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Abstract

Human cortex is patterned by a complex and interdigitated web of large-scale functional
networks. Recent methodological breakthroughs reveal variation in the size, shape, and spatial
topography of cortical networks across individuals. While spatial network organization emerges
across development, is stable over time, and predictive of behavior, it is not yet clear to what
extent genetic factors underlie inter-individual differences in network topography. Here,
leveraging a novel non-linear multi-dimensional estimation of heritability, we provide evidence
that individual variability in the size and topographic organization of cortical networks are under
genetic control. Using twin and family data from the Human Connectome Project (n=1,023), we
find increased variability and reduced heritability in the size of heteromodal association
networks (h%: M=0.33, SD=0.071), relative to unimodal sensory/motor cortex (h% M=0.44,
SD=0.051). We then demonstrate that the spatial layout of cortical networks is influenced by
genetics, using our multi-dimensional estimation of heritability (h?>-multi; M=0.14, SD=0.015).
However, topographic heritability did not differ between heteromodal and unimodal networks.
Genetic factors had a regionally variable influence on brain organization, such that the
heritability of network topography was greatest in prefrontal, precuneus, and posterior parietal
cortex. Taken together, these data are consistent with relaxed genetic control of association
cortices relative to primary sensory/motor regions, and have implications for understanding
population-level variability in brain functioning, guiding both individualized prediction and the

interpretation of analyses that integrate genetics and neuroimaging.
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Significance

The widespread use of population-average cortical parcellations has provided important
insights into broad properties of human brain organization. However, the size, location, and
spatial arrangement of regions comprising functional brain networks can vary substantially
across individuals. Here, we demonstrate considerable heritability in both the size and spatial
organization of individual-specific network topography across cortex. Genetic factors had a
regionally variable influence on brain organization, such that heritability in network size, but not
topography, was greater in unimodal relative to heteromodal cortices. These data suggest
individual-specific network parcellations may provide an avenue to understand the genetic basis

of variation in human cognition and behavior.
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Introduction

The cerebral cortex is organized into a tightly interdigitated set of large-scale functional
networks. Seminal tract-tracing work in non-human primates first revealed the structural
properties underlying the distributed and parallel organization of cortical networks'. Subsequent
resting-state functional connectivity magnetic resonance imaging (fcMRI) analyses leveraged
correlation patterns of intrinsic fMRI signal fluctuations in humans? to establish a canonical
network architecture that is broadly shared across the population®®. Yet, many individual-
specific properties of brain network organization are lost when central tendencies are examined
across large groups. The use of population-average network topographies has accelerated
psychological and neuroscientific discovery, however there is growing recognition that the
human brain is characterized by striking functional variability across individuals®'*. As
individualized approaches become increasingly popular for the study of human behavior and

13.16-18 there is growing need to quantify the heritable bases of population-level

psychopathology
variability in functional network size and topography. Despite the fact that individual differences
result from the convergence of both genetic and environmental influences, the extent to which
the size and spatial patterning of cortical networks may reflect heritable features of brain
function has not yet been systematically investigated.

Population-based neuroimaging studies have revealed core principles that govern the
evolution', development®, and organization”® of large-scale brain networks. In particular, fcMRI
has been widely utilized to generate group-average network templates through the joint
analyses of data across vast numbers of individuals. The topography of these population-based
network solutions are closely coupled to cognitive function, and a strong correspondence has
been observed linking the spatial structure of intrinsic (fcMRI) and extrinsic (task-evoked)
networks of the human brain?'-%. Consistent with these observations, various connectivity

patterns track behavioral variability in the general population®-2

and symptom expression in
patients with psychiatric illness?’. Suggesting genetic factors may influence the functioning of
large-scale brain networks, patterns of intrinsic connectivity within population-average defined

2830 and act as a trait-like fingerprint that can accurately identify

network templates are heritable
specific people from a larger group®'*2. These data have provided the empirical scaffolding
necessary to examine how genetic, molecular, and cellular mechanisms shape human brain

33-35_ Critically however, the use of population-based network templates can obscure

function
individual-specific features of brain organization®, and there is growing evidence for substantial
inter-individual variability in the size, location, and topographic arrangement of regions

comprising spatially distributed functional networks across the cortical sheet.
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The presence of individual differences in connectome organization presents a challenge
for neuroscientists studying the functional architecture of the human brain. The identification of
genetic and developmental cascades that underpin population-level variability in brain function
is partly dependent on whether a group network atlas aligns to the particular functional
topography of an individual. As one example, reports of population-level variability in
connectivity strengths across participant groups may in fact emerge from the misalignment of
underlying functional networks, obscuring the distinction between individual differences in
network connectivity and topography®***’. Moreover, personalized network parcellations may be
preferable for predictive modeling, graph theoretic, and imaging genetic approaches where the
definition of an areal “unit” of cortex can influence downstream interpretations®. While the size

13,40 and

and shape of individualized networks are stable across time®, predictive of behavior
refined over the course of development*!, the molecular and genetic bases of this variability in
network size, location, and spatial arrangement remain to be established. Recent studies have
shown that individual differences in functional connectivity are heterogeneous across the cortex,
with greater variability in association cortex relative to unimodal regions'>'>3°42_ This distribution
may have practical implications for the heritability of network topographies in association
cortices, pointing to potential relationships linking the spatial distribution of inter-individual
variation in functional connectivity, brain evolution, and development. Quantifying the heritability
of individual-specific network topographies across the cortical sheet could provide new insights
into the biological underpinnings of individual differences in human brain functions.

Although prior twin studies establish the heritability of functional connectivity strength
within population-average network templates®®2°4344 the role of genetics in sculpting the spatial
topography of the functional connectome has yet to be quantified. To directly address this open
question, we couple a multi-session hierarchical Bayesian model (MS-HBM) for estimating
individual specific cortical networks'® with a novel non-linear multi-dimensional estimation of
heritability. This approach allows us to establish the extent to which genetic and environmental
factors influence individual differences in network size and topography across the cortical sheet.
In doing so we provide evidence that inter-individual variability in both the spatial extent and

topographic organization of cortical networks are under genetic control.
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Results

Inter-individual variability in network sizes is nonuniform across heteromodal and
unimodal cortices

We first characterized inter-individual variability in the size of functional networks across
the cortical sheet. Individual-specific network topographies for each HCP participant were
obtained from the method of Kong and colleagues', derived using a multi-session hierarchical
Bayesian model (MS-HBM). For every participant, each vertex on the cortical surface was
assigned to one of 17 canonical functional networks®, based on both intra-individual and inter-
individual patterns of cortical resting-state correlation (Figure 1a). Networks were broadly
divided into those encompassing unimodal sensory and motor regions (i.e. Visual A/B/C,
Somato/motor A/B, and Auditory), and those linked to heteromodal association cortex (i.e.
Default A/B/C, Control A/B/C, Ventral Attention A/B, Dorsal Attention A/B, and Language). HCP
cortical parcellations were identical to those of Kong and colleagues'®, who first detailed the
MS-HBM approach and demonstrated that individualized network topographies are predictive of
behavior. Parcellations were derived from surface-based rsfMRI data aligned to a surface-mesh
group template (fs_LR32k). For each participant, we masked out the midline and generated a
59,412 vertex array of network labels, where each vertex is assigned to one of 17 networks.

The spatial extent of each network within an individual was estimated as the summed
surface area of all network labeled vertices, derived using each individual's Freesurfer-
estimated vertex surface area. Differences in total cortical size across participants were
adjusted by dividing summed network area by total surface area (separately for each
hemisphere), resulting in a measure of relative network size across the HCP sample. Networks
displayed non-uniform patterns of variability across individuals, as displayed in Figure 1b.
Between-participants variability in network size was quantified using coefficient of variation (See
Methods), which corrects for baseline differences in average network surface area. Overall,
areal size was significantly more variable among heteromodal networks relative to unimodal
(F(1,32)=6.03, p=0.019), an effect that remained if we used standard deviation as a measure of
variability rather than coefficient of variation (F(1,32)=21.57, p=5.57e-05). These data are in line
with prior reports indicating that inter-individual variability in the strength of functional
connectivity is greatest in heteromodal cortex*?, corresponding to territories with highest

evolutionary cortical expansion and density of long-range functional connections*>4°.
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Figure 1. Individualized network size is more variable in heteromodal relative to unimodal
cortex. (a) Individualized parcellations are composed of 17 canonical functional networks
present in all HCP individuals, as defined by Kong and colleagues. (b) The relative size of
individualized networks was calculated for each participant, expressed as a fraction of total
cortical surface area. The ridge plot shows distributions of network size across all individuals,
separated by hemisphere (top ridge=right hemisphere, bottom ridge=left hemisphere). (c)
Variability of individualized network size across all participants, measured with coefficient of
variation, which corrects for differences in the total average size of each network. (d) Network
sizes are significantly more variable within heteromodal (M=21.5, SD=5.19) relative to unimodal
cortices (M=17.5, SD=3.06; F(1,32)=6.03, p=0.019). Hetero, heteromodal cortex; Uni, unimodal
cortex; RH, right hemisphere; LH, left hemisphere.
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Reduced heritability of network size in heteromodal relative to unimodal cortex
Inter-individual variability in network connectivity strengths are, in part, attributable to
genetic variation across the population®. However, the majority of the literature on the genetic
bases of network architecture relies on population-level motifs derived by averaging data across
large groups of spatially normalized individuals?*3°**. To advance our understanding of the
biological bases of network organization, it is important to move from group-level parcellations
to a level of granularity that is only accessible when studying network organization within the
individual. Given that both the size and shape of individualized functional networks are tied to

behavior'® 173941

, it is critical to determine heritable sources of variation that govern the amount
of cortex occupied by a given functional network.

Analyses revealed that the sizes of individualized networks were significantly heritable
across all canonical large-scale functional networks (Figure 2a). Heritabilities (h?) were
calculated using individualized network size (adjusted for total surface area) and ranged
between 0.22-0.57 (M=0.37, SD=0.08). Heritability of normalized surface area for each network
was estimated using SOLAR*, and covaried for age, age?, age * sex, age”* sex, ethnicity,
height, BMI, and Freesurfer-derived intracranial volume. Suggesting broad consistency in the
influence of genetic factors on the size of cortical networks across hemispheres, a significant
positive correlation between left- and right-hemisphere heritability estimates was evident across
the 17 networks (Figure 2b; Pearson’s r(15)=0.74, p=7.4e-4; Spearman’s rs=0.71, p=0.002).
Notably, heritability was significantly greater within unimodal networks (h? M=0.44, SD=0.05)
than networks within heteromodal (h?: M=0.33, SD=0.07) association cortices (Figure 2c;
F(1,32)=6.03, p=5.52e-05). These data demonstrate the substantial influence of genetic factors
on the spatial extent of cortical networks across individuals. The results are consistent with the
hypothesis that late developing aspects of heteromodal association cortex are under relaxed
genetic control relative to unimodal cortex*®. It is important to emphasize, however, that
heritability refers to genetic variance accounting for inter-individual differences in a given
environmental context, not the degree to which an overall trait is evolutionary constrained or

genetically encoded.
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Figure 2. Heritability of individualized network size is greater in unimodal relative to
heteromodal networks. (a) Heritability of individual network size (normalized for total surface
area) was estimated across 17 canonical functional networks using SOLAR*, separately for
each hemisphere. Error bars reflect 95% C.I. (b) The amount of variance explained by genetics
(h?) for each network was consistent across hemispheres, as revealed by a correlation of left-
and right hemisphere h? values (r=0.74, p=7.5e-4). Each dot in the correlation plot is a
functional network. (c) Heritability of normalized individual network size was higher among
unimodal/sensory networks relative to heteromodal association networks (p=5.52e-05). Each
dot represents one of 17 cortical networks, split by hemisphere (n=34). See Fig. 1 legend for

explanation of abbreviations.

10


https://doi.org/10.1101/2020.07.30.229427
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.30.229427; this version posted July 30, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Heritability of individualized network topography across cortex

The connectivity strength and organizational properties of functional networks vary
across individuals®'*2. Individualized parcellation approaches have established similar patterns
of inter-individual variation in terms of cortical network topography, operationalized here as the
spatial configuration of a given network on the cortical sheet'"'*. A number of factors may play a
role in differentiating functional topography across individuals, including mechanical tension of
neuronal projections*®, cellular and molecular properties of cortex®, variations in early cortical
arealization by embryonic molecular patterning centers®', and the fundamental role sensory
input plays in shaping functional organization across the cortical sheet®?. However, the extent
that variability in the spatial organization of cortical networks may be genetically driven within
the general population remains unknown.

Here, we establish that genetic factors influence individualized network topographies
using a novel multi-dimensional estimator of heritability. In traditional heritability analyses, the
variability of a continuous (e.g. height) or categorical (e.g. diagnosis) phenotype is decomposed
into the relative effects of additive genetics (A), shared environment (C), and unique
environment (E; ACE model®®). Network topography, however, is inherently multi-dimensional,
since any given cortical vertex is categorically assigned to one of a set of functional networks.
To account for this property of network organization we developed a novel approach to estimate
heritability from a linear or nonlinear phenotypic similarity matrix defined across individuals.
Inter-individual covariance of network shape was measured using Dice coefficient, which
quantifies the amount of spatial overlap for any given network and participant pair (See Figure
3d for example). That is, higher Dice coefficients correspond to more similar network
configurations. The observed Dice coefficients were variable across individuals, as well as non-
uniformly distributed across networks (Figure 3a). The unimodal networks were overall more
similar across individuals (Dice: M=0.77, SD=0.05) relative to heteromodal association networks
(Dice: M=0.55, SD=0.06; F(1,32)=112.4, p=5.35e-12). The increased topographic variability of
association networks is consistent with prior reports of greater inter-individual variation in
accompanying patterns of long-range connectivity*2.

Analysis of multi-dimensional heritability, denoted “h?>-multi”, demonstrated that inter-
individual differences in network topography were significantly influenced by inherited genetics
(Figure 3b; h*-multi: min=0.12, max=0.19, M=0.14, SD=0.015), after accounting for multiple
testing correction (Bonferroni False-Discovery Rate correction, q's<0.05). Figure 3c displays the
distribution of Dice coefficients reflecting inter-individual similarity of network topography defined

across all 17 cortical networks (i.e. “Overall” in Figure 3b). Dice similarity was greater for
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monozygotic twins (LH: M=0.70, SD=0.026; RH: M=0.69, SD=0.024), relative to dizygotic twins
(LH: M=0.66, SD=0.028; RH: M=0.65, SD=0.028), siblings (LH: M=0.66, SD=0.026; RH:
M=0.65, SD=0.028), and unrelated individuals (LH: M=0.64, SD=0.027; RH: M=0.063,
SD=0.026), corresponding to a h>-multi of 0.142 and 0.146 for left and right hemispheres,
respectively. The degree of topographic heritability for each network was consistent across
hemispheres (Spearman’s rho=0.69, p=0.0036). Contrary to estimates of individualized network
size, the heritability of network topographies did not differ between unimodal and heteromodal
cortices (F(1,32)=0.21, p=0.65). Overall, these data advance a novel heritability estimation
technique to demonstrate that the spatial organization of functional networks is influenced by
genetic factors.

We next quantified local genetic control of network architecture across the cortical sheet.
Our findings detailed above show that the heritability of network topography is broadly uniform
across cortex when averaging within individual networks (Figure 3). Prior work, however,

54-%6 Here, we

indicates significant spatial heterogeneity of heritable aspects of cortical anatomy
demonstrate that genetic influences on local network topography are also spatially variable
across cortex, with the greatest heritability observed within the precuneus as well as dorsal
aspects of parietal, prefrontal, and posterior parietal cortices (Figure 4a). Multi-dimensional
heritability estimates were calculated in the same manner as above, whereby a Dice coefficient
matrix represented the participant to participant similarity of network topography. In this analysis
however, we only consider individualized network labels falling within a given region of interest
(ROI; radius=10 vertices) at each point on the cortical sheet. Figure 4b illustrates example
participant pairs with high and low Dice coefficients for an ROI in the precuneus. Critically, some
participant pairs possess almost entirely non-overlapping network assignments within a given
patch of cortex (Figure 4b), highlighting the need for individualized parcellations to study of
neurobiological variability across the population. Of note, we did not observe a clear dissociation
between unimodal and heteromodal cortices in terms of local network heritability. That is,
heritability estimates did not differ between regions canonically associated with sensorimotor
networks (M=0.149, SD=0.038) relative to association networks (M=0.146, SD=0.037;
F(1,32)=2.10, p=0.16). Together, these results indicate the heritable basis of network
organization is variable across cortex and support further research into the biological

determinants of network topography.
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Figure 3. Individualized network topography is heritable across all networks. (a) The
ridge plot displays distributions of inter-individual Dice coefficients across each network. Higher
Dice coefficients reflect higher spatial overlap of a network for a given pair of individuals.
Topography of unimodal networks were overall more similar across individuals, relative to
heteromodal cortex. (b) Significant heritability was observed across all examined 17 cortical
networks (q<0.01; range=0.12-0.19, mean=0.14), which was symmetric across hemispheres
(r=0.84, p=2.8e-5; rs=0.76, p=0.0006). (c) Boxplots show higher Dice similarity of overall
network organization between MZ pairs, relative to DZ, sibling, and unrelated participant
pairings. (d) Individual examples illustrate HCP participants with a high and low dice overlap for
Default B (high=0.78; low=0.29) and Visual C (high=0.93; low=0.59) networks. MZ,
monozygotic; DZ, dizygotic; SIB, sibling; UNR, unrelated.
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Figure 4. Local Heritability of Individualized Network Topography. (a) Multi-dimensional
heritability of network topography estimated for every vertex, using an ROI at each point on the
cortical sheet (radius=10 vertices). Individualized network labels in each ROl were evaluated to
compute a participant-to-participant Dice similarity matrix, reflecting the similarity of network
assignments within a given cortical area. Warmer colors indicate higher heritability of network
assignments, for instance reflecting greater similarity among twins and siblings than unrelated
individuals. (b) Example participant pairs with high and low Dice overlap of network labels for an
ROl in the precuneus. Dice similarity was higher between MZ twins, relative to DZ, sibling, and
unrelated participant pairs. MZ, monozygotic; DZ, dizygotic; SIB, sibling; UNR, unrelated; LH,
left hemisphere; RH, right hemisphere.
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Discussion

The use of population-average network templates has provided foundational insights into
the macroscopic functional organization of the human brain. However, individual specific
features of brain network architecture are obscured when collapsing data across large groups of
participants. Methodological advances make it possible to measure individualized features of
functional networks in-vivo, promising to yield biological insight into the genetic, molecular, and
cellular bases of cortical brain organization. Here, leveraging a novel form of multi-dimensional
heritability analysis, we demonstrate that a substantial portion of the population-level variability
in the size and spatial arrangement of cortical networks is under the influence of genetic factors.
In Human Connectome Project data (n=1,023), the relative size (i.e. cortical surface area) of
individualized networks showed considerable inter-individual variation, which was most
pronounced in higher-order heteromodal relative to unimodal sensorimotor networks (Figure 1).
We demonstrated that individualized network size was heritable for all 17 examined cortical
networks, but was most pronounced within unimodal, relative to heteromodal cortices (Figure 2).
Next, we established the heritability of individualized network spatial organization, or
topography, for all cortical functional networks (Figure 3). Although topographic heritability was
broadly consistent between cortical networks, we observed substantial spatial heterogeneity in
the influence of genetic factors across the cortical sheet (Figure 4). Together, this work
advances a novel analytic framework for measuring heritability of multi-dimensional traits to
establish the extent that individual-specific features of functional network organization are
influenced by inherited genetics.

The estimation of the heritability of multi-dimensional traits, such as the brain’s functional
network architecture, is challenging given that traditional approaches are designed for
continuous (e.g. height) or binary (e.g. diagnosis) phenotypes (but see®’). In the present study,
we described a novel method for estimating heritability from any matrix of participant-wise
similarity metrics. Dice coefficients were used to quantify between-participants similarity of
network topography, but this approach is generalizable to other commonly studied
neuroscientific phenotypes, such as patterns of anatomical similarity®® or morphometricity®®. We
have made the associated heritability code freely available to the community
(www.github.com/kevmanderson/h2_multi), along with analytic pipelines for all analyses. This
work provides the basis for further elaboration of multi-dimensional heritability techniques, such
as genetic correlation, that could reveal patterns of shared genetic variance with psychological
phenotypes'*'. Individualized network parcellations also hold promise for understanding

psychiatric disorders'®, which are often heritable®. Identifying shared genetic substrates
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between individualized features of network organization and psychiatric illness will be important
as individualized approaches become increasingly adopted in clinical neuroscientific research.
Here, we demonstrated that a significant proportion of the variance in network size and
topography is explained by genetics, which could emerge through many possible biological
pathways. For instance, the individual differences in cortical arealization that influence network
organization may be determined early in neurodevelopment. That is, the cellular fate and areal
identity of early cortical progenitor cells are specified in embryonic periods by spatial gradients

of molecular transcription factors®'¢2

, Which may vary across individuals. The ability of genetic
variation to shape these early developmental processes is supported by a recent Genome Wide
Association Study (GWAS) documenting that common genetic polymorphisms linked to cortical
surface area were enriched among regulatory elements of neural progenitor cells®®. The
topography of cortical functional networks may also be influenced by cortical neuroanatomy,
such as cortical morphology and patterns of structural connectivity. In this context,
biomechanical processes such as axonal tension, intracranial pressure, and the differential

growth of cortical layers are thought to influence cortical folding*®%

, Which may in turn constrain
the topography of functional networks. Further, the size and shape of functional network
boundaries may be sculpted by thalamo-cortical connections that refine patterns of cortical
arealization across development®?. Experimentally modulating thalamic afferents can
substantially impact cortical morphology and size in a pathway specific manner . Critically
however, heritability analyses cannot disentangle the specific biological processes that influence
cortical network size or topography. Rather, our data support the importance of future work
utilizing statistical genetic approaches to identify the biological cascades that influence
functional network topography across the cortical sheet®.

The emergence of analytic frameworks for capturing individualized network architectures
is both a technical and theoretical advance, providing the opportunity to link cognition and
behavior to population-level variability in brain organization. Landmark research has shown that
individuals can be identified by patterns of whole-brain functional connectivity, conceptualized
as a functional “fingerprint’*3'. The analogy to a fingerprint is apt. For instance, broad classes
of fingerprint types exhibit a high degree of heritability, despite ridge patterns of any fingerprint
being entirely unique®’. Likewise, the brain is organized into a core functional network
architecture, that nevertheless exhibits distinctive features in a trait-like manner at the level of

the individual®®

. Here, we demonstrate that the distinguishing topographic features of the brain,
including variability in network organization and size, are influenced by inherited genetic factors

(Figure 3). Such data provide a potential “upper-bound” on the explainable variance due to
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additive genetic variation, and highlight the utility of future research probing the genetic
mechanisms underlying inter-individual differences in functional network organization across the
lifespan.

Consistent with prior work examining population average network templates, the current
study provides support for the genetic bases of core features of brain function?®-304468-70 The
degree of heritability for functional network size is in line with prior estimates demonstrating that
~40-60% of the variance in within-network connectivity is explained by genetics?®%. Of note, we
emphasize that our data reflect a snapshot of heritability estimates for a given sample in early
adulthood, and that the influence of genetic factors may vary across developmental periods’".
Perhaps counterintuitively, phenotypic heritability generally increases from childhood through
adulthood, possibly reflecting genotype-environment interactions as individuals engage in
behaviors that reinforce genetically influenced traits’?. Although, there is evidence that the
reverse is true in late adulthood, such that heritability decrease with age”. Future work should
also examine whether environmental factors such as early life stress or adversity may also
impact cortical network topography and connectivity’*. Experience is also critical for the
emergence of functional selectivity in some brain regions, such as the face-responsive
inferotemporal cortex, which may in turn influence patterns of network connectivity and
affiliation”®. Given recent evidence of the developmentally dynamic nature of functional network
organization®', it will be important to utilize imaging-genetic data, such as the Adolescent Brain
Cognitive Development study’®, to quantify the age-dependent influence of genetic factors on
cortical network formation.

Higher-order association networks are consistently more variable than unimodal
sensorimotor networks, in terms of both relative network size (Figure 1c) and topographic
network similarity (Figure 3). These observations are consistent with evidence that heteromodal
cortex has greater inter-individual variance in functional connectivity*2. The increased variability
of heteromodal network size coincided with lower estimates of heritability, relative to the
individualized size of unimodal networks (Figure 2c). These data are in line with theories
positing that late-developing aspects of cortex are more sensitive to environmental influences
and extrinsic sources of network sculpting®. That is, higher-order networks are the most distal
(or “untethered”) from both early embryonic signaling gradients and thalamus-mediated sensory
inputs*®. However, we did not observe heteromodal versus unimodal differences in heritability
for measures of network topography (Figure 3-4), as we did for individualized network size.

The present study should be interpreted in light of several limitations. First, our analyses

assume that participants have been brought into a common anatomical space, but we cannot
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rule out the role of inter-individual differences in alignment accuracy. Here, we used
sophisticated surface-based alignment techniques from the HCP that rely on multi-modal areal
features of cortex rather than cortical folding patterns and anatomical landmarks’’. However,
inter-individual alignment is still subject to error. We also emphasize that heritability estimates of
network topography are dependent upon the accuracy and assumptions of the parcellation
approach. We also note that our novel heritability estimation calculated from a linear or
nonlinear phenotypic similarity matrix is equivalent to the heritability of the intrinsic
multidimensional trait that generates the participant-wise phenotypic similarity (Ge et al. 2016;
see Methods), and is thus different from traditional heritability analysis of a scalar phenotype
(e.g., height) unless the similarity matrix is spanned by a one-dimensional vector.

In conclusion, this paper advances a novel multi-dimensional heritability technique to
establish the heritability of individualized cortical functional networks, in terms of both network
size and topography. We found that the size of heteromodal cortical networks was more
variable and less heritable relative to unimodal networks, in line with the protracted
developmental maturation of higher-order cortex that may allow for increased influence of the
environment. Individualized network topography was similarly more variable among
heteromodal networks, but heritability was approximately equivalent for all cortical functional
networks. However, heritability analysis of local network architecture revealed a non-uniform
influence of genetic factors on network organization across cortex. Together, these data
establish that the size and topography of cortical functional networks are influenced by genetic
factors, providing a foundation for future work disentangling the biological mechanisms that

govern individual variances in brain organization.
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Methods

Human Connectome Project

The Human Connectome Project (HCP) is a large community-based sample of twins and
nuclear family members, assessed on a comprehensive set of neuroimaging and behavioral
batteries. HCP analyses initially comprised 1,029 participants that were successfully processed
through the individualized network parcellation approach of Kong and colleagues (Kong et al.,
2019), known as the multi-session hierarchical Bayesian model (MS-HBM). HCP twin zygosity
was determined by genotyped data when possible (n=410), otherwise self-report was used to
identify pairs of monozygotic (MZ) and dizygotic (DZ) twins (n=76). If imaging data was not
available for one twin in a pair, the usable participant was designated a “singleton” for later
heritability analyses. The final sample consisted of n=1,023 individuals (nuz=274; npz=160,

Nnot_twin=482, Nsingieton=107). See Table 1 below for basic demographics across groups.

Mz DZ Non-Twin Singleton F p
N 274 160 482 107
29.0 29.4 28.2 28.3 .
Ade | (gp=3.36) (SD=3.61) (SD=3.86) (SD=3.71) | Fatore=4.62) 0.003
Sex| F=59.9% F=61.2% F=49.6% F=48.6% | Fat010=4.10 | 0.006

Table 1: Demographics of HCP participant groups. Heritability estimates were conducted on
1,023 HCP participants, composed of 137 MZ twins (n=274), 80 DZ twins (n=160), non-twin
siblings (n=482), and unrelated singletons (n=107). Although groups were nominally well-
matched demographically, ANOVAs revealed significant differences of age and sex. All

heritability analyses included age and sex as covariates.

Measuring individualized network organization and size

Individualized network parcellations were derived from HCP resting-state functional
magnetic resonance imaging (rs-fMRI) surface data, aligned to the fs_LR32k group space using
the MSMAII areal-feature-based registration’®. Methodological details of the Multi-session
Hierarchical Bayesian Model (MS-HBM) approach that produced the individualized parcellations
have been previously published’®, however we present key details here. Multiband rs-fMRI data

collected on Siemens 3T Skyra scanners from the HCP S1200 release were analyzed. A key
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feature of the MS-HBM approach is that it incorporates both intra-individual and inter-individual
patterns of variability to define individualized network boundaries. HCP data is particularly suited
for this method since rs-fMRI runs were collected across two separate sessions across 2 days,
allowing for well-powered estimates of inter- and intra-individual variance. Individual resting
state runs were 15 minutes in length and were acquired at an isotropic resolution of 2mm and
TR of 0.72s98°. Surface-based preprocessing of rs-fMRI data began with minimally
preprocessed HCP MSMAII ICA-FIX data on a group surface template (fs_LR32k®"). Additional
preprocessing included nuisance regression, temporal censoring, and spatial smoothing.

A held-out training set of 40 HCP participants were used to derive the necessary group-
level parcellation (Figure 1a) and model parameters, such as inter-individual variability, for the
MS-HSM method. For each participant, each of the 59,412 bi-hemispheric vertices on the
cortical sheet was assigned to one of the 17 canonical functional networks®. The size of each
cortical network within an individual was estimated as the summed surface area of all network
vertices, obtained from midthickness fs_LR32k projected Freesurfer surface area data. Network
size was calculated separately for each hemisphere, then divided by total hemispheric area to
quantify proportional size of a network on the cortical sheet. All cortical surface figures were

created using the HCP workbench?®?.

Heritability of Individualized Network Size

The heritability of individualized network size was estimated using SOLAR #', covarying
for age, sex, age?, age*sex, age®*sex, ethnicity, height, BMI, and Freesurfer-derived intracranial
volume. Bonferroni correction of significance thresholds was used to account for 34
independent tests of heritability. Cross-hemisphere consistency (Figure 2b) was tested by

correlating left- and right-hemisphere heritability estimates across all 17 cortical networks.

Dice Similarity of Network Topography
Participant to participant similarity of individualized network topography was measured

using the Dice Serensen formula, where the coefficient for a given network reflects:

21X, nY;]

Dice Similarity = m
i i
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where X; and Y; are the network labels for network i for participants X and Y, n represents the
intersection between participant network labels, and |-| represents the total number of vertices in

each set (i.e. cardinality).

Multi-dimensional heritability analysis

Consider an M-dimensional trait Y = [y4, ..., Y] = [Vimlnxm, @nd a multivariate variance
component model: Y = G + E, where G and E are N X M matrices representing the additive
genetic effects and unique environmental factors, respectively. Assume vec(G)~N(0,X; Q@ K),
vec(E)~N(0,X; ® I), where vec(-) is the matrix vectorization operator that converts a matrix into
a vector by stacking its columns,  is the Kronecker product of matrices, X is the genetic
covariance matrix, and X is the environmental covariance matrix. The genetic and

environmental covariance matrices can be estimated using a moment-matching method: E; =

~YT(K — DY, Z; = — Y (xl — TK)Y, where 7 = tr(K)/N, k = tr(K?)/N, v = N(xc — 12) (Ge et
k k
tr(Ze)

0 e 0 0 0 0 0 o A2 —
al. 2016). The SNP heritability of a multidimensional trait Y is defined by h* = wE0) + uGa)

(Ge et

al. 2016). Note that tr(Z;) = —tr[(K — tDYYT] = —tr[(K — T1)E;], where £, = YYT/N is the
” .

1

K—T2

estimated phenotypic covariance matrix. Similarly, tr(Zz) = tr[(xI — TK)Z;|. For any non-

negative definite phenotypic similarity matrix A, derived from a nonlinear measure, we define
heritability by replacing £, with A,. This is known as the kernel trick in machine learning. We
note that for any N X N non-negative definite matrix X, there exists a N x P matrix V (often P «
N) such that £ ~ VV. Therefore, £ can be considered as a linear covariance matrix generated
by a multidimensional trait.

To model covariates, consider a multivariate mixed effects model: Y = XB + G + E,
where X is an N x g matrix of covariates, and B is a g x M matrix of fixed effects. There exists
an N x (N — q) matrix U satisfyingU'U = I, UUT =P, =1-X(X"X)"'X,and UTX = 0.
Applying UTto both sides of the model gives UTY = UTG + UTE, where
vec(UTG)~N(0,2;,Q(UTKU)), vec(UTE)~N(0,Z;Q I). Therefore, we can replace Y with UTY, K

with UTKU, and N with N — g in the SNP heritability estimator derived above to obtain an
1

K—T2

estimator that accounts for covariates. More specifically, tr(Z;) = tr[(K — tI)PoZpPy],

1

K—T2

tr(Zg) = tr[(kI — TK)PoZpPy], T = tr(KPy)/(N — q), and k = tr(KPoKP,)/(N — q). For

nonlinear phenotypic similarity matrix Ap, we replace Ep with Ap.
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Significance was measured using participant-based permutations, where the kinship
matrix was randomly shuffled 1,000 times. Standard errors were calculated using a block
jackknife procedure with a leave one family out strategy. That is, for a given iteration of the
jackknife, all participants within a nuclear family unit were excluded and heritability was re-
calculated. Variability was then calculated from the resulting distribution of subsampled

heritability estimates.

Code and Data Availability

All custom code written to perform analyses are publicly available on github
(https://github.com/kevmanderson/heritable_network_topography). We have also provided an
open-access generalized implementation of our multi-dimensional heritability estimator
(https://github.com/kevmanderson/h2_multi). Code to produce individualized MS-HBM
parcellations is publicly available (https://github.com/ThomasYeolLab/CBIG). Human

Connectome Project Data is available for download (https://db.humanconnectome.org).

Acknowledgements

This work was supported by the National Institutes of Health (Grant RO1TMH120080 to
A.J.H.; K99/RO0AG054573 to T.G.; RO1LM012719 and RO1AG053949 to M.R.S.), the National
Science Foundation (DGE-1122492 to K.M.A.; CAREER 1748377 and NeuroNex 1707312 to
M.R.S.). B.T.T.Y. and R.K. are supported by the Singapore National Research Foundation
(NRF) Fellowship (Class of 2017). Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not reflect the views of National
Research Foundation, Singapore. Analyses were made possible by the high-performance
computing facilities provided through the Yale Center for Research Computing. Data were
provided [in part] by the Human Connectome Project, WU-Minn Consortium (Principal
Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH
Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the

McDonnell Center for Systems Neuroscience at Washington University.

22


https://doi.org/10.1101/2020.07.30.229427
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.30.229427; this version posted July 30, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Supplementary Material
Title: Heritability of individualized cortical network topography

Authors: Kevin M. Anderson®, Tian Ge**'!, Ru Kong*®, Lauren M. Patrick’, R. Nathan

Spreng®, Mert R. Sabuncu®’, B.T. Thomas Yeo*"%° Avram J. Holmes™ %"

'Department of Psychology, Yale University, New Haven, CT, USA

2Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine,
Massachusetts General Hospital, Boston, MA, USA

3Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge,
MA, USA

“Department of Electrical and Computer Engineering, Centre for Sleep and Cognition & Centre
for Translational Magnetic Resonance Research, National University of Singapore, Singapore
*Montreal Neurological Institute, Department of Neurology and Neurosurgery

McGill University, Montreal, Canada & McConnell Brain Imaging Centre, McGill University,
Montreal, Canada

®School of Electrical and Computer Engineering, and Meinig School of Biomedical Engineering,
Cornell University, Ithaca, NY, USA

"Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA,
USA

8N.1 Institute for Health & Institute for Digital Medicine (WisDM), National University of
Singapore, Singapore

®NUS Graduate School for Integrative Sciences and Engineering, National University of
Singapore, Singapore

°Department of Psychiatry, Yale University, New Haven, Connecticut 06520, USA
""Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School,
Boston, MA 02114, USA

23


https://doi.org/10.1101/2020.07.30.229427
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.30.229427; this version posted July 30, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Default B TempParietal

Default C

Network Label Density
0.001% I "W 100%

*grey = no subjects have this
network assignment for this vertex

Supplementary Figure 1. Density of individualized network topography across the
cortical sheet. At each vertex, we plot the proportion of individuals that are assigned to a given
network (n=1,023). Warm red indicates that a vertex is assigned to a given network in a large
percentage of participants. Darker purple/black identifies cortical territories with more variable
network assignment across participants. Black borders outline territories where a given network
is most common (i.e. highest modal network assignment at a given vertex).
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