

1 Linking minimal and detailed models 2 of CA1 microcircuits reveals how 3 theta rhythms emerge and how their 4 frequencies are controlled

5 **Alexandra P Chatzikalymniou^{1,2}, Melisa Gumus¹, Anton R Lunyov¹, Scott Rich¹,**
6 **Jeremie Lefebvre¹, Frances K Skinner^{1,3*}**

*For correspondence:

frances.skinner@gmail.com (FKS)

7 ¹Krembil Research Institute, University Health Network; ²Department of Physiology,
8 University of Toronto; ³Departments of Medicine (Neurology) and Physiology, University
9 of Toronto

11 **Abstract**

12 The wide variety of cell types and their inherent biophysical complexities pose a challenge to our
13 understanding of oscillatory activities produced by cellular-based computational models. This
14 challenge stems from the high-dimensional and multi-parametric nature of these systems. To
15 overcome this issue, we implement systematic comparisons of minimal and detailed models of CA1
16 microcircuits that generate intra-hippocampal theta rhythms (3-12 Hz). We leverage insights from
17 minimal models to guide detailed model explorations and obtain a cellular perspective of theta
18 generation. Our findings distinguish the pyramidal cells as the theta rhythm initiators and reveal
19 that their activity is regularized by the inhibitory cell populations, supporting an 'inhibition-based
20 tuning' mechanism. We find a strong correlation between the pyramidal cell input current and the
21 resulting LFP theta frequency, establishing that the intrinsic pyramidal cell properties underpin
22 network frequency characteristics. This work provides a cellular-based foundation from which *in*
23 *vivo* theta activities can be explored.

24

25 **Introduction**

26 Hippocampal theta rhythms (\approx 3-12 Hz) as observed in local field potential (LFP) recordings are
27 associated with cognitive processes of memory formation and spatial navigation (*Colgin, 2013, 2016; Hinman et al., 2018*). However, exactly how theta rhythms emerge is a complicated and multi-
28 layered problem. The medial septum (MS) is believed to act as a pacemaker since theta rhythms
29 in the hippocampus are severely attenuated when the MS is lesioned (*Winson, 1978*). Moreover,
30 the various cell types in the MS and in the hippocampus are interconnected in cell-specific ways
31 (*Chamberland et al., 2010; Huh et al., 2010*). This underlines the importance of considering how
32 cellular specifics contribute to theta rhythm circuit dynamics and ultimately function, especially
33 since sophisticated experimental techniques continue to uncover the diversity and distinctness of
34 neurons (*Harris et al., 2018; Hodge et al., 2019; Kepcs and Fishell, 2014; Sugino et al., 2019*).

35 It is now well-documented that theta rhythms can be generated intra-hippocampally, emerging
36 spontaneously from an isolated whole hippocampus preparation *in vitro* (*Goutagny et al., 2009*).
37 Two computational modelling studies have captured these intrinsic theta rhythms. The first study
38 by *Ferguson et al. (2017)* used minimal network models of biophysically simplified neurons, while

40 the second study by **Bezaire et al. (2016b)** used biophysically detailed network models. These
41 models can help us understand how these rhythms are generated while taking into consideration
42 each model's advantages and challenges.

43 The minimal model of **Ferguson et al. (2017)** represents a 'piece' of the CA1 region of the
44 hippocampus, and it was developed and constrained against data from the whole hippocampus
45 preparation (**Ferguson et al., 2013, 2015b**). We used this model to examine what 'building block'
46 features could underlie theta rhythms (**Ferguson et al., 2015a, 2017**). It was found that spike
47 frequency adaptation (SFA) and post-inhibitory rebound (PIR) building block features of excitatory,
48 pyramidal (PYR) cells in large minimally connected recurrent networks with fast-firing, parvalbumin-
49 expressing (PV+) inhibitory cells could produce theta frequency population rhythms. Specifically,
50 for the model to be consistent with experimental observations of excitatory postsynaptic current
51 (EPSC) and inhibitory postsynaptic current (IPSC) amplitude ratios, the connection probability from
52 PV+ to PYR cells is required to be larger than from PYR to PV+ cells. The minimal model design,
53 strategy and setup suggests that the theta oscillation generation mechanism could be due to SFA
54 and PIR building block features. However, the challenge is to determine how these insights could
55 apply in the biological, hippocampal system with its larger complement of diverse inhibitory cell
56 types and additional biological details.

57 The detailed model of **Bezaire et al. (2016b)** is a full-scale biological model of the CA1 hip-
58 pocampus with 338,740 cells that includes PYR cells, PV+ basket cells (BCs), axo-axonic cells (AACs),
59 bistratified cells (BiCs), cholecystokinin-expressing (CCK+) BCs, Schaeffer Collateral-associated (SCA)
60 cells, oriens-lacunosum-moleculare (OLM) cells, neurogliaform (NGF) cells, and ivy cells. The model
61 provides a realistic representation of the hippocampus which is grounded upon a previously com-
62 piled, extensive quantitative analysis (**Bezaire and Soltesz, 2013**). It describes the activities of the
63 PYR cells and the eight inhibitory cell types during theta rhythms. In broad terms, this model distin-
64 guishes the importance of certain cell types against others, and predicts that cell type variability is
65 necessary for theta rhythms to occur. However, the very complexity of the detailed model poses a
66 challenge in the deciphering of the exact mechanism of the theta rhythm it produces.

67 The goal of the present paper is to combine the advantages of minimal and detailed models to
68 obtain a cellular-based understanding of theta rhythm generation in the biological system. The
69 strategy we employ is schematized in **Figure 1**, and the pipeline flow of the paper can be illustrated
70 by three main steps. We first extend the minimal model, **step 1**, to test the robustness of the theta
71 rhythms in the face of PYR cell heterogeneity. This allows us to propose an 'inhibition-based tuning'
72 mechanism that underlies theta rhythm generation and frequency control. We next compare
73 minimal and detailed models, **step 2**, to identify commonalities and differences in their structure.
74 Finally, in **step 3**, we extract a 'piece' of the detailed model to create the segment model which
75 is comparable in cell numbers to the minimal model, and we investigate the effect of the noted
76 differences on theta. Following a principled exploration of the segment model, we decipher how its
77 theta rhythm is produced. We reveal a strong correlation between the PYR cell net input current and
78 the frequency of the resulting theta rhythm and show that the initial spark of the theta LFP rhythm is
79 due to the PYR cell networks. The inhibitory cell populations on the other hand 'regularize' the theta
80 rhythms and increase their power. Not surprisingly, we find degeneracy in our segment models but
81 comparisons with additional experimental observations support some model parameter sets and
82 not others.

83 Overall, we have combined minimal and detailed models to establish a cellular basis for how the
84 theta rhythms could be robustly generated and how their frequency is controlled in the biological
85 system. By extension we have identified common principles of the theta generation mechanism
86 between the two models and we discuss their differences. Moving forward, this work provides
87 a solid biological 'seed' from which to examine the multi-layered aspects of theta rhythms in the
88 hippocampus.

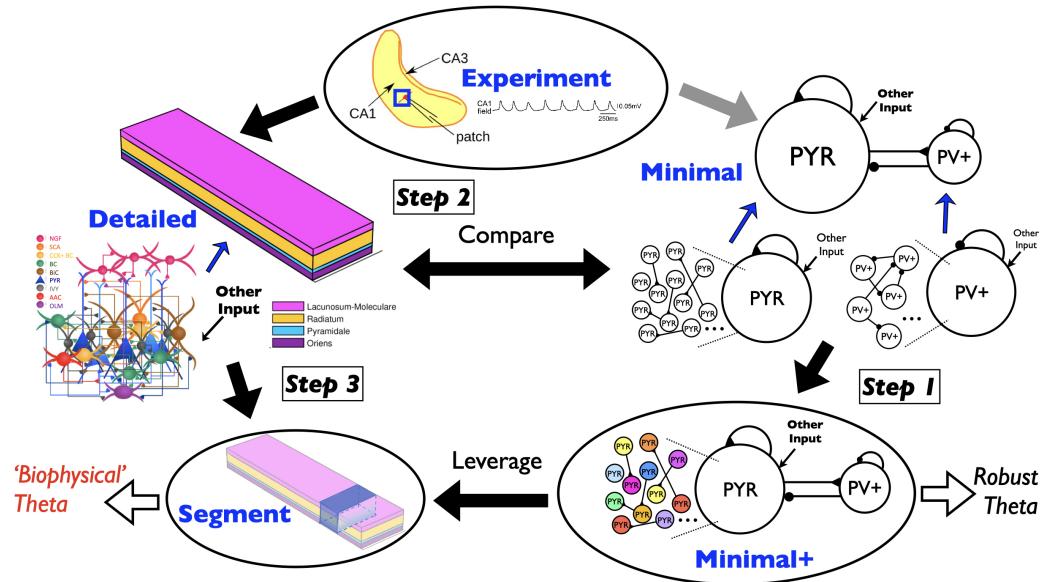


Figure 1. Schematic illustrating overall paper flow and strategy.

The experimental context and four model types are referred to in the paper: *Experiment* - a whole hippocampus preparation that exhibits spontaneous theta rhythms ([Goutagny et al., 2009](#)); *Minimal* - a previously published work of minimal network models representing a 'piece' of the whole hippocampus (blue square in *experiment* illustration) that generates theta rhythms within experimental constraints ([Ferguson et al., 2017](#)); *Minimal+* - an expansion of the minimal model using heterogeneous PYR cells (as illustrated with differently coloured PYR cells) that is used in the present paper; *Detailed* - a previously published work of a full-scale detailed CA1 microcircuit model (eight different inhibitory cell types and PYR cells) that generates theta rhythms without any oscillatory input ([Bezaire et al., 2016b](#)); and *Segment* - a network model representing a 'piece' of the detailed model, that is used in the present paper. The three main steps in the flow of the paper are shown (**Steps 1-3**), and the foci of the work in the present paper are illustrated by the black arrows: The detailed model is examined in light of the experimental data; a systematic comparison between minimal and detailed models is done; the segment model is created from the detailed model; the minimal+ model is constructed based on the minimal model, and mechanistic insights resulting from the minimal+ model are leveraged in the segment model. The black open arrows illustrate that 'Robust Theta' in the minimal+ model is examined leading to hypothesis development, and leveraging this in the segment model helps with an understanding of 'Biophysical Theta' where multiple cell types can be considered. The grey arrow illustrates previously done work where the minimal model was developed and examined in light of the experimental data ([Ferguson et al., 2017](#)). Illustrations include: *Minimal* model setup with PYR and fast-firing PV+ cells, *Detailed* model setup with 9 cell types (NGF, SCA, CCK+ BC, BC, BiC, PYR, IVY, AAC, OLM) and layer-specific connectivity, *Experiment* of whole hippocampus preparation with a LFP theta example, heterogeneous PYR cells as different colors in *Minimal+* model, and a shaded portion of the *Detailed* model prism to illustrate the *Segment* model. Acronyms are defined in the main text. This figure is adapted from parts of other figures: Figs. 1 & 8 of [Huh et al. \(2016\)](#), Fig. 2 of [Ferguson et al. \(2017\)](#), and Fig. 1 of [Bezaire et al. \(2016b\)](#).

89 Results

90 The flow of the results section is as follows. We begin by exploring the robustness of the theta
91 rhythm in the minimal model from the perspective of its building block features. Subsequently,
92 phase response curve (PRCs) analysis leads to the proposition of an 'inhibition-based tuning'
93 mechanism of theta rhythm generation and frequency control. To investigate this mechanism
94 in the detailed model, we do the following. First, we compare EPSC/IPSC amplitude ratios in the
95 detailed model with those in the whole hippocampus preparation as it was already done with the
96 minimal model. Next, we carry out a systematic comparison between minimal and detailed models
97 by comparing connectivities, synaptic weights and external drives. Finally, we isolate a 'piece' of
98 the detailed model - the segment model - comparable in cell numbers to the minimal model. We
99 examine the segment model in a principled manner according to minimal and detailed model
100 comparisons. As the segment model is much smaller than the detailed model, we can perform
101 extensive explorations and establish how intra-hippocampal theta rhythms are generated and how
102 their frequencies are controlled.

103 Robustness of theta generation in the minimal model

104 The minimal model suggested that the generation of theta oscillations could be based on the
105 amount of spike frequency adaption (SFA) present in the pyramidal (PYR) cells together with their
106 ability to exhibit post-inhibitory rebound (PIR) in large networks of minimally connected PYR cells,
107 interconnected with parvalbumin positive (PV+) fast-firing inhibitory cells (*Ferguson et al., 2017*).
108 Inherent with SFA and PIR building block features is a rheobase (*Rheo*) feature, which is the amount
109 of current required to make the PYR cell spike (derived from fitting to the experimental data in
110 (*Ferguson et al., 2015b*)). However, in this previous study we did not specifically examine the
111 sensitivity of theta rhythms to these building block features (SFA, *Rheo*, PIR).

112 The minimal model used an Izhikevich mathematical model structure for the cellular representa-
113 tions (*Izhikevich, 2006*), and while it did not have any direct biophysical ion channel equivalents, its
114 frequency-current (f-I) curve was fit to electrophysiological recordings of PYR cells in the the whole
115 hippocampus preparation (*Ferguson et al., 2015b*). The PYR cell model parameter values, herein
116 referred to as default values, are: $a=0.0012$; $b=3.0$, $d=10$, $k_{low}=0.10$. We used a straightforward
117 approach to quantify the SFA, *Rheo*, PIR building block features (see Methods). For the PYR cell
118 model with default parameter values, the quantified building block feature values are: SFA= 0.46
119 Hz/pA; *Rheo*= 4.0 pA; PIR = -5.0 pA. We refer to these values as *base* building block feature values.
120 The larger the quantified SFA value is, the stronger is the amount of the PYR cell adaptation, i.e., we
121 get more reduction in the PYR cell spike frequency for a fixed amount of input current. The more
122 negative the quantified PIR value is, the larger is the hyperpolarizing step required to generate a
123 spike at the end of the step.

124 Examining the contribution of building block features

125 In the extensive network simulations of (*Ferguson et al. (2017)*), the PYR cell models were homo-
126 geneous in terms of their (a, b, d, k_{low}) model parameter values. However, the networks were not
127 homogeneous because of the noisy external drives to the PYR cell models. Because of its direct
128 connection to the experimental data, the minimal model with its building block features was con-
129 sidered to encompass key 'biological balances' important for theta rhythm generation. To examine
130 the robustness of the theta-generating mechanism in the minimal models with consideration of the
131 SFA, *Rheo* and PIR building block features, we create heterogeneous PYR cell populations from a
132 model database that is generated by ranging a, b, d, k_{low} parameter values around default ones. In
133 turn, this model database provides a distribution of quantified SFA, *Rheo*, PIR building block feature
134 values. The distributions of values are shown in *Figure 2*, and the locations of the base values are
135 indicated by vertical black arrows.

136 Before delving into heterogeneous excitatory-inhibitory (E-I) model networks, let us first examine
137 E-I networks of homogeneous PYR cell models with parameter values different from the default

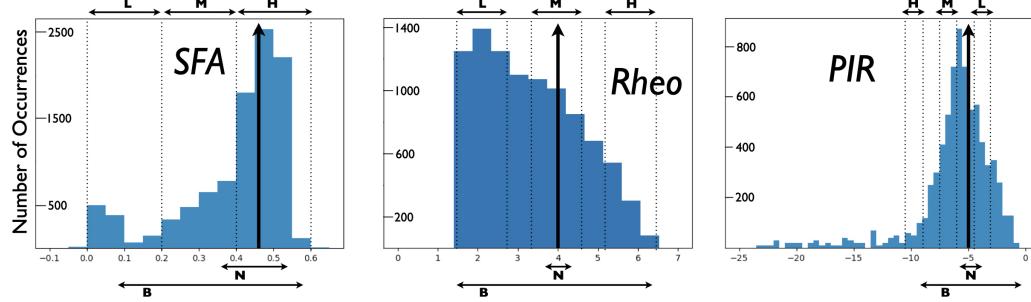


Figure 2. Distributions of PYR cell building block features from created model database.

A heterogeneous set of PYR cells was created and their 'building block' features of *SFA* [=] Hz/pA, *Rho* [=] pA, *PIR* [=] pA values. See Methods for details of quantifications. Also shown are narrow (N) and broad (B) subsets used to consider heterogeneous PYR cell populations in one way (i), and low (L), medium (M), high (H) subsets to consider heterogeneous PYR cell populations in another way (ii). See main text for further details. Vertical black arrows indicate [*SFA, Rho, PIR*] base values of a PYR cell model with default model parameters. *SFA* histogram has a bin resolution of 0.05, and *Rho*, *PIR* histograms have a bin resolution of 0.5. Acronyms are defined in the main text.

138 ones, but with similar values for quantified building block features. The resulting networks produce
 139 clear population bursts, but with some variation in frequency and power. Specific examples are
 140 shown in **Table 1** along with their model parameter and quantified building block feature values.
 141 The fact that the rhythm is not lost in any of these networks with homogeneous model parameter
 142 values already suggests that the populations bursts are not particularly sensitive to the specific *SFA*
 143 building block quantified values as the rhythm isn't lost as *SFA* varies. However *SFA* has some effect
 144 on the specific power and frequency of the population bursts.

Table 1. E-I Network Simulation Examples with Homogeneous PYR cell models.

Homogeneous cells in network Model ID #	Parameter values (a, b, d, k_{low}) Units: (1/ms, nS, pA, nS/mV)	Quantified values (<i>SFA, Rho, PIR</i>) Units: (Hz/pA, pA, pA)	Power (mV ² /Hz)	Frequency (Hz)
Original (base)	(0.0012, 3.0, 10, 0.10)	(0.46, 4.0, -5.0)	0.36	12.2
# 7	(0.00072, 3.6, 18, 0.16)	(0.51, 4.0, -5.0)	0.21	11.8
# 32	(0.00072, 4.8, 12, 0.16)	(0.51, 4.0, -5.0)	0.37	14.2
# 56	(0.00096, 3.6, 4, 0.12)	(0.38, 4.0, -5.0)	0.40	13.6
# 81	(0.00096, 4.2, 12, 0.10)	(0.49, 4.0, -5.0)	0.42	13.8
# 115	(0.0012, 3.6, 14, 0.06)	(0.49, 4.0, -5.0)	0.34	13.0

145 Let us now consider E-I networks with heterogeneous PYR cell models (*Minimal+* models as
 146 illustrated in **Figure 1**). We classify the PYR cells from the created model database in two groups
 147 according to their quantified values of the [*SFA, Rho, PIR*] building block feature trio. The first
 148 group corresponds to: (i) Narrow (N) or broad (B) ranges of [*SFA, Rho, PIR*] values that include the
 149 base values, and the second group corresponds to: (ii) Low (L), medium (M) or high (H) ranges of
 150 [*SFA, Rho, PIR*] values that do not necessarily include the base values. These groups are shown
 151 in **Figure 2**. For each group we create networks corresponding to combinations of the quantified
 152 values of the *SFA, Rho, PIR* building block feature ranges. For (i), there are eight possible E-I network
 153 cases from N and B building block combination sets and the number of models in each case is
 154 given in **Table 2**, along with the frequency and power of the particular network. For (ii), there are 27
 155 possible network cases from L, M and H building block combination sets and the number of models

156 in each case is also given in **Table 2**, along with the frequency and power of the particular network.
 157 As it turns out, there are no PYR cell models in the created model database for *HHH*, *HHL*, *MHH*, *MHL*,
 158 *LHH*, *LHL* network cases. We thus have simulation output for only 21 different E-I networks with
 159 heterogeneous PYR cell populations generated using (ii). Further details on the model database are
 160 given in the Methods.

Table 2. Heterogeneous E-I Network Simulations.

Network case [SFA, Rheo, PIR]	Number of different PYR cell models	Power (mV ² /Hz)	Frequency (Hz)
Group (i)			
<i>NNN</i>	137	0.37	13.0
<i>BBB</i>	6780	0.27	13.0
<i>BBN</i>	550	0.28	12.8
<i>BNB</i>	1010	0.29	13.0
<i>BNN</i>	180	0.34	13.4
<i>NBB</i>	4955	0.30	13.0
<i>NBN</i>	416	0.24	12.2
<i>NNB</i>	729	0.33	12.6
Group (ii)			
<i>HML</i> (R)	556	0.38	13.0
<i>HHM</i>	313	0.40	15.6
<i>HMM</i>	493	0.37	12.8
<i>MHM</i>	157	0.46	15.8
<i>MMH</i> (R)	25	0.19	9.6
<i>MMM</i>	294	0.31	13.2
<i>MML</i> (R)	110	0.37	13.8
<i>MLL</i> *	99	0.12	10.0
<i>LHM</i>	49	0.35	16.2
<i>LMH</i> *	12	0.15	9.8
<i>LMM</i>	103	0.30	13.6
<i>LML</i>	74	0.32	15.0
<i>LLM</i> *	29	0.15	10.4
<i>LLL</i>	64	0.17	12.0
No Rhythm			
<i>HMH</i> (R-supp)	33	0.06	n/a (9.2)
<i>HLH</i>	97	0.01	n/a (1.2)
<i>HLM</i> (R)	171	0.01	n/a (0.6)
<i>HLL</i>	417	0.02	n/a (0.6)
<i>MLH</i> (R-supp)	27	0.04	n/a (8.2)
<i>MLM</i> (R-supp)	50	0.07	n/a (8.6)
<i>LLH</i> (R-supp)	16	0.08	n/a (10.0)

Top set of eight network cases use heterogeneous PYR cell models from group (i) and the rest use heterogeneous PYR cell models from group (ii). Boldfaced cases are networks from which PRCs are explicitly shown in **Figure 6**. (R) and (R-supp) refers to networks in which PYR cell rasters from the E-I networks are explicitly shown in **Figure 3** and **Figure 3-Figure Supplement 1**. (*) refers to networks that are almost losing their rhythm

161 There is a clear maintenance of rhythms for the eight cases of heterogeneous group (i), as shown
 162 in the top part of **Table 2**, where the building block quantified values are chosen in either a narrow

163 or broad fashion encompassing base values. Their frequencies are similar to each other and to that
164 of the E-I network with homogeneous, default PYR cell model parameter values (see first row in
165 **Table 1**). Interestingly, the network power is larger when there is a narrow rather than a broad range
166 of values encompassing base values (compare *NNN* to *BBB* in **Table 2**), suggesting that particular
167 quantified building block feature values are important for the presence of robust theta frequency
168 population bursts. In essence, these simulations indicate that the theta generation mechanism in
169 the minimal model is robust. That is, if we have heterogeneous E-I model networks with PYR cell
170 model parameter values that have broadly distributed building block feature values that include
171 base values, then population rhythms remain with less than a 1 Hz variation in population frequency.
172 This further implies that a quantification of the building block features can capture the underlying
173 E-I balances necessary for the emergence of theta frequency population bursts in the minimal
174 model.

175 Let us now examine the output for the 21 cases of heterogeneous E-I networks with PYR cell
176 models that have quantified building block feature values that do not necessarily encompass base
177 values, i.e., group (ii). This is shown in **Table 2** where it is clear that a rhythm (i.e., population bursts)
178 is not always present. We first note that the E-I network for the *HML* case is the one that mostly
179 encompasses base values for all three building block features. As one might expect, the power and
180 frequency of this E-I network case is similar to the heterogeneous (i) E-I network cases which also
181 encompass the base values. Considering the network power values of all of these heterogeneous
182 network cases, it is easy to see which networks are not rhythmic. Essentially, if the power is below
183 0.1, then there is not a clear rhythm - these cases are shown in the lower part of **Table 2**. The
184 cases in **Table 2** that are starred are networks that have started to lose their rhythm. To view the
185 output from several heterogeneous E-I networks, in **Figure 3** we show PYR cell raster plots for four
186 cases (designated with an 'R' in **Table 2**). In three of them, there is still a rhythm, but there are clear
187 frequency and PYR cell burst firing characteristic differences. In **Figure 3-Figure Supplement 1** we
188 show PYR cell raster plots for four additional cases (designated with an 'R-supp' in **Table 2**) for when
189 the rhythm is lost so that the different patterning can be seen.

190 In considering the cases in which the rhythm is lost, it appears that the existence of the rhythm
191 is not heavily dependent on the specific *SFA* quantified values, since rhythms still exist even when
192 moving away from "Hxx" cases (i.e., those encompassing the base *SFA* value) - *MML* and *LML* cases.
193 However, the rhythm is lost if the E-I networks do not include base values for *Rheo* or *PIR*. Specifically,
194 "xMx" (base *Rheo* value) or "xxL" (closest to base *PIR* value) cases. For *Rheo*, consider the *HLL* case (no
195 *HHL* case to consider) and for *PIR*, consider the *HMH* case (less so for the *HMM* case). This allows us
196 to express the following: the particular rheobase current value of the PYR cell, and the ability of the
197 PYR cell to fire a spike with a less hyperpolarized current step are needed for the theta-generating
198 mechanism in the minimal models, along with some amount of spike frequency adaptation.

199 In summary, these simulations of E-I networks with heterogeneous PYR cell populations have
200 allowed us to gauge the contributions of the different building block features and have helped us to
201 confirm the robustness of the theta-generating rhythm mechanism. As a result, we can reasonably
202 establish that theta frequency population bursts in the minimal model are particularly sensitive *PIR*
203 and *Rheo* feature values, and less sensitive to *SFA* values. Let us now examine how the frequency of
204 the population rhythm could be controlled.

205 Using PRCs to develop a hypothesis of theta frequency control

206 We have now determined that specific quantified values for *Rheo* and *PIR* building block features are
207 important for theta population rhythms. The *PIR* building block feature is quantified as the size of a
208 hyperpolarizing current step required to evoke a spike (see Methods). We note that this does not
209 necessarily mean that the PYR cells fire due to inhibitory inputs from the PV+ cells during ongoing
210 theta rhythms. In the Izhikevich cell model structure, the ability of a cell to spike after an inhibitory
211 step is reflected in the *b* parameter (see equations in Methods), which needs to be positive for the
212 PYR cell to fire after a hyperpolarizing step. To examine whether the PYR cells in the network fire

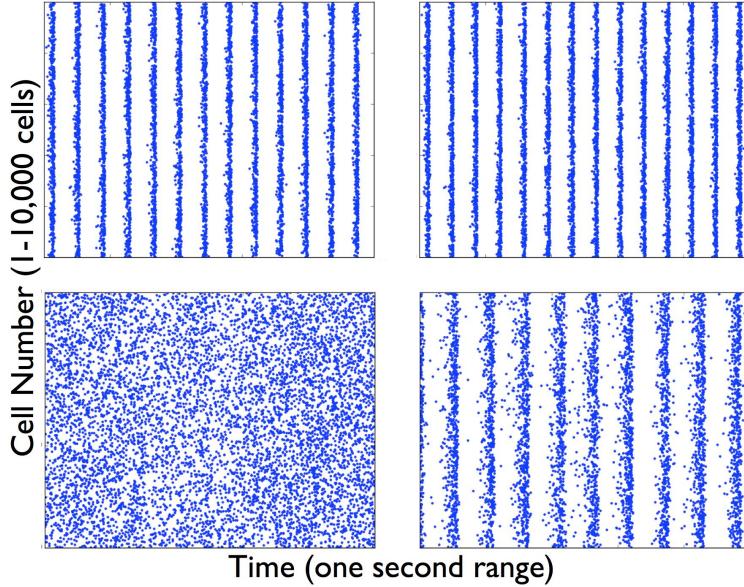


Figure 3. Raster plots of PYR cells in heterogeneous E-I networks.

Simulations of E-I networks with 10,000 heterogeneous PYR cells and 500 PV+ cells produce output that have PYR cell raster plots as shown here with a one second time range. The specific examples are labelled as (R) in *Table 2* and refer to the following sets: HML (top-left), MML (top-right), HLM (bottom-left), MMH (bottom-right). Acronyms are defined in the main text.

Figure 3-Figure supplement 1. Loss of Rhythm - Raster plots of PYR cells in heterogeneous E-I networks.

213 due to the inhibitory input they receive, we compare the timing of the PYR cell spikes relative to the
214 timing of their incoming IPSCs. Examples are shown in *Figure 4* on two different timescales. From
215 them, we can say that the PYR cell firing does not specifically occur *because* of their IPSCs, as spiking
216 can occur before or just after its IPSCs. Due to the limited nature of the minimal model, it is not
217 helpful to carry out comparisons of EPSC and IPSC values relative to experiment. Even though we
218 had previously found that the EPSC/IPSC amplitude ratios were experimentally appropriate for both
219 PYR and PV+ cells *Ferguson et al. (2017)*, the limited nature of the minimal model prohibits us from
220 probing exact experimental values of EPSCs and IPSCs. Instead, to get a further understanding on
221 E-I balances dictating the frequency of the theta rhythm, we turn to PRC considerations (*Schultheiss*
222 *et al., 2011*).

223 We hypothesize that the PYR cell network is generating population bursts on its own (given its
224 cellular adaptation characteristics) with the PV+ cell network providing an inhibitory ‘bolus’. We thus
225 consider that the resulting frequency of the E-I network’s population bursts is due to a combination
226 of the PYR cell’s firing frequency combined with how much an inhibitory input could advance or
227 delay the PYR cell spiking. This setup is schematized in *Figure 5* as follows: Each PYR cell in the
228 network receives excitatory input from other PYR cells as well as a noisy excitatory drive. The
229 amount of input a PYR cell receives would of course fluctuate over time, but consider that the
230 PYR cell receives a mean excitatory input of about 20 to 30 pA based on parameter values of the
231 minimal models. In these models theta population bursts occur when PYR cells receive a zero
232 mean excitatory drive with fluctuations of \approx 10-30 pA (*Ferguson et al., 2017*). We generate PRCs by
233 considering an inhibitory ‘bolus’ that a PYR cell would receive by the inhibitory PV+ cell population
234 in the minimal model. The inhibitory pulse would advance or delay the subsequent PYR cell’s spike
235 as given by the PRC. Further details are provided in the Methods.

236 We consider three cases of heterogeneous E-I networks which exhibit different population
237 burst frequencies. The first case is the *MMH* network with a ‘slow’ frequency of 9.6 Hz, the second
238 case is the *HML* network with a ‘medium’ frequency of 13 Hz, and third case is *LML* network with

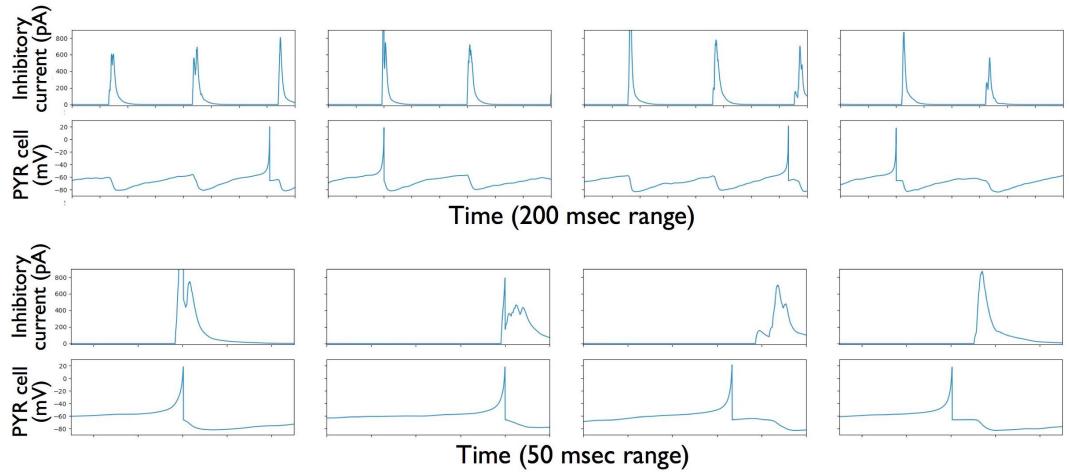


Figure 4. Examples of inhibitory currents onto PYR cells together with PYR cell membrane voltages.

Four examples of a PYR cell's membrane voltage and the inhibitory current (IPSC) onto it. A PYR cell spike can be seen in each example. The top row is shown for a 200 msec time range, and the bottom row is for the same example, but for a 50 msec time range that includes the PYR cell spike. The IPSC can be clearly seen as occurring either after or just before the spike. The PYR cell is one of the 10,000 PYR cells in the heterogeneous E-I network, *BBB* set. Acronyms are defined in the main text.

239 a 'fast' frequency of 15 Hz **Table 2**. We generate PRCs for the PYR cell models in each of these
240 three cases. Each PYR cell model has particular PRC characteristics due to its *a*, *b*, *d*, *klow* model
241 parameter values and exhibits a specific intrinsic frequency for a given input. The calculation of
242 these PRCs is described in the Methods. In **Figure 6** we show differences between PRC properties
243 and individual cell firing frequencies for each of the three cases, using an input current of 30 pA.
244 The PRCs for each case show distinct features: for instance, the PYR cells in the *HML* case uniquely
245 exhibit a region of phase-advance, while the PYR cells in the *LML* case have the largest phase delay
246 for perturbations delivered at all but the latest phases. These PRC examinations provide evidence
247 in support of the notion that the frequency of the E-I network population burst is strongly affected
248 by the intrinsic properties of the PYR cells. For instance, while the PYR cells in the *LML* case have the
249 fastest individual firing frequencies (notably faster than what is seen in population models), their
250 PRCs may be slowing down this frequency by means of the inhibitory 'bolus' of synaptic inhibition.
251 Meanwhile, the PYR cells in the *HML* case have the slowest individual firing frequencies, although
252 they participate in 'medium' speed theta rhythms. The PRC in this case, particularly the region of
253 phase-advance, may play a role in accelerating the PYR cells by means of their inhibitory synaptic
254 input. Frequencies and PRCs for a different input current (20 pA) are shown in **Figure 6-Figure
255 Supplement 1**.

256 In essence, this PRC examination allows us to propose that the frequency of the network
257 population bursts depends on the net amount of input delivered to the PYR cells, including the
258 inhibitory bolus. In other words, the frequency response depends on the intrinsic properties of the
259 PYR cells, as given by its f-I curve. This in turn implies that a stable population burst is achieved if
260 the excitation and inhibition are balanced so that proper inhibitory 'tuning' can take place. However,
261 just from these minimal model examinations, it is unclear whether such a relationship between
262 PYR cell inputs and network frequency would exist in biologically realistic networks.

263 Overall, our expansion of the minimal model to include heterogeneous PYR cell populations (see
264 **Figure 1**) revealed a robustness in the emergence of theta rhythms, and uncovered a sensitivity to
265 the specific quantified values of the *PIR* and *Rheo* building block features, but not to *SFA*. The use of
266 PRCs showed that the resulting frequency of the population bursts could be largely due to PYR cell
267 intrinsic properties. These explorations in the minimal model lead us to hypothesize an 'inhibition-
268 based tuning' mechanism underlying the robust emergence of intrinsic, intra-hippocampal theta

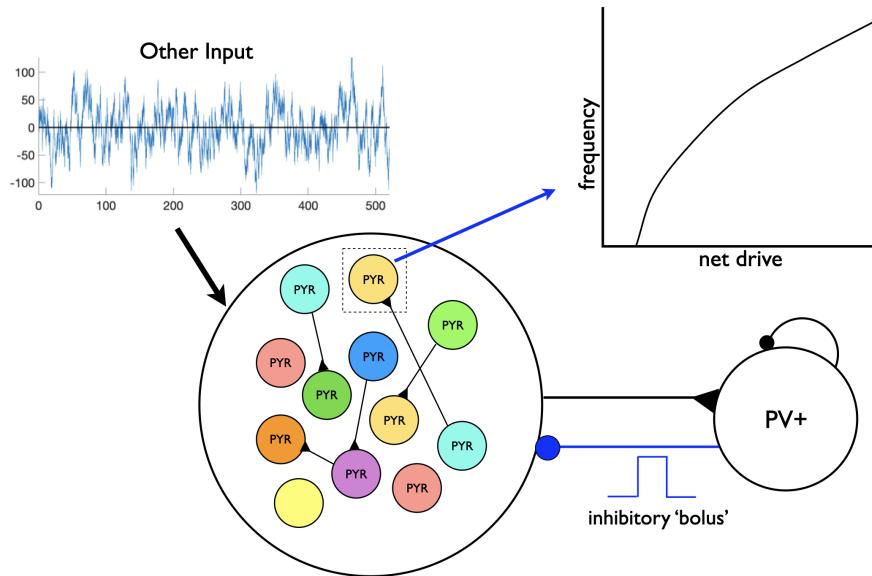


Figure 5. Schematic of setup for phase response curve (PRC) calculations.

Using the minimal model structure, and assuming a theta-generating mechanism based on SFA, PRCs are generated based on an inhibitory input ('bolus') coming from the PV+ cell network to a PYR cell in the PYR cell network. Each PYR cell is receiving a noisy, excitatory drive shown as 'Other Input', and an illustrative f-I curve for a PYR cell is shown. The f-I curve with a specified net drive would dictate the result of the computed PRC based on the inhibitory input. Acronyms are defined in the main text.

269 rhythms and their frequency control. In this mechanism, together with SFA, *Rheo* and *PIR* building
270 block features, two key aspects are important: (i) The PYR cell population needs to be large enough
271 so that it can collectively generate a strong excitatory drive to the inhibitory PV+ cells. In turn, the PV+
272 cell population should be able to fire enough (and coherently) to create a strong inhibitory 'bolus'
273 that tunes and regularizes the PYR cell population bursting output. (ii) The net input (recurrent
274 excitation, excitatory drive, incoming inhibition) received by the PYR cell situates it in a frequency
275 range that allows theta frequency population bursts to occur. The resulting theta frequency of
276 population bursts are fundamentally 'controlled' by the net amount of input that the PYR cells
277 receive.

278 **Linkage explorations between minimal and detailed models generating intrinsic 279 theta rhythms intra-hippocampally**

280 With a clear sense of how stable theta frequency population bursts are generated in the minimal
281 model, we turn to the detailed model with its empirically-based connections and biophysical cellular
282 specifics. To consider whether the detailed model uses similar theta-generating mechanisms as the
283 minimal model, we examine commonalities and differences between the two models, as illustrated
284 by 'compare' in **Figure 1**. However, we first turn to an examination of EPSC/IPSC amplitude ratios in
285 the detailed model relative to those observed in the whole hippocampus preparation.

286 EPSC/IPSC amplitude ratios in the detailed model are consistent with those in the whole
287 hippocampus preparation

288 In the minimal model, when we 'matched' model EPSC/IPSC amplitude ratios with experiment
289 (**Huh et al., 2016**), we predicted that connection probabilities from PV+ to PYR needed to be larger
290 than those from PYR to PV+ cells (**Ferguson et al., 2017**). The detailed model is experimentally
291 constrained in a bottom up fashion, using cellular data and connectivity information from a plethora
292 of experimental data (**Bezaire and Soltesz, 2013**). Whether the detailed model yields meso-level

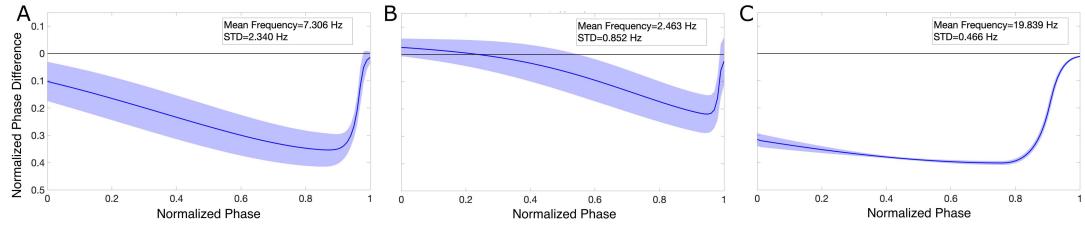


Figure 6. PYR cells from three heterogeneous E-I network cases show distinct PRC features and firing frequencies.

Mean PRC (solid line) for PYR cells of a particular case (*MMH* in panel **A**, *HML* in panel **B**, and *LML* in panel **C**) calculated with an input current of 30 pA, with the shading representing \pm the standard deviation. The mean and standard deviation of the firing frequencies of the PYR cells at this input level are included in the inset of each panel. PYR cells of the *MMH* case produce 'slow' population theta frequency, and PYR cells exhibit moderate individual firing frequencies but notably only show phase-delay in their PRCs. PYR cells of the *HML* case produce 'medium' population theta frequency, and PYR cells show the slowest individual firing frequencies, but the region of phase-advance in their PRCs reveals a potential mechanism by which these frequencies might be increased in the network setting. Finally, PYR cells of the *LML* case produce 'fast' population theta frequency, and PYR cells show the highest individual firing frequencies, with a potential mechanism by which these are slowed in the network setting revealed by the PRCs with the most marked phase-delay. Acronyms are defined in the main text.

Figure 6-Figure supplement 1. PRCs calculated with a 20 pA input show similar features in the three PYR cell populations.

Table 3. EPSC/IPSC Amplitude Ratios from Detailed Model Network Cells.

PV+ cell type	EPSC/IPSC amplitude ratio (on PYR cell)
= BC	4.05 ± 0.86
= BiC	7.21 ± 1.19
= BC/BiC	2.95 ± 0.62
= BC/AAC/BiC	1.78 ± 0.39
= All inhibitory cell types	1.32 ± 0.24
	EPSC/IPSC amplitude ratio (on PV+ cell)
= BC	11.71 ± 2.66
= BiC	34.97 ± 5.28

293 measurements, such as EPSC/IPSC amplitude ratios that agree with experimental observations
 294 from the whole hippocampus preparation, has not been directly assessed. Thus, we here examine
 295 whether the detailed model exhibits ratios that 'match' those observed in experiments from the
 296 whole hippocampus preparation, as was already considered in the minimal model. From the
 297 experimental data it is abundantly clear that the EPSC/IPSC amplitude ratios for PYR cells are much
 298 less than for PV+ cells. For the detailed model, we consider PV+ cells to represent BCs, BiCs, or
 299 combinations of BCs, BiCs and AACs. We choose 15 cells of each type and extract EPSCs and IPSCs
 300 at the somata of the different cell types and compute the ratios. We find that regardless of the PV+
 301 cell type or combination considered, it is always the case that the EPSC/IPSC amplitude ratios are
 302 consistent with experiment - larger on PV+ cells than on PYR cells - as shown in **Table 3**. Further
 303 details are provided in the Methods.

304 Minimal model connectivity prediction validated using detailed model empirical numbers.
 305 In the minimal model we predicted that to have EPSC/IPSC amplitude ratios that are consistent
 306 with the experimental observations, it is necessary for the connection probability from PV+ to PYR
 307 cells to be larger than from PYR to PV+ cells. The connectivities in the detailed model are based on

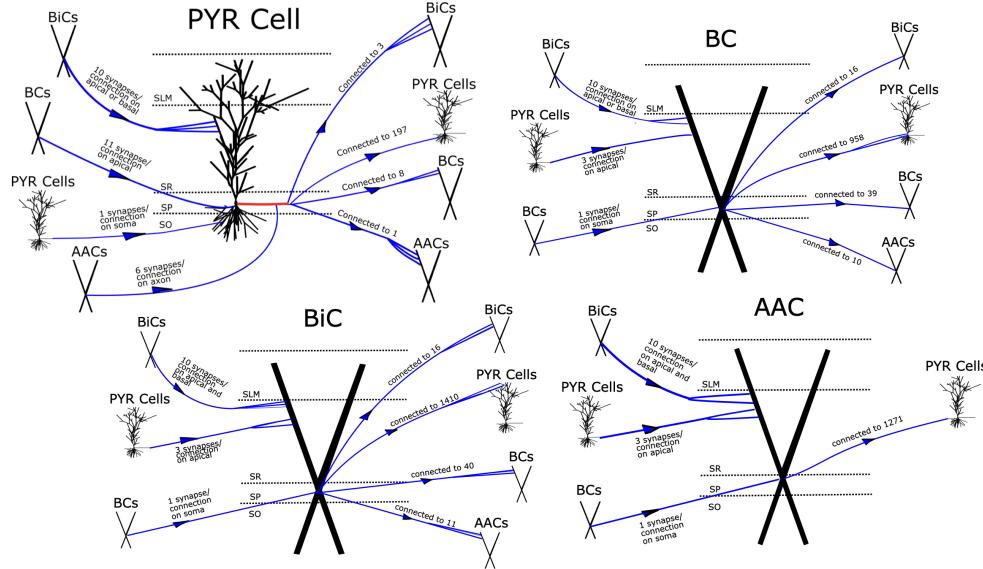


Figure 7. Schematics summarizing connections in the detailed model for PYR and PV+ cell types.

The four schematics illustrate the connection schemes that exist in the detailed model, where we only consider PYR and PV+ cells (BCs, BiCs, AACs) (Bezaire *et al.*, 2016b). For each large centered cell, the number of synapses per connection and its approximate location on the cell is specified for whichever cells are presynaptic, and the number of cells that the large centered cell connects to is also illustrated for whichever cells are postsynaptic. These numbers are also reflected in *Table 4*. The morphological structure along with its layer location from the detailed model is also shown. The red line in pyramidal cell denotes its axon. SP = stratum pyramidale, SLM = stratum lacunosum-moleculare, SR = stratum radiatum, SO = stratum oriens. Other acronyms are defined in the main text.

308 empirical determinations (Bezaire and Soltesz, 2013). Thus, if the minimal model is an appropriate
 309 representation of the CA1 microcircuitry, its connection probabilities should be in line with those in
 310 the detailed model. To consider this, we note two things. First, the minimal model only includes
 311 fast-firing PV+ and PYR cells, and second, it uses a random connectivity scheme. Thus, to make
 312 comparisons, we consider only PV+ cell types and PYR cells from the detailed model and determine
 313 connection probabilities between them using their empirically-based connection schemes. Three
 314 inhibitory interneuron cell types in the detailed model can be considered as fast-firing PV+ cell
 315 types. These are the BCs, the BiCs and the AACs. Considering only these three inhibitory cell types
 316 and the PYR cells, we extracted the number of their post-synaptic connections. This is shown in
 317 schematic form in *Figure 7*. To compare connection probabilities between minimal and detailed
 318 models we considered that the fast-firing PV+ cell type in the minimal model could correspond to:
 319 (i) only BCs; (ii) only BCs and AACs; (iii) only BCs and BiCs; (iv) BCs, AACs and BiCs. BCs represent the
 320 majority of fast-firing PV+ cell types and so they are included in all of the different combinations.

321 The connection probabilities computed from the detailed model are given in *Table 4* along
 322 with connection probabilities from the minimal model (details are given in the Methods). To avoid
 323 repetition, minimal model connection probabilities are only shown for the “PV+=BC” case in row
 324 #2 of *Table 4*. We found that regardless of the PV+ cell type consideration (i-iv), the connection
 325 probability from PV+ to PYR is greater than from PYR to PV+ in the detailed model, indicating that one
 326 of the predictions of the minimal model is in effect in the CA1 microcircuitry. Thus, this comparison
 327 arguably yields a ‘validation’ of the minimal model as one of its main predictions is in effect in the
 328 detailed model which has empirically determined connection probabilities from many experimental
 329 determinations (Bezaire and Soltesz, 2013). We note that comparison of PYR to PYR and PV+ to PV+
 330 connection probabilities between minimal and detailed models are expected to be appropriate as
 331 these connection probabilities in the minimal model were derived from the experimental literature

Table 4. Detailed Model Connection Probabilities and Synaptic Weights.

Row	Cell Types and Connections	Number of cells	Number of connections	Connection Probability	Number of synapses per connection	Synaptic Weight* $g(nS)$
#1	PYR PYR to PYR	311,500	197	0.00063 [0.01 for minimal model (MM)]	1	70.0 [0.094 for MM]
#2	PV+ = BC PYR to BC	5,330	8	0.0015 [0.02 for MM]	3	2.1 [3.0 for MM]
	BC to PYR		958	0.0031 [0.3 for MM]	11	2.2 [8.7 for MM]
	BC to BC		39	0.0071 [0.12 for MM]	1	1.6 [3.0 for MM]
#3	PV+ = BC/AAC PYR to BC/AAC	7,000	9	0.0014	6	4.4
	BC/AAC to PYR		1,115	0.0036	8.5	5.7
	BC/AAC to BC/AAC		49	0.0070	1	0.8
#4	PV+ = BC/BiC PYR to BC/BiC	7,740	11	0.0014	6	16.0
	BC/BiC to PYR		1,184	0.0038	10.5	3.7
	BC/BiC to BC/BiC		111	0.014	11	77.1
#5	PV+ = BC/AAC/BiC PYR to BC/AAC/BiC	9,210	12	0.0013	9	23.8
	BC/AAC/BiC to PYR		1,213	0.0039	9	5.6
	BC/AAC/BiC to BC/AAC/BiC		132	0.014	11	54.0
#6	Other Input	n/a	5,985	n/a	2	0.40
	CA3 to PYR		1,299	n/a	2	0.40
	CA3 to BC		6,047	n/a	2	0.44
	CA3 to AAC		4,170	n/a	2	0.24
	EC to AAC		485	n/a	2	0.24
	CA3 to BiC		5,782	n/a	2	0.30
	EC to BiC		432	n/a	2	0.30

* Synaptic Weight = Synaptic Conductance \times number of synapses/connection

332 (*Ferguson et al., 2013, 2015a*). As noted in **Table 4**, the PYR to PYR connection probability (see row
333 #1) is an order of magnitude less than it is for the PV+ to PV+ connection probability (see rows
334 #2-#5) for both minimal and detailed models.

335 In making these comparisons, we do not expect to have an exact matching of connection
336 probability values. Besides the fact that the minimal model consists of a subset of different
337 inhibitory cell types in the detailed model, the cellular models differ in their compartmental and
338 mathematical biophysical 'structure'. Specifically, the detailed model has multi-compartment models
339 that include conductance-based ion current representations, and the minimal model has single
340 compartment models with an Izhikevich mathematical representation (see Methods). It is however
341 reassuring that the connection probabilities compare favourably as described above, since both

342 minimal and detailed models produce intrinsic, intra-hippocampal theta rhythms.

343 E-I balance considerations in minimal and detailed models expose differences

344 So far we have shown that the connection probabilities in the minimal model are appropriate
345 relative to the empirical ones in the detailed model and that the detailed model has appropriate
346 EPSC/IPSC amplitude ratios from the perspective of the whole hippocampus preparation that
347 generates intrinsic theta rhythms. Let us now exploit these linkages.

348 We first note that since both the minimal and full-scale detailed models produce theta rhythms,
349 the underlying E-I balances that are present in both models must be appropriate for the generation
350 of theta rhythms. Now, besides connection probabilities between excitatory and inhibitory cells,
351 synaptic weights and any other external drives to the network models would also affect E-I balances.

352 *Synaptic Weights:* Similar to the comparison consideration of connection probabilities above, we
353 compare synaptic weights in minimal and detailed models. As before, we focus on a cellular subset
354 of the detailed model the fast-firing PV+ cells. The number of connections and synaptic weights
355 for PV+ and PYR cells are given in the last two columns of **Table 4**. Note that the synaptic weight
356 refers to a connection between cells so that the number of synapses per connection is taken into
357 consideration. From a comparison of these weights, it is clear that there is about three orders
358 of magnitude difference between the synaptic weights of PYR to PYR cells whereas the synaptic
359 weights from PV+ to PYR, PYR to PV+ and PV+ to PV+ are comparable (i.e., same order of magnitude),
360 if PV+ cells are considered to be BCs or a combination of BCs and AACs (see **Table 4**). Thus, on
361 the face of it, the detailed model has much stronger connections between PYR cells relative to the
362 minimal model.

363 *External Drives:* The minimal model is driven by an external excitatory input, denoted as 'other input'
364 in the schematic of **Figure 1**, that is applied only to the PYR cells of the E-I networks. The amount of
365 this other input is comparable or smaller than any of the 'internal' EPSCs (see Table 5 in **Ferguson
366 et al. (2017)**), as it has a zero mean with fluctuations of $\approx 10\text{-}30\text{ pA}$. For the detailed model, the
367 excitatory and inhibitory cells are driven by activation of excitatory afferents from the CA3 and
368 the entorhinal cortex (EC) with connectivity of empirical estimation (see row #6 in **Table 4**). Unlike
369 the minimal model, these CA3/EC excitatory inputs are larger relative to the 'internal' EPSCs and
370 so likely play an important role in maintaining the appropriate E-I balance for theta generation in
371 the detailed model. Specifically, the CA3, EC and PYR cell excitatory currents onto PYR cells are
372 approximately 10, 6 and 10 nA. The detailed model is only loosely based on the whole hippocampus
373 preparation. Its theta rhythms are produced intra-hippocampally but the network is driven by
374 external EC and CA3 noisy afferents. These afferents conceptually represent remaining inputs from
375 cut afferents after extraction from the whole brain. Given that the external drives in the minimal and
376 detailed models are not represented in a similar way, we cannot compare them directly. However,
377 it is possible that the large difference in PYR to PYR synaptic weights between minimal and detailed
378 models is partly because of their external drive differences.

379 In summary, our consideration of linkages between minimal and detailed models via the whole
380 hippocampus preparation (see **Figure 1**) that generates intrinsic theta rhythms leads to the following:
381 The minimal model has appropriate connection probabilities relative to the biological system, as
382 represented by a biologically detailed full-scale CA1 microcircuit model; the full-scale detailed model
383 has appropriate EPSC/IPSC amplitude ratios relative to experiment; and although both minimal and
384 detailed models produce intra-hippocampal theta rhythms, there are notable differences between
385 their PYR to PYR synaptic weights and external drives.

386 **387 Using a 'piece' of the detailed model to understand the initiation of theta rhythms
and how their frequencies are controlled**

388 It is worth re-stating that despite its several limitations (e.g., only 70% of inhibitory cell types were
389 included), the detailed model produces robust theta rhythms. However, because of its large size
390 and computationally expensive nature, extensive parameter explorations were not performed.

391 As a result, even though the detailed model produces theta rhythms, and model perturbations
392 indicated that some cell types and not others are important for their emergence, we do not know
393 how the rhythm generation is initiated or controlled. To address this, we first isolate a part of the
394 detailed model, the segment model (see *Figure 1*), that has comparable cell numbers to the minimal
395 model. We investigate the segment model according to the noted differences with the minimal
396 model and examine how this is manifest in the power and frequency of LFP theta rhythms that we
397 subsequently interpret in light of the minimal model mechanism. From this investigation, we unveil
398 an understanding of how the 'biophysical' theta rhythms are generated and how their frequencies
399 are controlled in a biologically detailed model with multiple inhibitory cell types.

400 **Creating the segment model and examining its initial behaviour**

401 We start by extracting a 'piece' of the detailed model which has a comparable number of cells
402 relative to the minimal model, and we refer to it as the segment model - see *Figure 8Ai*. Our
403 segment model represents 10% of the original detailed model and it has all of the same cell types
404 with the same layer location positioning and synaptic connection structure as the detailed model.
405 That is, the segment model contains eight inhibitory cell types and is driven by excitatory afferents
406 representing inputs from the EC and the CA3 region, as illustrated in *Figure 8Aii*. The activation of
407 the EC/CA3 synapses is modeled as an independent Poisson stochastic process and the strength
408 of this activation is represented by the Poisson stimulation parameter. These afferents project
409 to the majority of the cell types in the network with the exception of the OLM cells which are
410 only driven by the PYR cells. Therefore, in contrast to the minimal model, the segment model is
411 driven by external inputs that in addition to the PYR cells, also project to the inhibitory cells of
412 the network (see *Figure 1*). Even though the segment model represents only 10% of the original
413 detailed hippocampus model, its much smaller size makes it now possible to investigate the network
414 dynamics by undertaking extensive parameter explorations using high-performance computing.
415 We carried out this investigation by exploiting the noted differences between minimal and detailed
416 models, and by considering the minimal model insights.

417 Let us start by examining the segment model without changing any of its parameters relative to
418 the detailed model. As expected, the segment model does not produce any output. Instead, this
419 'fraction' of the detailed model produces hyperactive cell populations (not shown) indicating that
420 the E-I input balances to the cells are shifted in favour of excitation. This suggests that to get a theta
421 rhythm in the segment model, one could simply reduce the activation of the external afferents
422 via the stimulation parameter. This is a reasonable consideration given that our model essentially
423 consists of a smaller piece of tissue. We found that theta rhythms arise in the segment model when
424 we decrease the stimulation parameter, but they have very low power and are very noisy. The
425 raw LFP signal, as recorded in stratum pyramidale, is shown in *Figure 8Bi*, and it can be seen to be
426 quite noisy. Guided by the Welch's Periodogram, as shown in *Figure 8C*, theta rhythms at two peak
427 frequencies (3.7 and 9.2 Hz) can be discerned. The filtered LFP signal is shown above *Figure 8Bii*
428 and *Biii*. In essence, this finding predicts that a 10% piece of a whole hippocampus preparation is
429 enough of a tissue volume to generate theta rhythms. This supports the viewpoint, supported by
430 experimental observations, that the hippocampus is comprised of multiple theta oscillators along
431 its septotemporal axis (*Goutagny et al. (2009)*).

432 **Designing an extensive parameter exploration of the segment model**

433 As shown above, the segment model, without any changed parameter values besides the stimulation
434 parameter, produces weak and noisy theta rhythms - see *Figure 8B*. Is it possible to obtain robust
435 theta rhythms in the segment model? That is, can we increase the power of the theta rhythms
436 expressed by the segment model? To answer this, we were motivated to determine whether
437 bringing the segment model to a similar E-I parametric regime as the minimal model could 'enhance'
438 the theta rhythms. To test this, we examined whether by adjusting for differences between the
439 models, we could increase the power of the theta rhythms expressed by the segment model.

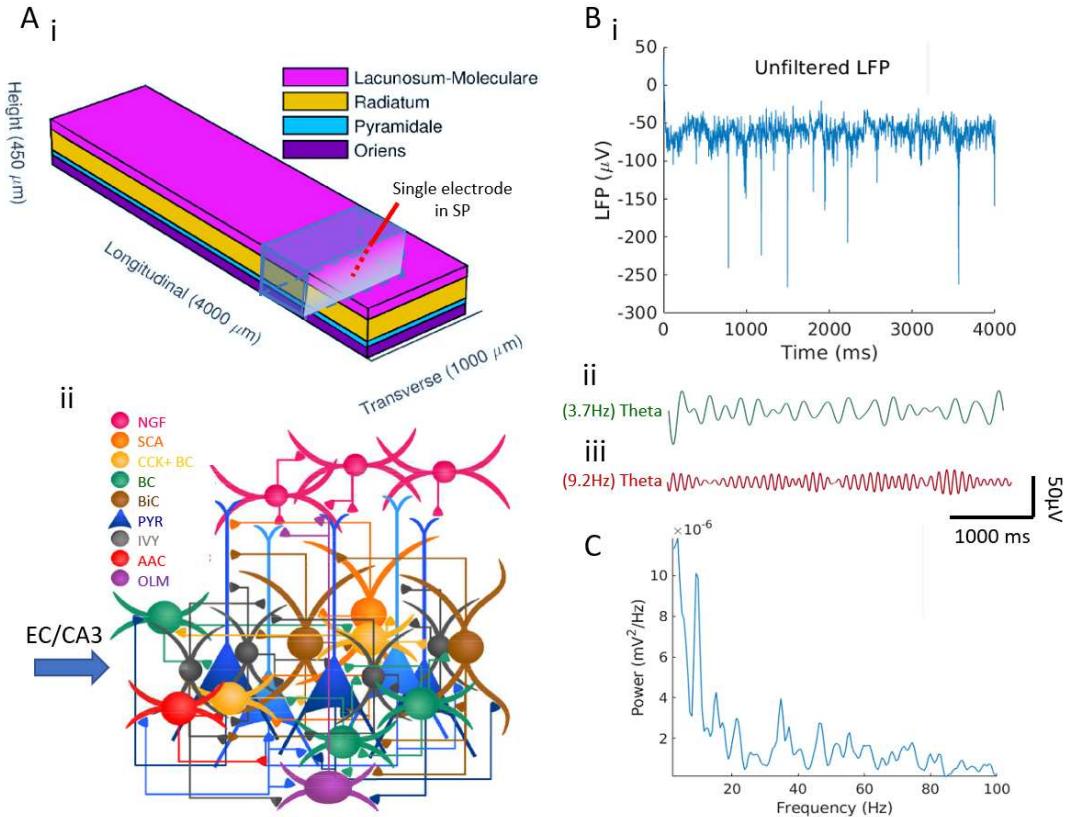


Figure 8. Theta rhythms in the segment model.

A. (i): The model network is arranged in a layered prism. Image is adapted from Fig. 1 of [Bezaire et al. \(2016a\)](#). The segment model shown in blue, represents 10% of the original volume. It contains 31,150 PYR cells, 553 BCs, 221 BiCs, 358 NGF cells, 40 SCA cells, 360 CCK+ BCs, 881 Ivy cells, 164 OLM cells, 147 AACs. LFP output is based on a single micro-electrode placed in Stratum Pyramdale (SP). (ii): The number, position and cell types of each connection are biologically constrained, as are the numbers and positions of the cells. Image is adapted from Fig. 1 of [Bezaire et al. \(2016a\)](#). **B.** The segment network generates theta rhythms once the stimulation is reduced to 0.26Hz (it is 0.65Hz in the original detailed model). (i): Unfiltered LFP, (ii): filtered for low theta (peak at 3.7Hz) and (iii): filtered for high theta (peak at 9.2Hz). See Methods. **C.** Welch's Periodogram of the LFP shows a peak at two theta frequencies. Acronyms are defined in the main text.

Figure 8-Figure supplement 1. Recurrent excitation and feed-forward external drive to the PYR cells are needed for theta rhythms.

440 From the comparison between the minimal and detailed models, we found that their two main
 441 differences stemmed from the external drives to the network and the synaptic weights between the
 442 PYR cells, which we will refer to as $g_{pyr-pyr}$. In the minimal model, the external drive is only applied
 443 to the PYR cell population and is relatively weak (fluctuations of $\approx 10-30$ pA) compared to what it
 444 is in the detailed model - about 10 nA (similar for the segment model). Also, the external drive in
 445 the detailed and segment models is applied not only to the PYR cells but also to the majority of
 446 the inhibitory cells. It is also important to keep in mind that the PYR cells in the segment model
 447 are bombarded by substantially more inhibition in comparison to the minimal model, as there are
 448 eight different inhibitory cell types projecting to them, as compared to just the fast-firing PV+ cells
 449 in the minimal model. This means that in the segment model, relative to the minimal model, it
 450 is possible that the stronger external drive to the PYR cells and the stronger $g_{pyr-pyr}$ are required
 451 to counterbalance the larger inhibitory presence due to the multiple inhibitory cell inputs. Due
 452 to these aspects, we designed an expansive exploration of how the segment model depends on
 453 $g_{pyr-pyr}$ and the external drive to the PYR cells in creating theta rhythms. For the external drive, we
 454 explored both the stimulation parameter as well as the excitatory conductance from EC/CA3 to the

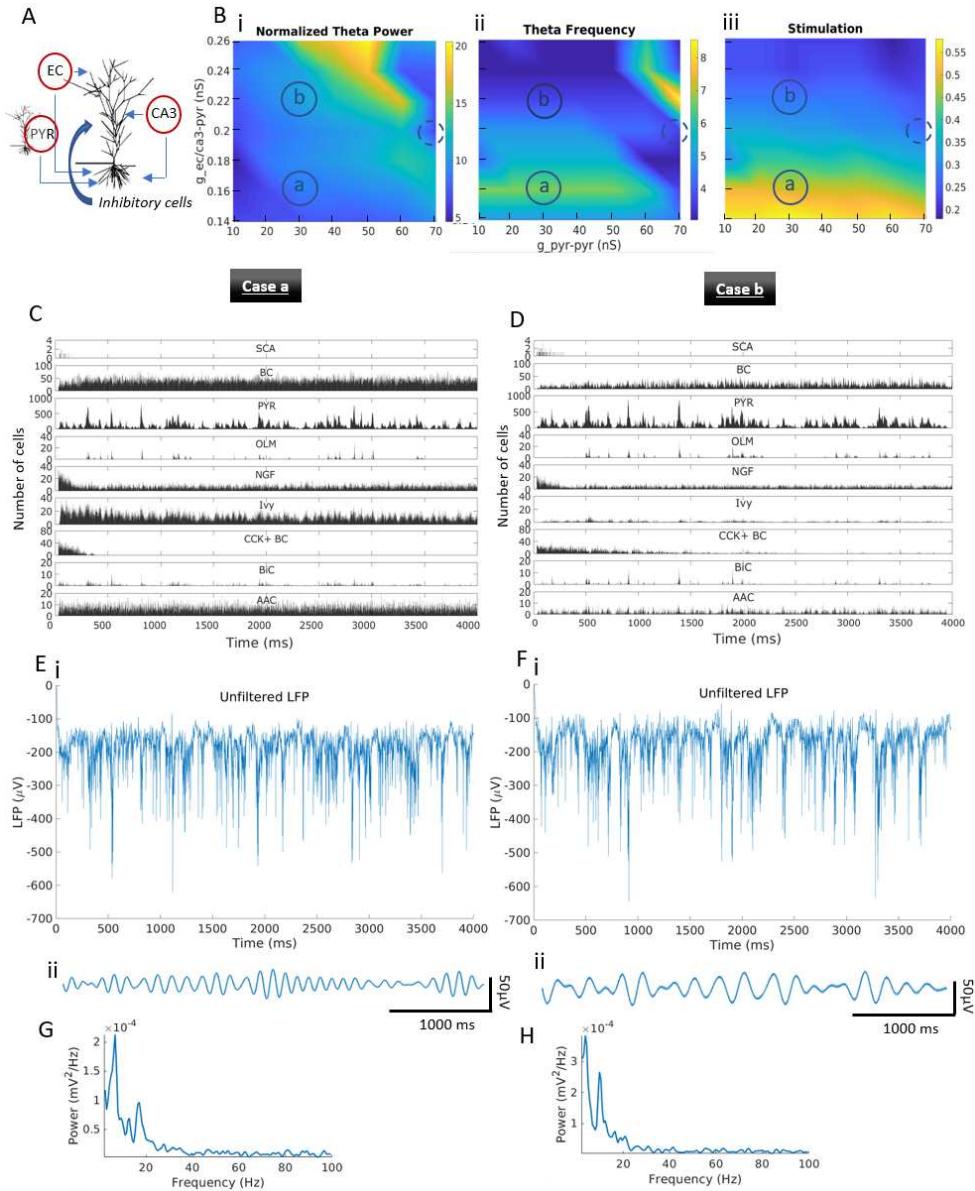


Figure 9. Dependence of theta power and frequency on the PYR cells' excitatory drives.

A. Schematic to illustrate the parametric exploration done that focuses on the excitatory drives to the PYR cells. **B.** Heatmaps of normalized theta power (i), frequency (ii) and afferent input stimulation (iii) as a function of $g_{pyr-pyr}$ and $g_{ec/ca3-pyr}$. Circled a and b regions represent case a and b networks respectively, with $(g_{pyr-pyr}, g_{ec/ca3-pyr})$ parameter values of: (30 nS, 0.16 nS) for case a, and (30 nS, 0.22 nS) for case b. Dashed circled regions represent initial network of the segment model as obtained from the 10% 'piece' extracted from the detailed model (see **Figure 8**), with $(g_{pyr-pyr}, g_{ec/ca3-pyr})$ parameter values of: (70 nS, 0.20 nS). **C.** Histograms of cellular activities for case a. Bin size = 1 ms. **D.** Same as C., but for case b. **E.** (i): Unfiltered LFP, (ii): Filtered LFP (peak at 6.7Hz), for case a. **F.** (i): Unfiltered LFP, (ii): Filtered LFP (peak at 3.7Hz), for case b. **G.** Welch's Periodogram of LFP for case a. **H.** Same as G., but for case b.

Figure 9-Figure supplement 1. Dependence of net theta power on the PYR cells' excitatory drives.

Figure 9-Figure supplement 2. Dependence of theta and delta power on the PYR cells' excitatory drives.

Figure 9-Figure supplement 3. Dependence of "high" theta (6-12Hz) power on the PYR cells' excitatory drives.

455 PYR cells, which we will refer to as $g_{ec/ca3-pyr}$. This examination is schematized in **Figure 9A**.

456 For each $(g_{pyr-pyr}, g_{ec/ca3-pyr})$ conductance pair, we performed a set of simulations to find the
457 stimulation parameter that maximizes the theta power (3-12 Hz) for the given conductance pair.

458 Given that these networks exhibit two theta peaks, a low and a high one, as shown by their Welch
459 Periodogram, this analysis considers the stronger theta peak which is usually the one corresponding
460 to the lower theta. A separate analysis for the higher theta peak power vs conductance pairs (ranges
461 6-12 Hz) can be found in **Figure 9-Figure Supplement 3**. The theta rhythm dependence of our
462 parametric explorations is shown in **Figure 9Bi-iii**. From left to right we show the normalized theta
463 power, the theta frequency and the required stimulation to maximize the theta power for each
464 conductance pair examined. These results show that the normalized theta rhythm power increases
465 with increasing $g_{pyr-pyr}$ or $g_{ec/ca3-pyr}$ (similar is the trend for the net theta power **Figure 9-Figure**
466 **Supplement 1**) while theta frequency approximately decreases with increasing $g_{ec/ca3-pyr}$ or $g_{pyr-pyr}$.
467 We note that these patterns are disrupted for the largest $g_{ec/ca3-pyr}$ or $g_{pyr-pyr}$ conductance values,
468 where the power of the networks is shifted to lower 'delta' frequencies below 3 Hz (see **Figure 9-**
469 **Figure Supplement 2**). From the heatmaps of the net theta power in **Figure 9-Figure Supplement 1**
470 we notice that the power of the theta rhythms has significantly increased, approximately doubled,
471 relative to the initial behaviour of the segment model shown in **Figure 8B**. It is thus clear that
472 there are particular parameter combinations that can significantly increase the power of the theta
473 rhythms in the segment model to make it more robust.

474 Theta rhythm robustness and degeneracy of theta rhythm generation
475 To get an understanding of what underlies the results from our extensive parameter explorations,
476 we took a detailed look at the inner mechanics of the network. We did this by examining two sets
477 of conductance pair examples, *case a* (**Figure 9C,E,G**) and *case b* (**Figure 9D,F,H**), which correspond
478 to small and large $g_{ec/ca3-pyr}$ values, respectively. These two examples exhibit elevated theta power
479 relative to the initial behavior of the segment, which we notice by comparing the amplitudes of the
480 raw LFP recordings in **Figure 9Ei,Fi** to **Figure 8Bi**, and the periodograms in **Figure 9G,H** to **Figure 8C**,
481 where the theta power can be seen to be larger by about two orders of magnitude. From our
482 explorations, we observed the following: When $g_{ec/ca3-pyr}$ is small, the EC/CA3 afferents have to be
483 strongly activated to elicit a strong response to the PYR cells, hence requiring a large stimulation
484 value - see **Figure 9Biii**. However, because these afferents connect to most of the inhibitory cells, a
485 large stimulation value means strong concurrent activation of most of the inhibitory cells in the
486 network. This is why the majority of the inhibitory cells in the network are fairly active in these
487 regimes as shown in **Figure 9C**. When $g_{ec/ca3-pyr}$ is large, the activation of EC/CA3 afferents don't
488 have to be as strong (see corresponding stimulation value in **Figure 9Biii**) to elicit a similar response
489 of the PYR cells given that the $g_{ec/ca3-pyr}$ itself is already large. In this regime, the activity of most
490 inhibitory cells is low exactly because the stimulation parameter is low and the inhibitory cells are
491 not strongly activated. This can be seen in **Figure 9D**.

492 Overall, these results expose the degeneracy of the theta rhythm-generating system which can
493 occur in at least two ways depending on the exact pathway of activation of the PYR cells. It can
494 be by either by low activation of the external afferents given a large $g_{ec/ca3-pyr}$ conductance value,
495 inducing a high concurrent activation of the inhibitory cells (*case a*), or by high activation of the
496 external afferents given a small $g_{ec/ca3-pyr}$ conductance value, inducing low concurrent activation of
497 the inhibitory cells (*case b*). From this exploration, it is clear that regardless of the exact pathway
498 of activation, what appears to be critical for robust theta rhythms is the net amount of input to
499 the PYR cells. Thus, the proposition brought forth by the minimal model that the theta frequency
500 is controlled by the net amount of input that is received by the PYR cells, seems likely. With the
501 segment model, we are now in the position to directly examine whether this is the case.

502 Frequency control of theta rhythms and how they are initiated
503 Based on the minimal model's proposition, we examined the frequency of the LFP theta rhythms
504 from the perspective of the net current received by the PYR cells irrespective of whether the pathway
505 is of a *case a* or of a *case b* type. To do this, we took advantage of the numerous network simulations
506 underpinning the heatmaps of **Figure 9B**. Specifically, we examined whether the frequency of those

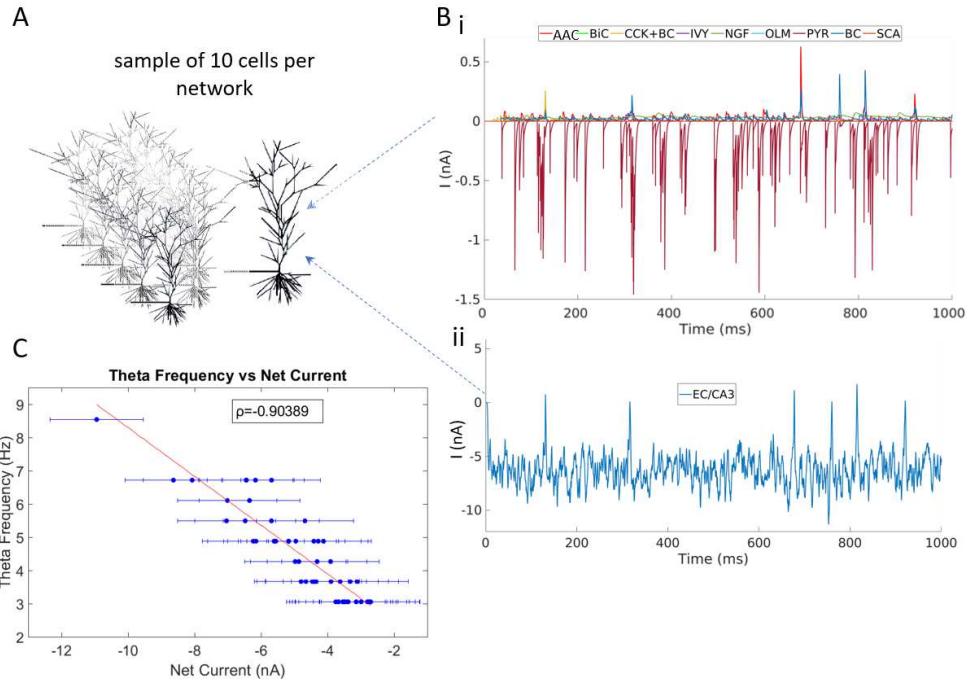


Figure 10. PYR cell net current input strongly correlates with frequency.

A. Schematic to illustrate PYR cell sampling considered for net current analyses. **B.** Illustration of EPSCs and IPSCs onto the PYR cells. (i): current inputs from other PYR cells and the eight inhibitory cell types, and (ii): the excitatory drive from EC/CA3. **C.** Theta frequency plotted versus net current. Ten cells are randomly selected from each one of the 50 networks underpinning the heatmaps of *Figure 9B*. Each dot represents the average across ten cells of the mean input current amplitudes to a given PYR cell of one of the 50 networks in *Figure 9B*. Error bars represent the standard deviation of these averages. The correlation coefficient between the theta frequency and the net input current is $\rho = -0.9$, the p -value = 5.9×10^{-19} and the slope of the red line of the linear regression fit is $r = -0.7$ Hz/nA, indicating that the LFP theta frequency increases by about one Hz every time the net drive increases by one nA. Acronyms are defined in the main text.

507 networks correlate with the net current to the PYR cells. We selected a sample of 10 PYR cells
 508 from each of the segment models, as schematized in *Figure 10A*, and computed the average and
 509 standard deviation of the net current that each of these 10 PYR cells received. An example of IPSCs
 510 and EPSCs received by a particular PYR cell is shown in *Figure 10Bi-ii*. In *Figure 10C*, we plot means
 511 and standard deviations of the net current for all of the segment model networks in *Figure 9B*, and
 512 we see that there is indeed a strong correlation between the theta frequency of each segment
 513 model and the net input received by the PYR cells (see Methods for calculations). This plot clearly
 514 demonstrates that the frequency of the theta rhythm can be predicted by the input to the PYR cells.

515 So far we've shown that the frequency of the theta rhythm relies on the net input received
 516 by the PYR cells in the segment model representing the smallest volume of tissue required to
 517 produce theta rhythms. Indeed if we chose to consider an even smaller tissue volume some
 518 of the inhibitory cells wouldn't even be part of the network purely because of their empirically
 519 derived connectivity profiles. At this point, we note that the presence of theta rhythms requires
 520 that PYR cells are connected with each other, since the rhythms do not exist if $g_{pyr-pyr}$ conductances
 521 are zeroed (see *Figure 8-Figure Supplement 1*). That is, some recurrent excitation is required, as
 522 was already shown in *Bezaire et al. (2016b)*. Also, not surprisingly, given the large contribution
 523 of the external drive in the detailed model, the theta rhythm cannot be maintained if external
 524 drive to the PYR cells is removed by setting $g_{ec/ca3-pyr}$ to zero (see *Figure 8-Figure Supplement 1*).
 525 Interestingly, what becomes evident in the segment model is that the generation of the theta
 526 rhythms is not specifically due to phasic drives from the inhibitory cells. Indeed, in these networks
 527 most of the inhibitory cell populations haven't yet organized into periodically firing populations.

528 This is particularly noticeable in **Figure 9D** where theta rhythms are present and can be seen to be
529 due to the PYR cell population firing in bursts of theta frequency. Even more, we notice that the
530 pattern of the input current to the PYR cells isn't theta-paced or periodic (see **Figure 10Bi**). Despite
531 this, the PYR cell population can organize into a theta frequency bursting population, and initiate
532 the theta rhythm. This indicates that provided the appropriate level of net input to the PYR cells, a
533 theta rhythm can start, and the initiation does not depend upon sequential, externally imposed
534 inhibition from other rhythmically firing inhibitory cells. Of course, with a larger network, other
535 inhibitory cells organize into periodically firing populations and contribute to the robustness and
536 strength of the theta rhythm. However, at its initiation stages, we can clearly say that the theta
537 rhythm 'sparks off' from the PYR cells.

538 Experimental constraints expand the understanding of theta-generating mechanisms in
539 the hippocampus

540 Given the not unexpected degeneracy in the segment model, an important aspect to consider is
541 which of the theta rhythm-generating pathways might be occurring in the biological system. As a
542 step in this direction, we turn to experimental observations from the intact hippocampus in which
543 PV+ cells were optogenetically manipulated by **Amilhon et al. (2015)**. Specifically, it was found that
544 optogenetically silencing the PV+ cells significantly reduced the theta rhythm. Thus, removing PV+
545 cells in the segment model should have a detrimental effect on theta rhythms as well. As already
546 noted, there are several sets of parameters that produce theta rhythms, and these are shown in
547 **Figure 9B**.

548 Let us go back to our previous examples of *case a* and *case b*. As can be seen in **Figure 9G,H**,
549 these two networks produce theta rhythms of similar power. To consider the experimental results
550 of **Amilhon et al. (2015)**, we removed the PV+ cells (BCs, AACs, BiCs) from the two network cases
551 to mimic an 'optogenetic' silencing, and we measured the resulting change in the theta rhythm.
552 This was done by removing the PV+ cells from the network by zero-ing all of the inhibitory synaptic
553 conductances emanating from them (**Figure 11A**, **Figure 11B-G**). It is evident that the PV+ cell
554 removal has a negative effect on the power of the theta rhythms in *case a* but not in *case b*, simply
555 based on their respective periodograms (compare **Figure 11F,G** with **Figure 9G,H**). Interestingly,
556 there was a large increase in gamma frequencies with PV+ cell removal in *case a*. In *case a*, the
557 net input to the PYR cells is the sum of both strong inhibitory and excitatory currents; thus, the
558 rhythm cannot be maintained when the inhibitory inputs from PV+ cells are lost due to the severe
559 disruption of the E-I balance. However, in *case b*, the net input to the PYR cells is mostly defined by
560 the excitatory cells. In this case, removing the PV+ cells did not affect the E-I balance enough to
561 disrupt the theta rhythms - indeed, it enhanced them (compare the peak values in the periodograms
562 of **Figure 9H** and **Figure 11G**). This implies that the different E-I balances in the segment model
563 that allow LFP theta rhythms to emerge are not all consistent with the experimental data, and by
564 extension, the biological system. Thus it appears that lower $g_{ec/ca3-pyr}$ conductance values, as in *case*
565 *a*, that rely on both inhibitory and excitatory currents are more consistent with the experimental
566 data.

567 In **Figure 12** we show a summarized, aggregate comparison of the measurements for *case a* and
568 *case b* segment models before and after the removal of the PV+ cells from the network. In *case a*
569 (**Figure 12Ai-iv**), removing the PV+ cells diminishes the theta power, while the frequency of the LFP
570 signal and the net input current to the PYR cells which are correlated, remained intact. A noticeable
571 decrease appears in the standard deviation of the current. This decrease reveals that removing
572 the PV+ cells in this regime increases the 'noisiness' of the net current, or the fluctuation around
573 its mean, which could potentially underlie the decrease in theta power in this example. Indeed,
574 after examining the minimal model in the first part of this study, we proposed an 'inhibition-based
575 tuning' mechanism for the theta rhythm, in which the PV+ cells 'tune' the PYR cell firing and by
576 consequence regularize and enhance the robustness of the theta rhythm. Such a mechanism is
577 supported by the segment model for *case a*.

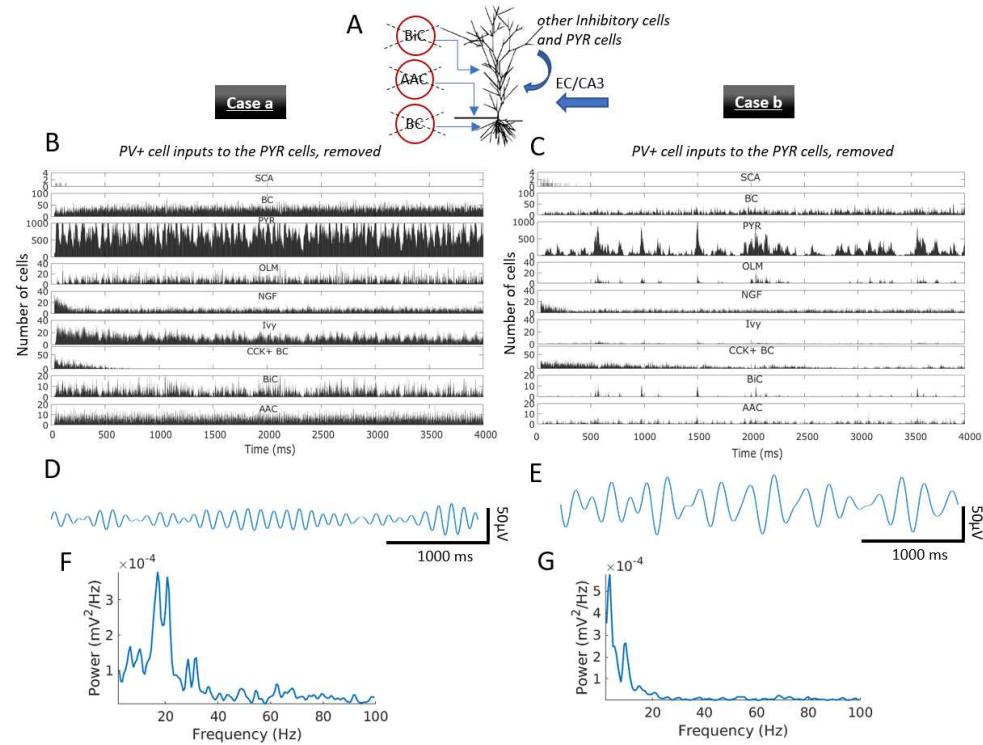


Figure 11. Effect on the theta rhythms with removal of input from PV+ cells.

A. Schematic illustrating examination of the effects of PV+ cell (BCs, AACs, BiCs) input removal to the PYR cells. **B.** Histograms of cellular activities for *case a* with PV+ to PYR cell inputs removed. Bin size = 1ms. **C.** Same as B, but for *case b*. **D.** Filtered theta signal for *case a* with PV+ to PYR cell inputs removed (peak at 6.7Hz). **E.** Same as D, but for *case b* (peak at 3.7Hz). **F.** Welch's Periodogram of LFP for *case a* with PV+ to PYR cell inputs removed. **G.** Same as F, but for *case b*. Acronyms are defined in the main text.

578 As shown for *case b* (Figure 12Bi-iv), removing the PV+ cells actually increases the power of the
 579 theta rhythm while keeping the same theta frequency in the LFP signal and the same net input
 580 current. However, in this case, the standard deviation of the net current did *not* change, unlike
 581 for *case a*. Thus, from the perspective of the experiments of *Amilhon et al. (2015)* theta rhythm
 582 generation via a *case a* type pathway seems more biologically realistic while it also supports the
 583 proposed inhibition-based tuning mechanism from the minimal model. In *Figure 12C*, we provide a
 584 schematic of the biophysical theta generation mechanism and frequency control. This comparison
 585 with experiment brings forth the importance of understanding the inner mechanisms underpinning
 586 the dynamic output of a system, as high-dimensional models are likely to express degeneracy,
 587 which could however come forth via separable “pathways” of different biological implications.

588 Discussion

589 Including biological complexity in cellular-based network models challenges our ability to under-
 590 stand their dynamic behaviours. To tackle this challenge, we have brought together two previously
 591 published models of the CA1 microcircuit that generate theta rhythms without oscillatory inputs.
 592 The two models mimic the intrinsic theta rhythms of an intact, whole hippocampus preparation
 593 (*Goutagny et al., 2009*). One of them - the minimal model (*Ferguson et al., 2017*) - only has fast-
 594 firing PV+ and PYR cells, whereas the other - the detailed model (*Bezaire et al., 2016b*) - has eight
 595 different inhibitory cell types and PYR cells. The minimal model uses a simplified Izhikevich mathe-
 596 matical model structure for cellular representations, with parameter values determined from fits to
 597 experimental data from the whole hippocampus preparation, whereas the detailed model uses
 598 multi-compartment conductance-based cellular representations, determined from an extensive

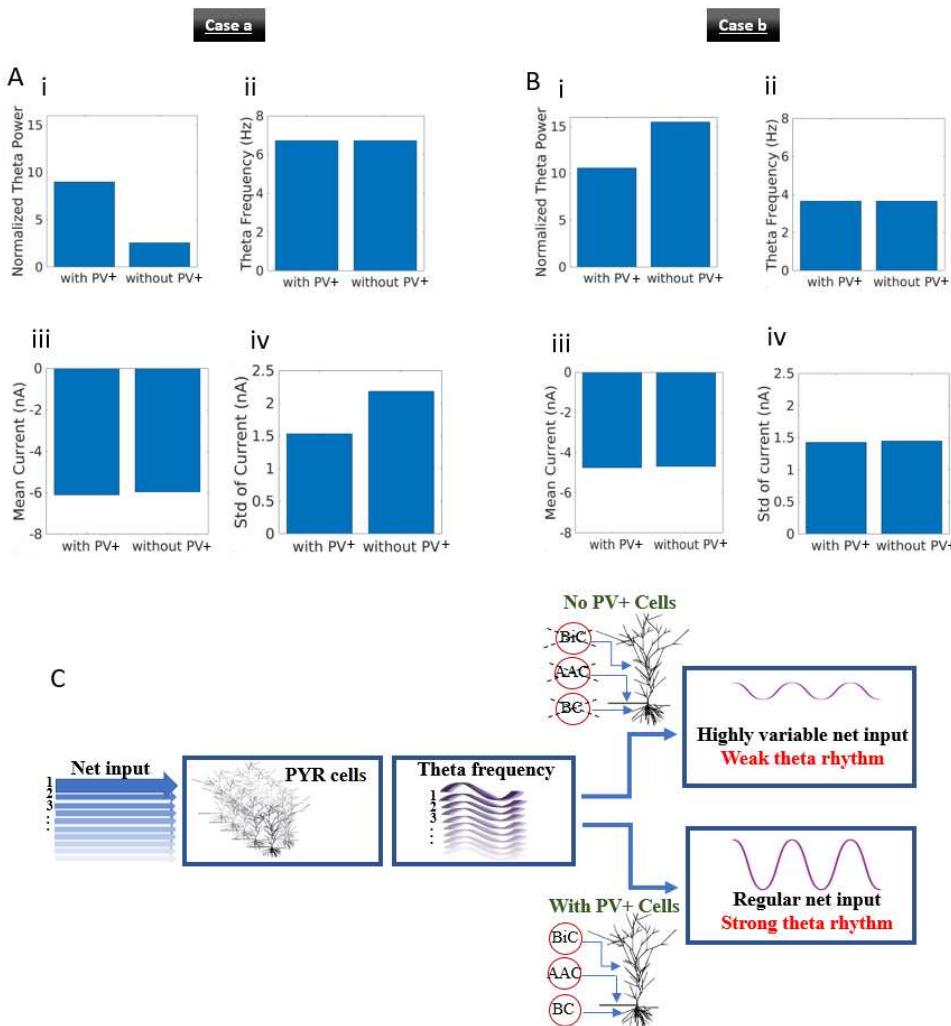


Figure 12. Aggregate comparison of theta rhythms before and after the removal of inputs to PYR cells from PV+ cells and schematic of 'biophysical theta'.

A. Results for case a. (i): Normalized theta power, (ii): theta frequency, (iii): mean current, and (iv): standard deviation of current, with and without PV+ cells for case a. **B.** Same as A., but for case b. **C.** The net PYR cell input controls the resulting theta frequency. The PV+ cells contribute to the net input while they also regularize it and amplify theta power.

599 knowledge-based review of the literature (Bezaire and Soltesz, 2013).

600 The wide variety of cell types that make up brain circuits leads to high-dimensional sets of
 601 nonlinear, differential equations described by large sets of parameters incorporated into models.
 602 This makes application of theoretical analyses difficult and parametric explorations computationally
 603 expensive. In our approach of bringing together the two models in this study, we implemented a
 604 focused, hypothesis-driven parametric search of a fragment of the detailed model, the segment
 605 model, guided by the minimal model. This allowed us to establish a cellular basis for how intrinsic
 606 theta rhythms are generated and how their frequencies are controlled in CA1 microcircuits of
 607 the hippocampus. The importance of considering multi-level and multi-granular networks to
 608 understand brain phenomena as done here, was recently discussed by Einevoll *et al.* (2019).

609 **Summary overview**

610 We started from the minimal model where it was previously shown that population bursts of theta
 611 frequency can be generated in E-I networks with sparse firing of PYR cells and EPSC/IPSC current

612 amplitude ratios as observed experimentally. This occurred due to *SFA*, *Rheo* and *P/IR* building block
613 features. Using heterogeneous PYR cell populations and quantification of *SFA*, *Rheo* and *P/IR* building
614 block features, we explored the robustness of the theta generation mechanism in the minimal
615 model and found that it is sensitive to specific *Rheo* and *P/IR* quantified values, but not to *SFA*. We
616 subsequently used PRCs to determine how the frequency of theta rhythms could be controlled,
617 and proposed an 'inhibition-based tuning' mechanism in which inhibitory inputs to the PYR cell
618 population allow a stable theta rhythm to emerge, given an appropriate net input to the PYR cells.
619 This paved the way for investigations with the detailed model where this could be directly examined.

620 Since the detailed model was not explicitly built with the whole hippocampus preparation in
621 mind, we computed EPSC/IPSC amplitude ratios and confirmed that they were in line with those
622 observed experimentally in the whole hippocampus. Comparisons between minimal and detailed
623 models validated the predicted connectivity balance in the minimal model and exposed notable
624 differences.

625 We extracted a 'piece' of the detailed model of comparable cell numbers as the minimal model -
626 termed the segment model - and showed that it could generate theta rhythms, albeit noisy and of
627 low LFP power. This finding supports the experimental observations of *Goutagny et al. (2009)* that
628 the theta rhythm in the whole hippocampus is composed of a set of coupled oscillators, and only a
629 part of the entire hippocampus is required to generate theta rhythmic output, an 'oscillator'. With
630 this smaller segment model, we focused our investigation on the differences between the minimal
631 and the detailed model, namely the PYR-PYR synaptic weights and the external drives.

632 We found a strong correlation between the theta oscillation frequency and the average net
633 input delivered to the PYR cells. This indicates that the frequency of the LFP theta rhythm can be
634 predicted by the inputs to the individual PYR cells of the network. Further investigations of the
635 segment model revealed that the theta rhythm is initiated by the PYR cells but is regularized by
636 the PV+ cells since their removal caused a large decrease in the LFP power and an increase in the
637 variability of the net current received by the PYR cells. Together, this supports an inhibition-based
638 tuning mechanism for theta generation (see *Figure 12C*).

639 **Mechanism underpinnings and leveraging of theoretical insights**

640 From our previous work we already knew that minimally connected PYR cell networks produced
641 theta frequency population bursts on their own (*Ferguson et al., 2015a*), but the majority of the
642 PYR cells would fire during population theta bursts which is unlike the experimental observations
643 of sparse PYR cell firing. With the inclusion of PV+ cells to create E-I networks, the population of
644 PYR cells fired sparsely, which makes sense since the addition of inhibitory cells leads to less firing
645 of PYR cells due to silencing from the inhibition. Relatedly, it has been shown that feedforward
646 inhibition plays a role in maintaining low levels of correlated variability of spiking activity (*Middleton
647 et al., 2012*).

648 It is important to point out different PYR cell aspects in the minimal and detailed models. As
649 mentioned, for the minimal model we know that the PYR cell population on its own can generate
650 a population theta rhythm, and this is by virtue of its intrinsic properties that includes an *SFA*
651 building block feature (*Ferguson et al., 2015a*). In that previous work, we had used a PYR cell model
652 that is strongly adapting based on fits to the experimental data, or weakly adapting based on
653 another experimental dataset in the same paper (*Ferguson et al., 2015b*), that could produce theta
654 frequency population bursts in both cases. As discussed in *Ferguson et al. (2015b)*, it is unlikely
655 that there are distinct types of biological PYR cells that are strongly or weakly adapting, but rather a
656 continuum of adaptation amount dependent on the underlying balances of biophysical ion channel
657 currents. Our explorations of the robustness of the theta generation mechanism in the minimal
658 model revealed that theta rhythms are not sensitive to the specific quantified value of the *SFA*
659 building block feature, so long as there is some adaptation. Thus, although the minimal model from
660 *Ferguson et al. (2017)* used a strongly adapting PYR cell model and the minimal model database
661 used here started from this strongly adapting PYR cell model basis, it is unlikely that our results

662 would be affected.

663 For the detailed model, the PYR cell model is based on experimental data in which some
664 adaptation can be seen in the experimental recording, but is not apparent in the PYR cell model
665 output of the detailed model (see Appendix of *Bezaire et al. (2016b)*). This then suggests that the
666 prediction of the segment model that the PYR cells are the initiator of theta rhythms is not simply
667 due to adaptation. It must thus involve other intrinsic characteristics of the the biophysical PYR cell
668 models. That excitatory networks can produce population bursts in of themselves is not new to
669 the theoretical, modeling world, but it has not been previously shown that this could be the case in
670 a biophysically detailed CA1 microcircuit model. An important candidate among PYR cell intrinsic
671 properties that affect *P/R* is the hyperpolarization-activated (h-) channel (*Ascoli et al., 2010*). The
672 h-channel has been shown to be a pacemaking current and contributes to subthreshold resonance
673 (*Biel et al., 2009*). It has been a focus in general network modeling studies (e.g., *Avella Gonzalez*
674 *et al. (2015)*), as well as specific to inhibitory cells in the generation of coherent oscillations (*Rotstein*
675 *et al., 2005*). It is interesting to note that the h-channel, with its non-uniform distribution, has been
676 shown to play an important role in shaping the output of LFP recordings, as determined from
677 multi-compartment LFP modeling studies (*Ness et al., 2016, 2018; Sinha and Narayanan, 2015*).
678 How exactly h-channels in PYR cells influence the dynamics and frequency of LFP theta rhythms in
679 CA1 microcircuits will be interesting to investigate further.

680 As shown in our heterogeneous PYR cell E-I network explorations, the presence of theta rhythms
681 (i.e., population bursts in the minimal model) was sensitive to the specific quantified values of *P/R*
682 and *Rheo* building block features. It is expected that there would be a sensitivity to *Rheo* as the
683 rheobase current of PYR cells dictate whether a PYR cell would spike or not. We had noted that an
684 Izhikevich cellular model requires a positive *b* value in order for *P/R* to occur - i.e., for a spike to fire
685 after hyperpolarization, and while there is sensitivity to this *P/R* value, it is not the case that PYR cell
686 firing occurs on rebound from inhibition during the ongoing theta population bursts (see *Figure 4*).
687 In actual CA1 PYR cells, it has been shown that *P/R* spiking does occur, mediated by h-channels,
688 and is locally controlled by biophysical ion channel balances (*Ascoli et al., 2010*). Whether PYR
689 cells actually fire due to *P/R* during ongoing theta rhythms may or may not be the case, and one
690 could potentially disentangle this in the model with consideration of the variety of inhibitory cell
691 types. However, this seems less critical to figure out now that we have exposed a strong correlation
692 between the frequency of the theta rhythm and the net current to the individual PYR cells. We know
693 that *P/R* is present in CA1 PYR cells, and we know that the minimal model indicates it as a sensitive
694 feature for theta rhythms, and we thus predict that changes to the PYR cell's intrinsic properties
695 that affect *P/R* would affect the resulting theta rhythms.

696 PRC theory has been used in a variety of ways in the neuroscience field (*Schultheiss et al., 2011*),
697 and particularly in consideration of network dynamics. For example, *Hansel et al. (1995)* used PRCs
698 to explain the differential capacity for excitatory signalling to synchronize networks of Type I or Type
699 II neurons (these types are differentiated by their bifurcation type (*Izhikevich, 2006*)), *Rich et al.*
700 (*2016*) analyzed synchronization features in purely inhibitory networks using PRCs, and *Achuthan*
701 *and Canavier (2009)* used PRCs to understand clustering in networks. We took advantage of PRC
702 theory by considering phase-resetting of the PYR cells in the E-I networks due to incoming inhibitory
703 input. In this way, we were able to hypothesize an inhibition-based tuning mechanism for control of
704 the theta rhythm frequency based on the PRC shape (amount of advance or delay) and the PYR
705 cell's intrinsic firing frequency. Our use of PRCs relied on our observations of the effect of different
706 PRC shapes on the resulting theta rhythm. Such a consideration is similar to that used by *Rich et al.*
707 (*2016*) to explain differential synchrony patterns in inhibitory networks of Type I vs Type II neurons.

708 **Physiological considerations and related studies**

709 Based on the number of cells, the minimal and segment models are designed to represent a
710 'piece' of CA1 microcircuitry, and not the whole hippocampus preparation. However, the ability of
711 these models to generate population theta rhythms on their own, is in line with the observations of

712 **Goutagny et al. (2009)** where transmission between portions of the whole hippocampus preparation
713 were blocked with procaine (see their supplementary Fig.11). With each piece of tissue being
714 able to generate theta oscillations on its own, the whole hippocampus would represent a set
715 of coupled oscillators. Indeed, traveling theta waves in hippocampus and neocortex have been
716 considered in this fashion (**Lubenov and Siapas, 2009; Zhang et al., 2018**). In previous work, we used
717 phase-coupled oscillator models, assumed inhibitory coupling between oscillators and examined
718 asymmetries in coupling strengths that could be responsible for the experimentally observed
719 propagation of slow rhythms (**Skinner et al., 2001**). In that vein, it may be worth considering
720 whether one could combine the mechanistic insights from microcircuit and coupled oscillator
721 model studies.

722 The extensive set of simulations performed with the segment model showed that different
723 cell-specific pathways dominate LFP theta rhythms of similar frequency and power, exposing degen-
724 eracy. While model degeneracy in high-dimensional model systems is expected, it underlines the
725 importance of probing generation mechanisms whenever possible, and not just comparing outputs.
726 There are multiple pathways in the circuitry, and at the *in vivo* level, one cannot unambiguously dis-
727 entangle these pathways or have cell-type considerations (**Benito et al., 2014**). Using the segment
728 model, we were able to consider two distinct 'pathways' by which theta rhythms are generated -
729 one where the EC/CA3 to PYR cell inputs dominated (*case b*) and another where they did not (*case a*).
730 Based on perturbative responses to the model to mimic the experiments, only *case a* was in
731 accordance with experimental data (**Amilhon et al., 2015**). We note that the differences between
732 the cases could actually reflect differences in the contributions of particular inhibitory populations
733 since, for example, the recordings that we compare our simulations to are taken from the superficial
734 layers of the hippocampus. Indeed, in a very recent modeling study by **Navas-Olive et al. (2020)**
735 that built on the detailed model of **Bezaire et al. (2016b)**, it was shown that deep and superficial
736 PYR cells fire at different phases of the theta oscillation and are driven by different inhibitory cell
737 populations. In that study, the authors found that in CA1, PV+ BCs preferentially innervate PYR cells
738 at the deep sublayers while CCK+ BCs are more likely to target superficial PYR cells. It is possible
739 thus, that our *case b* regime reflects a theta rhythm relevant to the deep CA1 layers which is highly
740 modulated by the CCK+ BCs, which, in contrast to the PV+ BCs, happen to be particularly active in
741 *case b*. However, what is clear from our work is that specific perturbations could determine the
742 dominance of different cellular pathways by comparing LFP output characteristics.

743 The determination of an inhibition-based tuning mechanism for theta generation stemmed from
744 this study is essential, as it forms a foundation from which to consider E-I 'balances' during theta
745 rhythms from detailed physiological and experimental perspectives. E-I balances have been shown
746 to be quite precise in feedforward networks from CA3 to CA1 (**Bhatia et al., 2019**), and fine-scale
747 mapping studies show structured synaptic connectivity between different cell types in these regions
748 (**Kwon et al., 2018**). Thus, in the absence of a detailed enough cellular-based network model one
749 could not really situate emerging biological details' contributions to theta rhythms. On the other
750 hand, in the absence of some mechanistic understanding, the importance of various biological
751 details is challenging to contain. In this work, we have combined the strengths of minimal and
752 detailed models, and have perhaps reached an 'inflection point' (**Gjorgjieva et al., 2016**) by having
753 enough, but not too much, biological realism to obtain a cellular-based mechanistic understanding.
754 Had we started from models that were either more abstract or more detailed, model linkages and
755 mechanism translations may have not been possible (i.e., too far from an 'inflection point').

756 **Limitations and future work**

757 Even though our modeling study sheds light on the foundation of the theta mechanism, more can
758 still be unveiled in terms of the specific roles of the variety of inhibitory cell types in the segment
759 model and their inter-relationships. Through optogenetic perturbations, experimental studies
760 have already explored how PV+ as well as somatostatin-positive (putative OLM cells) cells affect
761 intra-hippocampal theta rhythms (**Amilhon et al., 2015**). Our previous modeling work examined the

762 contribution of BiCs, BCs and OLM cells to ongoing theta rhythms and LFP generation (*Chatzikalym-
763 niou and Skinner, 2018; Ferguson et al., 2015c*) in light of these experimental studies. However, the
764 segment model, with its complement of eight inhibitory cell types and its computational tractability,
765 provides an exciting opportunity to extract and predict specific inhibitory pathways and their activa-
766 tion machinery during theta rhythms. Achieving this will help guide and target perturbation and
767 stimulation paradigms in pathological states.

768 Besides *Bezaire et al. (2016b)*, other detailed CA1 microcircuit models that include multiple
769 inhibitory cell types have been developed ((*Cutsuridis et al., 2010; Shuman et al., 2020; Turi et al.,
770 2019*)). However, these models were used to examine higher level behaviours and theta rhythms
771 were imposed, not generated within the models. Recently, a very detailed quantification of synaptic
772 anatomy and physiology that includes short-term plasticity has been done, and is provided as
773 a resource for the community (*Ecker et al., 2020*). It may be possible to examine these other
774 detailed models in light of our mechanistic understanding, and further, to design a strategy that
775 would appropriately include additional inhibitory cell types in the CA1 microcircuit model via the
776 determined mechanism.

777 **Concluding remarks and a proposal: A 'pacemaker circuit'**

778 Six years ago, Siegle and Wilson's work (*Siegle and Wilson, 2014*) showed strong support for phase
779 coding in the hippocampus, using the encoding and retrieval paradigm developed by Hasselmo
780 (*Hasselmo et al., 2002*) with theta rhythms. Recognizing the multi-layered aspects of theta rhythms -
781 different cholinergic sensitivities, distinct phase relationships with different inhibitory cell types, low
782 and high frequency theta types, different behavioural correlates and information processing, dorsal
783 and ventral differences, heavy dependence on medial septal circuitry interactions (*Chauvière, 2020;
784 Colgin, 2013, 2016; Hinman et al., 2018*) - our work plants a seed.

785 Until now, it was not clear how one could consider theta rhythms from both cell-type pathways
786 with E-I balances and functional behavioural perspectives. Our work suggests that there is no longer
787 a need to separately impose theta rhythms on network models, as the cells in these networks are
788 themselves part of the theta rhythm-generating machinery and this 'separation' eliminates some of
789 the interactions that may be critical and thus hinder our understanding of the system. What is clear
790 is that there *is* a theta rhythm generator in the hippocampus, i.e., intrinsic theta rhythms can be
791 generated in a whole hippocampus preparation (*Goutagny et al., 2009*). We know that interactions
792 with the medial septum (MS) are important for theta, but we note that lesioning the MS reduces,
793 but does not terminate theta rhythms (*Colgin, 2013; Winson, 1978*). Modeling work has suggested
794 that theta rhythms could arise due to hippocampo-septal interactions (*Hajós et al., 2004; Wang,
795 2002*). It is likely that interactions with the MS circuitry act to make the intrinsic hippocampus theta
796 rhythms more robust, and impose theta rhythms in MS. Interestingly, experimental data has shown
797 that rhythmic stimulation of the hippocampo-septal fibers can 'phase' MS neurons at that exact
798 frequency due to rebound dependent h-channels, suggesting that the intrinsic hippocampus theta
799 generator could be transferred to MS neurons via E-I interactions (*Manseau et al., 2008*). At present,
800 we are not aware of any evidence supporting that the MS can generate theta rhythms on its own.

801 Thus we propose that CA1 PYR cells act as theta rhythm initiators tuned by the inhibitory cell
802 populations to create a 'pacemaker circuit' - a core theta generator - in the hippocampus, with PYR
803 cells sensitively dependent on 'pacemaking' h-channels. Amplification of these rhythms occurs
804 due to inputs from the MS, while the net input received by the PYR cells controls the resulting
805 theta frequency. From this intrinsic theta rhythm foundation, we can build, and in the process,
806 disentangle the cellular-based and multi-layered aspects of theta rhythm generation and function
807 in the hippocampus (*Brandon et al., 2011; Koenig et al., 2011; Jaramillo and Kempter, 2017*), and
808 possibly other brain structures, since interestingly, functional connectivity studies have shown
809 that the hippocampus is a brain hub (*Battaglia et al., 2011; Mišić et al., 2014*). A schematic of our
810 proposal is shown in *Figure 13*.

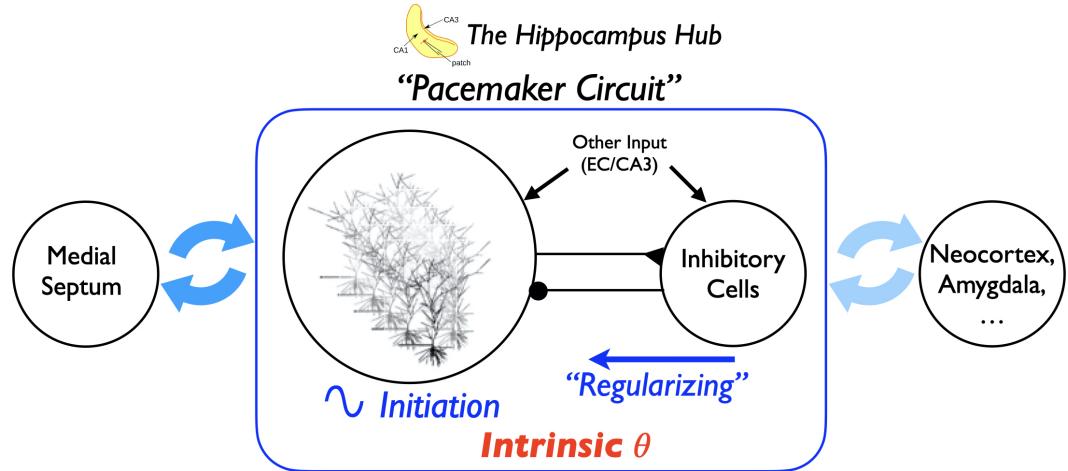


Figure 13. Proposing a theta pacemaker circuit in a hippocampus hub.

The hippocampus can produce intrinsic theta oscillations on its own, without the need for any oscillatory input. In the work here, we have shown that theta rhythms can be generated by the PYR cell population, and are 'tuned' and regularized by the inhibitory cell population, as illustrated in the rectangle. We propose that this theta pacemaker circuit is amplified by connections with the MS via hippocampo-septal cellular interactions, as illustrated by the dark blue thick arrows. That is, the MS is not a theta rhythm generator, but rather acts to enhance and amplify the existing intrinsic theta rhythm in the hippocampus, and would play a role in setting the particular theta rhythm frequency. This would occur due to the MS cellular inputs affecting the net input current to the PYR cells in the hippocampus. The theta rhythm would further interact with other regions such as neocortex and amygdala, as illustrated by the light blue thick arrows (Battaglia *et al.*, 2011). The possibility of a hippocampus hub is supported by connectivity studies (Mišić *et al.*, 2014). The whole hippocampus schematic is adapted from Fig 1 of Huh *et al.* (2016).

811 Methods

812 The minimal model and expanded explorations

813 Details of the minimal model rationale and setup are previously published in Ferguson *et al.* (2017),
814 but some background relevant to the present work is summarized here. The minimal model
815 represents an approximate one mm³ 'piece' of the CA1 region of the hippocampus determined to
816 be enough to generate theta rhythms (Goutagny *et al.*, 2009). It has 30,500 cells (30,000 excitatory,
817 PYR cells and 500 inhibitory, fast-firing PV+ cells). In analyses of excitatory networks on their
818 own, a scaling relationship between cell number, connection probability and excitatory synaptic
819 weight allowed us to use 10,000 PYR cells rather than 30,000 in the excitatory network simulations
820 (Ferguson *et al.*, 2015a). As the model is minimal, we could perform thousands of simulations on
821 high-performance computing to ascertain parameter balances that would produce theta rhythms
822 as well as capture experimental data results of EPSC/IPSC amplitude ratios. For this to be the case,
823 we found that the connection probability from PV+ to PYR cells should be larger than from PYR to
824 PV+ cells (Ferguson *et al.*, 2017).

825 We note that the PV+ cells have intrinsic and synaptic connectivity aspects derived from experiment
826 and that inhibitory PV+ cell networks fire coherently given appropriate excitatory drives and
827 synaptic weights (Ferguson *et al.*, 2013). In the E-I networks of the minimal model, the excitatory
828 drive to PV+ cells comes from the PYR cell population (see schematic in Figure 1). We note that
829 when we did the E-I network simulations in Ferguson *et al.* (2017), we chose the synaptic weight
830 (between PV+ cells) to be such that it could be at the 'edge' of firing coherently (high frequency)
831 or not (see Fig. 3 in Ferguson *et al.* (2013)). As such, given an appropriate excitatory drive, it can
832 be switched into a high frequency coherent regime so that the PV+ cell network could produce
833 an inhibitory 'bolus'. From estimates of EPSCs onto the PV+ cells of 1000 pA, the synaptic weight
834 between PV+ cells was set to 3 nS (Ferguson *et al.*, 2017).

835 Cellular specifics and equations

836 The network structure and cellular details for the minimal model simulations in the present paper
837 are similar to those in *Ferguson et al. (2017)*. That is, cellular models (PYR and PV+ cells) are based on
838 experimental data from the *in vitro* whole hippocampus preparation (*Ferguson et al., 2013, 2015b*).
839 They use the mathematical model structure developed by Izhikevich (*Izhikevich, 2010, 2006*), in
840 which the subthreshold behaviour and the upstroke of the action potential are captured, and a
841 reset mechanism to represent the spike's fast downstroke is used. Despite being relatively simple,
842 parameter choices can be made such that they have a well-defined (albeit limited) relationship to
843 the electrophysiological recordings. It has a fast variable representing the membrane potential,
844 V (mV), and a variable for the slow "recovery" current, u (pA). We used a slight modification to be
845 able to reproduce the spike width. It is described by the following set of equations:

$$C_m \dot{V} = k(V - v_r)(V - v_t) - u + I_{other} - I_{syn} \quad (1)$$
$$\dot{u} = a[b(V - v_r) - u]$$

843 if $V \geq v_{peak}$, then $V \leftarrow c$, $u \leftarrow u + d$
844 where $k = k_{low}$ if $V \leq v_t$, $k = k_{high}$ if $V > v_t$

845 where C_m (pF) is the membrane capacitance, v_r (mV) is the resting membrane potential, v_t (mV) is
846 the instantaneous threshold potential, v_{peak} (mV) is the spike cut-off value, a (ms^{-1}) is the recovery
847 time constant of the adaptation current, b (nS) describes the sensitivity of the adaptation current
848 to subthreshold fluctuations - greater values couple V and u more strongly resulting in possible
849 subthreshold oscillations and low-threshold spiking dynamics, c (mV) is the voltage reset value,
850 d (pA) is the total amount of outward minus inward currents activated during the spike and affecting
851 the after-spike behaviour, and k (nS/mV) represents a scaling factor. $I_{syn} = 0$ for the isolated cell.
852 I_{other} is as described below for computing metrics for the PYR cell or E-cell.
853 Model parameter values for the PV+ cell or I-cell (units above) are: $v_r = -60.6$; $v_t = -43.1$; $v_{peak} = -2.5$; $c = -67$;
854 $k_{high} = 14$; $C_m = 90$; $a = 0.1$; $b = -0.1$; $d = 0.1$; $k_{low} = 1.7$. These parameters are as previously determined
855 (*Ferguson et al., 2013*), and are not varied. Model parameter values (units above) for the PYR cell
856 are: $v_r = -61.8$; $v_t = -57$; $v_{peak} = 22.6$; $c = -65.8$; $k_{high} = 3.3$; $C_m = 115$; $a = 0.0012$; $b = 3$; $d = 10$; $k_{low} = 0.1$. These
857 parameters are as previously determined for strongly adapting cells (*Ferguson et al., 2015b*), and
858 the a, b, d, k_{low} parameters are varied.
859

860 Network specifics and equations

861 The cellular models described above were used to create excitatory-inhibitory (E-I) networks as
862 done in *Ferguson et al. (2017)*. Specifically, synaptic input between PYR cells (E-cells), PV+ cells
863 (I-cells) and between PYR and PV+ cells by representing synaptic input in Equation 1 as:

$$I_{syn} = g \cdot s(V - E_{rev}) \quad (2)$$

864 where g (nS) is the maximal synaptic conductance of the synapse from a presynaptic neuron to the
865 postsynaptic neuron, E_{rev} (mV) is the reversal potential of the synapse, and V (mV) is the membrane
866 potential of the postsynaptic cell. The gating variable, s , represents the fraction of open synaptic
867 channels, and is given by first order kinetics (*Destexhe et al. (1994)*, and see p.159 in *Ermentrout
868 and Terman (2010)*):

$$\dot{s} = \alpha[T](1 - s) - \beta s \quad (3)$$

869 The parameters α (in $MM^{-1}ms^{-1}$) and β (in ms^{-1}) in Equation 3 are related to the inverse of the rise
870 and decay time constants (τ_R , τ_D in ms). $[T]$ represents the concentration of transmitter released by

871 a presynaptic spike. Suppose that the time of a spike is $t = t_0$ and $[T]$ is given by a square pulse of
 872 height 1 mM lasting for 1 ms (until t_1). Then, we can represent

$$s(t - t_0) = s_\infty + (s(t_0) - s_\infty)e^{-\frac{t-t_0}{\tau_s}}, \quad t_0 < t < t_1$$

873 where $s_\infty = \frac{\alpha}{\alpha+\beta}$ and $\tau_s = \frac{1}{\alpha+\beta}$. After the pulse of transmitter has gone, $s(t)$ decays as

$$s(t) = s(t_1)e^{-\beta(t-t_1)} \quad (4)$$

874 For network simulations, I_{other} in Equation 1 represents 'other input' to the PYR cell population
 875 (see **Figure 1**), and is given by $I_{\text{other}} = -g_e(t)(V - E_{\text{rev}})$. $g_e(t)$ is a stochastic process similar to the
 876 Ornstein-Uhlenbeck process as used by Destexhe and colleagues (**Destexhe et al., 2001**)

$$\frac{dg_e(t)}{dt} = -\frac{1}{\tau_e}(g_e(t) - g_{e,\text{mean}}) + \sqrt{\frac{2\sigma_e^2}{\tau_e}}\chi_e(t) \quad (5)$$

877 where $\chi_e(t)$ is an independent Gaussian white noise process of unit standard deviation and zero
 878 mean, $g_{e,\text{mean}}$ (nS) is the average conductance, σ_e (nS) is the noise standard deviation value, and τ_e
 879 is the time constant for excitatory synapses. τ_e is fixed based on values as used in **Destexhe et al.**
 880 (**2001**) ($\tau_e = 2.73 \text{ ms}$).

881 Parameter values (rationale and refs given in **Ferguson et al. (2017)**) are: $E_{\text{rev}} = -15$ or -85 mV
 882 for excitatory or inhibitory reversal potentials respectively. Rise and decay time constants are,
 883 respectively, 0.27 and 1.7 msec for PV+ to PV+ cells; 0.3 and 3.5 msec for PV+ to PYR cells; 0.37 and
 884 2.1 msec for PYR to PV+ cells; 0.5 and 3 msec for PYR to PYR cells. Connection probabilities are
 885 fixed at 0.12 for PV+ to PV+ cells and 0.01 for PYR to PYR cells, as estimated from the literature. For
 886 the simulations in this paper, we use connection probabilities that were found to be in line with
 887 the experimental data. That is, where the connection probability from PV+ to PYR cells ($c_{PV,PYR}$) be
 888 larger than from PYR to PV+ cells ($c_{PYR,PV}$).

889 Specifically, for the heterogeneous networks examined in this paper, we mainly focus on
 890 parameter values from Table 5 of **Ferguson et al. (2017)**: $g_{\text{pyr}} = 0.094 \text{ nS}$, $\sigma_e = 0.6 \text{ nS}$, $g_{\text{pyr-pv}} = 3 \text{ nS}$,
 891 $g_{\text{pv-pyr}} = 8.7 \text{ nS}$, $c_{PYR,PV} = 0.02$, $c_{PV,PYR} = 0.3$, $g_{e,\text{mean}} = 0 \text{ nS}$. An actual instantiation of the 'other input'
 892 that these parameter values produce can be seen in the schematic figure of **Figure 5**. We also
 893 consider networks with parameter values of: $g_{\text{pyr}} = 0.014 \text{ nS}$, $\sigma_e = 0.6 \text{ nS}$, $c_{PYR,PV} = 0.02$, $c_{PV,PYR} = 0.3$;
 894 and $g_{\text{pyr}} = 0.084 \text{ nS}$, $\sigma_e = 0.2 \text{ nS}$, $c_{PYR,PV} = 0.04$, $c_{PV,PYR} = 0.5$; and $g_{\text{pyr}} = 0.084 \text{ nS}$, $\sigma_e = 0.6 \text{ nS}$, $c_{PYR,PV} = 0.02$,
 895 $c_{PV,PYR} = 0.5$ ($g_{\text{pyr-pv}}$, $g_{\text{pv-pyr}}$, $g_{e,\text{mean}}$ the same as focused parameter values), and similar results are
 896 obtained. From the minimal model we know that theta population bursts occur when PYR cells
 897 receive zero mean excitatory drive with fluctuations of $\approx 10-30 \text{ pA}$ (as estimated from 0.2 to 0.6 nS
 898 'noise') (**Ferguson et al., 2017**).

899 PYR cell (E-cell) model database and building block feature quantifications

900 To create a database of PYR cell models, we range the a, b, d, k_{low} model parameter values to create
 901 10,000 models, 10 different values for each parameter, so as to encompass the default values
 902 from **Ferguson et al. (2015b)** obtained in creating the strongly-adapting PYR cell model based on
 903 experimental data from the whole hippocampus preparation. The default values of the strongly
 904 adapting PYR cell model are: $a = 0.0012 \text{ ms}^{-1}$; $b = 3.0 \text{ nS}$, $d = 10 \text{ pA}$, $k_{\text{low}} = 0.10 \text{ nS/mV}$ and for the PYR cell
 905 model database, the parameter ranges are: *[initial value, final value, resolution]*: $a = [0.0, 0.00216,$
 906 $0.00024]$; $b = [0.0, 5.4, 0.6]$; $d = [0, 18, 2]$; $k_{\text{low}} = [0.0, 0.18, 0.02]$.

907 For each PYR cell model, spike frequency adaptation (SFA), post-inhibitory rebound (PIR) and
 908 rheobase (Rheo) building block features are quantified to allow comparisons to be made. The
 909 Euler integration method is used to integrate the cell equations with a timestep of 0.1 msec.
 910 Quantification of building block features is done as follows:

911 **Rheo:** Starting from v_r , each PYR cell model is given a constant current from -25 to 25 pA in 0.5 pA
 912 increments. If a spike is generated within the first 500 msec, then that constant current value is

913 considered as the rheobase current, and is taken as the *Rheo* quantified value.
914 PIR: Starting from v_r , each PYR cell model is subjected to a one second hyperpolarizing step current
915 for current values from 0 to -25 pA with a resolution of 0.5 pA. If a spike occurred upon termination
916 of a given hyperpolarization step (i.e., a PIR spike) but not at the previous step value, then that step
917 value is considered as the *PIR* quantified value.
918 SFA: Starting from v_r , each PYR cell model is subjected to input currents for one second, from 0 to
919 98 pA (inclusive) in 2 pA increments. For each input current, the number of spikes is recorded, and
920 the interspike interval is calculated between the first and second spikes, and the last and second
921 from last spike. The inverse is taken and defined as the initial and final frequency at that current.
922 The initial and final frequencies as a function of the current steps creates a smooth, approximately
923 linear relationship, so lines are fitted to the initial and final frequency plots. The slopes of those lines
924 are subtracted from one another (the initial slope is always steeper) to produce the *SFA* quantified
925 value.
926 The range of quantified values obtained from the model database of 10,000 PYR cells is: *SFA*:
927 -0.001 to 0.64 (Hz/pA); *Rheo*: 1.5 to 6.5 (pA); *PIR*: -23.5 to -1.0 (pA). How they end up being distributed
928 is shown in **Figure 2**, and while clearly not a uniform or normal distribution, they encompass a wide
929 range of values. The quantified values for the strongly adapting PYR cell model that we use as our
930 starting basis in generating the model database (see above for full model and parameter values)
931 are: *SFA*= 0.46; *Rheo*= 4.0; *PIR* = -5.0. We refer to them as the base values.
932 **Heterogeneous PYR cell setup**
933 The two ways in which heterogeneous PYR cell populations are created is as follows:
934 (i) Using narrow (*N*) or broad (*B*) ranges of values for [*SFA*, *Rheo*, *PIR*] relative to base values, where *N*
935 or *B* means that [*SFA*, *Rheo*, *PIR*] metric values are $\pm [0.1, 0.5, 0.5]$ or $\pm [0.45, 3.0, 5.0]$ respectively, of
936 base values. Thus, *NNN* refers to models with [*SFA*, *Rheo*, *PIR*] values of: [(0.36 to 0.56 exclusive of
937 bounds; 4.0; -5.0], and *BBB* refers to models with [*SFA*, *Rheo*, *PIR*] values of: [(0.01 to 0.64 exclusive
938 of bounds (noting that 0.64 is the maximum possible in the model database set); 1.5, 2.0, 2.5, 3.0,
939 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5; -0.5, -1.0, -1.5, -2.0, -2.5, -3.0, -3.5, -4.0, -4.5, -5.0, -5.5, -6.0, -6.5, -7.0,
940 -7.5, -8.0, -8.5, -9.0, -9.5]. Note that since the resolution of the *Rheo* and *PIR* quantified values are 0.5,
941 and the manner in which it is defined (see above), the *N* range for *Rheo* has models in which *Rheo* =
942 4.0 only, and similarly, the *N* range for *PIR* has models in which *PIR* = -5.0 only.
943 The other sets (using ranges as defined above) have quantified values as follows: *NNN*=[(0.01 to
944 0.64 exclusive of bounds; 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5; -5.0]; *NNB*=[(0.01 to 0.64
945 exclusive of bounds; 4.0; -0.5, -1.0, -1.5, -2.0, -2.5, -3.0, -3.5, -4.0, -4.5, -5.0, -5.5, -6.0, -6.5, -7.0, -7.5,
946 -8.0, -8.5, -9.0, -9.5]; *NBB*=[(0.36 to 0.56 exclusive of bounds; 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0,
947 5.5, 6.0, 6.5; -5.0]; and so on for *BNN*, *NBB*, and *NNB*. These eight possible cases and the number
948 of models in each of them is given in **Table 2**, along with the population frequency and power.
949 Parameter value histograms for each of these combinations from the model database set are
950 given in <https://osf.io/yrkfv/>, and what ranges of the quantified values in the database that they
951 encompass is shown in **Figure 2**.
952 (ii) Using low (*L*), medium (*M*) or high (*H*) values, with *SFA* quantified value ranges exclusive of
953 endpoints given as: *SFA*: *L* = [(0.0 to 0.2)], *M* = [(0.2 to 0.4)], *H* = [(0.4 to 0.6)]; *Rheo*: *L* = [1.5, 2.0, 2.5], *M*
954 = [3.5, 4.0, 4.5], *H* = [5.5, 6.0, 6.5]. *PIR*: *L* = [-3.5, -4.0, -4.5], *M* = [-6.5, -7.0, -7.5], *H* = [-9.5, -10.0, -10.5].
955 This means that the base values fall into the *HML* case, with the small caveat that the *PIR* base value
956 is just outside the *L* range. The gaps in these ranges are due to the automation of the exploration
957 and to ensure that there is no overlap in the quantified values for a given case. Note that there
958 ended up being no models for the cases: *HHH*, *HHL*, *MHH*, *MHL*, *LHH*, *LHL*, from the created model
959 database. Thus there are 21 cases from the generated model database, and the number of models
960 present in each case is given in **Table 2**, along with population frequency and power. Parameter
961 value histograms for eight of these cases are given in <https://osf.io/yrkfv/>, and what ranges of the
962 quantified values in the database that they encompass is shown in **Figure 2**.

963 E-I networks and simulations

964 To build E-I model networks, we choose PYR cells from the model database in two ways in consider-
965 ation of *SFA*, *Rheo* and *PIR* building block features, referring to them as a trio in the following order:
966 *[SFA, Rheo, PIR]*. The chosen PYR cells are distributed among the 10,000 cells to be used in the E-I
967 network simulations in the following way: An individual PYR cell model is randomly chosen from
968 the set of models of a particular heterogeneous PYR cell population that have *[SFA, Rheo, PIR]* values
969 within the specified range. For example, if there are 33 PYR cell models in the set, then the number
970 of cells conforming to each of the 33 PYR cell models should approach 10,000/33 in the E-I network,
971 but there may not be an exactly equal number of the different PYR cell models. That is, we do
972 the following: If there are 33 PYR cell models in the given heterogeneous PYR cell model set, then
973 each PYR cell model out of 10,000 in the E-I network is given a random number between 1 and 33,
974 and assigned that model's parameters. We note that comparisons between the heterogeneous E-I
975 networks are not perfectly ideal since the number of different PYR cell models varies (see **Table 2**),
976 and so the 'amount' of heterogeneity would vary in the various E-I networks. However, since we are
977 mainly considering whether the theta rhythm would be lost or not, this is deemed to be acceptable.

978 The minimal model E-I network simulations are done using the Neuroscience Gateway (NSG) for
979 high-performance computing (*Sivagnanam et al., 2013*). Simulations are run for 10 seconds using
980 the Euler integration method with a timestep of 0.04 msec. The frequency and network power of
981 the network simulation is computed as before (*Ferguson et al., 2017*). That is, for each network
982 simulation, the population activity is defined as the average membrane potential of all the cells,
983 with the frequency and network power taken as frequency and spectral peak from a fast Fourier
984 transform (FFT) calculation of the population activity.

985 Code details are provided in https://github.com/FKSkinnerLab/CA1_Minimal_Model_Hetero and
986 simulation output in <https://osf.io/yrkfv/>.

987 Phase response curve computation specifics

988 Phase response curves (PRCs) are calculated for each of the PYR cell models as described below.
989 In Figure 6 the PRCs in each "model set" are averaged and presented along with a range of \pm one
990 standard deviation (shown by the shading around the curve).

991 Each PRC is calculated in the following fashion: A set input current (either 20 or 30 pA) is tonically
992 applied to the cell, and the period (defined λ) of the cell's firing is calculated as the time between
993 the ninth and tenth cell spike. The inverse of the period represents the firing frequency of the
994 cell, reported as averages and standard deviations for entire model sets in Figure 6. We calculate
995 the phase response of the neuron to a perturbation at 100 equidistant times in its normal firing
996 cycle. Here, the perturbation is a 1 ms current pulse with -500 pA amplitude. For $1 \leq i \leq 100$,
997 we define $\Delta p = \frac{\lambda}{100}$ and deliver the perturbation at $i * \Delta p$ ms after the 10th cell spike. We then
998 measure the time between the 10th and 11th cell spike as the "perturbed period" (defined λ_p). We
999 calculate the difference between this and the previously calculated period (in the absence of any
1000 perturbation) and normalize this by the normal firing period, meaning that in the PRC plots the
1001 y-axis is $\frac{\lambda - \lambda_p}{\lambda}$. This means that negative values plotted in the PRC correspond with a phase-delay,
1002 i.e. the perturbed period was longer than the unperturbed period, and vice-versa. The x-axis in the
1003 PRC plots are the normalized time at which the perturbation was delivered, simply calculated as
1004 $\frac{i}{100}$. We note that we perform this calculation separately for each i , i.e. we re-initialize the cell and
1005 let it respond naturally to a tonic input until the 10th spike for each value of i , rather than perform
1006 these perturbations sequentially and risk confounding the responses.

1007 The code for generating and plotting these PRCs can be found at https://github.com/sbrich/Theta_PRCs.

1009 The segment and detailed models and explorations

1010 The segment model is simply a 10% piece of the detailed model of the rodent CA1 microcircuit
1011 (*Bezaire et al., 2016b*) as illustrated in *Figure 1* and *Figure 8A*. To create and use the segment model,
1012 one must first be able to access and use the detailed model.

1013 In segment and detailed models, there are eight different inhibitory cell types and excitatory
1014 PYR cells. All of these cell types are connected in empirically specific ways based on an extensive
1015 knowledge-based review of the literature (*Bezaire and Soltesz, 2013*). The cells are evenly distributed
1016 within the various layers of the CA1 (stratum lacunosum-moleculare, radiatum, pyramidale, oriens)
1017 in a three-dimensional prism. Afferent inputs from CA3 and EC are also included in the form of
1018 Poisson-distributed spiking units from artificial CA3 and EC cells. We note that although there
1019 are layer-dependent specifics regarding how the different cell types are arranged in the full-scale
1020 detailed model (*Figure 1*), there are not any differences along the longitudinal axis of the full-scale
1021 model. As such, the connection profile at any location along the longitudinal axis does not vary. In
1022 other words, the connection probabilities in any particular part of the longitudinal axis would be
1023 the same assuming that there are enough cell numbers for meaningfulness in the calculations.

1024 Accessing the CA1 microcircuit model

1025 The code that we use for this work starts from the original CA1 microcircuit repository which
1026 can be found at ModelDB at: <https://senselab.med.yale.edu/ModelDB/showModel.cshtml?model=187604>. The model version we used can be downloaded from: <https://bitbucket.org/mbezaire/ca1/pull-requests/3/d1efeb957848/commits>. Analysis of simulation outputs can be recreated
1027 using the publicly available SimTracker tool (*Bezaire et al., 2016a*) which can be downloaded from:
1028 <http://mariannebezaire.com/simtracker/>. It is recommended that users install SimTracker first and
1029 then install and register the ca1 model under SimTracker, to take advantage of the visualization
1030 functionalities of the SimTracker package. This tool is offered both as a stand-alone, compiled
1031 version for those without access to MATLAB (for Windows, Mac OS X, and Linux operating systems),
1032 and as a collection of MATLAB scripts for those with MATLAB access. Once the SimTracker and
1033 the ca1 repository are installed, users can run simulations either on their local machines using a
1034 small scale of the CA1 network, or on supercomputers as needed for full scale network simulations.
1035 To reproduce the findings presented here, one needs to first familiarize oneself with the CA1
1036 microcircuit background and code.

1037 The segment model is created from the detailed model by setting the "Scale" parameter = 10,
1038 which reduces the number of cells in the network by a tenth, and then dividing all connections in
1039 the network by a factor of 10. If this latter step is not done, then each cell would have ten times as
1040 many connections relative to a cell in the full-scale detailed network. That is, the parameter scaling
1041 is a 'normalization' in which the 'scaled' network assumes that each cell is a representative of '10
1042 cells'. We did not want this, as the segment model is simply a piece of the detailed model and so we
1043 'removed' the normalization by dividing the number of connections by ten.

1044 Calculation of connection probabilities and synaptic weights in the detailed model

1045 To be able to compare connectivities between minimal and detailed models, we compute connection
1046 probabilities in the detailed model. They are computed by dividing the total number of connections
1047 from a single presynaptic cell of a given type, to the cells of the postsynaptic population, divided by
1048 the total number of (postsynaptic) cells, of that particular population. They are thus computed as
1049 divergent connection probabilities, as it was done in the minimal model where random divergent
1050 connection probabilities were employed. To compute connection probabilities when PV+ cells are
1051 assumed to consist of more than one inhibitory cell type, a combination is required. For example,
1052 in considering BCs and BiCs as fast-firing PV+ cells in one population, the number of connections
1053 each cell (either BC or BiC) receives is the average of presynaptic connections each receives, as
1054 given in the detailed model. For example, the number of connections from PYR cells onto BC/BiC
1055 population equals the total number of presynaptic connections that BCs and BiCs receive from
1056

1058 PYR cells. The connection probability from PYR to PV+ cells (BC/BiC combination) is calculated by
1059 dividing this total number of connections by the total number of BCs and BiCs. All numbers and
1060 connection probabilities are shown in *Table 4*.

1061 The synaptic weight in the detailed model is given by the synaptic conductance multiplied by the
1062 number of synapses per connection. So, for example, as a single BC cell has 11 synapses/connection
1063 onto a PYR cell and a synaptic conductance of 0.2 nS, then the synaptic weight is 2.2 nS. In the
1064 case of combined cell type populations, the average synaptic weight for the given cell type with its
1065 number of synapses/connection and synaptic conductance as reported by *Bezaire et al. (2016b)*.
1066 All of the computed synaptic weights are shown in *Table 4*.

1067 **Calculation of EPSC/IPSC amplitude ratios in the detailed model**

1068 For comparison with experimental data, we examine what EPSC/IPSC amplitude ratios exist for cells
1069 in the detailed model. We choose 15 cells of each type from the full-scale model (*Bezaire et al.,*
1070 *2016b*). These types are PYR cells and fast-firing PV+ cell types - BCs, BiCs and AACs. In doing this
1071 examination it is important to note that experimental estimates of these ratios as derived from
1072 voltage clamp recordings are not precise as there are associated experimental limitations such as
1073 due to space clamp. However, the experimental data shows that EPSCs received by PV+ cells are
1074 much larger in amplitude than EPSCs received by PYR cells, and since IPSCs received by PV+ and
1075 PYR cells are similar in amplitude, the experimental limitations are moot as it is clearly the case that
1076 the EPSC/IPSC amplitude ratios for PYR cells are much less than for PV+ cells (*Huh et al., 2016*).

1077 In considering the detailed model, several aspects need to be taken into consideration. First,
1078 in the detailed model, we consider fast-firing PV+ cell types as BCs, BiCs or AACs in different
1079 combinations (see main text). Next, with the detailed model, morphological representations of
1080 cells are used and there are eight different inhibitory cell types. These different inhibitory cell
1081 types synapse onto different parts of the PYR cell tree and as such, IPSCs onto PYR cells would
1082 be attenuated by different amounts when examining synaptic currents at their somata. We note
1083 that to directly compare synaptic currents from the experiments with the detailed model, one
1084 could consider performing a voltage clamp on model cells and separately examining EPSCs and
1085 IPSCs as done experimentally, but one would additionally need to separate IPSCs that are due to
1086 the different inhibitory cell types to consider PV+ or PYR cells. Undertaking this in the detailed
1087 model would be a highly non-trivial endeavour, and indeed, decades of research has uncovered
1088 the richness and complexities of dendritic integration (*Stuart and Spruston, 2015*). Thus, since we
1089 know that the EPSC/IPSC amplitude ratios are very different on PYR and PV+ cells, we focus on
1090 EPSCs and IPSCs on either PYR or PV+ cells at somatic locations without trying to compensate for
1091 voltage clamp or attenuation issues due to different synaptic input locations from the different cell
1092 types. From the consideration that the comparison is with experiment, we consider that EPSCs
1093 onto the different cell types are due to inputs from PYR cells and EC and CA3, whereas IPSCs are
1094 from the various inhibitory cell types of the detailed network model (*Bezaire et al., 2016b*). As we
1095 are mainly considering comparisons with the minimal model, we consider IPSCs that are due to PV+
1096 fast-firing cell type could encompass BCs, BiCs and AACs.

1097 The network clamp tool in SimTracker enables extraction of a particular cell from the full-scale
1098 model while keeping synaptic properties (*Bezaire et al., 2016a*). We network clamp each of the 15
1099 selected cells of each type for 1000 msec and detect the peak EPSCs and IPSCs by implementing
1100 the minimum peak distance algorithm in MATLAB. For EPSC/IPSC amplitude ratio calculations for
1101 a specific cell, all excitatory currents are summed and divided by the summed inhibitory currents
1102 that the cell receives. For EPSC/IPSC amplitude ratios on to PYR cells, IPSCs due to only BCs,
1103 only BiCs, a combination of BCs and BiCs, a combination of BCs/BiCs/AACs, and all inhibitory
1104 cells are shown in *Table 3*. We note that there is no EPSC/IPSC amplitude ratio consideration of
1105 AACs to themselves as there are no AAC to AAC synapses in the detailed model. When there
1106 is a combination, the ratio calculations are based on dividing the mean EPSCs by mean IPSCs,
1107 after summing IPSCs from each PV+ cell type. The EPSCs are flipped before peak detection for

1108 its mechanistic advantage using the MATLAB code. All 225 (15x15) combinations of EPSC/IPSC
1109 amplitude ratios in each BC/BiC/PYR and BC/AAC/PYR populations as well as 3375 (15x15x15)
1110 combinations in BC/BiC/AAC/PYR are examined, and they are in accordance with the experimental
1111 data. The mean EPSC/IPSC amplitude ratios and their standard deviations for the various cell types
1112 are given in **Table 3**. Voltage recordings and currents plots from the 15 chosen cells can be accessed
1113 at <https://osf.io/yrkf/>. The scripts for the EPSC/IPSC amplitude ratio calculations can be found at
1114 https://github.com/FKSkinnerLab/CA1_SimpleDetailed.

1115 Parametric explorations in the segment model

1116 To generate the heatmaps of **Figure 9** we use the following process on the created segment model.
1117 We perform exhaustive parametric explorations of the theta power dependence on the excitatory
1118 drives in the segment model. We vary the EC/CA3 to PYR cell synaptic conductance $g_{ec/ca3-pyr}$, the PYR
1119 PYR synaptic conductance $g_{pyr-pyr}$ and the level of external stimulation, which represents the firing
1120 rate of our external EC and CA3 cells. For every pair of $g_{pyr-pyr}$ and $g_{ec/ca3-pyr}$, we search for the level
1121 of external stimulation that maximizes the normalized theta power. The normalized theta power
1122 is defined as the maximum theta power (net theta power) in the power spectrum, divided by the
1123 mean power across all frequencies. We search a range of 0.15-0.65 Hz of stimulation per network
1124 (below that range the network is inactive, above that range the network is hyper-active). We plot the
1125 value of that maximum normalized theta power in **Figure 9Bi**, and the corresponding stimulation
1126 required to reach that value in **Figure 9Bii**. Every pair of $g_{pyr-pyr}$ and $g_{ec/ca3-pyr}$ corresponds to a
1127 specific conndata#.dat file. These conndata#.dat files should be created and stored under the
1128 "datasets" directory of the CA1 repository. The code for the generation of the heatmaps of **Figure 9B**
1129 can be found here: <https://github.com/alexandrapierri/CA1-Segment-Microcircuit>

1130 Current extractions and linear regression in the segment model

1131 As described above for ratio calculations in the detailed model, we use the network clamp tool of
1132 SimTracker to extract PSCs delivered to the PYR cells in the model from all other cells in the network
1133 and the external drives. We examine the PSCs received by 10 PYR cells for each of the 50 networks
1134 underpinning the heatmaps of **Figure 9B**. we calculate the mean current amplitude for each of the
1135 10 cell over a 4sec simulation period, and refer to this as the net current. We take the average
1136 and standard deviation of the net current of the 10 cells and plot it against the frequency of that
1137 network (**Figure 10C**).

1138 As we examine 10 cells per network and we have 50 networks, this gives as a total of 500
1139 network clamp simulations which corresponds to analysis of 500 cells' input currents. To perform
1140 a linear regression of net current vs network frequency, we use custom MATLAB code which can
1141 be found here: <https://github.com/alexandrapierri/CA1-Segment-Microcircuit>. The correlation
1142 coefficient between theta frequency and net current (ρ) and the p-value for testing the hypothesis
1143 of no correlation (null hypothesis) against the alternative hypothesis of a nonzero correlation, are
1144 estimated using MATLAB's built-in functions.

1145 Power analysis and signal filtering

1146 To analyze the signal power we used the Welch's Periodogram, a method for estimating power
1147 spectra based on FFT analysis https://ccrma.stanford.edu/~jos/sasp/Welch_s_Method.html. To filter
1148 the LFP signal for theta we used a broadband filter with stopband frequencies ± 1 Hz and passband
1149 frequencies ± 1.75 Hz from the peak theta frequency as derived from the Welch's Periodogram.

1150 High performance computing simulations

1151 We implement our simulations on Scinet (**Loken et al., 2010; Ponce et al., 2019**) on the Niagara
1152 clusters, using 10-12 nodes per simulation with 40 cores per node. Each network simulation takes
1153 approximately 8 hours real time to be executed. The results we present in this study are the
1154 distillation of approximately 300 network simulations requiring a total of 150 core years processing
1155 power on the clusters.

1156 Acknowledgements

1157 FKS and APC thank Ivan Soltesz for feedback on early versions of this work. APC thanks Ivan Raikov
1158 for help with code debugging of the detailed model, and FKS thanks Sylvain Williams for feedback
1159 comments on the paper.

1160 Computations were performed on the Niagara supercomputer at the SciNet HPC Consortium.
1161 SciNet is funded by: the Canada Foundation for Innovation; the Government of Ontario; Ontario
1162 Research Fund - Research Excellence; and the University of Toronto.

References

1163 Achuthan S, Canavier CC. Phase-resetting curves determine synchronization, phase locking, and clustering in
1164 networks of neural oscillators. *Journal of Neuroscience*. 2009; 29(16):5218-5233.

1165

1166 Amilhon B, Huh CL, Manseau F, Ducharme G, Nichol H, Adamantidis A, Williams S. Parvalbumin Interneurons
1167 of Hippocampus Tune Population Activity at Theta Frequency. *Neuron*. 2015 Jun; 86(5):1277-1289. <http://www.sciencedirect.com/science/article/pii/S0896627315004341>, doi: 10.1016/j.neuron.2015.05.027.

1168

1169 Ascoli GA, Gasparini S, Medinilla V, Migliore M. Local Control of Postinhibitory Rebound Spiking in CA1 Pyramidal
1170 Neuron Dendrites. *The Journal of Neuroscience*. 2010 May; 30(18):6434-6442. doi: 10.1523/JNEUROSCI.4066-
1171 09.2010.

1172 Avella Gonzalez OJ, Mansvelder HD, van Pelt J, van Ooyen A. H-Channels Affect Frequency, Power and Amplitude
1173 Fluctuations of Neuronal Network Oscillations. . 2015; 9. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4652018/>, doi: 10.3389/fncom.2015.00141.

1174

1175 Battaglia FP, Benchenane K, Sirota A, Pennartz CMA, Wiener SI. The hippocampus: hub of brain network communication for memory. *Trends in Cognitive Sciences*. 2011 Jul; 15(7):310-318. doi: 10.1016/j.tics.2011.05.008.

1176

1177 Benito N, Fernández-Ruiz A, Makarov VA, Makarova J, Korovaichuk A, Herreras O. Spatial Modules of Coherent
1178 Activity in Pathway-Specific LFPs in the Hippocampus Reflect Topology and Different Modes of Presynaptic
1179 Synchronization. *Cerebral Cortex*. 2014 Jul; 24(7):1738-1752. doi: 10.1093/cercor/bht022.

1180

1181 Bezaire MJ, Raikov I, Burk k, Armstrong C, Soltesz I. SimTracker tool and code template to design, manage
1182 and analyze neural network model simulations in parallel NEURON. *bioRxiv*. 2016; <https://www.biorxiv.org/content/early/2016/10/19/081927>, doi: 10.1101/081927.

1183

1184 Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I. Interneuronal mechanisms of hippocampal theta oscillation in
1185 a full-scale model of the rodent CA1 circuit. *eLife*. 2016 Dec; 5:e18566. <https://elifesciences.org/content/5/e18566v1>, doi: 10.7554/eLife.18566.

1186

1187 Bezaire MJ, Soltesz I. Quantitative assessment of CA1 local circuits: Knowledge base for interneuron-pyramidal
1188 cell connectivity. *Hippocampus*. 2013 May; doi: 10.1002/hipo.22141.

1189

1190 Bhatia A, Moza S, Bhalla US. Precise excitation-inhibition balance controls gain and timing in the hippocampus. *eLife*. 2019 Apr; 8:e43415. doi: 10.7554/eLife.43415.

1191

1192 Biel M, Wahl-Schott C, Michalakis S, Zong X. Hyperpolarization-Activated Cation Channels: From Genes to
1193 Function. *Physiological Reviews*. 2009 Jan; 89(3):847-885. doi: 10.1152/physrev.00029.2008.

1194

1195 Brandon MP, Bogaard AR, Libby CP, Connerney MA, Gupta K, Hasselmo ME. Reduction of Theta Rhythm
1196 Dissociates Grid Cell Spatial Periodicity from Directional Tuning. *Science*. 2011 Apr; 332(6029):595 -599.
<http://www.sciencemag.org/content/332/6029/595.abstract>, doi: 10.1126/science.1201652.

1197

1198 Chamberland S, Salesse C, Topolnik D, Topolnik L. Synapse-specific inhibitory control of hippocampal feedback
1199 inhibitory circuit. *Frontiers in Cellular Neuroscience*. 2010; 4:130. doi: 10.3389/fncel.2010.00130.

1200

1201 Chatzikalymniou AP, Skinner FK. Deciphering the Contribution of Oriens-Lacunosum/Moleculare (OLM) Cells to
1202 Intrinsic θ Rhythms Using Biophysical Local Field Potential (LFP) Models. *eNeuro*. 2018 Jul; 5(4):ENEURO.0146-
1203 18.2018. doi: 10.1523/ENEURO.0146-18.2018.

1204

1205 Chauvière L. Update on temporal lobe-dependent information processing, in health and disease. *European
1206 Journal of Neuroscience*. 2020; 51(11):2159-2204. <http://onlinelibrary.wiley.com/doi/abs/10.1111/ejn.14594>, doi: 10.1111/ejn.14594, _eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1111/ejn.14594>.

1207

1208 Colgin LL. Mechanisms and Functions of Theta Rhythms. *Annual Review of Neuroscience*. 2013; 36(1):295-312.
doi: 10.1146/annurev-neuro-062012-170330.

1209

1210 Colgin LL. Rhythms of the hippocampal network. *Nature Reviews Neuroscience*. 2016 Apr; 17(4):239-249. doi:
10.1038/nrn.2016.21.

1211

1212 Cutsuridis V, Cobb S, Graham BP. Encoding and retrieval in a model of the hippocampal CA1 microcircuit.
1213 Hippocampus. 2010 Mar; 20(3):423-446. doi: 10.1002/hipo.20661.

1214

1215 Destexhe A, Mainen ZF, Sejnowski TJ. An Efficient Method for Computing Synaptic Conductances Based on a
1216 Kinetic Model of Receptor Binding. *Neural Computation*. 1994 Jan; 6(1):14-18. doi: 10.1162/neco.1994.6.1.14.

1217

1218

1211 **Destexhe A**, Rudolph M, Fellous JM, Sejnowski TJ. Fluctuating synaptic conductances recreate in vivo-like activity
1212 in neocortical neurons. *Neuroscience*. 2001; 107(1):13–24.

1213 **Ecker A**, Romani A, Sáray S, Káli S, Migliore M, Falck J, Lange S, Mercer A, Thomson AM, Muller E, Reimann MW,
1214 Ramaswamy S. Data-driven integration of hippocampal CA1 synaptic physiology in silico. *Hippocampus*.
1215 2020; n/a(n/a). doi: [10.1002/hipo.23220](https://doi.org/10.1002/hipo.23220), _eprint: <https://onlinelibrary.wiley.com/doi/10.1002/hipo.23220>.

1216 **Einevoll GT**, Destexhe A, Diesmann M, Grün S, Jirsa V, de Kamps M, Migliore M, Ness TV, Plesser HE, Schürmann
1217 F. The Scientific Case for Brain Simulations. *Neuron*. 2019 May; 102(4):735–744. <http://www.sciencedirect.com/science/article/pii/S0896627319302909>, doi: [10.1016/j.neuron.2019.03.027](https://doi.org/10.1016/j.neuron.2019.03.027).

1219 **Ermentrout GB**, Terman DH. Mathematical Foundations of Neuroscience. 1st edition. ed. Springer; 2010.

1220 **Ferguson KA**, Njap F, Nicola W, Skinner FK, Campbell SA. Examining the limits of cellular adaptation bursting
1221 mechanisms in biologically-based excitatory networks of the hippocampus. *Journal of Computational
1222 Neuroscience*. 2015 Oct; 39(3):289–309. doi: [10.1007/s10827-015-0577-1](https://doi.org/10.1007/s10827-015-0577-1).

1223 **Ferguson KA**, Chatzikalyvniou AP, Skinner FK. Combining Theory, Model, and Experiment to Explain How
1224 Intrinsic Theta Rhythms Are Generated in an In Vitro Whole Hippocampus Preparation without Oscillatory
1225 Inputs. *eNeuro*. 2017 Aug; 4(4). doi: [10.1523/ENEURO.0131-17.2017](https://doi.org/10.1523/ENEURO.0131-17.2017).

1226 **Ferguson KA**, Huh CYL, Amilhon B, Williams S, Skinner FK. Simple, biologically-constrained CA1 pyra-
1227 midal cell models using an intact, whole hippocampus context. *F1000Research*. 2015 Jun; doi:
1228 [10.12688/f1000research.3894.2](https://doi.org/10.12688/f1000research.3894.2).

1229 **Ferguson KA**, Huh CYL, Amilhon B, Manseau F, Williams S, Skinner FK. Network models provide insights into
1230 how oriens-lacunosum-moleculare and bistratified cell interactions influence the power of local hippocampal
1231 CA1 theta oscillations. *Frontiers in Systems Neuroscience*. 2015; 9:110. doi: [10.3389/fnsys.2015.00110](https://doi.org/10.3389/fnsys.2015.00110).

1232 **Ferguson KA**, Huh CYL, Amilhon B, Williams S, Skinner FK. Experimentally constrained CA1 fast-firing
1233 parvalbumin-positive interneuron network models exhibit sharp transitions into coherent high frequency
1234 rhythms. *Frontiers in computational neuroscience*. 2013; 7:144. doi: [10.3389/fncom.2013.00144](https://doi.org/10.3389/fncom.2013.00144).

1235 **Gjorgjieva J**, Drion G, Marder E. Computational implications of biophysical diversity and multiple timescales in
1236 neurons and synapses for circuit performance. *Current Opinion in Neurobiology*. 2016 Apr; 37:44–52. doi:
1237 [10.1016/j.conb.2015.12.008](https://doi.org/10.1016/j.conb.2015.12.008).

1238 **Goutagny R**, Jackson J, Williams S. Self-generated theta oscillations in the hippocampus. *Nature Neuroscience*.
1239 2009 Dec; 12(12):1491–1493. <http://www.ncbi.nlm.nih.gov/pubmed/19881503>, doi: [10.1038/nn.2440](https://doi.org/10.1038/nn.2440).

1240 **Hajós M**, Hoffmann WE, Orbán G, Kiss T, Erdi P. Modulation of septo-hippocampal Theta activity by GABA_A
1241 receptors: an experimental and computational approach. *Neuroscience*. 2004; 126(3):599–610. doi:
1242 [10.1016/j.neuroscience.2004.03.043](https://doi.org/10.1016/j.neuroscience.2004.03.043).

1243 **Hansel D**, Mato G, Meunier C. Synchrony in excitatory neural networks. *Neural Comput*. 1995; 7(2):307–337.

1244 **Harris KD**, Hochgerner H, Skene NG, Magno L, Katona L, Gonzales CB, Somogyi P, Kessaris N, Linnarsson
1245 S, Hjerling-Leffler J. Classes and continua of hippocampal CA1 inhibitory neurons revealed by single-cell
1246 transcriptomics. *PLOS Biology*. 2018 Jun; 16(6):e2006387. <https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2006387>, doi: [10.1371/journal.pbio.2006387](https://doi.org/10.1371/journal.pbio.2006387).

1248 **Hasselmo ME**, Bodelón C, Wyble BP. A proposed function for hippocampal theta rhythm: separate phases of
1249 encoding and retrieval enhance reversal of prior learning. *Neural Computation*. 2002 Apr; 14(4):793–817. doi:
1250 [10.1162/089976602317318965](https://doi.org/10.1162/089976602317318965).

1251 **Hinman JR**, Dannenberg H, Alexander AS, Hasselmo ME. Neural mechanisms of navigation involving interac-
1252 tions of cortical and subcortical structures. *Journal of Neurophysiology*. 2018 Feb; 119(6):2007–2029. doi:
1253 [10.1152/jn.00498.2017](https://doi.org/10.1152/jn.00498.2017).

1254 **Hodge RD**, Bakken TE, Miller JA, Smith KA, Barkan ER, Graybuck LT, Close JL, Long B, Johansen N, Penn O, Yao
1255 Z, Eggermont J, Höllt T, Levi BP, Shehata SI, Aevermann B, Beller A, Bertagnolli D, Brouner K, Casper T, et al.
1256 Conserved cell types with divergent features in human versus mouse cortex. *Nature*. 2019 Aug; p. 1–8.
1257 <https://www.nature.com/articles/s41586-019-1506-7>, doi: [10.1038/s41586-019-1506-7](https://doi.org/10.1038/s41586-019-1506-7).

1258 **Huh CYL**, Amilhon B, Ferguson KA, Manseau F, Torres-Platas SG, Peach JP, Scodras S, Mechawar N, Skinner
1259 FK, Williams S. Excitatory Inputs Determine Phase-Locking Strength and Spike-Timing of CA1 Stratum
1260 Oriens/Alveus Parvalbumin and Somatostatin Interneurons during Intrinsically Generated Hippocampal Theta
1261 Rhythm. *The Journal of Neuroscience*. 2016 Jun; 36(25):6605-6622. doi: [10.1523/JNEUROSCI.3951-13.2016](https://doi.org/10.1523/JNEUROSCI.3951-13.2016).

1262 **Huh CYL**, Goutagny R, Williams S. Glutamatergic Neurons of the Mouse Medial Septum and Diagonal Band
1263 of Broca Synaptically Drive Hippocampal Pyramidal Cells: Relevance for Hippocampal Theta Rhythm. *J
1264 Neurosci*. 2010 Nov; 30(47):15951-15961. <http://www.jneurosci.org/cgi/content/abstract/30/47/15951>, doi:
1265 [10.1523/JNEUROSCI.3663-10.2010](https://doi.org/10.1523/JNEUROSCI.3663-10.2010).

1266 **Izhikevich EM**. *Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting*. 1 ed. The MIT
1267 Press; 2006.

1268 **Izhikevich EM**. Hybrid spiking models. *Philosophical Transactions of the Royal Society A: Mathematical, Physical
1269 and Engineering Sciences*. 2010 Nov; 368(1930):5061. doi: [10.1098/rsta.2010.0130](https://doi.org/10.1098/rsta.2010.0130).

1270 **Jaramillo J**, Kempter R. Phase precession: a neural code underlying episodic memory? *Current Opinion in
1271 Neurobiology*. 2017 Apr; 43:130-138. doi: [10.1016/j.conb.2017.02.006](https://doi.org/10.1016/j.conb.2017.02.006).

1272 **Kepcs A**, Fishell G. Interneuron cell types are fit to function. *Nature*. 2014 Jan; 505(7483):318-326. doi:
1273 [10.1038/nature12983](https://doi.org/10.1038/nature12983).

1274 **Koenig J**, Linder AN, Leutgeb JK, Leutgeb S. The Spatial Periodicity of Grid Cells Is Not Sustained During Reduced
1275 Theta Oscillations. *Science*. 2011 Apr; 332(6029):592 -595. <http://www.sciencemag.org/content/332/6029/592.abstract>, doi: [10.1126/science.1201685](https://doi.org/10.1126/science.1201685).

1277 **Kwon O**, Feng L, Druckmann S, Kim J. Schaffer Collateral Inputs to CA1 Excitatory and Inhibitory Neu-
1278 rons Follow Different Connectivity Rules. *Journal of Neuroscience*. 2018 May; 38(22):5140-5152. doi:
1279 [10.1523/JNEUROSCI.0155-18.2018](https://doi.org/10.1523/JNEUROSCI.0155-18.2018).

1280 **Loken C**, Gruner D, Groer L, Peltier R, Bunn N, Craig M, Teresa Henriques, Dempsey J, Yu CH, Chen J, Dursi LJ,
1281 Chong J, Scott Northrup, Pinto J, Knecht N, Zon RV. SciNet: Lessons Learned from Building a Power-efficient
1282 Top-20 System and Data Centre. . 2010; 256(1):012026. <http://stacks.iop.org/1742-6596/256/i=1/a=012026>,
1283 doi: [10.1088/1742-6596/256/1/012026](https://doi.org/10.1088/1742-6596/256/1/012026).

1284 **Lubenov EV**, Siapas AG. Hippocampal theta oscillations are travelling waves. *Nature*. 2009 May; 459(7246):534-
1285 539. doi: [10.1038/nature08010](https://doi.org/10.1038/nature08010).

1286 **Manseau F**, Goutagny R, Danik M, Williams S. The hippocoseptal pathway generates rhythmic firing
1287 of GABAergic neurons in the medial septum and diagonal bands: an investigation using a complete sep-
1288 tohippocampal preparation in vitro. *The Journal of Neuroscience: The Official Journal of the Society for
1289 Neuroscience*. 2008 Apr; 28(15):4096-4107. doi: [10.1523/JNEUROSCI.0247-08.2008](https://doi.org/10.1523/JNEUROSCI.0247-08.2008).

1290 **Middleton JW**, Omar C, Doiron B, Simons DJ. Neural Correlation Is Stimulus Modulated by Feedforward
1291 Inhibitory Circuitry. *Journal of Neuroscience*. 2012 Jan; 32(2):506-518. doi: [10.1523/JNEUROSCI.3474-11.2012](https://doi.org/10.1523/JNEUROSCI.3474-11.2012),
1292 publisher: Society for Neuroscience Section: Articles.

1293 **Mišić B**, Goňi J, Betzel RF, Sporns O, McIntosh AR. A Network Convergence Zone in the Hippocampus. *PLoS
1294 Comput Biol*. 2014 Dec; 10(12):e1003982. doi: [10.1371/journal.pcbi.1003982](https://doi.org/10.1371/journal.pcbi.1003982).

1295 **Navas-Olive A**, Valero M, Jurado-Parras T, Salas-Quiroga Ad, Averkin RG, Gambino G, Cid E, Prida LMdl. Multi-
1296 modal determinants of phase-locked dynamics across deep-superficial hippocampal sublayers during theta
1297 oscillations. . 2020; 11(1):1-14. <https://www.nature.com/articles/s41467-020-15840-6>, number: 1.

1299 **Ness TV**, Remme MWH, Einevoll GT. Active subthreshold dendritic conductances shape the local field potential.
1300 . 2016; 594(13):3809-3825. <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897029/>, doi: [10.1113/JP272022](https://doi.org/10.1113/JP272022).

1301 **Ness TV**, Remme MWH, Einevoll GT. h-Type Membrane Current Shapes the Local Field Potential from Populations
1302 of Pyramidal Neurons. *Journal of Neuroscience*. 2018 Jun; 38(26):6011-6024. doi: [10.1523/JNEUROSCI.3278-17.2018](https://doi.org/10.1523/JNEUROSCI.3278-17.2018).

1304 **Ponce M**, van Zon R, Northrup S, Gruner D, Chen J, Ertinaz F, Fedoseev A, Groer L, Mao F, Mundim BC, Nolta M,
1305 Pinto J, Saldarriaga M, Slavnic V, Spence E, Yu CH, Peltier WR. Deploying a Top-100 Supercomputer for Large
1306 Parallel Workloads: the Niagara Supercomputer. In: *Proceedings of the Practice and Experience in Advanced
1307 Research Computing on Rise of the Machines (learning) PEARC '19*, Association for Computing Machinery; 2019.
1308 p. 1-8. <https://doi.org/10.1145/3332186.3332195>, doi: [10.1145/3332186.3332195](https://doi.org/10.1145/3332186.3332195).

1309 **Rich S**, Booth V, Zochowski M. Intrinsic cellular properties and connectivity density determine variable clustering
1310 patterns in randomly connected inhibitory neural networks. *Frontiers in neural circuits*. 2016; 10:82.

1311 **Rotstein HG**, Pervouchine DD, Acker CD, Gillies MJ, White JA, Buhl EH, Whittington MA, Kopell N. Slow and fast
1312 inhibition and an H-current interact to create a theta rhythm in a model of CA1 interneuron network. *Journal
1313 of Neurophysiology*. 2005 Aug; 94(2):1509–1518. doi: [10.1152/jn.00957.2004](https://doi.org/10.1152/jn.00957.2004).

1314 **Schultheiss N**, Butera R, Prinz A. *Phase Response Curves in Neuroscience: Theory, Experiment, and Analysis*.
1315 Springer; 2011.

1316 **Shuman T**, Aharoni D, Cai DJ, Lee CR, Chavlis S, Page-Harley L, Vetere LM, Feng Y, Yang CY, Mollinedo-Gajate I,
1317 Chen L, Pennington ZT, Taxidis J, Flores SE, Cheng K, Javaherian M, Kaba CC, Rao N, La-Vu M, Pandi I, et al.
1318 Breakdown of spatial coding and interneuron synchronization in epileptic mice. *Nature Neuroscience*. 2020
1319 Jan; p. 1–10. doi: [10.1038/s41593-019-0559-0](https://doi.org/10.1038/s41593-019-0559-0).

1320 **Siegle JH**, Wilson MA. Enhancement of encoding and retrieval functions through theta phase-specific ma-
1321 nipulation of hippocampus. *eLife*. 2014 Jul; 3:e03061. <http://elifesciences.org/content/3/e03061>, doi:
1322 [10.7554/eLife.03061](https://doi.org/10.7554/eLife.03061).

1323 **Sinha M**, Narayanan R. HCN channels enhance spike phase coherence and regulate the phase of spikes and
1324 LFPs in the theta-frequency range. *Proceedings of the National Academy of Sciences*. 2015 Apr; 112(17):E2207–
1325 E2216. doi: [10.1073/pnas.1419017112](https://doi.org/10.1073/pnas.1419017112).

1326 **Sivagnanam S**, Majumdar A, Yoshimoto K, Astakhov V, B A, Martone M, Carnevale NT. Introducing The
1327 Neuroscience Gateway, vol. 993 of *CEUR Workshop Proceedings*; 2013.
1328 <http://ceur-ws.org/Vol-993/paper10.pdf>.

1329 **Skinner FK**, Wu C, Zhang L. Phase-coupled oscillator models can predict hippocampal inhibitory synaptic
1330 connections. *The European Journal of Neuroscience*. 2001 Jun; 13(12):2183–2194.

1331 **Stuart GJ**, Spruston N. Dendritic integration: 60 years of progress. *Nature Neuroscience*. 2015 Dec; 18(12):1713–
1332 1721. doi: [10.1038/nn.4157](https://doi.org/10.1038/nn.4157).

1333 **Sugino K**, Clark E, Schulmann A, Shima Y, Wang L, Hunt DL, Hooks BM, Tränkner D, Chandrashekhar J, Picard S,
1334 Lemire AL, Spruston N, Hantman AW, Nelson SB. Mapping the transcriptional diversity of genetically and
1335 anatomically defined cell populations in the mouse brain. *eLife*. 2019 Apr; 8:e38619. doi: [10.7554/eLife.38619](https://doi.org/10.7554/eLife.38619).

1336 **Turi GF**, Li WK, Chavlis S, Pandi I, O'Hare J, Priestley JB, Grosmark AD, Liao Z, Ladow M, Zhang JF, Zemelman BV,
1337 Poirazi P, Losonczy A. Vasoactive Intestinal Polypeptide-Expressing Interneurons in the Hippocampus Support
1338 Goal-Oriented Spatial Learning. *Neuron*. 2019 Mar; 101(6):1150–1165.e8. doi: [10.1016/j.neuron.2019.01.009](https://doi.org/10.1016/j.neuron.2019.01.009).

1339 **Wang XJ**. Pacemaker Neurons for the Theta Rhythm and Their Synchronization in the Septohippocampal
1340 Reciprocal Loop. *Journal of Neurophysiology*. 2002 Jan; 87(2):889–900.

1341 **Winson J**. Loss of hippocampal theta rhythm results in spatial memory deficit in the rat. *Science*. 1978 Jul;
1342 201(4351):160–163. doi: [10.1126/science.663646](https://doi.org/10.1126/science.663646).

1343 **Zhang H**, Watrous AJ, Patel A, Jacobs J. Theta and Alpha Oscillations Are Traveling Waves in the Human Neocortex.
1344 *Neuron*. 2018 Jun; 98(6):1269–1281.e4. doi: [10.1016/j.neuron.2018.05.019](https://doi.org/10.1016/j.neuron.2018.05.019).

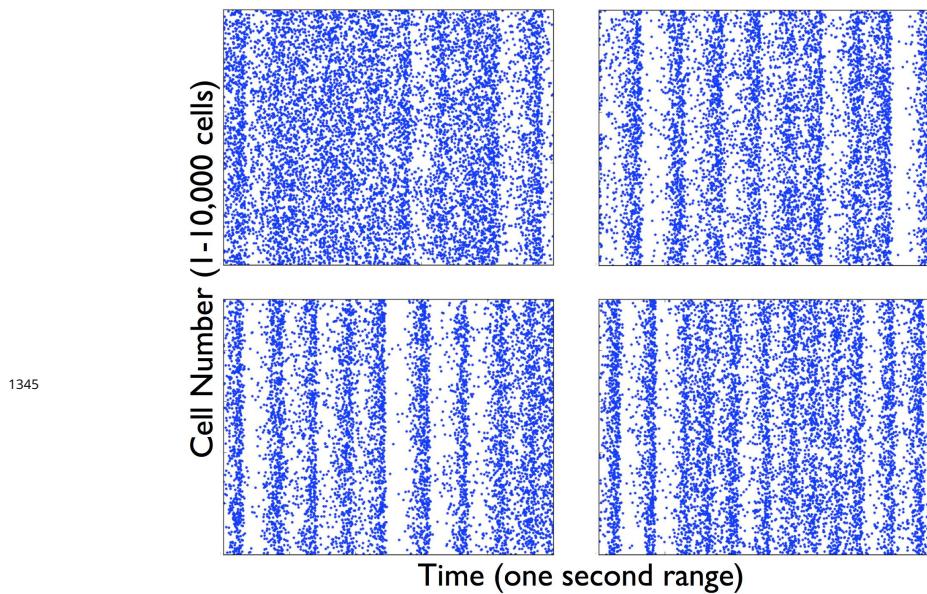


Figure 3-Figure supplement 1. Loss of Rhythm - Raster plots of PYR cells in heterogeneous E-I networks. Simulations of E-I networks with 10,000 heterogeneous PYR cells and 500 PV+ cells produce PYR cell raster plots as shown here with a one second time range. The specific examples are labelled as (R-supp) in Table 2 and refer to the following sets: MLH (top-left), HMH (top-right), MLM (bottom-left), LLH (bottom-right).

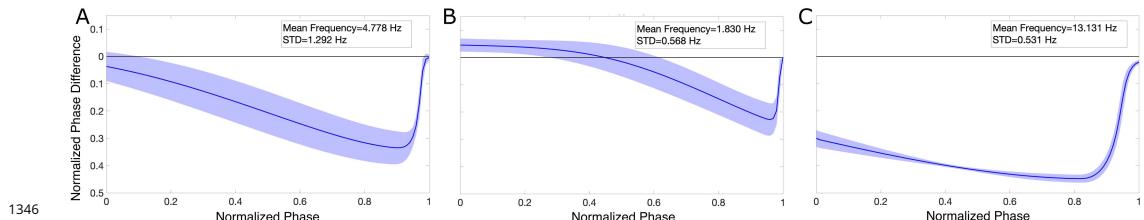


Figure 6-Figure supplement 1. PRCs calculated with a 20 pA input show similar features in the three PYR cell populations. Mean and standard deviation of the PRCs calculated for PYR cell models from each of the three heterogeneous E-I network cases (MMH in panel A, HML in panel B, and LML in panel C) with an input current of 20 pA show similar patterns to those seen in Figure 6. Insets include mean and standard deviation of the individual firing frequencies of the PYR cells.

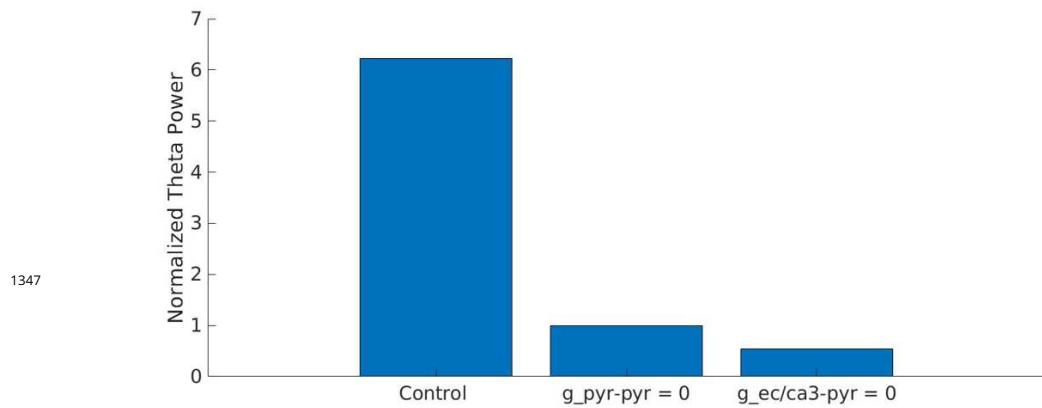


Figure 8-Figure supplement 1. Recurrent excitation and feed-forward external drive to the PYR cells is needed for theta rhythms. Normalized theta power of the segment model (Figure 8A) with parameter values as shown in Figure 8B is eliminated with the removal of feed-forward external drive and recurrent excitation to the PYR cells, i.e., $g_{\text{pyr-pyr}}$ and $g_{\text{ec/ca3-pyr}}$ set to zero.

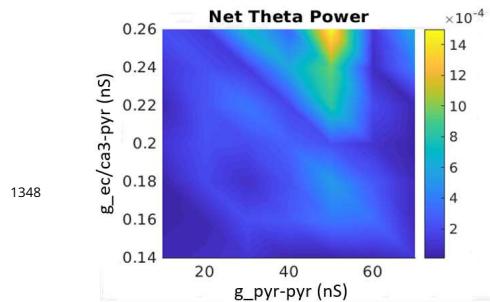


Figure 9-Figure supplement 1. Dependence of net theta power on the PYR cells' excitatory drives. Heatmaps of net theta power as a function of $g_{\text{pyr-pyr}}$ and $g_{\text{ec/ca3-pyr}}$.

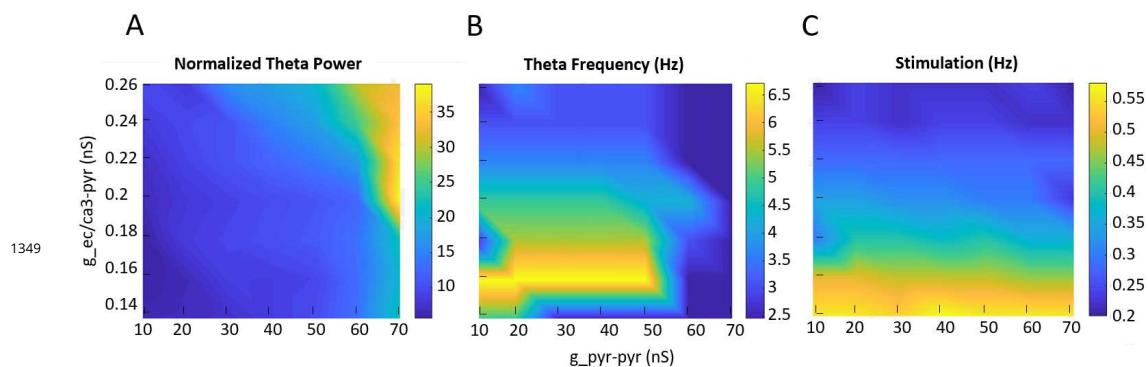


Figure 9-Figure supplement 2. Dependence of theta and delta power on the PYR cells' excitatory drives. Heatmaps of Normalized theta and delta power, frequency and afferent input stimulation as a function of $g_{\text{pyr-pyr}}$ and $g_{\text{ec/ca3-pyr}}$.

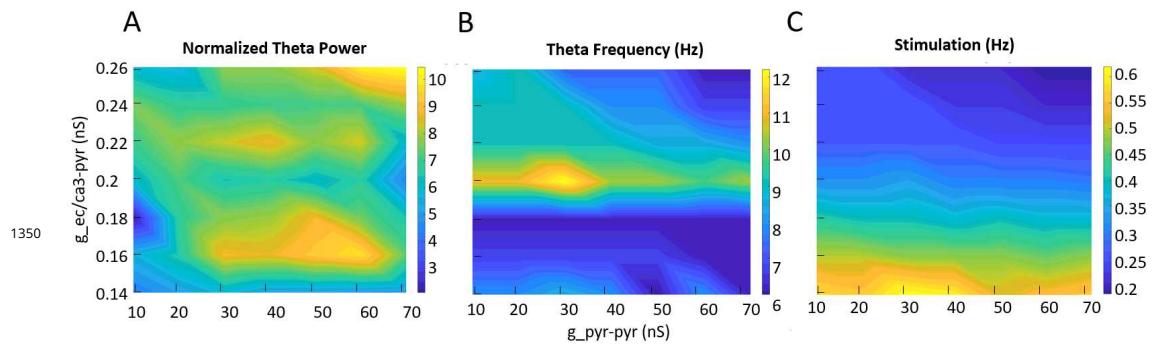


Figure 9—Figure supplement 3. Dependence of "high" theta (6-12Hz) power on the PYR cells' excitatory drives. Heatmaps of Normalized "high" theta power, frequency and afferent input stimulation as a function of $g_{pyr-pyr}$ and $g_{ec/ca3-pyr}$.