. 2b). This finding remained true when scRFE was run
on cell types (Supplementary Table 3), as the FACS and droplet liver-specific objects
shared >74% of selected features for hepatocyte cells (Fig. 2¢). However, perfect overlap
between results is still not achieved due to the inherent experimental differences between
the FACS and droplet techniques, with the FACS method generating full-length cDNAs
with a greater ability to detect rare cells, compared to the droplet method, an end-to-end
solution with high cell capture efficiency [20]. A future interesting approach would be
combining the independent datasets to create a more robust characterization of the class
of interest.

scRFE learns biologically consistent transcriptional programs

Specific sets of transcription factors determine a cell’s fate [3] and our method finds
concordance with known marker genes for different cell ontologies coming from a variety
of tissues. For example, Lmecd1, Foxf2, Thx2, Nr1h3, and Nr2fl are linked to pericyte
cells [7]. scRFE found Foxf2, Thx2,and Nr1h3 in the top four selected features for
pericyte cells when run on the lung droplet object, splitting observations by cell type.
For NK cells from the same output, scRFE found Tbx21, Runx3, and Gata3 in the
top 22 selected features, three of the five TFs linked to NK cells [7]. Additionally,
Sox10, Olig2, and Zfp536 are reprogramming factors for oligodendrocytes [17] and scRFE
found all three TF's in the top eleven selected features for oligodendrocytes when run
on the brain non-myeloid FACS dataset, splitting observations by cell type. Not only
was scRFE able to recapitulate sets of genes for identifying TFs (Table 1), but the
numerical feature rankings also followed existing literature [7,17-19]. The features with
high mean decrease in Gini scores were often already experimentally validated and/or
computationally derived as shown by the colored genes in Fig. 3 [3,17-19].

Top feature importances reveal gene ontology patterns by age

The aging phenotype is associated with notable transcriptional changes [27], and we
used scRFE to learn the top ranked genes associated with each age. When considering
the unique age-specific genes, we found that Ppplc is the gene with the highest mean
decrease in Gini score that is specific to the 24-month mice and not in the 3- or 18-
month lists (FACS dataset). Ppplcb is associated with aging and mortality [28]. The
second-highest ranked gene that is specific to only the 24-month list is Sfpq, a gene
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linked to diseases such as familial amyotrophic lateral sclerosis (ALS) [4]. Additionally,
mutations in Sfpq and the dysregulation of the Sfpg-dependent energy metabolism may
be connected to sarcopenia, also known as biological aging [10]. 574 genes (out all the
mouse protein coding genes) were shared between the 3-, 18-, and 24-month old mice
(Supplementary Table 4).

In order to understand the underlying biology of the scRFE aging results, we
performed Gene Set Enrichment Analysis (GSEA) [24,25] and found that the selected
features exclusive for 3-month mice are associated with regular biological processes,
such as amino-acid metabolism and cell adhesion (Fig. 4a). When looking at either
the 18-month (Fig. 4b) or 24-month (Fig. 4c) selected features, excluding the 3-month
selected features, we observed a dramatic switch towards a disease signature. For the 18-
month and 24-month lists, the top KEGG pathways are associated with both infections
and neurological diseases, reiterating scRFE’s ability to recover biologically relevant
signatures in the form of minimal transcriptional sets.

Conclusion

scRFE is a robust and reproducible solution to the problem of identifying cell type
marker genes and biological transcriptional programs in single-cell RNA sequencing.
The code is available on GitHub (https://github.com/czbiohub/scRFE) and it has been
included in PyPI (https://pypi.org/project/scRFE/) to facilitate its integration with
current scRNA-seq workflows.

When applied to the TMS dataset, scRFE identifies concordance between FACS and
droplet techniques, highlighting its potential in detecting biological over technical signals.
scRFE also learns transcription factor reprogramming methods which follow biological
results. This underscores scRFE’s effectiveness at recognizing reprogramming protocols
and potentially finding novel ones.

scRFE allows for the discovery of new associations between genotype and phenotype
by finding top marker genes for cell populations. As proof of concept, we demonstrate
that scRFE produces results that match commonly known aging patterns, highlighting
developmental pathways in young murine models and moving towards canonical aging
and disease related pathways in older murine models. Future work may include utilizing
scRFE to discover genes and pathways biologically inherent to young versus old organisms,
furthermore examining the underlying mechanisms of aging. In sum, scRFE identifies
the top genes for a given cell population and validates existing conclusions, underscoring
its broad utility as a means of finding novel marker genes.
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Methods

Implementation

scRFE is built in Python using methods from the scikit-learn [21] and Scanpy [9]
libraries. We chose to use Python over R given its compatibility with Scanpy/AnnData
objects. For R users, we recommend using the varSelRF package [22]; example of
applications to single-cell dataset in Tabula Muris [14]). scRFE’s direct compatibility
with Scanpy makes it easy to integrate as a part of any single-cell data analysis workflow
interested in identifying minimal sets of genes relevant to describing metadata features
of the dataset.

We define classO fInterest as the column of the metadata (adata.obs) that scRFE
will split observations by. We call each specific value within the classO fInterest a
“label.” We refer to the input AnnData object as adata. We use the term “mean decrease
in Gini score” interchangeably with “Gini importance.”

Datasets and gene lists

We used Tabula Muris Senis (TMS) for our analysis [13]. TMS comprises the gene
expression of over 350,000 cells across 23 organs and tissues from mice aged 1 month to
30 months. By understanding tissue composition at single-cell resolution and the widely
varying functional heterogeneity of each cell, a deep exploration of transcription factor
reprogramming protocols and aging signatures was possible. TMS was generated using
both the FACS and droplet methods which allowed us to explore scRFE’s performance
with different experimental techniques.

TMS was downloaded from FigShare (processed official FACS and droplet Ann-
Data objects found at https://figshare.com/projects/Tabula Muris Senis/64982). We
ran scRFE on the TMS AnnData objects using the processed data. Users may
choose to remove cells or genes that do not meet a minimum requirement, or to
use raw data prior to running scRFE. The GO mouse transcription factors list was
defined as the 1,140 genes annotated by the Gene Ontology term ‘DNA binding tran-
scription factor activity,” downloaded from the Mouse Genome Informatics database
(http://www.informatics.jax.org/mgihome/GO/projects.html).

scRFE function

scRFE receives adata, an AnnData object (.hbad), as input. The data are used as is
in the .X attribute. scRFE also receives as input classO f Interest, a column of the .obs
attribute of adata that is the category to split observations by.

scRFE begins by removing observations that had a missing (NaN) annotation for
the classO fInterest from the inputted AnnData object. Next, scRFE splits the data
for one versus all classification. For every unique label in the specified classO f Interest,
scRFE iterates through each observation and distinguishes between observations that
match the given label of interest in the class, versus observations with other labels.
scRFE downsamples to the smallest category, meaning it randomly selected the same
number of observations that the classO f Interest had from the rest of the observations,
allowing for a balanced one versus all comparison.

scRFE sets the X value of the random forest to adata.X, the observations by variables
matrix. The y value of the random forest are the labels created from the previous step.
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Then, scRFE uses sklearn to create a random forest (clf) and recursive feature eliminator
(selector). The random forest splits observations (cells) based on what features (genes)
are expressed until all observations are classified. Feature importances are calculated
using the mean decrease in Gini score, a numerical measurement of node impurity [16].

At each iteration, the selector removes the bottom percent (default = 20%) of features
with the lowest mean decrease in Gini importances to avoid high bias and to address
multicollinearity [26]. The selector also incorporates k-fold cross validation (default =
5) to minimize variance and reduce the risk of overfitting [12]. Thus, the data are split
randomly into 5 folds, where at each iteration, 4 folds are trained. This combination
of recursive feature elimination and cross validation allows for not only a robust model
to be learned, but an elegant and concise model with only the necessary and sufficient
features to describe the data selected. scRFE has several tunable parameters (Table
2) and they should be adjusted given a particular dataset. For the most part, we used
scRFE’s default parameters, unless stated otherwise.

scRFE output

Upon running, scRFE returns two values. The first is a Pandas dataframe with the
top ranked features in descending order and their corresponding mean decrease in Gini
scores for each label within the classO fInterest. This can be saved as a csv or used for
downstream analysis as-is. The second value scRFE returns is a dictionary containing
the score of the underlying estimator for each label within the classO f Interest including
only the selected features.

Running scRFE to generate TF and aging results

We ran scRFE on the TMS [13] processed official FACS and droplet AnnData objects
on a variety of combinations of tissues, cell types, and ages. We used scRFE’s default
parameters and sweeped the number of trees (scRFE argument nEstimators) to assess
model performance. We observed how the results changed with different values of
nEstimators to determine 1,000 as our default parameter (Fig. 5).

An example of calling scRFE (here, learning top transcription factors per cell type)
is presented below; a detailed overview is in the GitHub repository.

import scanpy as sc
import pandas as pd
from scRFE.scRFE import scRFE

# read in adata and transcription factor list

adata = read_hb5ad("data.hb5ad")
tfs = pd.read_csv("geneList.csv") ["Symbol"]

# subset feature space
adataTF = adatal:, tfs]

#call scRFE to split observations by cell type (class of interest)
topFeaturesDF, score = scRFE(adata = adataTF, classOfInterest =
"cell_ontology_class")

A detailed list of the experiments we discussed in this manuscript can be found in
the supplementary tables.
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gProfiler and GSEA analysis

We ran scRFE on the global FACS dataset with age as the classO fInterest. For the
ages 3-, 18-, and 24-months, we took the lists of features selected and inputted them to
gProfiler [23] (Supplementary Table 5). This returned a dataframe highlighting significant
pathways (sorted by p-value) for different gene ontologies based on the inputted gene
lists (Supplementary Table 6). The intersection of the lists of features selected was
analyzed using Gene Set Enrichment Analysis (GSEA MGSig Database) [24,25] and the
results were summarized in Fig.4.

Code availability

The scRFE code is at https://github.com/czbiohub/scRFE (GitHub). The documen-
tation/user manual is at https://scRFE.readthedocs.io/en/latest/. Pip installation is
available at https://pypi.org/project/scRFE/ (PyPI).
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Figure Legends

Fig. 1: scRFE overview.

Given an input AnnData object and specified value for ‘classOfInterest,” the metadata
category of the dataset to split observations by, scRFE performs one vs all classification.
scRFE downsamples to the number of observations in smallest category to provide an
equal sized comparison for every label within the classOfInterest. For each label, scRFE
learns a random forest with recursive feature elimination, where the bottom percent
(default = 20%) of features were removed at each iteration. scRFE leverages k-fold
cross validation (default k = 5). scRFE outputs a pandas dataframe with columns
corresponding to each label within the classOflnterest, storing the selected features and
their respective mean decrease in Gini importances.

Fig. 2: scRFE finds consistency between FACS and droplet meth-
ods.

Venn diagrams visualizing the intersection of scRFE results with default parameters,
run on tissue-specific FACS versus droplet objects.

a) Mammary gland with classOfInterest = ‘age.” Here, we selected the results for
3-month. Majority of the selected genes for both datasets were shared. The two results
overlapped > 58% of the time with 157 shared genes, 56 droplet specific genes, and 57
FACS specific genes.

b) Lung with classOfInterest = ‘age.” Here, we selected the results for 18-month. Majority
of the selected genes for both datasets were shared. The two results overlapped > 61%
of the time with 163 shared genes, 50 droplet specific genes, and 51 FACS specific genes.
¢) Liver with classOfInterest = ‘cell_ontology_class.” Here, we selected the results for
hepatocytes. Majority of the selected genes for both datasets were shared. The two
results overlapped > 74% of the time with 360 shared genes, 60 droplet specific genes,
and 65 FACS specific genes.

Fig. 3: scRFE learns biologically consistent transcriptional pro-
grams.

a) Sox10, Olig2, and Zfp536 are necessary to reprogram cells into oligodendrocytes [17].
scRFE found all three transcription factors in the top eleven selected features as shown
in green.

b) ‘Synergistic identity core’ of transcription factors for pericyte cells in the murine liver
includes Lmecd1, Foxf2, Tbx2, Nr1h3, and Nr2fl [7]. scRFE found three out of these five
TF's in the top four selected features as shown in green.

¢) ‘Synergistic identity core’ of transcription factors for NK cells in the murine liver
includes Tbx21, Runx3, Gata3, Ikzf3, and Tct7 [7]. scRFE found three of these in the
top 22 selected features as shown in green.

Fig. 4: KEGG pathway analysis for scRFE aging results.

a) Statistically significant KEGG pathways for the scRFE selected features for 3-month
excluding 18-month and 24-month.

b) Statistically significant KEGG pathways for the scRFE selected features for 18-month
excluding 3-month.

¢) Statistically significant KEGG pathways for the scRFE selected features for 24-month
excluding 3-month.
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Fig. 5: scRFE run on global FACS object with classOfInterest =
‘age’ and different values for nEstimators. 18-month results.
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Table Legends
Table 1

Examples of scRFE identifying biologically consistent transcription programs.

Table 2

scRFE parameters default values and descriptions.

Supplementary Tables

Note: scRFE default parameters were used unless stated otherwise.

Supplementary Table 1

scRFE results for FACS and droplet tissue and age-specific objects subsetted for TFs as
features with classOfInterest = ‘cell_ontology_class.” (cell type).

Supplementary Table 2

scRFE results for FACS and droplet tissue-specific objects subsetted for TFs as features
with classOfInterest = ‘age.” nEstimators = 5000.

Supplementary Table 3

scRFE results for FACS and droplet tissue-specific objects subsetted for TF's as features
with classOfInterest = ‘cell_ontology_class’ (cell type).

Supplementary Table 4

scRFE results for FACS and droplet global objects subsetted for TFs as features with
classOflnterest = ‘age.” nEstimators = 50, 100, 500, 1000, 2000, and 5000.

Supplementary Table 5
gProfiler Results for Supplementary Table 2 lists.

Supplementary Table 6
scRFE results for FACS global object with classOfInterest = ‘age.’
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scRFE Fig. 1
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scRFE Table 1

Cell Type

Transcription Factors
*Bolded are ones scRFE found
in top 25 selected features

Reference

Pericyte Cells

Lmcd1, Foxf2, Thx2,
Nr1h3, Nr2f1

Okawa, S., et al.
Nucleic Acids Res 2019.

NK Cells

Tbx21, Runx3, Gata3,
Ikzf3, Tcf7

Okawa, S., et al.
Nucleic Acids Res 2019.

Oligodendrocytes

Sox10, Olig2, Zfp536

Yang, N., et al.
Nat Biotechnol 2013.

Cells

Skeletal Muscle Myod1 Davis, R.L., et al.
Cells Cell 1987.
Neuronal Stem Sox2 Ring, K.L., et al.

Cell Stem Cell 2012.
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scRFE Fig. 3
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scRFE Fig. 4
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scRFE Table 2

scRFE parameter

Default

Description

adata anndata object .h5ad input file
classOfinterest str class to classify obs by
nEstimators int, 1000 # of trees in the forest
) controls random number
randomState int, 0 being used
. . min number of cells in a
min_cells int, 15 given class to downsample
keep_small whether to keep classes
_categories bool, True with small #observations
nJobs int, -1 # jobs to run in parallel
oobScore bool, True whether to use
out-of-bag samples
fraction of features to
Step float, 0.2 remove at each iteration
Cv int, 5 determines k-fold cv strategy
verbosity bool, True whether to print statements

Detailed descriptions of our parameters can be found at
ScRFE.readthedocs.io/en/latest/
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scRFE Fig. 5 nEstimators = 100

nEstimators = 500

nEstimators = 1000
nEstimators = 2000
nEstimators = 5000
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