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Abstract

The wide variety of cell types and their inherent biophysical complexities pose a challenge to our
understanding of oscillatory activities produced by cellular-based computational models. This
challenge stems from the high-dimensional and multi-parametric nature of these systems. To
overcome this issue, we implement systematic comparisons of minimal and detailed models of CA1
microcircuits that generate intra-hippocampal theta rhythms (3-12 Hz). We leverage insights from
minimal models to guide detailed model explorations and obtain a cellular perspective of theta
generation. Our findings distinguish the pyramidal cells as the theta rhythm initiators and reveal
that their activity is regularized by the inhibitory cell populations, supporting an ‘inhibition-based
tuning’ mechanism. We find a strong correlation between the pyramidal cell input current and the
resulting LFP theta frequency, establishing that the intrinsic pyramidal cell properties underpin
network frequency characteristics. This work provides a cellular-based foundation from which in
vivo theta activities can be explored.

Introduction

Hippocampal theta rhythms (~ 3-12 Hz) as observed in local field potential (LFP) recordings are
associated with cognitive processes of memory formation and spatial navigation (Colgin, 2013,
2016; Hinman et al., 2018). However, exactly how theta rhythms emerge is a complicated and multi-
layered problem. The medial septum (MS) is believed to act as a pacemaker since theta rhythms
in the hippocampus are severely attenuated when the MS is lesioned (Winson, 1978). Moreover,
the various cell types in the MS and in the hippocampus are interconnected in cell-specific ways
(Chamberland et al., 2010; Huh et al., 2010). This underlines the importance of considering how
cellular specifics contribute to theta rhythm circuit dynamics and ultimately function, especially
since sophisticated experimental techniques continue to uncover the diversity and distinctness of
neurons (Harris et al., 2018; Hodge et al., 2019; Kepecs and Fishell, 2014; Sugino et al., 2019).

It is now well-documented that theta rhythms can be generated intra-hippocampally, emerging
spontaneously from an isolated whole hippocampus preparation in vitro (Goutagny et al., 2009).
Two computational modelling studies have captured these intrinsic theta rhythms. The first study
by Ferguson et al. (2017) used minimal network models of biophysically simplified neurons, while
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the second study by Bezaire et al. (2016b) used biophysically detailed network models. These
models can help us understand how these rhythms are generated while taking into consideration
each model's advantages and challenges.

The minimal model of Ferguson et al. (2017) represents a ‘piece’ of the CA1 region of the
hippocampus, and it was developed and constrained against data from the whole hippocampus
preparation (Ferguson et al., 2013, 2015b). We used this model to examine what ‘building block’
features could underlie theta rhythms (Ferguson et al., 2015a, 2017). It was found that spike
frequency adaptation (SFA) and post-inhibitory rebound (PIR) building block features of excitatory,
pyramidal (PYR) cells in large minimally connected recurrent networks with fast-firing, parvalbumin-
expressing (PV+) inhibitory cells could produce theta frequency population rhythms. Specifically,
for the model to be consistent with experimental observations of excitatory postsynaptic current
(EPSC) and inhibitory postsynaptic current (IPSC) amplitude ratios, the connection probability from
PV+ to PYR cells is required to be larger than from PYR to PV+ cells. The minimal model design,
strategy and setup suggests that the theta oscillation generation mechanism could be due to SFA
and PIR building block features. However, the challenge is to determine how these insights could
apply in the biological, hippocampal system with its larger complement of diverse inhibitory cell
types and additional biological details.

The detailed model of Bezaire et al. (2016b) is a full-scale biological model of the CA1 hip-
pocampus with 338,740 cells that includes PYR cells, PV+ basket cells (BCs), axo-axonic cells (AACs),
bistratified cells (BiCs), cholecystokinin-expressing (CCK+) BCs, Schaeffer Collateral-associated (SCA)
cells, oriens-lacunosum-moleculare (OLM) cells, neurogliaform (NGF) cells, and ivy cells. The model
provides a realistic representation of the hippocampus which is grounded upon a previously com-
piled, extensive quantitative analysis (Bezaire and Soltesz, 2013). It describes the activities of the
PYR cells and the eight inhibitory cell types during theta rhythms. In broad terms, this model distin-
guishes the importance of certain cell types against others, and predicts that cell type variability is
necessary for theta rhythms to occur. However, the very complexity of the detailed model poses a
challenge in the deciphering of the exact mechanism of the theta rhythm it produces.

The goal of the present paper is to combine the advantages of minimal and detailed models to
obtain a cellular-based understanding of theta rhythm generation in the biological system. The
strategy we employ is schematized in Figure 1, and the pipeline flow of the paper can be illustrated
by three main steps. We first extend the minimal model, step 1, to test the robustness of the theta
rhythms in the face of PYR cell heterogeneity. This allows us to propose an ‘inhibition-based tuning’
mechanism that underlies theta rhythm generation and frequency control. We next compare
minimal and detailed models, step 2, to identify commonalities and differences in their structure.
Finally, in step 3, we extract a ‘piece’ of the detailed model to create the segment model which
is comparable in cell numbers to the minimal model, and we investigate the effect of the noted
differences on theta. Following a principled exploration of the segment model, we decipher how its
theta rhythm is produced. We reveal a strong correlation between the PYR cell net input current and
the frequency of the resulting theta rhythm and show that the initial spark of the theta LFP rhythm is
due to the PYR cell networks. The inhibitory cell populations on the other hand 'regularize’ the theta
rhythms and increase their power. Not surprisingly, we find degeneracy in our segment models but
comparisons with additional experimental observations support some model parameter sets and
not others.

Overall, we have combined minimal and detailed models to establish a cellular basis for how the
theta rhythms could be robustly generated and how their frequency is controlled in the biological
system. By extension we have identified common principles of the theta generation mechanism
between the two models and we discuss their differences. Moving forward, this work provides
a solid biological ‘seed’ from which to examine the multi-layered aspects of theta rhythms in the
hippocampus.

2 of 39


https://doi.org/10.1101/2020.07.28.225557
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv prepnnt doi: https://doi. org/lO 1101/2020 07.28.225557; this version posted July 29, 2020. The copyrlght holder for thls preprlnt (which

( CA3
< Experiment

\ BN AN AN AN

patch

Detailed
Compare

Input - Lacunosum-Moleculare
[ Radiaum
[ Pyramidale
[ Oriens

Robust
Theta

‘Biophysi

cal’
Theta <:I

Minimal+

Figure 1. Schematic illustrating overall paper flow and strategy.

The experimental context and four model types are referred to in the paper: Experiment - a whole hippocampus
preparation that exhibits spontaneous theta rhythms (Goutagny et al., 2009); Minimal - a previously published
work of minimal network models representing a ‘piece’ of the whole hippocampus (blue square in experiment
illustration) that generates theta rhythms within experimental constraints (Ferguson et al., 2017); Minimal+ - an
expansion of the minimal model using heterogeneous PYR cells (as illustrated with differently coloured PYR
cells) that is used in the present paper; Detailed - a previously published work of a full-scale detailed CA1
microcircuit model (eight different inhibitory cell types and PYR cells) that generates theta rhythms without any
oscillatory input (Bezaire et al., 2016b); and Segment - a network model representing a ‘piece’ of the detailed
model, that is used in the present paper. The three main steps in the flow of the paper are shown (Steps 1-3),
and the foci of the work in the present paper are illustrated by the black arrows: The detailed model is
examined in light of the experimental data; a systematic comparison between minimal and detailed models is
done; the segment model is created from the detailed model; the minimal+ model is constructed based on the
minimal model, and mechanistic insights resulting from the minimal+ model are leveraged in the segment
model. The black open arrows illustrate that ‘'Robust Theta’ in the minimal+ model is examined leading to
hypothesis development, and leveraging this in the segment model helps with an understanding of '‘Biophysical
Theta' where multiple cell types can be considered. The grey arrow illustrates previously done work where the
minimal model was developed and examined in light of the experimental data (Ferguson et al., 2017).
lllustrations include: Minimal model setup with PYR and fast-firing PV+ cells, Detailed model setup with 9 cell
types (NGF, SCA, CCK+ BC, BC, BiC, PYR, IVY, AAC, OLM) and layer-specific connectivity, Experiment of whole
hippocampus preparation with a LFP theta example, heterogeneous PYR cells as different colors in Minimal+
model, and a shaded portion of the Detailed model prism to illustrate the Segment model. Acronyms are defined
in the main text. This figure is adapted from parts of other figures: Figs. 1 & 8 of Huh et al. (2016), Fig. 2 of
Ferguson et al. (2017), and Fig. 1 of Bezaire et al. (2016b).
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Results

The flow of the results section is as follows. We begin by exploring the robustness of the theta
rhythm in the minimal model from the perspective of its building block features. Subsequently,
phase response curve (PRCs) analysis leads to the proposition of an ‘inhibition-based tuning’
mechanism of theta rhythm generation and frequency control. To investigate this mechanism
in the detailed model, we do the following. First, we compare EPSC/IPSC amplitude ratios in the
detailed model with those in the whole hippocampus preparation as it was already done with the
minimal model. Next, we carry out a systematic comparison between minimal and detailed models
by comparing connectivities, synaptic weights and external drives. Finally, we isolate a 'piece’ of
the detailed model - the segment model - comparable in cell numbers to the minimal model. We
examine the segment model in a principled manner according to minimal and detailed model
comparisons. As the segment model is much smaller than the detailed model, we can perform
extensive explorations and establish how intra-hippocampal theta rhythms are generated and how
their frequencies are controlled.

Robustness of theta generation in the minimal model

The minimal model suggested that the generation of theta oscillations could be based on the
amount of spike frequency adapation (SFA) present in the pyramidal (PYR) cells together with their
ability to exhibit post-inhibitory rebound (PIR) in large networks of minimally connected PYR cells,
interconnected with parvalbumin positive (PV+) fast-firing inhibitory cells (Ferguson et al., 2017).
Inherent with SFA and PIR building block features is a rheobase (Rheo) feature, which is the amount
of current required to make the PYR cell spike (derived from fitting to the experimental data in
(Ferguson et al., 2015b)). However, in this previous study we did not specifically examine the
sensitivity of theta rhythms to these building block features (SFA, Rheo, PIR).

The minimal model used an Izhikevich mathematical model structure for the cellular representa-
tions (/zhikevich, 2006), and while it did not have any direct biophysical ion channel equivalents, its
frequency-current (f-) curve was fit to electrophysiological recordings of PYR cells in the the whole
hippocampus preparation (Ferguson et al., 2015b). The PYR cell model parameter values, herein
referred to as default values, are: ¢=0.0012; »=3.0, 4=10, k,,,,=0.10. We used a straightforward
approach to quantify the SFA, Rheo, PIR building block features (see Methods). For the PYR cell
model with default parameter values, the quantified building block feature values are: SFA= 0.46
Hz/pA; Rheo= 4.0 pA;PIR = -5.0 pA. We refer to these values as base building block feature values.
The larger the quantified SFA value is, the stronger is the amount of the PYR cell adaptation, i.e., we
get more reduction in the PYR cell spike frequency for a fixed amount of input current. The more
negative the quantified PIR value is, the larger is the hyperpolarizing step required to generate a
spike at the end of the step.

Examining the contribution of building block features
In the extensive network simulations of Ferguson et al. (2017), the PYR cell models were homo-
geneous in terms of their (a, b,4d, k,,,,) model parameter values. However, the networks were not
homogeneous because of the noisy external drives to the PYR cell models. Because of its direct
connection to the experimental data, the minimal model with its building block features was con-
sidered to encompass key ‘biological balances’ important for theta rhythm generation. To examine
the robustness of the theta-generating mechanism in the minimal models with consideration of the
SFA, Rheo and PIR building block features, we create heterogeneous PYR cell populations from a
model database that is generated by ranging a, b, d, k,,,,, parameter values around default ones. In
turn, this model database provides a distribution of quantified SFA, Rheo, PIR building block feature
values. The distributions of values are shown in Figure 2, and the locations of the base values are
indicated by vertical black arrows.

Before delving into heterogeneous excitatory-inhibitory (E-I) model networks, let us first examine
E-1 networks of homogeneous PYR cell models with parameter values different from the default
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Figure 2. Distributions of PYR cell building block features from created model database.

A heterogeneous set of PYR cells was created and their 'building block’ features of SFA, Rheo and PIR were
quantified. Histograms show the number of occurrences of SFA [=] Hz/pA, Rheo [=] pA, PIR [=] pA values. See
Methods for details of quantifications. Also shown are narrow (N) and broad (B) subsets used to consider
heterogeneous PYR cell populations in one way (i), and low (L), medium (M), high (H) subsets to consider
heterogeneous PYR cell populations in another way (ii). See main text for further details. Vertical black arrows
indicate [SFA,Rheo,PIR] base values of a PYR cell model with default model parameters. SFA histogram has a bin
resolution of 0.05, and Rheo, PIR histograms have a bin resolution of 0.5. Acronyms are defined in the main text.

ones, but with similar values for quantified building block features. The resulting networks produce
clear population bursts, but with some variation in frequency and power. Specific examples are
shown in Table 1 along with their model parameter and quantified building block feature values.
The fact that the rhythm is not lost in any of these networks with homogeneous model parameter
values already suggests that the populations bursts are not particularly sensitive to the specific SFA
building block quantified values as the rhythm isn't lost as SFA varies. However SFA has some effect
on the specific power and frequency of the population bursts.

Table 1. E-I Network Simulation Examples with Homogeneous PYR cell models.

Homogeneous Parameter values Quantified values Power Frequency
cells in network | (a,b,d,k,,,) (SFA, Rheo, PIR) (mV3/Hz) | (Hz)
Model ID # Units: (1/ms, nS, pA, nS/mV) | Units: (Hz/pA, pA, pA)

Original (base) | (0.0012,3.0, 10, 0.10) | (0.46,4.0,-5.0) | 036 | 122

#7 (0.00072, 3.6, 18, 0.16) (0.51,4.0,-5.0) 0.21 11.8

#32 (0.00072,4.8,12,0.16) (0.51, 4.0, -5.0) 0.37 14.2

# 56 (0.00096, 3.6, 4,0.12) (0.38,4.0,-5.0) 0.40 13.6

# 81 (0.00096, 4.2, 12, 0.10) (0.49, 4.0, -5.0) 0.42 13.8

#115 (0.0012, 3.6, 14, 0.06) (0.49, 4.0, -5.0) 0.34 13.0

Let us now consider E-I networks with heterogeneous PYR cell models (Minimal+ models as
illustrated in Figure 7). We classify the PYR cells from the created model database in two groups
according to their quantified values of the [SFA, Rheo, PIR] building block feature trio. The first
group corresponds to: (i) Narrow (N) or broad (B) ranges of [SFA, Rheo, PIR] values that include the
base values, and the second group corresponds to: (ii) Low (L), medium (M) or high (H) ranges of
[SFA, Rheo, PIR] values that do not necessarily include the base values. These groups are shown
in Figure 2. For each group we create networks corresponding to combinations of the quantified
values of the SFA, Rheo, PIR building block feature ranges. For (i), there are eight possible E-l network
cases from N and B building block combination sets and the number of models in each case is
given in Table 2, along with the frequency and power of the particular network. For (ii), there are 27
possible network cases from L, M and H building block combination sets and the number of models
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156 in each case is also given in Table 2, along with the frequency and power of the particular network.
157 As it turns out, there are no PYR cell models in the created model database for HHH, HHL, MHH, MHL,
158 LHH, LHL network cases. We thus have simulation output for only 21 different E-I networks with
159 heterogeneous PYR cell populations generated using (ii). Further details on the model database are
10 given in the Methods.

Table 2. Heterogeneous E-I Network Simulations.

Network case | Number of | Power Frequency
[SFA,Rheo,PIR] | different (mV2/Hz) | (Hz)
PYR cell
models
Group (i)
NNN 137 0.37 13.0
BBB 6780 0.27 13.0
BBN 550 0.28 12.8
BNB 1010 0.29 13.0
BNN 180 0.34 13.4
NBB 4955 0.30 13.0
NBN 416 0.24 12.2
NNB 729 0.33 12.6
Group (ii)
HML (R) 556 0.38 13.0
HHM 313 0.40 15.6
HMM 493 0.37 12.8
MHM 157 0.46 15.8
MMH (R) 25 0.19 9.6
MMM 294 0.31 13.2
MML (R) 110 0.37 13.8
MLL* 99 0.12 10.0
LHM 49 0.35 16.2
LMH* 12 0.15 9.8
LMM 103 0.30 13.6
LML 74 0.32 15.0
LLM* 29 0.15 10.4
LLL 64 0.17 12.0
No Rhythm
HMH (R-supp) | 33 0.06 n/a(9.2)
HLH 97 0.01 n/a(1.2)
HLM (R) 171 0.01 n/a (0.6)
HLL 417 0.02 n/a (0.6)
MLH (R-supp) | 27 0.04 n/a(8.2)
MLM (R-supp) | 50 0.07 n/a (8.6)
LLH (R-supp) 16 0.08 n/a(10.0)

Top set of eight network cases use heterogeneous PYR cell models from group (i) and the rest use heterogeneous
PYR cell models from group (ii). Boldfaced cases are networks from which PRCs are explicitly shown in Figure 6.
(R) and (R-supp) refers to networks in which PYR cell rasters from the E-I networks are explicitly shown in Figure 3
and Figure 3-Figure Supplement 1. (*) refers to networks that are almost losing their rhythm

161 There is a clear maintenance of rhythms for the eight cases of heterogeneous group (i), as shown
162 in the top part of Table 2, where the building block quantified values are chosen in either a narrow
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or broad fashion encompassing base values. Their frequencies are similar to each other and to that
of the E-I network with homogeneous, default PYR cell model parameter values (see first row in
Table 1). Interestingly, the network power is larger when there is a narrow rather than a broad range
of values encompassing base values (compare NNN to BBB in Table 2), suggesting that particular
quantified building block feature values are important for the presence of robust theta frequency
population bursts. In essence, these simulations indicate that the theta generation mechanism in
the minimal model is robust. That is, if we have heterogeneous E-I model networks with PYR cell
model parameter values that have broadly distributed building block feature values that include
base values, then population rhythms remain with less than a 1 Hz variation in population frequency.
This further implies that a quantification of the building block features can capture the underlying
E-l balances necessary for the emergence of theta frequency population bursts in the minimal
model.

Let us now examine the output for the 21 cases of heterogeneous E-I networks with PYR cell
models that have quantified building block feature values that do not necessarily encompass base
values, i.e., group (ii). This is shown in Table 2 where it is clear that a rhythm (i.e., population bursts)
is not always present. We first note that the E-I network for the HML case is the one that mostly
encompasses base values for all three building block features. As one might expect, the power and
frequency of this E-l network case is similar to the heterogeneous (i) E-l network cases which also
encompass the base values. Considering the network power values of all of these heterogeneous
network cases, it is easy to see which networks are not rhythmic. Essentially, if the power is below
0.1, then there is not a clear rhythm - these cases are shown in the lower part of Table 2. The
cases in Table 2 that are starred are networks that have started to lose their rhythm. To view the
output from several heterogeneous E-l networks, in Figure 3 we show PYR cell raster plots for four
cases (designated with an ‘R’ in Table 2). In three of them, there is still a rhythm, but there are clear
frequency and PYR cell burst firing characteristic differences. In Figure 3-Figure Supplement 1 we
show PYR cell raster plots for four additional cases (designated with an ‘R-supp’ in Table 2) for when
the rhythm is lost so that the different patterning can be seen.

In considering the cases in which the rhythm is lost, it appears that the existence of the rhythm
is not heavily dependent on the specific SFA quantified values, since rhythms still exist even when
moving away from "Hxx" cases (i.e., those encompassing the base SFA value) - MML and LML cases.
However, the rhythm is lost if the E-I networks do not include base values for Rheo or PIR. Specifically,
"xMx" (base Rheo value) or "xxL" (closest to base PIR value) cases. For Rheo, consider the HLL case (no
HHL case to consider) and for PIR, consider the HMH case (less so for the HMM case). This allows us
to express the following: the particular rheobase current value of the PYR cell, and the ability of the
PYR cell to fire a spike with a less hyperpolarized current step are needed for the theta-generating
mechanism in the minimal models, along with some amount of spike frequency adaptation.

In summary, these simulations of E-I networks with heterogeneous PYR cell populations have
allowed us to gauge the contributions of the different building block features and have helped us to
confirm the robustness of the theta-generating rhythm mechanism. As a result, we can reasonably
establish that theta frequency population bursts in the minimal model are particularly sensitive PIR
and Rheo feature values, and less sensitive to SFA values. Let us now examine how the frequency of
the population rhythm could be controlled.

Using PRCs to develop a hypothesis of theta frequency control

We have now determined that specific quantified values for Rheo and PIR building block features are
important for theta population rhythms. The PIR building block feature is quantified as the size of a
hyperpolarizing current step required to evoke a spike (see Methods). We note that this does not
necessarily mean that the PYR cells fire due to inhibitory inputs from the PV+ cells during ongoing
theta rhythms. In the Izhikevich cell model structure, the ability of a cell to spike after an inhibitory
step is reflected in the b parameter (see equations in Methods), which needs to be positive for the
PYR cell to fire after a hyperpolarizing step. To examine whether the PYR cells in the network fire
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Figure 3. Raster plots of PYR cells in heterogeneous E-1 networks.

Simulations of E-I networks with 10,000 heterogeneous PYR cells and 500 PV+ cells produce output that have
PYR cell raster plots as shown here with a one second time range. The specific examples are labelled as (R) in
Table 2 and refer to the following sets: HML (top-left), MML (top-right), HLM (bottom-left), MMH (bottom-right).
Acronyms are defined in the main text.

Figure 3-Figure supplement 1. Loss of Rhythm - Raster plots of PYR cells in heterogeneous E-I networks.

due to the inhibitory input they receive, we compare the timing of the PYR cell spikes relative to the
timing of their incoming IPSCs. Examples are shown in Figure 4 on two different timescales. From
them, we can say that the PYR cell firing does not specifically occur because of their IPSCs, as spiking
can occur before or just after its IPSCs. Due to the limited nature of the minimal model|, it is not
helpful to carry out comparisons of EPSC and IPSC values relative to experiment. Even though we
had previously found that the EPSC/IPSC amplitude ratios were experimentally appropriate for both
PYR and PV+ cells Ferguson et al. (2017), the limited nature of the minimal model prohibits us from
probing exact experimental values of EPSCs and IPSCs. Instead, to get a further understanding on
E-l balances dictating the frequency of the theta rhythm, we turn to PRC considerations (Schultheiss
etal., 2011).

We hypothesize that the PYR cell network is generating population bursts on its own (given its
cellular adaptation characteristics) with the PV+ cell network providing an inhibitory ‘bolus’. We thus
consider that the resulting frequency of the E-I network’s population bursts is due to a combination
of the PYR cell's firing frequency combined with how much an inhibitory input could advance or
delay the PYR cell spiking. This setup is schematized in Figure 5 as follows: Each PYR cell in the
network receives excitatory input from other PYR cells as well as a noisy excitatory drive. The
amount of input a PYR cell receives would of course fluctuate over time, but consider that the
PYR cell receives a mean excitatory input of about 20 to 30 pA based on parameter values of the
minimal models. In these models theta population bursts occur when PYR cells receive a zero
mean excitatory drive with fluctuations of ~ 10-30 pA (Ferguson et al., 2017). We generate PRCs by
considering an inhibitory ‘bolus’ that a PYR cell would receive by the inhibitory PV+ cell population
in the minimal model. The inhibitory pulse would advance or delay the subsequent PYR cell's spike
as given by the PRC. Further details are provided in the Methods.

We consider three cases of heterogeneous E-I networks which exhibit different population
burst frequencies. The first case is the MMH network with a ‘slow’ frequency of 9.6 Hz, the second
case is the HML network with a ‘'medium’ frequency of 13 Hz, and third case is LML network with
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Figure 4. Examples of inhibitory currents onto PYR cells together with PYR cell membrane voltages.
Four examples of a PYR cell's membrane voltage and the inhibitory current (IPSC) onto it. A PYR cell spike can be
seen in each example. The top row is shown for a 200 msec time range, and the bottom row is for the same
example, but for a 50 msec time range that includes the PYR cell spike. The IPSC can be clearly seen as
occurring either after or just before the spike. The PYR cell is one of the 10,000 PYR cells in the heterogeneous
E-l network, BBB set. Acronyms are defined in the main text.
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a 'fast’ frequency of 15 Hz Table 2. We generate PRCs for the PYR cell models in each of these
three cases. Each PYR cell model has particular PRC characteristics due to its a, b, d, klow model
parameter values and exhibits a specific intrinsic frequency for a given input. The calculation of
these PRCs is described in the Methods. In Figure 6 we show differences between PRC properties
and individual cell firing frequencies for each of the three cases, using an input current of 30 pA.
The PRCs for each case show distinct features: for instance, the PYR cells in the HML case uniquely
exhibit a region of phase-advance, while the PYR cells in the LML case have the largest phase delay
for perturbations delivered at all but the latest phases. These PRC examinations provide evidence
in support of the notion that the frequency of the E-I network population burst is strongly affected
by the intrinsic properties of the PYR cells. For instance, while the PYR cells in the LML case have the
fastest individual firing frequencies (notably faster than what is seen in population models), their
PRCs may be slowing down this frequency by means of the inhibitory 'bolus’ of synaptic inhibition.
Meanwhile, the PYR cells in the HML case have the slowest individual firing frequencies, although
they participate in ‘medium’ speed theta rhythms. The PRC in this case, particularly the region of
phase-advance, may play a role in accelerating the PYR cells by means of their inhibitory synaptic
input. Frequencies and PRCs for a different input current (20 pA) are shown in Figure 6-Figure
Supplement 1.

In essence, this PRC examination allows us to propose that the frequency of the network
population bursts depends on the net amount of input delivered to the PYR cells, including the
inhibitory bolus. In other words, the frequency response depends on the intrinsic properties of the
PYR cells, as given by its f-I curve. This in turn implies that a stable population burst is achieved if
the excitation and inhibition are balanced so that proper inhibitory ‘tuning’ can take place. However,
just from these minimal model examinations, it is unclear whether such a relationship between
PYR cell inputs and network frequency would exist in biologically realistic networks.

Overall, our expansion of the minimal model to include heterogeneous PYR cell populations (see
Figure 1) revealed a robustness in the emergence of theta rhythms, and uncovered a sensitivity to
the specific quantified values of the PIR and Rheo building block features, but not to SFA. The use of
PRCs showed that the resulting frequency of the population bursts could be largely due to PYR cell
intrinsic properties. These explorations in the minimal model lead us to hypothesize an ‘inhibition-
based tuning’ mechanism underlying the robust emergence of intrinsic, intra-hippocampal theta
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Figure 5. Schematic of setup for phase response curve (PRC) calculations.

Using the minimal model structure, and assuming a theta-generating mechanism based on SFA, PRCs are
generated based on an inhibitory input ('bolus’) coming from the PV+ cell network to a PYR cell in the PYR cell
network. Each PYR cell is receiving a noisy, excitatory drive shown as '‘Other Input’, and an illustrative f-I curve
for a PYR cell is shown. The f-I curve with a specified net drive would dictate the result of the computed PRC
based on the inhibitory input. Acronyms are defined in the main text.

rhythms and their frequency control. In this mechanism, together with SFA, Rheo and PIR building
block features, two key aspects are important: (i) The PYR cell population needs to be large enough
so that it can collectively generate a strong excitatory drive to the inhibitory PV+ cells. In turn, the PV+
cell population should be able to fire enough (and coherently) to create a strong inhibitory 'bolus’
that tunes and regularizes the PYR cell population bursting output. (i) The net input (recurrent
excitation, excitatory drive, incoming inhibition) received by the PYR cell situates it in a frequency
range that allows theta frequency population bursts to occur. The resulting theta frequency of
population bursts are fundamentally ‘controlled’ by the net amount of input that the PYR cells
receive.

Linkage explorations between minimal and detailed models generating intrinsic
theta rhythms intra-hippocampally

With a clear sense of how stable theta frequency population bursts are generated in the minimal
model, we turn to the detailed model with its empirically-based connections and biophysical cellular
specifics. To consider whether the detailed model uses similar theta-generating mechanisms as the
minimal model, we examine commonalities and differences between the two models, as illustrated
by ‘compare’ in Figure 1. However, we first turn to an examination of EPSC/IPSC amplitude ratios in
the detailed model relative to those observed in the whole hippocampus preparation.

EPSC/IPSC amplitude ratios in the detailed model are consistent with those in the whole
hippocampus preparation

In the minimal model, when we ‘matched’ model EPSC/IPSC amplitude ratios with experiment
(Huh et al., 2016), we predicted that connection probabilities from PV+ to PYR needed to be larger
than those from PYR to PV+ cells (Ferguson et al., 2017). The detailed model is experimentally
constrained in a bottom up fashion, using cellular data and connectivity information from a plethora
of experimental data (Bezaire and Soltesz, 2013). Whether the detailed model yields meso-level
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Figure 6. PYR cells from three heterogeneous E-l1 network cases show distinct PRC features and firing
frequencies.

Mean PRC (solid line) for PYR cells of a particular case (MMH in panel A, HML in panel B, and LML in panel C)
calculated with an input current of 30 pA, with the shading representing + the standard deviation. The mean
and standard deviation of the firing frequencies of the PYR cells at this input level are included in the inset of
each panel. PYR cells of the MMH case produce 'slow’ population theta frequency, and PYR cells exhibit
moderate individual firing frequencies but notably only show phase-delay in their PRCs. PYR cells of the HML
case produce 'medium’ population theta frequency, and PYR cells show the slowest individual firing frequencies,
but the region of phase-advance in their PRCs reveals a potential mechanism by which these frequencies might
be increased in the network setting. Finally, PYR cells of the LML case produce 'fast’ population theta frequency,
and PYR cells show the highest individual firing frequencies, with a potential mechanism by which these are
slowed in the network setting revealed by the PRCs with the most marked phase-delay. Acronyms are defined in
the main text.

Figure 6-Figure supplement 1. PRCs calculated with a 20 pA input show similar features in the three PYR cell
populations.

Table 3. EPSC/IPSC Amplitude Ratios from Detailed Model Network Cells.

PV+ cell type EPSC/IPSC amplitude ratio
(on PYR cell)

=BC 4.05 +0.86

=BiC 7.21+£1.19

= BC/BiC 2.95+0.62

= BC/AAC/BIC 1.78 £0.39

= All inhibitory cell types | 1.32+0.24

EPSC/IPSC amplitude ratio
(on PV+ cell)

=BC 11.71 £ 2.66

=BiC 34.97 +5.28

measurements, such as EPSC/IPSC amplitude ratios that agree with experimental observations
from the whole hippocampus preparation, has not been directly assessed. Thus, we here examine
whether the detailed model exhibits ratios that ‘match’ those observed in experiments from the
whole hippocampus preparation, as was already considered in the minimal model. From the
experimental data it is abundantly clear that the EPSC/IPSC amplitude ratios for PYR cells are much
less than for PV+ cells. For the detailed model, we consider PV+ cells to represent BCs, BiCs, or
combinations of BCs, BiCs and AACs. We choose 15 cells of each type and extract EPSCs and IPSCs
at the somata of the different cell types and compute the ratios. We find that regardless of the PV+
cell type or combination considered, it is always the case that the EPSC/IPSC amplitude ratios are
consistent with experiment - larger on PV+ cells than on PYR cells - as shown in Table 3. Further
details are provided in the Methods.

Minimal model connectivity prediction validated using detailed model empirical numbers.
In the minimal model we predicted that to have EPSC/IPSC amplitude ratios that are consistent
with the experimental observations, it is necessary for the connection probability from PV+ to PYR
cells to be larger than from PYR to PV+ cells. The connectivities in the detailed model are based on
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Figure 7. Schematics summarizing connections in the detailed model for PYR and PV+ cell types.

The four schematics illustrate the connection schemes that exist in the detailed model, where we only consider
PYR and PV+ cells (BCs, BiCs, AACs) (Bezaire et al., 2016b). For each large centered cell, the number of synapses
per connection and its approximate location on the cell is specified for whichever cells are presynaptic, and the
number of cells that the large centered cell connects to is also illustrated for whichever cells are postsynaptic.
These numbers are also reflected in Table 4. The morphological structure along with its layer location from the
detailed model is also shown. The red line in pyramidal cell denotes its axon. SP = stratum pyramidale, SLM =
stratum lacunosum-moleculare, SR = stratum radiatum, SO = stratum oriens. Other acronyms are defined in the
main text.

empirical determinations (Bezaire and Soltesz, 2013). Thus, if the minimal model is an appropriate
representation of the CA1 microcircuitry, its connection probabilities should be in line with those in
the detailed model. To consider this, we note two things. First, the minimal model only includes
fast-firing PV+ and PYR cells, and second, it uses a random connectivity scheme. Thus, to make
comparisons, we consider only PV+ cell types and PYR cells from the detailed model and determine
connection probabilities between them using their empirically-based connection schemes. Three
inhibitory interneuron cell types in the detailed model can be considered as fast-firing PV+ cell
types. These are the BCs, the BiCs and the AACs. Considering only these three inhibitory cell types
and the PYR cells, we extracted the number of their post-synaptic connections. This is shown in
schematic form in Figure 7. To compare connection probabilities between minimal and detailed
models we considered that the fast-firing PV+ cell type in the minimal model could correspond to:
(i) only BCs; (ii) only BCs and AACs; (iii) only BCs and BiCs; (iv) BCs, AACs and BiCs. BCs represent the
majority of fast-firing PV+ cell types and so they are included in all of the different combinations.
The connection probabilities computed from the detailed model are given in Table 4 along
with connection probabilities from the minimal model (details are given in the Methods). To avoid
repetition, minimal model connection probabilities are only shown for the “PV+=BC" case in row
#2 of Table 4. We found that regardless of the PV+ cell type consideration (i-iv), the connection
probability from PV+ to PYR is greater than from PYR to PV+ in the detailed model, indicating that one
of the predictions of the minimal model is in effect in the CA1 microcircuitry. Thus, this comparison
arguably yields a ‘validation’ of the minimal model as one of its main predictions is in effect in the
detailed model which has empirically determined connection probabilities from many experimental
determinations (Bezaire and Soltesz, 2013). We note that comparison of PYR to PYR and PV+ to PV+
connection probabilities between minimal and detailed models are expected to be appropriate as
these connection probabilities in the minimal model were derived from the experimental literature
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Row | Cell Types and Number | Number of | Connection Number of | Synaptic
Connections of cells | connections | Probability synapses per | Weight*
connection g(ns)
#1 | PYR 311,500
PYR to PYR 197 0.00063 1 70.0
[0.07 for [0.094 for MM]
minimal model (MM)]
#2 | PV+=BC 5,330
PYR to BC 8 0.0015 3 2.1
[0.02 for MM] [3.0 for MM]
BC to PYR 958 0.0031 11 2.2
[0.3 for MM] [8.7 for MM]
BC to BC 39 0.0071 1 1.6
[0.12 for MM] [3.0 for MM]
#3 | PV+=BC/AAC 7,000
PYR to BC/AAC 9 0.0014 6 4.4
BC/AAC to PYR 1,115 0.0036 8.5 5.7
BC/AAC to BC/AAC 49 0.0070 1 0.8
#4 | PV+=BC/BiC 7,740
PYR to BC/BiC 11 0.0014 6 16.0
BC/BiC to PYR 1,184 0.0038 10.5 3.7
BC/BiC to BC/BiC 111 0.014 1" 771
#5 | PV+=BC/AAC/BiC 9,210
PYR to BC/AAC/BIC 12 0.0013 9 23.8
BC/AAC/BIC to PYR 1,213 0.0039 9 5.6
BC/AAC/BIC
to BC/AAC/BIC 132 0.014 11 54.0
#6 | Other Input
CA3 to PYR n/a 5,985 n/a 2 0.40
EC to PYR n/a 1,299 n/a 2 0.40
CA3to BC n/a 6,047 n/a 2 0.44
CA3 to AAC n/a 4,170 n/a 2 0.24
EC to AAC n/a 485 n/a 2 0.24
CA3 to BiC n/a 5,782 n/a 2 0.30
EC to BiC n/a 432 n/a 2 0.30

* Synaptic Weight = Synaptic Conductance x number of synapses/connection

32 (Ferguson et al., 2013, 2015a). As noted in Table 4, the PYR to PYR connection probability (see row
a3 #1) is an order of magnitude less than it is for the PV+ to PV+ connection probability (see rows
134 #2-#5) for both minimal and detailed models.

335 In making these comparisons, we do not expect to have an exact matching of connection
3¢ probability values. Besides the fact that the minimal model consists of a subset of different
337 inhibitory cell types in the detailed model, the cellular models differ in their compartmental and
33 mathematical biophysical ‘structure’. Specifically, the detailed model has multi-compartment models
339 that include conductance-based ion current representations, and the minimal model has single
30 compartment models with an Izhikevich mathematical representation (see Methods). It is however
s reassuring that the connection probabilities compare favourably as described above, since both
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minimal and detailed models produce intrinsic, intra-hippocampal theta rhythms.

E-l balance considerations in minimal and detailed models expose differences

So far we have shown that the connection probabilities in the minimal model are appropriate
relative to the empirical ones in the detailed model and that the detailed model has appropriate
EPSC/IPSC amplitude ratios from the perspective of the whole hippocampus preparation that
generates intrinsic theta rhythms. Let us now exploit these linkages.

We first note that since both the minimal and full-scale detailed models produce theta rhythms,

the underlying E-I balances that are present in both models must be appropriate for the generation
of theta rhythms. Now, besides connection probabilities between excitatory and inhibitory cells,
synaptic weights and any other external drives to the network models would also affect E-I balances.
Synaptic Weights: Similar to the comparison consideration of connection probabilities above, we
compare synaptic weights in minimal and detailed models. As before, we focus on a cellular subset
of the detailed model the fast-firing PV+ cells. The number of connections and synaptic weights
for PV+ and PYR cells are given in the last two columns of Table 4. Note that the synaptic weight
refers to a connection between cells so that the number of synapses per connection is taken into
consideration. From a comparison of these weights, it is clear that there is about three orders
of magnitude difference between the synaptic weights of PYR to PYR cells whereas the synaptic
weights from PV+ to PYR, PYR to PV+ and PV+ to PV+ are comparable (i.e., same order of magnitude),
if PV+ cells are considered to be BCs or a combination of BCs and AACs (see Table 4). Thus, on
the face of it, the detailed model has much stronger connections between PYR cells relative to the
minimal model.
External Drives: The minimal model is driven by an external excitatory input, denoted as ‘other input
in the schematic of Figure 1, that is applied only to the PYR cells of the E-l networks. The amount of
this other input is comparable or smaller than any of the 'internal’ EPSCs (see Table 5 in Ferguson
et al. (2017)), as it has a zero mean with fluctuations of ~ 10-30 pA. For the detailed model, the
excitatory and inhibitory cells are driven by activation of excitatory afferents from the CA3 and
the entorhinal cortex (EC) with connectivity of empirical estimation (see row #6 in Table 4). Unlike
the minimal model, these CA3/EC excitatory inputs are larger relative to the ‘internal’ EPSCs and
so likely play an important role in maintaining the appropriate E-I balance for theta generation in
the detailed model. Specifically, the CA3, EC and PYR cell excitatory currents onto PYR cells are
approximately 10, 6 and 10 nA. The detailed model is only loosely based on the whole hippocampus
preparation. Its theta rhythms are produced intra-hippocampally but the network is driven by
external EC and CA3 noisy afferents. These afferents conceptually represent remaining inputs from
cut afferents after extraction from the whole brain. Given that the external drives in the minimal and
detailed models are not represented in a similar way, we cannot compare them directly. However,
it is possible that the large difference in PYR to PYR synaptic weights between minimal and detailed
models is partly because of their external drive differences.

In summary, our consideration of linkages between minimal and detailed models via the whole
hippocampus preparation (see Figure 1) that generates intrinsic theta rhythms leads to the following:
The minimal model has appropriate connection probabilities relative to the biological system, as
represented by a biologically detailed full-scale CAT microcircuit model; the full-scale detailed model
has appropriate EPSC/IPSC amplitude ratios relative to experiment; and although both minimal and
detailed models produce intra-hippocampal theta rhythms, there are notable differences between
their PYR to PYR synaptic weights and external drives.

’

Using a 'piece’ of the detailed model to understand the initiation of theta rhythms
and how their frequencies are controlled

It is worth re-stating that despite its several limitations (e.g., only 70% of inhibitory cell types were
included), the detailed model produces robust theta rhythms. However, because of its large size
and computationally expensive nature, extensive parameter explorations were not performed.
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As a result, even though the detailed model produces theta rhythms, and model perturbations
indicated that some cell types and not others are important for their emergence, we do not know
how the rhythm generation is initiated or controlled. To address this, we first isolate a part of the
detailed model, the segment model (see Figure 1), that has comparable cell numbers to the minimal
model. We investigate the segment model according to the noted differences with the minimal
model and examine how this is manifest in the power and frequency of LFP theta rhythms that we
subsequently interpret in light of the minimal model mechanism. From this investigation, we unveil
an understanding of how the 'biophysical’ theta rhythms are generated and how their frequencies
are controlled in a biologically detailed model with multiple inhibitory cell types.

Creating the segment model and examining its initial behaviour

We start by extracting a ‘piece’ of the detailed model which has a comparable number of cells
relative to the minimal model, and we refer to it as the segment model - see Figure 8Ai. Our
segment model represents 10% of the original detailed model and it has all of the same cell types
with the same layer location positioning and synaptic connection structure as the detailed model.
That is, the segment model contains eight inhibitory cell types and is driven by excitatory afferents
representing inputs from the EC and the CA3 region, as illustrated in Figure 8Aii. The activation of
the EC/CA3 synapses is modeled as an independent Poisson stochastic process and the strength
of this activation is represented by the Poisson stimulation parameter. These afferents project
to the majority of the cell types in the network with the exception of the OLM cells which are
only driven by the PYR cells. Therefore, in contrast to the minimal model, the segment model is
driven by external inputs that in addition to the PYR cells, also project to the inhibitory cells of
the network (see Figure 7). Even though the segment model represents only 10% of the original
detailed hippocampus model, its much smaller size makes it now possible to investigate the network
dynamics by undertaking extensive parameter explorations using high-performance computing.
We carried out this investigation by exploiting the noted differences between minimal and detailed
models, and by considering the minimal model insights.

Let us start by examining the segment model without changing any of its parameters relative to
the detailed model. As expected, the segment model does not produce any output. Instead, this
‘fraction’ of the detailed model produces hyperactive cell populations (not shown) indicating that
the E-I input balances to the cells are shifted in favour of excitation. This suggests that to get a theta
rhythm in the segment model, one could simply reduce the activation of the external afferents
via the stimulation parameter. This is a reasonable consideration given that our model essentially
consists of a smaller piece of tissue. We found that theta rhythms arise in the segment model when
we decrease the stimulation parameter, but they have very low power and are very noisy. The
raw LFP signal, as recorded in stratum pyramidale, is shown in Figure 8Bi, and it can be seen to be
quite noisy. Guided by the Welch’s Periodogram, as shown in Figure 8C, theta rhythms at two peak
frequencies (3.7 and 9.2 Hz) can be discerned. The filtered LFP signal is shown above Figure 8Bii
and Biii. In essence, this finding predicts that a 10% piece of a whole hippocampus preparation is
enough of a tissue volume to generate theta rhythms. This supports the viewpoint, supported by
experimental observations, that the hippocampus is comprised of multiple theta oscillators along
its septotemporal axis (Goutagny et al. (2009)).

Designing an extensive parameter exploration of the segment model

As shown above, the segment model, without any changed parameter values besides the stimulation
parameter, produces weak and noisy theta rhythms - see Figure 8B. Is it possible to obtain robust
theta rhythms in the segment model? That is, can we increase the power of the theta rhythms
expressed by the segment model? To answer this, we were motivated to determine whether
bringing the segment model to a similar E-I parametric regime as the minimal model could ‘enhance’
the theta rhythms. To test this, we examined whether by adjusting for differences between the
models, we could increase the power of the theta rhythms expressed by the segment model.
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Figure 8. Theta rhythms in the segment model.

A. (i): The model network is arranged in a layered prism. Image is adapted from Fig. 1 of Bezaire et al. (2016a).
The segment model shown in blue, represents 10% of the original volume. It contains 31,150 PYR cells, 553 BCs,
221 BiCs, 358 NGF cells, 40 SCA cells, 360 CCK+ BCs, 881 Ivy cells, 164 OLM cells, 147 AACs. LFP output is based
on a single micro-electrode placed in Stratum Pyramidale (SP). (ii): The number, position and cell types of each
connection are biologically constrained, as are the numbers and positions of the cells. Image is adapted from
Fig. 1 of Bezaire et al. (2016a). B. The segment network generates theta rhythms once the stimulation is
reduced to 0.26Hz (it is 0.65Hz in the original detailed model). (i): Unfiltered LFP, (ii): filtered for low theta (peak
at 3.7Hz) and (iii): filtered for high theta (peak at 9.2Hz). See Methods. C. Welch’s Periodogram of the LFP shows
a peak at two theta frequencies. Acronyms are defined in the main text.

Figure 8-Figure supplement 1. Recurrent excitation and feed-forward external drive to the PYR cells are needed for
theta rhythms.

From the comparison between the minimal and detailed models, we found that their two main
differences stemmed from the external drives to the network and the synaptic weights between the
PYR cells, which we will refer to as g,,._,,,. In the minimal model, the external drive is only applied
to the PYR cell population and is relatively weak (fluctuations of ~ 10-30 pA) compared to what it
is in the detailed model - about 10 nA (similar for the segment model). Also, the external drive in
the detailed and segment models is applied not only to the PYR cells but also to the majority of
the inhibitory cells. It is also important to keep in mind that the PYR cells in the segment model
are bombarded by substantially more inhibition in comparison to the minimal model, as there are
eight different inhibitory cell types projecting to them, as compared to just the fast-firing PV+ cells
in the minimal model. This means that in the segment model, relative to the minimal model, it
is possible that the stronger external drive to the PYR cells and the stronger g, . are required
to counterbalance the larger inhibitory presence due to the multiple inhibitory cell inputs. Due
to these aspects, we designed an expansive exploration of how the segment model depends on
&,yr—pyr @Nd the external drive to the PYR cells in creating theta rhythms. For the external drive, we
explored both the stimulation parameter as well as the excitatory conductance from EC/CA3 to the
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Figure 9. Dependence of theta power and frequency on the PYR cells’ excitatory drives.

A. Schematic to illustrate the parametric exploration done that focuses on the excitatory drives to the PYR cells.
B. Heatmaps of normalized theta power (i), frequency (ii) and afferent input stimulation (iii) as a function of
Epyr—pyr AN &eeca3—pye- Circled a and b regions represent case a and b networks respectively, with

(8pyr—pyrs 8ecca3—pyr) PArameter values of: (30 nS, 0.16 nS) for case a, and (30 nS, 0.22 nS) for case b. Dashed
circled regions represent initial network of the segment model as obtained from the 10% ‘piece’ extracted from
the detailed model (see Figure 8), With (g,,,,_ s 8ec/ca3—pyr) PArameter values of: (70 nS, 0.20 nS). C. Histograms
of cellular activities for case a. Bin size = 1 ms. D. Same as C., but for case b. E. (i): Unfiltered LFP, (ii): Filtered LFP
(peak at 6.7Hz), for case a. F (i): Unfiltered LFP, (ii): Filtered LFP (peak at 3.7Hz), for case b. G. Welch's
Periodogram of LFP for case a. H. Same as G., but for case b.

Figure 9-Figure supplement 1. Dependence of net theta power on the PYR cells’ excitatory drives.

Figure 9-Figure supplement 2. Dependence of theta and delta power on the PYR cells’ excitatory drives.

Figure 9-Figure supplement 3. Dependence of "high" theta (6-12Hz) power on the PYR cells’ excitatory drives.

PYR cells, which we will refer to as g,. /.., This examination is schematized in Figure 9A.
For each (g, &eceas—py) CONductance pair, we performed a set of simulations to find the
stimulation parameter that maximizes the theta power (3-12 Hz) for the given conductance pair.
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Given that these networks exhibit two theta peaks, a low and a high one, as shown by their Welch
Periodogram, this analysis considers the stronger theta peak which is usually the one corresponding
to the lower theta. A separate analysis for the higher theta peak power vs conductance pairs (ranges
6-12 Hz) can be found in Figure 9-Figure Supplement 3. The theta rhythm dependence of our
parametric explorations is shown in Figure 9Bi-iii. From left to right we show the normalized theta
power, the theta frequency and the required stimulation to maximize the theta power for each
conductance pair examined. These results show that the normalized theta rhythm power increases
with increasing g,,,_,., O &./ca3—py (SiMilar is the trend for the net theta power Figure 9-Figure
Supplement 1) while theta frequency approximately decreases with increasing g,.,css—pyr OF &yyr—pyr-
We note that these patterns are disrupted for the largest g,./.s3_,,r OF &,,,_,,» CONduUctance values,
where the power of the networks is shifted to lower 'delta’ frequencies below 3 Hz (see Figure 9-
Figure Supplement 2). From the heatmaps of the net theta power in Figure 9-Figure Supplement 1
we notice that the power of the theta rhythms has significantly increased, approximately doubled,
relative to the initial behaviour of the segment model shown in Figure 8B. It is thus clear that
there are particular parameter combinations that can significantly increase the power of the theta
rhythms in the segment model to make it more robust.

Theta rhythm robustness and degeneracy of theta rhythm generation

To get an understanding of what underlies the results from our extensive parameter explorations,
we took a detailed look at the inner mechanics of the network. We did this by examining two sets
of conductance pair examples, case a (Figure 9C,E,G) and case b (Figure 9D,F,H), which correspond
to small and large g,./..;-,,- Values, respectively. These two examples exhibit elevated theta power
relative to the initial behavior of the segment, which we notice by comparing the amplitudes of the
raw LFP recordings in Figure 9Ei,Fi to Figure 8Bi, and the periodograms in Figure 9G,H to Figure 8C,
where the theta power can be seen to be larger by about two orders of magnitude. From our
explorations, we observed the following: When g, /..;_,,. is small, the EC/CA3 afferents have to be
strongly activated to elicit a strong response to the PYR cells, hence requiring a large stimulation
value - see Figure 9Biii. However, because these afferents connect to most of the inhibitory cells, a
large stimulation value means strong concurrent activation of most of the inhibitory cells in the
network. This is why the majority of the inhibitory cells in the network are fairly active in these
regimes as shown in Figure 9C. When g,.,..5_,,, is large, the activation of EC/CA3 afferents don't
have to be as strong (see corresponding stimulation value in Figure 9Biii) to elicit a similar response
of the PYR cells given that the g, /..;_,,. itself is already large. In this regime, the activity of most
inhibitory cells is low exactly because the stimulation parameter is low and the inhibitory cells are
not strongly activated. This can be seen in Figure 9D.

Overall, these results expose the degeneracy of the theta rhythm-generating system which can
occur in at least two ways depending on the exact pathway of activation of the PYR cells. It can
be by either by low activation of the external afferents given a large g,. .-, cOnductance value,
inducing a high concurrent activation of the inhibitory cells (case a), or by high activation of the
external afferents given a small g,.,..;_,,» cONductance value, inducing low concurrent activation of
the inhibitory cells (case b). From this exploration, it is clear that regardless of the exact pathway
of activation, what appears to be critical for robust theta rhythms is the net amount of input to
the PYR cells. Thus, the proposition brought forth by the minimal model that the theta frequency
is controlled by the net amount of input that is received by the PYR cells, seems likely. With the
segment model, we are now in the position to directly examine whether this is the case.

Frequency control of theta rhythms and how they are initiated

Based on the minimal model's proposition, we examined the frequency of the LFP theta rhythms
from the perspective of the net current received by the PYR cells irrespective of whether the pathway
is of a case a or of a case b type. To do this, we took advantage of the numerous network simulations
underpinning the heatmaps of Figure 9B. Specifically, we examined whether the frequency of those
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Figure 10. PYR cell net current input strongly correlates with frequency.

A. Schematic to illustrate PYR cell sampling considered for net current analyses. B. lllustration of EPSCs and
IPSCs onto the PYR cells. (i): current inputs from other PYR cells and the eight inhibitory cell types, and (ii): the
excitatory drive from EC/CA3. C. Theta frequency plotted versus net current. Ten cells are randomly selected
from each one of the 50 networks underpinning the heatmaps of Figure 9B. Each dot represents the average
across ten cells of the mean input current amplitudes to a given PYR cell of one of the 50 networks in Figure 9B.
Error bars represent the standard deviation of these averages. The correlation coefficient between the theta
frequency and the net input current is p =-0.9, the p-value = 5.9x10719 and the slope of the red line of the linear
regression fit is r=-0.7 Hz/nA, indicating that the LFP theta frequency increases by about one Hz every time the
net drive increases by one nA. Acronyms are defined in the main text.

networks correlate with the net current to the PYR cells. We selected a sample of 10 PYR cells
from each of the segment models, as schematized in Figure 10A, and computed the average and
standard deviation of the net current that each of these 10 PYR cells received. An example of IPSCs
and EPSCs received by a particular PYR cell is shown in Figure 10Bi-ii. In Figure 10C, we plot means
and standard deviations of the net current for all of the segment model networks in Figure 9B, and
we see that there is indeed a strong correlation between the theta frequency of each segment
model and the net input received by the PYR cells (see Methods for calculations). This plot clearly
demonstrates that the frequency of the theta rhythm can be predicted by the input to the PYR cells.

So far we've shown that the frequency of the theta rhythm relies on the net input received
by the PYR cells in the segment model representing the smallest volume of tissue required to
produce theta rhythms. Indeed if we chose to consider an even smaller tissue volume some
of the inhibitory cells wouldn't even be part of the network purely because of their empirically
derived connectivity profiles. At this point, we note that the presence of theta rhythms requires
that PYR cells are connected with each other, since the rhythms do not exist if g, ,,. conductances
are zeroed (see Figure 8-Figure Supplement T1). That is, some recurrent excitation is required, as
was already shown in Bezaire et al. (2016b). Also, not surprisingly, given the large contribution
of the external drive in the detailed model, the theta rhythm cannot be maintained if external
drive to the PYR cells is removed by setting g,.,.,;_,, tO zero (see Figure 8-Figure Supplement 1).
Interestingly, what becomes evident in the segment model is that the generation of the theta
rhythms is not specifically due to phasic drives from the inhibitory cells. Indeed, in these networks
most of the inhibitory cell populations haven't yet organized into periodically firing populations.
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This is particularly noticeable in Figure 9D where theta rhythms are present and can be seen to be
due to the PYR cell population firing in bursts of theta frequency. Even more, we notice that the
pattern of the input current to the PYR cells isn't theta-paced or periodic (see Figure 10Bi). Despite
this, the PYR cell population can organize into a theta frequency bursting population, and initiate
the theta rhythm. This indicates that provided the appropriate level of net input to the PYR cells, a
theta rhythm can start, and the initiation does not depend upon sequential, externally imposed
inhibition form other rhythmically firing inhibitory cells. Of course, with a larger network, other
inhibitory cells organize into periodically firing populations and contribute to the robustness and
strength of the theta rhythm. However, at its initiation stages, we can clearly say that the theta
rhythm ‘sparks off’ from the PYR cells.

Experimental constraints expand the understanding of theta-generating mechanisms in
the hippocampus

Given the not unexpected degeneracy in the segment model, an important aspect to consider is
which of the theta rhythm-generating pathways might be occurring in the biological system. As a
step in this direction, we turn to experimental observations from the intact hippocampus in which
PV+ cells were optogenetically manipulated by Amilhon et al. (2015). Specifically, it was found that
optogenetically silencing the PV+ cells significantly reduced the theta rhythm. Thus, removing PV+
cells in the segment model should have a detrimental effect on theta rhythms as well. As already
noted, there are several sets of parameters that produce theta rhythms, and these are shown in
Figure 9B.

Let us go back to our previous examples of case a and case b. As can be seen in Figure 9G,H,
these two networks produce theta rhythms of similar power. To consider the experimental results
of Amilhon et al. (2015), we removed the PV+ cells (BCs, AACs, BiCs) from the two network cases
to mimic an ‘optogenetic’ silencing, and we measured the resulting change in the theta rhythm.
This was done by removing the PV+ cells from the network by zero-ing all of the inhibitory synaptic
conductances emanating from them (Figure 11A, Figure 11B-G). It is evident that the PV+ cell
removal has a negative effect on the power of the theta rhythms in case a but not in case b, simply
based on their respective periodograms (compare Figure 11F,G with Figure 9G,H). Interestingly,
there was a large increase in gamma frequencies with PV+ cell removal in case a. In case a, the
net input to the PYR cells is the sum of both strong inhibitory and excitatory currents; thus, the
rhythm cannot be maintained when the inhibitory inputs from PV+ cells are lost due to the severe
disruption of the E-l balance. However, in case b, the net input to the PYR cells is mostly defined by
the excitatory cells. In this case, removing the PV+ cells did not affect the E-I balance enough to
disrupt the theta rhythms - indeed, it enhanced them (compare the peak values in the periodograms
of Figure 9H and Figure 11G). This implies that the different E-l balances in the segment model
that allow LFP theta rhythms to emerge are not all consistent with the experimental data, and by
extension, the biological system. Thus it appears that lower g,,.,;_,,» conductance values, as in case
a0, that rely on both inhibitory and excitatory currents are more consistent with the experimental
data.

In Figure 12 we show a summarized, aggregate comparison of the measurements for case a and
case b segment models before and after the removal of the PV+ cells from the network. In case a
(Figure 12Ai-iv), removing the PV+ cells diminishes the theta power, while the frequency of the LFP
signal and the net input current to the PYR cells which are correlated, remained intact. A noticeable
decrease appears in the standard deviation of the current. This decrease reveals that removing
the PV+ cells in this regime increases the ‘noisiness’ of the net current, or the fluctuation around
its mean, which could potentially underlie the decrease in theta power in this example. Indeed,
after examining the minimal model in the first part of this study, we proposed an ‘inhibition-based
tuning’ mechanism for the theta rhythm, in which the PV+ cells 'tune’ the PYR cell firing and by
consequence regularize and enhance the robustness of the theta rhythm. Such a mechanism is
supported by the segment model for case a.
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Figure 11. Effect on the theta rhythms with removal of input from PV+ cells.

A. Schematic illustrating examination of the effects of PV+ cell (BCs, AACs, BiCs) input removal to the PYR cells. B
Histograms of cellular activities for case a with PV+ to PYR cell inputs removed. Bin size = Tms. C. Same as B.,
but for case b. D. Filtered theta signal for case a with PV+ to PYR cell inputs removed (peak at 6.7Hz). E. Same as
D., but for case b (peak at 3.7Hz). F. Welch's Periodogram of LFP for case a with PV+ to PYR cell inputs removed.
G. Same as F,, but for case b. Acronyms are defined in the main text.

As shown for case b (Figure 12Bi-iv), removing the PV+ cells actually increases the power of the
theta rhythm while keeping the same theta frequency in the LFP signal and the same net input
current. However, in this case, the standard deviation of the net current did not change, unlike
for case a. Thus, from the perspective of the experiments of Amilhon et al. (2015) theta rhythm
generation via a case a type pathway seems more biologically realistic while it also supports the
proposed inhibition-based tuning mechanism from the minimal model. In Figure 12C, we provide a
schematic of the biophysical theta generation mechanism and frequency control. This comparison
with experiment brings forth the importance of understanding the inner mechanisms underpinning
the dynamic output of a system, as high-dimensional models are likely to express degeneracy,
which could however come forth via separable “pathways” of different biological implications.

Discussion

Including biological complexity in cellular-based network models challenges our ability to under-
stand their dynamic behaviours. To tackle this challenge, we have brought together two previously
published models of the CA1 microcircuit that generate theta rhythms without oscillatory inputs.
The two models mimic the intrinsic theta rhythms of an intact, whole hippocampus preparation
(Goutagny et al., 2009). One of them - the minimal model (Ferguson et al., 2017) - only has fast-
firing PV+ and PYR cells, whereas the other - the detailed model (Bezaire et al., 2016b) - has eight
different inhibitory cell types and PYR cells. The minimal model uses a simplified Izhikevich mathe-
matical model structure for cellular representations, with parameter values determined from fits to
experimental data from the whole hippocampus preparation, whereas the detailed model uses
multi-compartment conductance-based cellular representations, determined from an extensive
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Figure 12. Aggregate comparison of theta rhythms before and after the removal of inputs to PYR cells
from PV+ cells and schematic of ‘biophysical theta'.

A. Results for case a. (i): Normalized theta power, (ii): theta frequency, (iii): mean current, and (iv): standard
deviation of current, with and without PV+ cells for case a. B. Same as A., but for case b. C. The net PYR cell input
controls the resulting theta frequency. The PV+ cells contribute to the net input while they also regularize it and
amplify theta power.

knowledge-based review of the literature (Bezaire and Soltesz, 2013).

The wide variety of cell types that make up brain circuits leads to high-dimensional sets of
nonlinear, differential equations described by large sets of parameters incorporated into models.
This makes application of theoretical analyses difficult and parametric explorations computationally
expensive. In our approach of bringing together the two models in this study, we implemented a
focused, hypothesis-driven parametric search of a fragment of the detailed model, the segment
model, guided by the minimal model. This allowed us to establish a cellular basis for how intrinsic
theta rhythms are generated and how their frequencies are controlled in CA1 microcircuits of
the hippocampus. The importance of considering multi-level and multi-granular networks to
understand brain phenomena as done here, was recently discussed by Einevoll et al. (2019).

Summary overview
We started from the minimal model where it was previously shown that population bursts of theta
frequency can be generated in E-l networks with sparse firing of PYR cells and EPSC/IPSC current
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amplitude ratios as observed experimentally. This occurred due to SFA, Rheo and PIR building block
features. Using heterogeneous PYR cell populations and quantification of SFA, Rheo and PIR building
block features, we explored the robustness of the theta generation mechanism in the minimal
model and found that it is sensitive to specific Rheo and PIR quantified values, but not to SFA. We
subsequently used PRCs to determine how the frequency of theta rhythms could be controlled,
and proposed an ‘inhibition-based tuning’ mechanism in which inhibitory inputs to the PYR cell
population allow a stable theta rhythm to emerge, given an appropriate net input to the PYR cells.
This paved the way for investigations with the detailed model where this could be directly examined.

Since the detailed model was not explicitly built with the whole hippocampus preparation in
mind, we computed EPSC/IPSC amplitude ratios and confirmed that they were in line with those
observed experimentally in the whole hippocampus. Comparisons between minimal and detailed
models validated the predicted connectivity balance in the minimal model and exposed notable
differences.

We extracted a 'piece’ of the detailed model of comparable cell numbers as the minimal model -
termed the segment model - and showed that it could generate theta rhythms, albeit noisy and of
low LFP power. This finding supports the experimental observations of Goutagny et al. (2009) that
the theta rhythm in the whole hippocampus is composed of a set of coupled oscillators, and only a
part of the entire hippocampus is required to generate theta rhythmic output, an ‘oscillator’. With
this smaller segment model, we focused our investigation on the differences between the minimal
and the detailed model, namely the PYR-PYR synaptic weights and the external drives.

We found a strong correlation between the theta oscillation frequency and the average net
input delivered to the PYR cells. This indicates that the frequency of the LFP theta rhythm can be
predicted by the inputs to the individual PYR cells of the network. Further investigations of the
segment model revealed that the theta rhythm is initiated by the PYR cells but is regularized by
the PV+ cells since their removal caused a large decrease in the LFP power and an increase in the
variability of the net current received by the PYR cells. Together, this supports an inhibition-based
tuning mechanism for theta generation (see Figure 12C).

Mechanism underpinnings and leveraging of theoretical insights

From our previous work we already knew that minimally connected PYR cell networks produced
theta frequency population bursts on their own (Ferguson et al., 2015a), but the majority of the
PYR cells would fire during population theta bursts which is unlike the experimental observations
of sparse PYR cell firing. With the inclusion of PV+ cells to create E-I networks, the population of
PYR cells fired sparsely, which makes sense since the addition of inhibitory cells leads to less firing
of PYR cells due to silencing from the inhibition. Relatedly, it has been shown that feedforward
inhibition plays a role in maintaining low levels of correlated variability of spiking activity (Middleton
etal., 2012).

It is important to point out different PYR cell aspects in the minimal and detailed models. As
mentioned, for the minimal model we know that the PYR cell population on its own can generate
a population theta rhythm, and this is by virtue of its intrinsic properties that includes an SFA
building block feature (Ferguson et al., 20715a). In that previous work, we had used a PYR cell model
that is strongly adapting based on fits to the experimental data, or weakly adapting based on
another experimental dataset in the same paper (Ferguson et al., 2015h), that could produce theta
frequency population bursts in both cases. As discussed in Ferguson et al. (2015b), it is unlikely
that there are distinct types of biological PYR cells that are strongly or weakly adapting, but rather a
continuum of adaptation amount dependent on the underlying balances of biophysical ion channel
currents. Our explorations of the robustness of the theta generation mechanism in the minimal
model revealed that theta rhythms are not sensitive to the specific quantified value of the SFA
building block feature, so long as there is some adaptation. Thus, although the minimal model from
Ferguson et al. (2017) used a strongly adapting PYR cell model and the mimimal model database
used here started from this strongly adapting PYR cell model basis, it is unlikely that our results
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would be affected.

For the detailed model, the PYR cell model is based on experimental data in which some
adaptation can be seen in the experimental recording, but is not apparent in the PYR cell model
output of the detailed model (see Appendix of Bezaire et al. (2016b)). This then suggests that the
prediction of the segment model that the PYR cells are the initiator of theta rhythms is not simply
due to adaptation. It must thus involve other intrinsic characteristics of the the biophysical PYR cell
models. That excitatory networks can produce population bursts in of themselves is not new to
the theoretical, modeling world, but it has not been previously shown that this could be the case in
a biophysically detailed CA1 microcircuit model. An important candidate among PYR cell intrinsic
properties that affect PIR is the hyperpolarization-activated (h-) channel (Ascoli et al., 2070). The
h-channel has been shown to be a pacemaking current and contributes to subthreshold resonance
(Biel et al., 2009). It has been a focus in general network modeling studies (e.g., Avella Gonzalez
et al. (2015)), as well as specific to inhibitory cells in the generation of coherent oscillations (Rotstein
et al., 2005). It is interesting to note that the h-channel, with its non-uniform distribution, has been
shown to play an important role in shaping the output of LFP recordings, as determined from
multi-compartment LFP modeling studies (Ness et al., 2016, 2018; Sinha and Narayanan, 2015).
How exactly h-channels in PYR cells influence the dynamics and frequency of LFP theta rhythms in
CA1 microcircuits will be interesting to investigate further.

As shown in our heterogeneous PYR cell E-I network explorations, the presence of theta rhythms
(i.e., population bursts in the minimal model) was sensitive to the specific quantified values of PIR
and Rheo building block features. It is expected that there would be a sensitivity to Rheo as the
rheobase current of PYR cells dictate whether a PYR cell would spike or not. We had noted that an
Izhikevich cellular model requires a positive b value in order for PIR to occur - i.e., for a spike to fire
after hyperpolarization, and while there is sensitivity to this PIR value, it is not the case that PYR cell
firing occurs on rebound from inhibition during the ongoing theta population bursts (see Figure 4).
In actual CA1 PYR cells, it has been shown that PIR spiking does occur, mediated by h-channels,
and is locally controlled by biophysical ion channel balances (Ascoli et al., 2010). Whether PYR
cells actually fire due to PIR during ongoing theta rhythms may or may not be the case, and one
could potentially disentangle this in the model with consideration of the variety of inhibitory cell
types. However, this seems less critical to figure out now that we have exposed a strong correlation
between the frequency of the theta rhythm and the net current to the individual PYR cells. We know
that PIR is present in CA1 PYR cells, and we know that the minimal model indicates it as a sensitive
feature for theta rhythms, and we thus predict that changes to the PYR cell’s intrinsic properties
that affect PIR would affect the resulting theta rhythms.

PRC theory has been used in a variety of ways in the neuroscience field (Schultheiss et al., 2011),
and particularly in consideration of network dynamics. For example, Hansel et al. (1995) used PRCs
to explain the differential capacity for excitatory signalling to synchronize networks of Type | or Type
Il neurons (these types are differentiated by their bifurcation type (Izhikevich, 2006)), Rich et al.
(2016) analyzed synchronization features in purely inhibitory networks using PRCs, and Achuthan
and Canavier (2009) used PRCs to understand clustering in networks. We took advantage of PRC
theory by considering phase-resetting of the PYR cells in the E-I networks due to incoming inhibitory
input. In this way, we were able to hypothesize an inhibition-based tuning mechanism for control of
the theta rhythm frequency based on the PRC shape (amount of advance or delay) and the PYR
cell's intrinsic firing frequency. Our use of PRCs relied on our observations of the effect of different
PRC shapes on the resulting theta rhythm. Such a consideration is similar to that used by Rich et al.
(2016) to explain differential synchrony patterns in inhibitory networks of Type 1 vs Type Il neurons.

Physiological considerations and related studies
Based on the number of cells, the minimal and segment models are designed to represent a

'piece’ of CAT microcircuitry, and not the whole hippocampus preparation. However, the ability of

these models to generate population theta rhythms on their own, is in line with the observations of
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Goutagny et al. (2009) where transmission between portions of the whole hippocampus preparation
were blocked with procaine (see their supplementary Fig.11). With each piece of tissue being
able to generate theta oscillations on its own, the whole hippocampus would represent a set
of coupled oscillators. Indeed, traveling theta waves in hippocampus and neocortex have been
considered in this fashion (Lubenov and Siapas, 2009; Zhang et al., 2018). In previous work, we used
phase-coupled oscillator models, assumed inhibitory coupling between oscillators and examined
asymmetries in coupling strengths that could be responsible for the experimentally observed
propagation of slow rhythms (Skinner et al., 2007). In that vein, it may be worth considering
whether one could combine the mechanistic insights from microcircuit and coupled oscillator
model studies.

The extensive set of simulations performed with the segment model showed that different
cell-specific pathways dominate LFP theta rhythms of similar frequency and power, exposing degen-
eracy. While model degeneracy in high-dimensional model systems is expected, it underlines the
importance of probing generation mechanisms whenever possible, and not just comparing outputs.
There are multiple pathways in the circuitry, and at the in vivo level, one cannot unambiguously dis-
entangle these pathways or have cell-type considerations (Benito et al., 20714). Using the segment
model, we were able to consider two distinct ‘pathways’ by which theta rhythms are generated -
one where the EC/CA3 to PYR cell inputs dominated (case b) and another where they did not (case
a). Based on perturbative responses to the model to mimic the experiments, only case a was in
accordance with experimental data (Amilhon et al., 2015). We note that the differences between
the cases could actually reflect differences in the contributions of particular inhibitory populations
since, for example, the recordings that we compare our simulations to are taken from the superficial
layers of the hippocampus. Indeed, in a very recent modeling study by Navas-Olive et al. (2020)
that built on the detailed model of Bezaire et al. (2016b), it was shown that deep and superficial
PYR cells fire at different phases of the theta oscillation and are driven by different inhibitory cell
populations. In that study, the authors found that in CA1, PV+ BCs preferentially innervate PYR cells
at the deep sublayers while CCK+ BCs are more likely to target superficial PYR cells. It is possible
thus, that our case b regime reflects a theta rhythm relevant to the deep CA1 layers which is highly
modulated by the CCK+ BCs, which, in contrast to the PV+ BCs, happen to be particularly active in
case b. However, what is clear from our work is that specific perturbations could determine the
dominance of different cellular pathways by comparing LFP output characteristics.

The determination of an inhibition-based tuning mechanism for theta generation stemmed from
this study is essential, as it forms a foundation from which to consider E-I ‘balances’ during theta
rhythms from detailed physiological and experimental perspectives. E-I balances have been shown
to be quite precise in feedforward networks from CA3 to CA1 (Bhatia et al., 2019), and fine-scale
mapping studies show structured synaptic connectivity between different cell types in these regions
(Kwon et al., 2018). Thus, in the absence of a detailed enough cellular-based network model one
could not really situate emerging biological details’ contributions to theta rhythms. On the other
hand, in the absence of some mechanistic understanding, the importance of various biological
details is challenging to contain. In this work, we have combined the strengths of minimal and
detailed models, and have perhaps reached an ‘inflection point’ (Gjorgjieva et al., 2016) by having
enough, but not too much, biological realism to obtain a cellular-based mechanistic understanding.
Had we started from models that were either more abstract or more detailed, model linkages and
mechanism translations may have not been possible (i.e., too far from an ‘inflection point).

Limitations and future work

Even though our modeling study sheds light on the foundation of the theta mechanism, more can
still be unveiled in terms of the specific roles of the variety of inhibitory cell types in the segment
model and their inter-relationships. Through optogenetic perturbations, experimental studies
have already explored how PV+ as well as somatostatin-positive (putative OLM cells) cells affect
intra-hippocampal theta rhythms (Amilhon et al., 2015). Our previous modeling work examined the
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contribution of BiCs, BCs and OLM cells to ongoing theta rhythms and LFP generation (Chatzikalym-
niou and Skinner, 2018; Ferguson et al., 2075c) in light of these experimental studies. However, the
segment model, with its complement of eight inhibitory cell types and its computational tractability,
provides an exciting opportunity to extract and predict specific inhibitory pathways and their activa-
tion machinery during theta rhythms. Achieving this will help guide and target perturbation and
stimulation paradigms in pathological states.

Besides Bezaire et al. (2016bh), other detailed CA1 microcircuit models that include multiple
inhibitory cell types have been developed ((Cutsuridis et al., 2010; Shuman et al., 2020; Turi et al.,
2019)). However, these models were used to examine higher level behaviours and theta rhythms
were imposed, not generated within the models. Recently, a very detailed quantification of synaptic
anatomy and physiology that includes short-term plasticity has been done, and is provided as
a resource for the community (Ecker et al., 2020). 1t may be possible to examine these other
detailed models in light of our mechanistic understanding, and further, to design a strategy that
would appropriately include additional inhibitory cell types in the CAT microcircuit model via the
determined mechanism.

Concluding remarks and a proposal: A ‘pacemaker circuit’

Six years ago, Siegle and Wilson's work (Siegle and Wilson, 2014) showed strong support for phase
coding in the hippocampus, using the encoding and retrieval paradigm developed by Hasselmo
(Hasselmo et al., 2002) with theta rhythms. Recognizing the multi-layered aspects of theta rhythms -
different cholinergic sensitivities, distinct phase relationships with different inhibitory cell types, low
and high frequency theta types, different behavioural correlates and information processing, dorsal
and ventral differences, heavy dependence on medial septal circuitry interactions (Chauviére, 2020;
Colgin, 2013, 2016; Hinman et al., 2018) - our work plants a seed.

Until now, it was not clear how one could consider theta rhythms from both cell-type pathways
with E-l balances and functional behavioural perspectives. Our work suggests that there is no longer
a need to separately impose theta rhythms on network models, as the cells in these networks are
themselves part of the theta rhythm-generating machinery and this ‘separation’ eliminates some of
the interactions that may be critical and thus hinder our understanding of the system. What is clear
is that there is a theta rhythm generator in the hippocampus, i.e., intrinsic theta rhythms can be
generated in a whole hippocampus preparation (Goutagny et al., 2009). We know that interactions
with the medial septum (MS) are important for theta, but we note that lesioning the MS reduces,
but does not terminate theta rhythms (Colgin, 2013; Winson, 1978). Modeling work has suggested
that theta rhythms could arise due to hippocampo-septal interactions (Hajos et al., 2004; Wang,
2002). It is likely that interactions with the MS circuitry act to make the intrinsic hippocampus theta
rhythms more robust, and impose theta rhythms in MS. Interestingly, experimental data has shown
that rhythmic stimulation of the hippocampo-septal fibers can ‘phase’ MS neurons at that exact
frequency due to rebound dependent h-channels, suggesting that the intrinsic hippocampus theta
generator could be transferred to MS neurons via E-l interactions (Manseau et al., 2008). At present,
we are not aware of any evidence supporting that the MS can generate theta rhythms on its own.

Thus we propose that CA1 PYR cells act as theta rhythm initiators tuned by the inhibitory cell
populations to create a ‘pacemaker circuit’' - a core theta generator - in the hippocampus, with PYR
cells sensitively dependent on ‘pacemaking’ h-channels. Amplification of these rhythms occurs
due to inputs from the MS, while the net input received by the PYR cells controls the resulting
theta frequency. From this intrinsic theta rhythm foundation, we can build, and in the process,
disentangle the cellular-based and multi-layered aspects of theta rhythm generation and function
in the hippocampus (Brandon et al., 2011; Koenig et al., 2011; Jaramillo and Kempter, 2017), and
possibly other brain structures, since interestingly, functional connectivity studies have shown
that the hippocampus is a brain hub (Battaglia et al., 2011; Misi¢ et al., 2014). A schematic of our
proposal is shown in Figure 13.
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Figure 13. Proposing a theta pacemaker circuit in a hippocampus hub.

The hippocampus can produce intrinsic theta oscillations on its own, without the need for any oscillatory input.
In the work here, we have shown that theta rhythms can be generated by the PYR cell population, and are
‘tuned’ and regularized by the inhibitory cell population, as illustrated in the rectangle. We propose that this
theta pacemaker circuit is amplified by connections with the MS via hippocampo-septal cellular interactions, as
illustrated by the dark blue thick arrows. That is, the MS is not a theta rhythm generator, but rather acts to
enhance and amplify the existing intrinsic theta rhythm in the hippocampus, and would play a role in setting
the particular theta rhythm frequency. This would occur due to the MS cellular inputs affecting the net input
current to the PYR cells in the hippocampus. The theta rhythm would further interact with other regions such as
neocortex and amygdala, as illustrated by the light blue thick arrows (Battaglia et al., 2011). The possibility of a
hippocampus hub is supported by connectivity studies (Misic et al., 2014). The whole hippocampus schematic
is adapted from Fig 1 of Huh et al. (2016).

Methods

The minimal model and expanded explorations

Details of the minimal model rationale and setup are previously published in Ferguson et al. (2017),
but some background relevant to the present work is summarized here. The minimal model
represents an approximate one mm? ‘piece’ of the CA1 region of the hippocampus determined to
be enough to generate theta rhythms (Goutagny et al., 2009). It has 30,500 cells (30,000 excitatory,
PYR cells and 500 inhibitory, fast-firing PV+ cells). In analyses of excitatory networks on their
own, a scaling relationship between cell number, connection probability and excitatory synaptic
weight allowed us to use 10,000 PYR cells rather then 30,000 in the excitatory network simulations
(Ferguson et al., 2015a). As the model is minimal, we could perform thousands of simulations on
high-performance computing to ascertain parameter balances that would produce theta rhythms
as well as capture experimental data results of EPSC/IPSC amplitude ratios. For this to be the case,
we found that the connection probability from PV+ to PYR cells should be larger than from PYR to
PV+ cells (Ferguson et al., 2017).

We note that the PV+ cells have intrinsic and synaptic connectivity aspects derived from experi-
ment and that inhibitory PV+ cell networks fire coherently given appropriate excitatory drives and
synaptic weights (Ferguson et al., 2013). In the E-I networks of the minimal model, the excitatory
drive to PV+ cells comes from the PYR cell population (see schematic in Figure 7). We note that
when we did the E-I network simulations in Ferguson et al. (2017), we chose the synaptic weight
(between PV+ cells) to be such that it could be at the ‘edge’ of firing coherently (high frequency)
or not (see Fig. 3 in Ferguson et al. (2013)). As such, given an appropriate excitatory drive, it can
be switched into a high frequency coherent regime so that the PV+ cell network could produce
an inhibitory 'bolus’. From estimates of EPSCs onto the PV+ cells of 1000 pA, the synaptic weight
between PV+ cells was set to 3 nS (Ferguson et al., 2017).
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Cellular specifics and equations

The network structure and cellular details for the minimal model simulations in the present paper
are similar to those in Ferguson et al. (2017). That is, cellular models (PYR and PV+ cells) are based on
experimental data from the in vitro whole hippocampus preparation (Ferguson et al., 2013, 2015b).
They use the mathematical model structure developed by Izhikevich (Izhikevich, 2010, 2006), in
which the subthreshold behaviour and the upstroke of the action potential are captured, and a
reset mechanism to represent the spike’s fast downstroke is used. Despite being relatively simple,
parameter choices can be made such that they have a well-defined (albeit limited) relationship to
the electrophysiological recordings. It has a fast variable representing the membrane potential,
V (mV'), and a variable for the slow “recovery” current, u (pA). We used a slight modification to be
able to reproduce the spike width. It is described by the following set of equations:

CmV =k(V =)V —v)—u+1,, — ISy" M
i=alb(V —v,) —u]

ifV>v

peak?

where k =k, if V < v, k = kyp, itV >0,

thenV «c,u<—u+d

low

where C,, (pF) is the membrane capacitance, v, (mV) is the resting membrane potential, v, (mV) is
the instantaneous threshold potential, v,,,, (mV) is the spike cut-off value, a (ms™') is the recovery
time constant of the adaptation current, » (nS) describes the sensitivity of the adaptation current
to subthreshold fluctuations - greater values couple ¥ and u more strongly resulting in possible
subthreshold oscillations and low-threshold spiking dynamics, ¢ (mV) is the voltage reset value,
d (pA) is the total amount of outward minus inward currents activated during the spike and affecting
the after-spike behaviour, and k (nS/mV) represents a scaling factor. I, = 0 for the isolated cell.
I, 1S @s described below for computing metrics for the PYR cell or E-cell.

Model parameter values for the PV+ cell or |-cell (units above) are: v,=-60.6; v,=-43.1; v,,,,=-2.5; c=-
67; kpp=14, C,,=90; ¢=0.1; 5=-0.1; d=0.1; k,,,=1.7. These parameters are as previously determined
(Ferguson et al., 2013), and are not varied. Model parameter values (units above) for the PYR cell
are: v,=-61.8; v,=-57; v,,,=22.6; ¢=-65.8; k;,,;,=3.3; C,=115; a=0.0012; b=3; d=10; k,,,=0.1. These
parameters are as previously determined for strongly adapting cells (Ferguson et al., 2015b), and

the a,b,d, k,,, parameters are varied.

Network specifics and equations

The cellular models described above were used to create excitatory-inhibitory (E-I) networks as
done in Ferguson et al. (2017). Specifically, synaptic input between PYR cells (E-cells), PV+ cells
(I-cells) and between PYR and PV+ cells by representing synaptic input in Equation 1 as:

Isyn = g : S(V - EYEU) (2)

where g (nS) is the maximal synaptic conductance of the synapse from a presynaptic neuron to the
postsynaptic neuron, E,,, (mV) is the reversal potential of the synapse, and V (mV) is the membrane
potential of the postsynaptic cell. The gating variable, s, represents the fraction of open synaptic
channels, and is given by first order kinetics (Destexhe et al. (1994), and see p.159 in Ermentrout
and Terman (2010)):

§=alTI(1 - s) - Ps (3)

The parameters a (in mM~'ms™') and g (in ms~') in Equation 3 are related to the inverse of the rise
and decay time constants (zz, 7, in ms). [T] represents the concentration of transmitter released by
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a presynaptic spike. Suppose that the time of a spike is r = 1, and [T] is given by a square pulse of
height 1 mM lasting for 1 ms (until 7;). Then, we can represent

_=ho
s(t—t)) =5, +(s(tg) —s)e =, ty<t<t
where s = ﬁ and z, = ﬁﬁ After the pulse of transmitter has gone, s(r) decays as

(1) = s(t,)e P (4)

For network simulations, I, in Equation 1 represents ‘other input’ to the PYR cell population
(see Figure 1), and is given by 1,,,,, = —g, &)V — E,,,). & (1) is a stochastic process similar to the

Ornstein-Uhlenbeck process as used by Destexhe and colleagues (Destexhe et al., 20017)

dg (t 202
flf ) L )= g + 1 =20 ©)
T, T

e

where z,(¢) is an independent Gaussian white noise process of unit standard deviation and zero
mean, g, ... (nS) is the average conductance, o, (nS) is the noise standard deviation value, and =,
is the time constant for excitatory synapses. , is fixed based on values as used in Destexhe et al.
(20017) (z, = 2.73 ms).

Parameter values (rationale and refs given in Ferguson et al. (2017)) are: E,,,= -15 or -85 mV
for excitatory or inhibitory reversal potentials respectively. Rise and decay time constants are,
respectively, 0.27 and 1.7 msec for PV+ to PV+ cells; 0.3 and 3.5 msec for PV+ to PYR cells; 0.37 and
2.1 msec for PYR to PV+ cells; 0.5 and 3 msec for PYR to PYR cells. Connection probabilities are
fixed at 0.12 for PV+ to PV+ cells and 0.01 for PYR to PYR cells, as estimated from the literature. For
the simulations in this paper, we use connection probabilities that were found to be in line with
the experimental data. That is, where the connection probability from PV+to PYR cells (cpy py ) be
larger than from PYR to PV+ cells (cpy g py)-

Specifically, for the heterogeneous networks examined in this paper, we mainly focus on
parameter values from Table 5 of Ferguson et al. (2017)). g,,=0.094 nS, ¢,=0.6 NS, g,,._,,=3 NS,
Epopyr=8:7 NS, cpyr py=0.02, cpy pyr=0.3, &, mean = 0 NS. An actual instantiation of the ‘other input’
that these parameter values produce can be seen in the schematic figure of Figure 5. We also
consider networks with parameter values of: g,,=0.014 nS, ¢,=0.6 NS, cpyg p;=0.02, cpy py=0.3;
and g,,=0.084 nS, 6,=0.2 NS, ¢pyp py=0.04, cpy py=0.5; and g,,=0.084 nS, 6,=0.6 NS, cpyg p,,=0.02,
cpy pyR=05 (&) por Epopyrr &emean th€ Same as focused parameter values), and similar results are
obtained. From the minimal model we know that theta population bursts occur when PYR cells
receive zero mean excitatory drive with fluctuations of ~ 10-30 pA (as estimated from 0.2 to 0.6 nS
‘noise’) (Ferguson et al., 2017).

PYR cell (E-cell) model database and building block feature quantifications

To create a database of PYR cell models, we range the a, b,4d, k,,, model parameter values to create
10,000 models, 10 different values for each parameter, so as to encompass the default values
from Ferguson et al. (2015b) obtained in creating the strongly-adapting PYR cell model based on
experimental data from the whole hippocampus preparation. The default values of the strongly
adapting PYR cell model are: @=0.0012ms~'; b=3.0nS, d=10pA, k,,,=0.10nS /mV and for the PYR cell
model database, the parameter ranges are: [initial value, final value, resolution]: a = [0.0, 0.00216,
0.00024]; 5=1[0.0, 5.4, 0.6]; d = [0, 18, 2]; k,,,, = [0.0, 0.18, 0.02].

For each PYR cell model, spike frequency adaptation (SFA), post-inhibitory rebound (PIR) and
rheobase (Rheo) building block features are quantified to allow comparisons to be made. The
Euler integration method is used to integrate the cell equations with a timestep of 0.1 msec.
Quantification of building block features is done as follows:

Rheo: Starting from v,, each PYR cell model is given a constant current from -25 to 25 pAin 0.5 pA
increments. If a spike is generated within the first 500 msec, then that constant current value is
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considered as the rheobase current, and is taken as the Rheo quantified value.

PIR: Starting from v,, each PYR cell model is subjected to a one second hyperpolarizing step current
for current values from 0 to -25 pA with a resolution of 0.5 pA. If a spike occurred upon termination
of a given hyperpolarization step (i.e., a PIR spike) but not at the previous step value, then that step
value is considered as the PIR quantified value.

SFA: Starting from v,, each PYR cell model is subjected to input currents for one second, from 0 to
98 pA (inclusive) in 2 pA increments. For each input current, the number of spikes is recorded, and
the interspike interval is calculated between the first and second spikes, and the last and second
from last spike. The inverse is taken and defined as the initial and final frequency at that current.
The initial and final frequencies as a function of the current steps creates a smooth, approximately
linear relationship, so lines are fitted to the initial and final frequency plots. The slopes of those lines
are subtracted from one another (the initial slope is always steeper) to produce the SFA quantified
value.

The range of quantified values obtained from the model database of 10,000 PYR cells is: SFA:
-0.001 to 0.64 (Hz/pA); Rheo: 1.5 to 6.5 (pA); PIR: -23.5 to -1.0 (pA). How they end up being distributed
is shown in Figure 2, and while clearly not a uniform or normal distribution, they encompass a wide
range of values. The quantified values for the strongly adapting PYR cell model that we use as our
starting basis in generating the model database (see above for full model and parameter values)
are: SFA= 0.46; Rheo= 4.0; PIR = -5.0. We refer to them as the base values.

Heterogeneous PYR cell setup

The two ways in which heterogeneous PYR cell populations are created is as follows:

(i) Using narrow (N) or broad (B) ranges of values for [SFA, Rheo, PIR] relative to base values, where N
or B means that [SFA, Rheo, PIR] metric values are + [0.1, 0.5, 0.5] or + [0.45, 3.0, 5.0] respectively, of
base values. Thus, NNN refers to models with [SFA, Rheo, PIR] values of: [(0.36 to 0.56 exclusive of
bounds; 4.0; -5.0], and BBB refers to models with [SFA, Rheo, PIR] values of: [(0.01 to 0.64 exclusive
of bounds (noting that 0.64 is the maximum possible in the model database set); 1.5, 2.0, 2.5, 3.0,
3.5,4.0,4.5,5.0,5.5,6.0,6.5; -0.5, -1.0, -1.5, -2.0, -2.5, -3.0, -3.5, -4.0, -4.5, -5.0, -5.5, -6.0, -6.5, -7.0,
-7.5,-8.0,-8.5, -9.0, -9.5]. Note that since the resolution of the Rheo and PIR quantified values are 0.5,
and the manner in which it is defined (see above), the N range for Rheo has models in which Rheo =
4.0 only, and similarly, the N range for PIR has models in which PIR =-5.0 only.

The other sets (using ranges as defined above) have quantified values as follows: BBN=[(0.01 to
0.64 exclusive of bounds; 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5; -5.0]; BNB=[(0.01 to 0.64
exclusive of bounds; 4.0; -0.5, -1.0, -1.5, -2.0, -2.5, -3.0, -3.5, -4.0, -4.5, -5.0, -5.5, -6.0, -6.5, -7.0, -7.5,
-8.0, -8.5, -9.0, -9.5]; NBN=[(0.36 to 0.56 exclusive of bounds; 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0,
5.5, 6.0, 6.5; -5.0]; and so on for BNN, NBB, and NNB. These eight possible cases and the number
of models in each of them is given in Table 2, along with the population frequency and power.
Parameter value histograms for each of these combinations from the model database set are
given in https://osf.io/yrkfv/, and what ranges of the quantified values in the database that they
encompass is shown in Figure 2.

(i) Using low (L), medium (M) or high (H) values, with SFA quantified value ranges exclusive of
endpoints given as: SFA: L = [(0.0 to 0.2)], M =[(0.2 to 0.4)], H=[(0.4 to 0.6)]; Rheo: L =[1.5, 2.0, 2.5], M
=[3.5,4.0,4.5], H=[5.5, 6.0, 6.5]. PIR: L =[-3.5, -4.0, -4.5], M = [-6.5, -7.0, -7.5], H = [-9.5, -10.0, -10.5].
This means that the base values fall into the HML case, with the small caveat that the PIR base value
is just outside the L range. The gaps in these ranges are due to the automation of the exploration
and to ensure that there is no overlap in the quantified values for a given case. Note that there
ended up being no models for the cases: HHH, HHL, MHH, MHL, LHH, LHL, from the created model
database. Thus there are 21 cases from the generated model database, and the number of models
present in each case is given in Table 2, along with population frequency and power. Parameter
value histograms for eight of these cases are given in https://osf.io/yrkfv/, and what ranges of the
quantified values in the database that they encompass is shown in Figure 2.
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E-l networks and simulations
To build E-I model networks, we choose PYR cells from the model database in two ways in consider-
ation of SFA, Rheo and PIR building block features, referring to them as a trio in the following order:
[SFA, Rheo, PIR]. The chosen PYR cells are distributed among the 10,000 cells to be used in the E-I
network simulations in the following way: An individual PYR cell model is randomly chosen from
the set of models of a particular heterogeneous PYR cell population that have [SFA, Rheo, PIR] values
within the specified range. For example, if there are 33 PYR cell models in the set, then the number
of cells conforming to each of the 33 PYR cell models should approach 10,000/33 in the E-l network,
but there may not be an exactly equal number of the different PYR cell models. That is, we do
the following: If there are 33 PYR cell models in the given heterogeneous PYR cell model set, then
each PYR cell model out of 10,000 in the E-I network is given a random number between 1 and 33,
and assigned that model’s parameters. We note that comparisons between the heterogeneous E-I
networks are not perfectly ideal since the number of different PYR cell models varies (see Table 2),
and so the ‘amount’ of heterogeneity would vary in the various E-I networks. However, since we are
mainly considering whether the theta rhythm would be lost or not, this is deemed to be acceptable.

The minimal model E-I network simulations are done using the Neuroscience Gateway (NSG) for
high-performance computing (Sivagnanam et al., 2013). Simulations are run for 10 seconds using
the Euler integration method with a timestep of 0.04 msec. The frequency and network power of
the network simulation is computed as before (Ferguson et al., 2017). That is, for each network
simulation, the population activity is defined as the average membrane potential of all the cells,
with the frequency and network power taken as frequency and spectral peak from a fast Fourier
transform (FFT) calculation of the population activity.

Code details are provided in https://github.com/FKSkinnerLab/CA1_Minimal_Model_Hetero and
simulation output in https://osf.io/yrkfv/.

Phase response curve computation specifics

Phase response curves (PRCs) are calculated for each of the PYR cell models as described below.
In Figure 6 the PRCs in each “model set" are averaged and presented along with a range of + one
standard deviation (shown by the shading around the curve).

Each PRC is calculated in the following fashion: A set input current (either 20 or 30 pA) is tonically
applied to the cell, and the period (defined 1) of the cell’s firing is calculated as the time between
the ninth and tenth cell spike. The inverse of the period represents the firing frequency of the
cell, reported as averages and standard deviations for entire model sets in Figure 6. We calculate
the phase response of the neuron to a perturbation at 100 equidistant times in its normal firing
cycle. Here, the perturbation is a 1 ms current pulse with -500 pA amplitude. For 1 <i < 100,
we define Ap = % and deliver the perturbation at i = Ap ms after the 10th cell spike. We then
measure the time between the 10th and 11th cell spike as the “perturbed period” (defined 4,). We
calculate the difference between this and the previously calculated period (in the absence of any
perturbation) and normalize this by the normal firing period, meaning that in the PRC plots the
y-axis is — 4
i.e. the perturbed period was longer than the unperturbed period, and vice-versa. The x-axis in the
PRC plots are the normalized time at which the perturbation was delivered, simply calculated as
m We note that we perform this calculation separately for each i, i.e. we re-initialize the cell and
let it respond naturally to a tonic input until the 10th spike for each value of i, rather than perform
these perturbations sequentially and risk confounding the responses.

The code for generating and plotting these PRCs can be found at https://github.com/sbrich/
Theta_PRCs.

. This means that negative values plotted in the PRC correspond with a phase-delay,
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The segment and detailed models and explorations

The segment model is simply a 10% piece of the detailed model of the rodent CAT microcircuit
(Bezaire et al., 2016b) as illustrated in Figure 1 and Figure 8A. To create and use the segment model,
one must first be able to access and use the detailed model.

In segment and detailed models, there are eight different inhibitory cell types and excitatory
PYR cells. All of these cell types are connected in empirically specific ways based on an extensive
knowledge-based review of the literature (Bezaire and Soltesz, 2013). The cells are evenly distributed
within the various layers of the CA1 (stratum lacunosum-moleculare, radiatum, pyramidale, oriens)
in a three-dimensional prism. Afferent inputs from CA3 and EC are also included in the form of
Poisson-distributed spiking units from artificial CA3 and EC cells. We note that although there
are layer-dependent specifics regarding how the different cell types are arranged in the full-scale
detailed model (Figure 1), there are not any differences along the longitudinal axis of the full-scale
model. As such, the connection profile at any location along the longitudinal axis does not vary. In
other words, the connection probabilities in any particular part of the longitudinal axis would be
the same assuming that there are enough cell numbers for meaningfulness in the calculations.

Accessing the CA1 microcircuit model

The code that we use for this work starts from the original CA1 microcircuit repository which
can be found at ModelDB at: https://senselab.med.yale.edu/ModelDB/showModel.cshtml?model=
187604. The model version we used can be downloaded from: https://bitbucket.org/mbezaire/
cal/pull-requests/3/d1efeb957848/commits. Analysis of simulation outputs can be recreated
using the publicly available SimTracker tool (Bezaire et al., 2016a) which can be downloaded from:
http://mariannebezaire.com/simtracker/. It is recommended that users install SimTracker first and
then install and register the cal model under SimTracker, to take advantage of the visualization
functionalities of the SimTracker package. This tool is offered both as a stand-alone, compiled
version for those without access to MATLAB (for Windows, Mac OS X, and Linux operating systems),
and as a collection of MATLAB scripts for those with MATLAB access. Once the SimTracker and
the cal repository are installed, users can run simulations either on their local machines using a
small scale of the CA1 network, or on supercomputers as needed for full scale network simulations.
To reproduce the findings presented here, one needs to first familiarize oneself with the CA1
microcircuit background and code.

The segment model is created from the detailed model by setting the "Scale" parameter = 10,
which reduces the number of cells in the network by a tenth, and then dividing all connections in
the network by a factor of 10. If this latter step is not done, then each cell would have ten times as
many connections relative to a cell in the full-scale detailed network. That is, the parameter scaling
is a ‘normalization’ in which the ‘scaled’ network assumes that each cell is a representative of “10
cells’. We did not want this, as the segment model is simply a piece of the detailed model and so we
‘removed’ the normalization by dividing the number of connections by ten.

Calculation of connection probabilities and synaptic weights in the detailed model

To be able to compare connectivities between minimal and detailed models, we compute connection
probabilities in the detailed model. They are computed by dividing the total number of connections
from a single presynaptic cell of a given type, to the cells of the postsynaptic population, divided by
the total number of (postsynaptic) cells, of that particular population They are thus computed as
divergent connection probabilities, as it was done in the minimal model where random divergent
connection probablities were employed. To compute connection probabilities when PV+ cells are
assumed to consist of more than one inhibitory cell type, a combination is required. For example,
in considering BCs and BiCs as fast-firing PV+ cells in one population, the number of connections
each cell (either BC or BiC) receives is the average of presynaptic connections each receives, as
given in the detailed model. For example, the number of connections from PYR cells onto BC/BiC
population equals the total number of presynaptic connections that BCs and BiCs receive from
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PYR cells. The connection probability from PYR to PV+ cells (BC/BiC combination) is calculated by
dividing this total number of connections by the total number of BCs and BiCs. All numbers and
connection probabilities are shown in Table 4.

The synaptic weight in the detailed model is given by the synaptic conductance multiplied by the
number of synapses per connection. So, for example, as a single BC cell has 11 synapses/connection
onto a PYR cell and a synaptic conductance of 0.2 nS, then the synaptic weight is 2.2 nS. In the
case of combined cell type populations, the average synaptic weight for the given cell type with its
number of synapses/connection and synaptic conductance as reported by Bezaire et al. (2016b).
All of the computed synaptic weights are shown in Table 4.

Calculation of EPSC/IPSC amplitude ratios in the detailed model

For comparison with experimental data, we examine what EPSC/IPSC amplitude ratios exist for cells
in the detailed model. We choose 15 cells of each type from the full-scale model (Bezaire et al.,
2016b). These types are PYR cells and fast-firing PV+ cell types - BCs, BiCs and AACs. In doing this
examination it is important to note that experimental estimates of these ratios as derived from
voltage clamp recordings are not precise as there are associated experimental limitations such as
due to space clamp. However, the experimental data shows that EPSCs received by PV+ cells are
much larger in amplitude than EPSCs received by PYR cells, and since IPSCs received by PV+ and
PYR cells are similar in amplitude, the experimental limitations are moot as it is clearly the case that
the EPSC/IPSC amplitude ratios for PYR cells are much less than for PV+ cells (Huh et al., 2016).

In considering the detailed model, several aspects need to be taken into consideration. First,
in the detailed model, we consider fast-firing PV+ cell types as BCs, BiCs or AACs in different
combinations (see main text). Next, with the detailed model, morphological representations of
cells are used and there are eight different inhibitory cell types. These different inhibitory cell
types synapse onto different parts of the PYR cell tree and as such, IPSCs onto PYR cells would
be attenuated by different amounts when examining synaptic currents at their somata. We note
that to directly compare synaptic currents from the experiments with the detailed model, one
could consider performing a voltage clamp on model cells and separately examining EPSCs and
IPSCs as done experimentally, but one would additionally need to separate IPSCs that are due to
the different inhibitory cell types to consider PV+ or PYR cells. Undertaking this in the detailed
model would be a highly non-trivial endeavour, and indeed, decades of research has uncovered
the richness and complexities of dendritic integration (Stuart and Spruston, 2015). Thus, since we
know that the EPSC/IPSC amplitude ratios are very different on PYR and PV+ cells, we focus on
EPSCs and IPSCs on either PYR or PV+ cells at somatic locations without trying to compensate for
voltage clamp or attenuation issues due to different synaptic input locations from the different cell
types. From the consideration that the comparison is with experiment, we consider that EPSCs
onto the different cell types are due to inputs from PYR cells and EC and CA3, whereas IPSCs are
from the various inhibitory cell types of the detailed network model (Bezaire et al., 2016b). As we
are mainly considering comparisons with the minimal model, we consider IPSCs that are due to PV+
fast-firing cell type could encompass BCs, BiCs and AACs.

The network clamp tool in SimTracker enables extraction of a particular cell from the full-scale
model while keeping synaptic properties (Bezaire et al., 2076a). We network clamp each of the 15
selected cells of each type for 1000 msec and detect the peak EPSCs and IPSCs by implementing
the minimum peak distance algorithm in MATLAB. For EPSC/IPSC amplitude ratio calculations for
a specific cell, all excitatory currents are summed and divided by the summed inhibitory currents
that the cell receives. For EPSC/IPSC amplitude ratios on to PYR cells, IPSCs due to only BCs,
only BiCs, a combination of BCs and BiCs, a combination of BCs/BiCs/AACs, and all inhibitory
cells are shown in Table 3. We note that there is no EPSC/IPSC amplitude ratio consideration of
AACs to themselves as there are no AAC to AAC synapses in the detailed model. When there
is @ combination, the ratio calculations are based on dividing the mean EPSCs by mean IPSCs,
after summing IPSCs from each PV+ cell type. The EPSCs are flipped before peak detection for
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its mechanistic advantage using the MATLAB code. All 225 (15x15) combinations of EPSC/IPSC
amplitude ratios in each BC/BiC/PYR and BC/AAC/PYR populations as well as 3375 (15x15x15)
combinations in BC/BiC/AAC/PYR are examined, and they are in accordance with the experimental
data. The mean EPSC/IPSC amplitude ratios and their standard deviations for the various cell types
are given in Table 3. Voltage recordings and currents plots from the 15 chosen cells can be accessed
at https://osf.io/yrkfv/. The scripts for the EPSC/IPSC amplitude ratio calculations can be found at
https://github.com/FKSkinnerLab/CA1_SimpleDetailed.

Parametric explorations in the segment model

To generate the heatmaps of Figure 9 we use the following process on the created segment model.
We perform exhaustive parametric explorations of the theta power dependence on the excitatory
drives in the segment model. We vary the EC/CA3 to PYR cell synaptic conductance g, /.., the PYR-
PYR synaptic conductance g,,_, . and the level of external stimulation, which represents the firing
rate of our external EC and CA3 cells. For every pair of g, , . and g,./.._,,» We search for the level
of external stimulation that maximizes the normalized theta power. The normalized theta power
is defined as the maximum theta power (net theta power) in the power spectrum, divided by the
mean power across all frequencies. We search a range of 0.15-0.65 Hz of stimulation per network
(below that range the network is inactive, above that range the network is hyper-active). We plot the
value of that maximum normalized theta power in Figure 9Bi, and the corresponding stimulation
required to reach that value in Figure 9Biii. Every pairof g, _and g, .;_,, corresponds to a
specific conndata#.dat file. These conndata#.dat files should be created and stored under the
"datasets" directory of the CA1 repository. The code for the generation of the heatmaps of Figure 9B
can be found here: https://github.com/alexandrapierri/CA1-Segment-Microcircuit

Current extractions and linear regression in the segment model

As described above for ratio calculations in the detailed model, we use the network clamp tool of
SimTracker to extract PSCs delivered to the PYR cells in the model from all other cells in the network
and the external drives. We examine the PSCs received by 10 PYR cells for each of the 50 networks
underpinning the heatmaps of Figure 9B. we calculate the mean current amplitude for each of the
10 cell over a 4sec simulation period, and refer to this as the net current. We take the average
and standard deviation of the net current of the 10 cells and plot it against the frequency of that
network (Figure 10C).

As we examine 10 cells per network and we have 50 networks, this gives as a total of 500
network clamp simulations which corresponds to analysis of 500 cells’ input currents. To perform
a linear regression of net current vs network frequency, we use custom MATLAB code which can
be found here: https://github.com/alexandrapierri/CA1-Segment-Microcircuit. The correlation
coefficient between theta frequency and net current ( p ) and the p-value for testing the hypothesis
of no correlation (null hypothesis) against the alternative hypothesis of a nonzero correlation, are
estimated using MATLAB's built-in functions.

Power analysis and signal filtering

To analyze the signal power we used the Welch's Periodogram, a method for estimating power
spectra based on FFT analysis https://ccrma.stanford.edu/~jos/sasp/Welch_s_Method.html. To filter
the LFP signal for theta we used a broadband filter with stopband frequencies +1 Hz and passband
frequencies + 1.75 Hz from the peak theta frequency as derived from the Welch’s Periodogram.

High performance computing simulations

We implement our simulations on Scinet (Loken et al., 2010; Ponce et al., 2019) on the Niagara
clusters, using 10-12 nodes per simulation with 40 cores per node. Each network simulation takes
approximately 8 hours real time to be executed. The results we present in this study are the
distillation of approximately 300 network simulations requiring a total of 150 core years processing
power on the clusters.
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Figure 3-Figure supplement 1. Loss of Rhythm - Raster plots of PYR cells in heterogeneous
E-1 networks. Simulations of E-I networks with 10,000 heterogeneous PYR cells and 500 PV+ cells
produce PYR cell raster plots as shown here with a one second time range. The specific examples
are labelled as (R-supp) in Table 2 and refer to the following sets: MLH (top-left), HMH (top-right),
MLM (bottom-left), LLH (bottom-right).
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Figure 6-Figure supplement 1. PRCs calculated with a 20 pA input show similar features in
the three PYR cell populations. Mean and standard deviation of the PRCs calculated for PYR cell
models from each of the three heterogeneous E-l network cases (MMH in panel A, HML in panel B,
and LML in panel C) with an input current of 20 pA show similar patterns to those seen in Figure 6.
Insets include mean and standard deviation of the individual firing frequencies of the PYR cells.
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Figure 8-Figure supplement 1. Recurrent excitation and feed-forward external drive to the
PYR cells is needed for theta rhythms. Normalized theta power of the segment model (Figure 8A)
with parameter values as shown in Figure 8B is eliminated with the removal of feed-forward external

drive and recurrent excitation to the PYR cells, i.e., g,,,_ ., and g,.,..3_,, S€t to zero.
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Figure 9-Figure supplement 1. Dependence of net theta power on the PYR cells’ excitatory

drives. Heatmaps of net theta power as a function of g, ., and g, .3y,
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Figure 9-Figure supplement 2. Dependence of theta and delta power on the PYR cells’ ex-

citatory drives. Heatmaps of Normalized theta and delta power, frequency and afferent input

stimulation as a function of g, _,.. and g,./.43_ -
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Figure 9-Figure supplement 3. Dependence of "high" theta (6-12Hz) power on the PYR cells’
excitatory drives. Heatmaps of Normalized "high" theta power, frequency and afferent input

stimulation as a function of g,,_,,. and g, /..3
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