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Abstract11

The wide variety of cell types and their inherent biophysical complexities pose a challenge to our12

understanding of oscillatory activities produced by cellular-based computational models. This13

challenge stems from the high-dimensional and multi-parametric nature of these systems. To14

overcome this issue, we implement systematic comparisons of minimal and detailed models of CA115

microcircuits that generate intra-hippocampal theta rhythms (3-12 Hz). We leverage insights from16

minimal models to guide detailed model explorations and obtain a cellular perspective of theta17

generation. Our findings distinguish the pyramidal cells as the theta rhythm initiators and reveal18

that their activity is regularized by the inhibitory cell populations, supporting an ‘inhibition-based19

tuning’mechanism. We find a strong correlation between the pyramidal cell input current and the20

resulting LFP theta frequency, establishing that the intrinsic pyramidal cell properties underpin21

network frequency characteristics. This work provides a cellular-based foundation from which in22

vivo theta activities can be explored.23

24

Introduction25

Hippocampal theta rhythms (≈ 3-12 Hz) as observed in local field potential (LFP) recordings are26

associated with cognitive processes of memory formation and spatial navigation (Colgin, 2013,27

2016; Hinman et al., 2018). However, exactly how theta rhythms emerge is a complicated and multi-28

layered problem. The medial septum (MS) is believed to act as a pacemaker since theta rhythms29

in the hippocampus are severely attenuated when the MS is lesioned (Winson, 1978). Moreover,30

the various cell types in the MS and in the hippocampus are interconnected in cell-specific ways31

(Chamberland et al., 2010; Huh et al., 2010). This underlines the importance of considering how32

cellular specifics contribute to theta rhythm circuit dynamics and ultimately function, especially33

since sophisticated experimental techniques continue to uncover the diversity and distinctness of34

neurons (Harris et al., 2018; Hodge et al., 2019; Kepecs and Fishell, 2014; Sugino et al., 2019).35

It is now well-documented that theta rhythms can be generated intra-hippocampally, emerging36

spontaneously from an isolated whole hippocampus preparation in vitro (Goutagny et al., 2009).37

Two computational modelling studies have captured these intrinsic theta rhythms. The first study38

by Ferguson et al. (2017) used minimal network models of biophysically simplified neurons, while39
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the second study by Bezaire et al. (2016b) used biophysically detailed network models. These40

models can help us understand how these rhythms are generated while taking into consideration41

each model’s advantages and challenges.42

The minimal model of Ferguson et al. (2017) represents a ‘piece’ of the CA1 region of the43

hippocampus, and it was developed and constrained against data from the whole hippocampus44

preparation (Ferguson et al., 2013, 2015b). We used this model to examine what ‘building block’45

features could underlie theta rhythms (Ferguson et al., 2015a, 2017). It was found that spike46

frequency adaptation (SFA) and post-inhibitory rebound (PIR) building block features of excitatory,47

pyramidal (PYR) cells in large minimally connected recurrent networks with fast-firing, parvalbumin-48

expressing (PV+) inhibitory cells could produce theta frequency population rhythms. Specifically,49

for the model to be consistent with experimental observations of excitatory postsynaptic current50

(EPSC) and inhibitory postsynaptic current (IPSC) amplitude ratios, the connection probability from51

PV+ to PYR cells is required to be larger than from PYR to PV+ cells. The minimal model design,52

strategy and setup suggests that the theta oscillation generation mechanism could be due to SFA53

and PIR building block features. However, the challenge is to determine how these insights could54

apply in the biological, hippocampal system with its larger complement of diverse inhibitory cell55

types and additional biological details.56

The detailed model of Bezaire et al. (2016b) is a full-scale biological model of the CA1 hip-57

pocampus with 338,740 cells that includes PYR cells, PV+ basket cells (BCs), axo-axonic cells (AACs),58

bistratified cells (BiCs), cholecystokinin-expressing (CCK+) BCs, Schaeffer Collateral-associated (SCA)59

cells, oriens-lacunosum-moleculare (OLM) cells, neurogliaform (NGF) cells, and ivy cells. The model60

provides a realistic representation of the hippocampus which is grounded upon a previously com-61

piled, extensive quantitative analysis (Bezaire and Soltesz, 2013). It describes the activities of the62

PYR cells and the eight inhibitory cell types during theta rhythms. In broad terms, this model distin-63

guishes the importance of certain cell types against others, and predicts that cell type variability is64

necessary for theta rhythms to occur. However, the very complexity of the detailed model poses a65

challenge in the deciphering of the exact mechanism of the theta rhythm it produces.66

The goal of the present paper is to combine the advantages of minimal and detailed models to67

obtain a cellular-based understanding of theta rhythm generation in the biological system. The68

strategy we employ is schematized in Figure 1, and the pipeline flow of the paper can be illustrated69

by three main steps. We first extend the minimal model, step 1, to test the robustness of the theta70

rhythms in the face of PYR cell heterogeneity. This allows us to propose an ‘inhibition-based tuning’71

mechanism that underlies theta rhythm generation and frequency control. We next compare72

minimal and detailed models, step 2, to identify commonalities and differences in their structure.73

Finally, in step 3, we extract a ’piece’ of the detailed model to create the segment model which74

is comparable in cell numbers to the minimal model, and we investigate the effect of the noted75

differences on theta. Following a principled exploration of the segment model, we decipher how its76

theta rhythm is produced. We reveal a strong correlation between the PYR cell net input current and77

the frequency of the resulting theta rhythm and show that the initial spark of the theta LFP rhythm is78

due to the PYR cell networks. The inhibitory cell populations on the other hand ’regularize’ the theta79

rhythms and increase their power. Not surprisingly, we find degeneracy in our segment models but80

comparisons with additional experimental observations support some model parameter sets and81

not others.82

Overall, we have combined minimal and detailed models to establish a cellular basis for how the83

theta rhythms could be robustly generated and how their frequency is controlled in the biological84

system. By extension we have identified common principles of the theta generation mechanism85

between the two models and we discuss their differences. Moving forward, this work provides86

a solid biological ‘seed’ from which to examine the multi-layered aspects of theta rhythms in the87

hippocampus.88
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Figure 1. Schematic illustrating overall paper flow and strategy.

The experimental context and four model types are referred to in the paper: Experiment - a whole hippocampus

preparation that exhibits spontaneous theta rhythms (Goutagny et al., 2009); Minimal - a previously published

work of minimal network models representing a ’piece’ of the whole hippocampus (blue square in experiment

illustration) that generates theta rhythms within experimental constraints (Ferguson et al., 2017); Minimal+ - an

expansion of the minimal model using heterogeneous PYR cells (as illustrated with differently coloured PYR

cells) that is used in the present paper; Detailed - a previously published work of a full-scale detailed CA1

microcircuit model (eight different inhibitory cell types and PYR cells) that generates theta rhythms without any

oscillatory input (Bezaire et al., 2016b); and Segment - a network model representing a ’piece’ of the detailed

model, that is used in the present paper. The three main steps in the flow of the paper are shown (Steps 1-3),

and the foci of the work in the present paper are illustrated by the black arrows: The detailed model is

examined in light of the experimental data; a systematic comparison between minimal and detailed models is

done; the segment model is created from the detailed model; the minimal+ model is constructed based on the

minimal model, and mechanistic insights resulting from the minimal+ model are leveraged in the segment

model. The black open arrows illustrate that ’Robust Theta’ in the minimal+ model is examined leading to

hypothesis development, and leveraging this in the segment model helps with an understanding of ’Biophysical

Theta’ where multiple cell types can be considered. The grey arrow illustrates previously done work where the

minimal model was developed and examined in light of the experimental data (Ferguson et al., 2017).

Illustrations include: Minimalmodel setup with PYR and fast-firing PV+ cells, Detailedmodel setup with 9 cell

types (NGF, SCA, CCK+ BC, BC, BiC, PYR, IVY, AAC, OLM) and layer-specific connectivity, Experiment of whole

hippocampus preparation with a LFP theta example, heterogeneous PYR cells as different colors in Minimal+

model, and a shaded portion of the Detailedmodel prism to illustrate the Segment model. Acronyms are defined

in the main text. This figure is adapted from parts of other figures: Figs. 1 & 8 of Huh et al. (2016), Fig. 2 of

Ferguson et al. (2017), and Fig. 1 of Bezaire et al. (2016b).
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Results89

The flow of the results section is as follows. We begin by exploring the robustness of the theta90

rhythm in the minimal model from the perspective of its building block features. Subsequently,91

phase response curve (PRCs) analysis leads to the proposition of an ’inhibition-based tuning’92

mechanism of theta rhythm generation and frequency control. To investigate this mechanism93

in the detailed model, we do the following. First, we compare EPSC/IPSC amplitude ratios in the94

detailed model with those in the whole hippocampus preparation as it was already done with the95

minimal model. Next, we carry out a systematic comparison between minimal and detailed models96

by comparing connectivities, synaptic weights and external drives. Finally, we isolate a ’piece’ of97

the detailed model - the segment model - comparable in cell numbers to the minimal model. We98

examine the segment model in a principled manner according to minimal and detailed model99

comparisons. As the segment model is much smaller than the detailed model, we can perform100

extensive explorations and establish how intra-hippocampal theta rhythms are generated and how101

their frequencies are controlled.102

Robustness of theta generation in the minimal model103

The minimal model suggested that the generation of theta oscillations could be based on the104

amount of spike frequency adapation (SFA) present in the pyramidal (PYR) cells together with their105

ability to exhibit post-inhibitory rebound (PIR) in large networks of minimally connected PYR cells,106

interconnected with parvalbumin positive (PV+) fast-firing inhibitory cells (Ferguson et al., 2017).107

Inherent with SFA and PIR building block features is a rheobase (Rheo) feature, which is the amount108

of current required to make the PYR cell spike (derived from fitting to the experimental data in109

(Ferguson et al., 2015b)). However, in this previous study we did not specifically examine the110

sensitivity of theta rhythms to these building block features (SFA, Rheo, PIR).111

The minimal model used an Izhikevich mathematical model structure for the cellular representa-112

tions (Izhikevich, 2006), and while it did not have any direct biophysical ion channel equivalents, its113

frequency-current (f-I) curve was fit to electrophysiological recordings of PYR cells in the the whole114

hippocampus preparation (Ferguson et al., 2015b). The PYR cell model parameter values, herein115

referred to as default values, are: a=0.0012; b=3.0, d=10, klow=0.10. We used a straightforward116

approach to quantify the SFA, Rheo, PIR building block features (see Methods). For the PYR cell117

model with default parameter values, the quantified building block feature values are: SFA= 0.46118

Hz/pA; Rheo= 4.0 pA;PIR = -5.0 pA. We refer to these values as base building block feature values.119

The larger the quantified SFA value is, the stronger is the amount of the PYR cell adaptation, i.e., we120

get more reduction in the PYR cell spike frequency for a fixed amount of input current. The more121

negative the quantified PIR value is, the larger is the hyperpolarizing step required to generate a122

spike at the end of the step.123

Examining the contribution of building block features124

In the extensive network simulations of Ferguson et al. (2017), the PYR cell models were homo-125

geneous in terms of their (a, b, d, klow) model parameter values. However, the networks were not126

homogeneous because of the noisy external drives to the PYR cell models. Because of its direct127

connection to the experimental data, the minimal model with its building block features was con-128

sidered to encompass key ’biological balances’ important for theta rhythm generation. To examine129

the robustness of the theta-generating mechanism in the minimal models with consideration of the130

SFA, Rheo and PIR building block features, we create heterogeneous PYR cell populations from a131

model database that is generated by ranging a, b, d, klow parameter values around default ones. In132

turn, this model database provides a distribution of quantified SFA, Rheo, PIR building block feature133

values. The distributions of values are shown in Figure 2, and the locations of the base values are134

indicated by vertical black arrows.135

Before delving into heterogeneous excitatory-inhibitory (E-I) model networks, let us first examine136

E-I networks of homogeneous PYR cell models with parameter values different from the default137
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Figure 2. Distributions of PYR cell building block features from created model database.

A heterogeneous set of PYR cells was created and their ’building block’ features of SFA, Rheo and PIR were

quantified. Histograms show the number of occurrences of SFA [=] Hz/pA, Rheo [=] pA, PIR [=] pA values. See

Methods for details of quantifications. Also shown are narrow (N) and broad (B) subsets used to consider

heterogeneous PYR cell populations in one way (i), and low (L), medium (M), high (H) subsets to consider

heterogeneous PYR cell populations in another way (ii). See main text for further details. Vertical black arrows

indicate [SFA,Rheo,PIR] base values of a PYR cell model with default model parameters. SFA histogram has a bin

resolution of 0.05, and Rheo, PIR histograms have a bin resolution of 0.5. Acronyms are defined in the main text.

ones, but with similar values for quantified building block features. The resulting networks produce138

clear population bursts, but with some variation in frequency and power. Specific examples are139

shown in Table 1 along with their model parameter and quantified building block feature values.140

The fact that the rhythm is not lost in any of these networks with homogeneous model parameter141

values already suggests that the populations bursts are not particularly sensitive to the specific SFA142

building block quantified values as the rhythm isn’t lost as SFA varies. However SFA has some effect143

on the specific power and frequency of the population bursts.144

Table 1. E-I Network Simulation Examples with Homogeneous PYR cell models.

Homogeneous Parameter values Quantified values Power Frequency

cells in network (a, b, d, klow) (SFA, Rheo, PIR) (mV2/Hz) (Hz)

Model ID # Units: (1/ms, nS, pA, nS/mV) Units: (Hz/pA, pA, pA)

Original (base) (0.0012, 3.0, 10, 0.10) (0.46, 4.0, -5.0) 0.36 12.2

# 7 (0.00072, 3.6, 18, 0.16) (0.51, 4.0, -5.0) 0.21 11.8

# 32 (0.00072, 4.8, 12, 0.16) (0.51, 4.0, -5.0) 0.37 14.2

# 56 (0.00096, 3.6, 4, 0.12) (0.38, 4.0, -5.0) 0.40 13.6

# 81 (0.00096, 4.2, 12, 0.10) (0.49, 4.0, -5.0) 0.42 13.8

# 115 (0.0012, 3.6, 14, 0.06) (0.49, 4.0, -5.0) 0.34 13.0

Let us now consider E-I networks with heterogeneous PYR cell models (Minimal+ models as145

illustrated in Figure 1). We classify the PYR cells from the created model database in two groups146

according to their quantified values of the [SFA, Rheo, PIR] building block feature trio. The first147

group corresponds to: (i) Narrow (N) or broad (B) ranges of [SFA, Rheo, PIR] values that include the148

base values, and the second group corresponds to: (ii) Low (L), medium (M) or high (H) ranges of149

[SFA, Rheo, PIR] values that do not necessarily include the base values. These groups are shown150

in Figure 2. For each group we create networks corresponding to combinations of the quantified151

values of the SFA, Rheo, PIR building block feature ranges. For (i), there are eight possible E-I network152

cases from N and B building block combination sets and the number of models in each case is153

given in Table 2, along with the frequency and power of the particular network. For (ii), there are 27154

possible network cases from L, M and H building block combination sets and the number of models155
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in each case is also given in Table 2, along with the frequency and power of the particular network.156

As it turns out, there are no PYR cell models in the created model database for HHH, HHL, MHH, MHL,157

LHH, LHL network cases. We thus have simulation output for only 21 different E-I networks with158

heterogeneous PYR cell populations generated using (ii). Further details on the model database are159

given in the Methods.160

Table 2. Heterogeneous E-I Network Simulations.

Network case Number of Power Frequency

[SFA,Rheo,PIR] different (mV2/Hz) (Hz)

PYR cell

models

Group (i)

NNN 137 0.37 13.0

BBB 6780 0.27 13.0

BBN 550 0.28 12.8

BNB 1010 0.29 13.0

BNN 180 0.34 13.4

NBB 4955 0.30 13.0

NBN 416 0.24 12.2

NNB 729 0.33 12.6

Group (ii)

HML (R) 556 0.38 13.0

HHM 313 0.40 15.6

HMM 493 0.37 12.8

MHM 157 0.46 15.8

MMH (R) 25 0.19 9.6

MMM 294 0.31 13.2

MML (R) 110 0.37 13.8

MLL* 99 0.12 10.0

LHM 49 0.35 16.2

LMH* 12 0.15 9.8

LMM 103 0.30 13.6

LML 74 0.32 15.0

LLM* 29 0.15 10.4

LLL 64 0.17 12.0

No Rhythm

HMH (R-supp) 33 0.06 n/a (9.2)

HLH 97 0.01 n/a (1.2)

HLM (R) 171 0.01 n/a (0.6)

HLL 417 0.02 n/a (0.6)

MLH (R-supp) 27 0.04 n/a (8.2)

MLM (R-supp) 50 0.07 n/a (8.6)

LLH (R-supp) 16 0.08 n/a (10.0)

Top set of eight network cases use heterogeneous PYR cell models from group (i) and the rest use heterogeneous

PYR cell models from group (ii). Boldfaced cases are networks from which PRCs are explicitly shown in Figure 6.

(R) and (R-supp) refers to networks in which PYR cell rasters from the E-I networks are explicitly shown in Figure 3

and Figure 3-Figure Supplement 1. (*) refers to networks that are almost losing their rhythm

There is a clear maintenance of rhythms for the eight cases of heterogeneous group (i), as shown161

in the top part of Table 2, where the building block quantified values are chosen in either a narrow162
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or broad fashion encompassing base values. Their frequencies are similar to each other and to that163

of the E-I network with homogeneous, default PYR cell model parameter values (see first row in164

Table 1). Interestingly, the network power is larger when there is a narrow rather than a broad range165

of values encompassing base values (compare NNN to BBB in Table 2), suggesting that particular166

quantified building block feature values are important for the presence of robust theta frequency167

population bursts. In essence, these simulations indicate that the theta generation mechanism in168

the minimal model is robust. That is, if we have heterogeneous E-Imodel networks with PYR cell169

model parameter values that have broadly distributed building block feature values that include170

base values, then population rhythms remain with less than a 1 Hz variation in population frequency.171

This further implies that a quantification of the building block features can capture the underlying172

E-I balances necessary for the emergence of theta frequency population bursts in the minimal173

model.174

Let us now examine the output for the 21 cases of heterogeneous E-I networks with PYR cell175

models that have quantified building block feature values that do not necessarily encompass base176

values, i.e., group (ii). This is shown in Table 2 where it is clear that a rhythm (i.e., population bursts)177

is not always present. We first note that the E-I network for the HML case is the one that mostly178

encompasses base values for all three building block features. As one might expect, the power and179

frequency of this E-I network case is similar to the heterogeneous (i) E-I network cases which also180

encompass the base values. Considering the network power values of all of these heterogeneous181

network cases, it is easy to see which networks are not rhythmic. Essentially, if the power is below182

0.1, then there is not a clear rhythm - these cases are shown in the lower part of Table 2. The183

cases in Table 2 that are starred are networks that have started to lose their rhythm. To view the184

output from several heterogeneous E-I networks, in Figure 3 we show PYR cell raster plots for four185

cases (designated with an ‘R’ in Table 2). In three of them, there is still a rhythm, but there are clear186

frequency and PYR cell burst firing characteristic differences. In Figure 3-Figure Supplement 1 we187

show PYR cell raster plots for four additional cases (designated with an ‘R-supp’ in Table 2) for when188

the rhythm is lost so that the different patterning can be seen.189

In considering the cases in which the rhythm is lost, it appears that the existence of the rhythm190

is not heavily dependent on the specific SFA quantified values, since rhythms still exist even when191

moving away from "Hxx" cases (i.e., those encompassing the base SFA value) - MML and LML cases.192

However, the rhythm is lost if the E-I networks do not include base values for Rheo or PIR. Specifically,193

"xMx" (base Rheo value) or "xxL" (closest to base PIR value) cases. For Rheo, consider the HLL case (no194

HHL case to consider) and for PIR, consider the HMH case (less so for the HMM case). This allows us195

to express the following: the particular rheobase current value of the PYR cell, and the ability of the196

PYR cell to fire a spike with a less hyperpolarized current step are needed for the theta-generating197

mechanism in the minimal models, along with some amount of spike frequency adaptation.198

In summary, these simulations of E-I networks with heterogeneous PYR cell populations have199

allowed us to gauge the contributions of the different building block features and have helped us to200

confirm the robustness of the theta-generating rhythm mechanism. As a result, we can reasonably201

establish that theta frequency population bursts in the minimal model are particularly sensitive PIR202

and Rheo feature values, and less sensitive to SFA values. Let us now examine how the frequency of203

the population rhythm could be controlled.204

Using PRCs to develop a hypothesis of theta frequency control205

We have now determined that specific quantified values for Rheo and PIR building block features are206

important for theta population rhythms. The PIR building block feature is quantified as the size of a207

hyperpolarizing current step required to evoke a spike (see Methods). We note that this does not208

necessarily mean that the PYR cells fire due to inhibitory inputs from the PV+ cells during ongoing209

theta rhythms. In the Izhikevich cell model structure, the ability of a cell to spike after an inhibitory210

step is reflected in the b parameter (see equations in Methods), which needs to be positive for the211

PYR cell to fire after a hyperpolarizing step. To examine whether the PYR cells in the network fire212
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Figure 3. Raster plots of PYR cells in heterogeneous E-I networks.

Simulations of E-I networks with 10,000 heterogeneous PYR cells and 500 PV+ cells produce output that have

PYR cell raster plots as shown here with a one second time range. The specific examples are labelled as (R) in

Table 2 and refer to the following sets: HML (top-left), MML (top-right), HLM (bottom-left), MMH (bottom-right).

Acronyms are defined in the main text.

Figure 3–Figure supplement 1. Loss of Rhythm - Raster plots of PYR cells in heterogeneous E-I networks.

due to the inhibitory input they receive, we compare the timing of the PYR cell spikes relative to the213

timing of their incoming IPSCs. Examples are shown in Figure 4 on two different timescales. From214

them, we can say that the PYR cell firing does not specifically occur because of their IPSCs, as spiking215

can occur before or just after its IPSCs. Due to the limited nature of the minimal model, it is not216

helpful to carry out comparisons of EPSC and IPSC values relative to experiment. Even though we217

had previously found that the EPSC/IPSC amplitude ratios were experimentally appropriate for both218

PYR and PV+ cells Ferguson et al. (2017), the limited nature of the minimal model prohibits us from219

probing exact experimental values of EPSCs and IPSCs. Instead, to get a further understanding on220

E-I balances dictating the frequency of the theta rhythm, we turn to PRC considerations (Schultheiss221

et al., 2011).222

We hypothesize that the PYR cell network is generating population bursts on its own (given its223

cellular adaptation characteristics) with the PV+ cell network providing an inhibitory ‘bolus’. We thus224

consider that the resulting frequency of the E-I network’s population bursts is due to a combination225

of the PYR cell’s firing frequency combined with how much an inhibitory input could advance or226

delay the PYR cell spiking. This setup is schematized in Figure 5 as follows: Each PYR cell in the227

network receives excitatory input from other PYR cells as well as a noisy excitatory drive. The228

amount of input a PYR cell receives would of course fluctuate over time, but consider that the229

PYR cell receives a mean excitatory input of about 20 to 30 pA based on parameter values of the230

minimal models. In these models theta population bursts occur when PYR cells receive a zero231

mean excitatory drive with fluctuations of ≈ 10-30 pA (Ferguson et al., 2017). We generate PRCs by232

considering an inhibitory ‘bolus’ that a PYR cell would receive by the inhibitory PV+ cell population233

in the minimal model. The inhibitory pulse would advance or delay the subsequent PYR cell’s spike234

as given by the PRC. Further details are provided in the Methods.235

We consider three cases of heterogeneous E-I networks which exhibit different population236

burst frequencies. The first case is the MMH network with a ’slow’ frequency of 9.6 Hz, the second237

case is the HML network with a ’medium’ frequency of 13 Hz, and third case is LML network with238
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Figure 4. Examples of inhibitory currents onto PYR cells together with PYR cell membrane voltages.

Four examples of a PYR cell’s membrane voltage and the inhibitory current (IPSC) onto it. A PYR cell spike can be

seen in each example. The top row is shown for a 200 msec time range, and the bottom row is for the same

example, but for a 50 msec time range that includes the PYR cell spike. The IPSC can be clearly seen as

occurring either after or just before the spike. The PYR cell is one of the 10,000 PYR cells in the heterogeneous

E-I network, BBB set. Acronyms are defined in the main text.

a ’fast’ frequency of 15 Hz Table 2. We generate PRCs for the PYR cell models in each of these239

three cases. Each PYR cell model has particular PRC characteristics due to its a, b, d, klow model240

parameter values and exhibits a specific intrinsic frequency for a given input. The calculation of241

these PRCs is described in the Methods. In Figure 6 we show differences between PRC properties242

and individual cell firing frequencies for each of the three cases, using an input current of 30 pA.243

The PRCs for each case show distinct features: for instance, the PYR cells in the HML case uniquely244

exhibit a region of phase-advance, while the PYR cells in the LML case have the largest phase delay245

for perturbations delivered at all but the latest phases. These PRC examinations provide evidence246

in support of the notion that the frequency of the E-I network population burst is strongly affected247

by the intrinsic properties of the PYR cells. For instance, while the PYR cells in the LML case have the248

fastest individual firing frequencies (notably faster than what is seen in population models), their249

PRCs may be slowing down this frequency by means of the inhibitory ’bolus’ of synaptic inhibition.250

Meanwhile, the PYR cells in the HML case have the slowest individual firing frequencies, although251

they participate in ’medium’ speed theta rhythms. The PRC in this case, particularly the region of252

phase-advance, may play a role in accelerating the PYR cells by means of their inhibitory synaptic253

input. Frequencies and PRCs for a different input current (20 pA) are shown in Figure 6-Figure254

Supplement 1.255

In essence, this PRC examination allows us to propose that the frequency of the network256

population bursts depends on the net amount of input delivered to the PYR cells, including the257

inhibitory bolus. In other words, the frequency response depends on the intrinsic properties of the258

PYR cells, as given by its f-I curve. This in turn implies that a stable population burst is achieved if259

the excitation and inhibition are balanced so that proper inhibitory ’tuning’ can take place. However,260

just from these minimal model examinations, it is unclear whether such a relationship between261

PYR cell inputs and network frequency would exist in biologically realistic networks.262

Overall, our expansion of the minimal model to include heterogeneous PYR cell populations (see263

Figure 1) revealed a robustness in the emergence of theta rhythms, and uncovered a sensitivity to264

the specific quantified values of the PIR and Rheo building block features, but not to SFA. The use of265

PRCs showed that the resulting frequency of the population bursts could be largely due to PYR cell266

intrinsic properties. These explorations in the minimal model lead us to hypothesize an ’inhibition-267

based tuning’mechanism underlying the robust emergence of intrinsic, intra-hippocampal theta268
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Figure 5. Schematic of setup for phase response curve (PRC) calculations.

Using the minimal model structure, and assuming a theta-generating mechanism based on SFA, PRCs are

generated based on an inhibitory input (’bolus’) coming from the PV+ cell network to a PYR cell in the PYR cell

network. Each PYR cell is receiving a noisy, excitatory drive shown as ’Other Input’, and an illustrative f-I curve

for a PYR cell is shown. The f-I curve with a specified net drive would dictate the result of the computed PRC

based on the inhibitory input. Acronyms are defined in the main text.

rhythms and their frequency control. In this mechanism, together with SFA, Rheo and PIR building269

block features, two key aspects are important: (i) The PYR cell population needs to be large enough270

so that it can collectively generate a strong excitatory drive to the inhibitory PV+ cells. In turn, the PV+271

cell population should be able to fire enough (and coherently) to create a strong inhibitory ’bolus’272

that tunes and regularizes the PYR cell population bursting output. (ii) The net input (recurrent273

excitation, excitatory drive, incoming inhibition) received by the PYR cell situates it in a frequency274

range that allows theta frequency population bursts to occur. The resulting theta frequency of275

population bursts are fundamentally ‘controlled’ by the net amount of input that the PYR cells276

receive.277

Linkage explorations between minimal and detailed models generating intrinsic278

theta rhythms intra-hippocampally279

With a clear sense of how stable theta frequency population bursts are generated in the minimal280

model, we turn to the detailed model with its empirically-based connections and biophysical cellular281

specifics. To consider whether the detailed model uses similar theta-generating mechanisms as the282

minimal model, we examine commonalities and differences between the two models, as illustrated283

by ’compare’ in Figure 1. However, we first turn to an examination of EPSC/IPSC amplitude ratios in284

the detailed model relative to those observed in the whole hippocampus preparation.285

EPSC/IPSC amplitude ratios in the detailed model are consistent with those in the whole286

hippocampus preparation287

In the minimal model, when we ‘matched’ model EPSC/IPSC amplitude ratios with experiment288

(Huh et al., 2016), we predicted that connection probabilities from PV+ to PYR needed to be larger289

than those from PYR to PV+ cells (Ferguson et al., 2017). The detailed model is experimentally290

constrained in a bottom up fashion, using cellular data and connectivity information from a plethora291

of experimental data (Bezaire and Soltesz, 2013). Whether the detailed model yields meso-level292
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Figure 6. PYR cells from three heterogeneous E-I network cases show distinct PRC features and firing

frequencies.

Mean PRC (solid line) for PYR cells of a particular case (MMH in panel A, HML in panel B, and LML in panel C)

calculated with an input current of 30 pA, with the shading representing ± the standard deviation. The mean

and standard deviation of the firing frequencies of the PYR cells at this input level are included in the inset of

each panel. PYR cells of the MMH case produce ’slow’ population theta frequency, and PYR cells exhibit

moderate individual firing frequencies but notably only show phase-delay in their PRCs. PYR cells of the HML

case produce ’medium’ population theta frequency, and PYR cells show the slowest individual firing frequencies,

but the region of phase-advance in their PRCs reveals a potential mechanism by which these frequencies might

be increased in the network setting. Finally, PYR cells of the LML case produce ’fast’ population theta frequency,

and PYR cells show the highest individual firing frequencies, with a potential mechanism by which these are

slowed in the network setting revealed by the PRCs with the most marked phase-delay. Acronyms are defined in

the main text.

Figure 6–Figure supplement 1. PRCs calculated with a 20 pA input show similar features in the three PYR cell

populations.

Table 3. EPSC/IPSC Amplitude Ratios from Detailed Model Network Cells.

PV+ cell type EPSC/IPSC amplitude ratio

(on PYR cell)

= BC 4.05 ± 0.86

= BiC 7.21 ± 1.19

= BC/BiC 2.95 ± 0.62

= BC/AAC/BiC 1.78 ± 0.39

= All inhibitory cell types 1.32 ± 0.24

EPSC/IPSC amplitude ratio

(on PV+ cell)

= BC 11.71 ± 2.66

= BiC 34.97 ± 5.28

measurements, such as EPSC/IPSC amplitude ratios that agree with experimental observations293

from the whole hippocampus preparation, has not been directly assessed. Thus, we here examine294

whether the detailed model exhibits ratios that ‘match’ those observed in experiments from the295

whole hippocampus preparation, as was already considered in the minimal model. From the296

experimental data it is abundantly clear that the EPSC/IPSC amplitude ratios for PYR cells are much297

less than for PV+ cells. For the detailed model, we consider PV+ cells to represent BCs, BiCs, or298

combinations of BCs, BiCs and AACs. We choose 15 cells of each type and extract EPSCs and IPSCs299

at the somata of the different cell types and compute the ratios. We find that regardless of the PV+300

cell type or combination considered, it is always the case that the EPSC/IPSC amplitude ratios are301

consistent with experiment - larger on PV+ cells than on PYR cells - as shown in Table 3. Further302

details are provided in the Methods.303

Minimal model connectivity prediction validated using detailed model empirical numbers.304

In the minimal model we predicted that to have EPSC/IPSC amplitude ratios that are consistent305

with the experimental observations, it is necessary for the connection probability from PV+ to PYR306

cells to be larger than from PYR to PV+ cells. The connectivities in the detailed model are based on307
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Figure 7. Schematics summarizing connections in the detailed model for PYR and PV+ cell types.

The four schematics illustrate the connection schemes that exist in the detailed model, where we only consider

PYR and PV+ cells (BCs, BiCs, AACs) (Bezaire et al., 2016b). For each large centered cell, the number of synapses

per connection and its approximate location on the cell is specified for whichever cells are presynaptic, and the

number of cells that the large centered cell connects to is also illustrated for whichever cells are postsynaptic.

These numbers are also reflected in Table 4. The morphological structure along with its layer location from the

detailed model is also shown. The red line in pyramidal cell denotes its axon. SP = stratum pyramidale, SLM =

stratum lacunosum-moleculare, SR = stratum radiatum, SO = stratum oriens. Other acronyms are defined in the

main text.

empirical determinations (Bezaire and Soltesz, 2013). Thus, if the minimal model is an appropriate308

representation of the CA1 microcircuitry, its connection probabilities should be in line with those in309

the detailed model. To consider this, we note two things. First, the minimal model only includes310

fast-firing PV+ and PYR cells, and second, it uses a random connectivity scheme. Thus, to make311

comparisons, we consider only PV+ cell types and PYR cells from the detailed model and determine312

connection probabilities between them using their empirically-based connection schemes. Three313

inhibitory interneuron cell types in the detailed model can be considered as fast-firing PV+ cell314

types. These are the BCs, the BiCs and the AACs. Considering only these three inhibitory cell types315

and the PYR cells, we extracted the number of their post-synaptic connections. This is shown in316

schematic form in Figure 7. To compare connection probabilities between minimal and detailed317

models we considered that the fast-firing PV+ cell type in the minimal model could correspond to:318

(i) only BCs; (ii) only BCs and AACs; (iii) only BCs and BiCs; (iv) BCs, AACs and BiCs. BCs represent the319

majority of fast-firing PV+ cell types and so they are included in all of the different combinations.320

The connection probabilities computed from the detailed model are given in Table 4 along321

with connection probabilities from the minimal model (details are given in the Methods). To avoid322

repetition, minimal model connection probabilities are only shown for the “PV+=BC” case in row323

#2 of Table 4. We found that regardless of the PV+ cell type consideration (i-iv), the connection324

probability from PV+ to PYR is greater than from PYR to PV+ in the detailedmodel, indicating that one325

of the predictions of the minimal model is in effect in the CA1 microcircuitry. Thus, this comparison326

arguably yields a ‘validation’ of the minimal model as one of its main predictions is in effect in the327

detailed model which has empirically determined connection probabilities from many experimental328

determinations (Bezaire and Soltesz, 2013). We note that comparison of PYR to PYR and PV+ to PV+329

connection probabilities between minimal and detailed models are expected to be appropriate as330

these connection probabilities in the minimal model were derived from the experimental literature331
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Table 4. Detailed Model Connection Probabilities and Synaptic Weights.

Row Cell Types and Number Number of Connection Number of Synaptic

Connections of cells connections Probability synapses per Weight*

connection g(nS)

#1 PYR 311,500

PYR to PYR 197 0.00063 1 70.0

[0.01 for [0.094 for MM]

minimal model (MM)]

#2 PV+ = BC 5,330

PYR to BC 8 0.0015 3 2.1

[0.02 for MM] [3.0 for MM]

BC to PYR 958 0.0031 11 2.2

[0.3 for MM] [8.7 for MM]

BC to BC 39 0.0071 1 1.6

[0.12 for MM] [3.0 for MM]

#3 PV+ = BC/AAC 7,000

PYR to BC/AAC 9 0.0014 6 4.4

BC/AAC to PYR 1,115 0.0036 8.5 5.7

BC/AAC to BC/AAC 49 0.0070 1 0.8

#4 PV+ = BC/BiC 7,740

PYR to BC/BiC 11 0.0014 6 16.0

BC/BiC to PYR 1,184 0.0038 10.5 3.7

BC/BiC to BC/BiC 111 0.014 11 77.1

#5 PV+ = BC/AAC/BiC 9,210

PYR to BC/AAC/BiC 12 0.0013 9 23.8

BC/AAC/BiC to PYR 1,213 0.0039 9 5.6

BC/AAC/BiC

to BC/AAC/BiC 132 0.014 11 54.0

#6 Other Input

CA3 to PYR n/a 5,985 n/a 2 0.40

EC to PYR n/a 1,299 n/a 2 0.40

CA3 to BC n/a 6,047 n/a 2 0.44

CA3 to AAC n/a 4,170 n/a 2 0.24

EC to AAC n/a 485 n/a 2 0.24

CA3 to BiC n/a 5,782 n/a 2 0.30

EC to BiC n/a 432 n/a 2 0.30

* Synaptic Weight = Synaptic Conductance × number of synapses/connection

(Ferguson et al., 2013, 2015a). As noted in Table 4, the PYR to PYR connection probability (see row332

#1) is an order of magnitude less than it is for the PV+ to PV+ connection probability (see rows333

#2-#5) for both minimal and detailed models.334

In making these comparisons, we do not expect to have an exact matching of connection335

probability values. Besides the fact that the minimal model consists of a subset of different336

inhibitory cell types in the detailed model, the cellular models differ in their compartmental and337

mathematical biophysical ‘structure’. Specifically, the detailedmodel hasmulti-compartmentmodels338

that include conductance-based ion current representations, and the minimal model has single339

compartment models with an Izhikevich mathematical representation (see Methods). It is however340

reassuring that the connection probabilities compare favourably as described above, since both341
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minimal and detailed models produce intrinsic, intra-hippocampal theta rhythms.342

E-I balance considerations in minimal and detailed models expose differences343

So far we have shown that the connection probabilities in the minimal model are appropriate344

relative to the empirical ones in the detailed model and that the detailed model has appropriate345

EPSC/IPSC amplitude ratios from the perspective of the whole hippocampus preparation that346

generates intrinsic theta rhythms. Let us now exploit these linkages.347

We first note that since both the minimal and full-scale detailed models produce theta rhythms,348

the underlying E-I balances that are present in both models must be appropriate for the generation349

of theta rhythms. Now, besides connection probabilities between excitatory and inhibitory cells,350

synaptic weights and any other external drives to the network models would also affect E-I balances.351

Synaptic Weights: Similar to the comparison consideration of connection probabilities above, we352

compare synaptic weights in minimal and detailed models. As before, we focus on a cellular subset353

of the detailed model the fast-firing PV+ cells. The number of connections and synaptic weights354

for PV+ and PYR cells are given in the last two columns of Table 4. Note that the synaptic weight355

refers to a connection between cells so that the number of synapses per connection is taken into356

consideration. From a comparison of these weights, it is clear that there is about three orders357

of magnitude difference between the synaptic weights of PYR to PYR cells whereas the synaptic358

weights from PV+ to PYR, PYR to PV+ and PV+ to PV+ are comparable (i.e., same order of magnitude),359

if PV+ cells are considered to be BCs or a combination of BCs and AACs (see Table 4). Thus, on360

the face of it, the detailed model has much stronger connections between PYR cells relative to the361

minimal model.362

External Drives: The minimal model is driven by an external excitatory input, denoted as ‘other input’363

in the schematic of Figure 1, that is applied only to the PYR cells of the E-I networks. The amount of364

this other input is comparable or smaller than any of the ’internal’ EPSCs (see Table 5 in Ferguson365

et al. (2017)), as it has a zero mean with fluctuations of ≈ 10-30 pA. For the detailed model, the366

excitatory and inhibitory cells are driven by activation of excitatory afferents from the CA3 and367

the entorhinal cortex (EC) with connectivity of empirical estimation (see row #6 in Table 4). Unlike368

the minimal model, these CA3/EC excitatory inputs are larger relative to the ’internal’ EPSCs and369

so likely play an important role in maintaining the appropriate E-I balance for theta generation in370

the detailed model. Specifically, the CA3, EC and PYR cell excitatory currents onto PYR cells are371

approximately 10, 6 and 10 nA. The detailed model is only loosely based on the whole hippocampus372

preparation. Its theta rhythms are produced intra-hippocampally but the network is driven by373

external EC and CA3 noisy afferents. These afferents conceptually represent remaining inputs from374

cut afferents after extraction from the whole brain. Given that the external drives in the minimal and375

detailed models are not represented in a similar way, we cannot compare them directly. However,376

it is possible that the large difference in PYR to PYR synaptic weights between minimal and detailed377

models is partly because of their external drive differences.378

In summary, our consideration of linkages between minimal and detailed models via the whole379

hippocampus preparation (see Figure 1) that generates intrinsic theta rhythms leads to the following:380

The minimal model has appropriate connection probabilities relative to the biological system, as381

represented by a biologically detailed full-scale CA1 microcircuit model; the full-scale detailed model382

has appropriate EPSC/IPSC amplitude ratios relative to experiment; and although both minimal and383

detailed models produce intra-hippocampal theta rhythms, there are notable differences between384

their PYR to PYR synaptic weights and external drives.385

Using a ’piece’ of the detailed model to understand the initiation of theta rhythms386

and how their frequencies are controlled387

It is worth re-stating that despite its several limitations (e.g., only 70% of inhibitory cell types were388

included), the detailed model produces robust theta rhythms. However, because of its large size389

and computationally expensive nature, extensive parameter explorations were not performed.390
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As a result, even though the detailed model produces theta rhythms, and model perturbations391

indicated that some cell types and not others are important for their emergence, we do not know392

how the rhythm generation is initiated or controlled. To address this, we first isolate a part of the393

detailed model, the segment model (see Figure 1), that has comparable cell numbers to the minimal394

model. We investigate the segment model according to the noted differences with the minimal395

model and examine how this is manifest in the power and frequency of LFP theta rhythms that we396

subsequently interpret in light of the minimal model mechanism. From this investigation, we unveil397

an understanding of how the ’biophysical’ theta rhythms are generated and how their frequencies398

are controlled in a biologically detailed model with multiple inhibitory cell types.399

Creating the segment model and examining its initial behaviour400

We start by extracting a ‘piece’ of the detailed model which has a comparable number of cells401

relative to the minimal model, and we refer to it as the segment model - see Figure 8Ai. Our402

segment model represents 10% of the original detailed model and it has all of the same cell types403

with the same layer location positioning and synaptic connection structure as the detailed model.404

That is, the segment model contains eight inhibitory cell types and is driven by excitatory afferents405

representing inputs from the EC and the CA3 region, as illustrated in Figure 8Aii. The activation of406

the EC/CA3 synapses is modeled as an independent Poisson stochastic process and the strength407

of this activation is represented by the Poisson stimulation parameter. These afferents project408

to the majority of the cell types in the network with the exception of the OLM cells which are409

only driven by the PYR cells. Therefore, in contrast to the minimal model, the segment model is410

driven by external inputs that in addition to the PYR cells, also project to the inhibitory cells of411

the network (see Figure 1). Even though the segment model represents only 10% of the original412

detailed hippocampusmodel, its much smaller size makes it now possible to investigate the network413

dynamics by undertaking extensive parameter explorations using high-performance computing.414

We carried out this investigation by exploiting the noted differences between minimal and detailed415

models, and by considering the minimal model insights.416

Let us start by examining the segment model without changing any of its parameters relative to417

the detailed model. As expected, the segment model does not produce any output. Instead, this418

‘fraction’ of the detailed model produces hyperactive cell populations (not shown) indicating that419

the E-I input balances to the cells are shifted in favour of excitation. This suggests that to get a theta420

rhythm in the segment model, one could simply reduce the activation of the external afferents421

via the stimulation parameter. This is a reasonable consideration given that our model essentially422

consists of a smaller piece of tissue. We found that theta rhythms arise in the segment model when423

we decrease the stimulation parameter, but they have very low power and are very noisy. The424

raw LFP signal, as recorded in stratum pyramidale, is shown in Figure 8Bi, and it can be seen to be425

quite noisy. Guided by the Welch’s Periodogram, as shown in Figure 8C, theta rhythms at two peak426

frequencies (3.7 and 9.2 Hz) can be discerned. The filtered LFP signal is shown above Figure 8Bii427

and Biii. In essence, this finding predicts that a 10% piece of a whole hippocampus preparation is428

enough of a tissue volume to generate theta rhythms. This supports the viewpoint, supported by429

experimental observations, that the hippocampus is comprised of multiple theta oscillators along430

its septotemporal axis (Goutagny et al. (2009)).431

Designing an extensive parameter exploration of the segment model432

As shown above, the segmentmodel, without any changed parameter values besides the stimulation433

parameter, produces weak and noisy theta rhythms - see Figure 8B. Is it possible to obtain robust434

theta rhythms in the segment model? That is, can we increase the power of the theta rhythms435

expressed by the segment model? To answer this, we were motivated to determine whether436

bringing the segment model to a similar E-I parametric regime as the minimal model could ‘enhance’437

the theta rhythms. To test this, we examined whether by adjusting for differences between the438

models, we could increase the power of the theta rhythms expressed by the segment model.439
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Figure 8. Theta rhythms in the segment model.

A. (i): The model network is arranged in a layered prism. Image is adapted from Fig. 1 of Bezaire et al. (2016a).

The segment model shown in blue, represents 10% of the original volume. It contains 31,150 PYR cells, 553 BCs,

221 BiCs, 358 NGF cells, 40 SCA cells, 360 CCK+ BCs, 881 Ivy cells, 164 OLM cells, 147 AACs. LFP output is based

on a single micro-electrode placed in Stratum Pyramidale (SP). (ii): The number, position and cell types of each

connection are biologically constrained, as are the numbers and positions of the cells. Image is adapted from

Fig. 1 of Bezaire et al. (2016a). B. The segment network generates theta rhythms once the stimulation is

reduced to 0.26Hz (it is 0.65Hz in the original detailed model). (i): Unfiltered LFP, (ii): filtered for low theta (peak

at 3.7Hz) and (iii): filtered for high theta (peak at 9.2Hz). See Methods. C. Welch’s Periodogram of the LFP shows

a peak at two theta frequencies. Acronyms are defined in the main text.

Figure 8–Figure supplement 1. Recurrent excitation and feed-forward external drive to the PYR cells are needed for

theta rhythms.

From the comparison between the minimal and detailed models, we found that their two main440

differences stemmed from the external drives to the network and the synaptic weights between the441

PYR cells, which we will refer to as gpyr−pyr. In the minimal model, the external drive is only applied442

to the PYR cell population and is relatively weak (fluctuations of ≈ 10-30 pA) compared to what it443

is in the detailed model - about 10 nA (similar for the segment model). Also, the external drive in444

the detailed and segment models is applied not only to the PYR cells but also to the majority of445

the inhibitory cells. It is also important to keep in mind that the PYR cells in the segment model446

are bombarded by substantially more inhibition in comparison to the minimal model, as there are447

eight different inhibitory cell types projecting to them, as compared to just the fast-firing PV+ cells448

in the minimal model. This means that in the segment model, relative to the minimal model, it449

is possible that the stronger external drive to the PYR cells and the stronger gpyr−pyr are required450

to counterbalance the larger inhibitory presence due to the multiple inhibitory cell inputs. Due451

to these aspects, we designed an expansive exploration of how the segment model depends on452

gpyr−pyr and the external drive to the PYR cells in creating theta rhythms. For the external drive, we453

explored both the stimulation parameter as well as the excitatory conductance from EC/CA3 to the454
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Figure 9. Dependence of theta power and frequency on the PYR cells’ excitatory drives.

A. Schematic to illustrate the parametric exploration done that focuses on the excitatory drives to the PYR cells.

B. Heatmaps of normalized theta power (i), frequency (ii) and afferent input stimulation (iii) as a function of

gpyr−pyr and gec∕ca3−pyr. Circled a and b regions represent case a and b networks respectively, with

(gpyr−pyr, gec∕ca3−pyr) parameter values of: (30 nS, 0.16 nS) for case a, and (30 nS, 0.22 nS) for case b. Dashed

circled regions represent initial network of the segment model as obtained from the 10% ’piece’ extracted from

the detailed model (see Figure 8), with (gpyr−pyr, gec∕ca3−pyr) parameter values of: (70 nS, 0.20 nS). C. Histograms

of cellular activities for case a. Bin size = 1 ms. D. Same as C., but for case b. E. (i): Unfiltered LFP, (ii): Filtered LFP

(peak at 6.7Hz), for case a. F (i): Unfiltered LFP, (ii): Filtered LFP (peak at 3.7Hz), for case b. G. Welch’s

Periodogram of LFP for case a. H. Same as G., but for case b.

Figure 9–Figure supplement 1. Dependence of net theta power on the PYR cells’ excitatory drives.

Figure 9–Figure supplement 2. Dependence of theta and delta power on the PYR cells’ excitatory drives.

Figure 9–Figure supplement 3. Dependence of "high" theta (6-12Hz) power on the PYR cells’ excitatory drives.

PYR cells, which we will refer to as gec∕ca3−pyr. This examination is schematized in Figure 9A.455

For each (gpyr−pyr, gec∕ca3−pyr) conductance pair, we performed a set of simulations to find the456

stimulation parameter that maximizes the theta power (3-12 Hz) for the given conductance pair.457
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Given that these networks exhibit two theta peaks, a low and a high one, as shown by their Welch458

Periodogram, this analysis considers the stronger theta peak which is usually the one corresponding459

to the lower theta. A separate analysis for the higher theta peak power vs conductance pairs (ranges460

6-12 Hz) can be found in Figure 9-Figure Supplement 3. The theta rhythm dependence of our461

parametric explorations is shown in Figure 9Bi-iii. From left to right we show the normalized theta462

power, the theta frequency and the required stimulation to maximize the theta power for each463

conductance pair examined. These results show that the normalized theta rhythm power increases464

with increasing gpyr−pyr or gec∕ca3−pyr (similar is the trend for the net theta power Figure 9-Figure465

Supplement 1) while theta frequency approximately decreases with increasing gec∕ca3−pyr or gpyr−pyr.466

We note that these patterns are disrupted for the largest gec∕ca3−pyr or gpyr−pyr conductance values,467

where the power of the networks is shifted to lower ’delta’ frequencies below 3 Hz (see Figure 9-468

Figure Supplement 2). From the heatmaps of the net theta power in Figure 9-Figure Supplement 1469

we notice that the power of the theta rhythms has significantly increased, approximately doubled,470

relative to the initial behaviour of the segment model shown in Figure 8B. It is thus clear that471

there are particular parameter combinations that can significantly increase the power of the theta472

rhythms in the segment model to make it more robust.473

Theta rhythm robustness and degeneracy of theta rhythm generation474

To get an understanding of what underlies the results from our extensive parameter explorations,475

we took a detailed look at the inner mechanics of the network. We did this by examining two sets476

of conductance pair examples, case a (Figure 9C,E,G) and case b (Figure 9D,F,H), which correspond477

to small and large gec∕ca3−pyr values, respectively. These two examples exhibit elevated theta power478

relative to the initial behavior of the segment, which we notice by comparing the amplitudes of the479

raw LFP recordings in Figure 9Ei,Fi to Figure 8Bi, and the periodograms in Figure 9G,H to Figure 8C,480

where the theta power can be seen to be larger by about two orders of magnitude. From our481

explorations, we observed the following: When gec∕ca3−pyr is small, the EC/CA3 afferents have to be482

strongly activated to elicit a strong response to the PYR cells, hence requiring a large stimulation483

value - see Figure 9Biii. However, because these afferents connect to most of the inhibitory cells, a484

large stimulation value means strong concurrent activation of most of the inhibitory cells in the485

network. This is why the majority of the inhibitory cells in the network are fairly active in these486

regimes as shown in Figure 9C. When gec∕ca3−pyr is large, the activation of EC/CA3 afferents don’t487

have to be as strong (see corresponding stimulation value in Figure 9Biii) to elicit a similar response488

of the PYR cells given that the gec∕ca3−pyr itself is already large. In this regime, the activity of most489

inhibitory cells is low exactly because the stimulation parameter is low and the inhibitory cells are490

not strongly activated. This can be seen in Figure 9D.491

Overall, these results expose the degeneracy of the theta rhythm-generating system which can492

occur in at least two ways depending on the exact pathway of activation of the PYR cells. It can493

be by either by low activation of the external afferents given a large gec∕ca3−pyr conductance value,494

inducing a high concurrent activation of the inhibitory cells (case a), or by high activation of the495

external afferents given a small gec∕ca3−pyr conductance value, inducing low concurrent activation of496

the inhibitory cells (case b). From this exploration, it is clear that regardless of the exact pathway497

of activation, what appears to be critical for robust theta rhythms is the net amount of input to498

the PYR cells. Thus, the proposition brought forth by the minimal model that the theta frequency499

is controlled by the net amount of input that is received by the PYR cells, seems likely. With the500

segment model, we are now in the position to directly examine whether this is the case.501

Frequency control of theta rhythms and how they are initiated502

Based on the minimal model’s proposition, we examined the frequency of the LFP theta rhythms503

from the perspective of the net current received by the PYR cells irrespective of whether the pathway504

is of a case a or of a case b type. To do this, we took advantage of the numerous network simulations505

underpinning the heatmaps of Figure 9B. Specifically, we examined whether the frequency of those506
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Figure 10. PYR cell net current input strongly correlates with frequency.

A. Schematic to illustrate PYR cell sampling considered for net current analyses. B. Illustration of EPSCs and

IPSCs onto the PYR cells. (i): current inputs from other PYR cells and the eight inhibitory cell types, and (ii): the

excitatory drive from EC/CA3. C. Theta frequency plotted versus net current. Ten cells are randomly selected

from each one of the 50 networks underpinning the heatmaps of Figure 9B. Each dot represents the average

across ten cells of the mean input current amplitudes to a given PYR cell of one of the 50 networks in Figure 9B.

Error bars represent the standard deviation of these averages. The correlation coefficient between the theta

frequency and the net input current is � = -0.9, the p-value = 5.9x10−19 and the slope of the red line of the linear

regression fit is r=-0.7 Hz/nA, indicating that the LFP theta frequency increases by about one Hz every time the

net drive increases by one nA. Acronyms are defined in the main text.

networks correlate with the net current to the PYR cells. We selected a sample of 10 PYR cells507

from each of the segment models, as schematized in Figure 10A, and computed the average and508

standard deviation of the net current that each of these 10 PYR cells received. An example of IPSCs509

and EPSCs received by a particular PYR cell is shown in Figure 10Bi-ii. In Figure 10C, we plot means510

and standard deviations of the net current for all of the segment model networks in Figure 9B, and511

we see that there is indeed a strong correlation between the theta frequency of each segment512

model and the net input received by the PYR cells (see Methods for calculations). This plot clearly513

demonstrates that the frequency of the theta rhythm can be predicted by the input to the PYR cells.514

So far we’ve shown that the frequency of the theta rhythm relies on the net input received515

by the PYR cells in the segment model representing the smallest volume of tissue required to516

produce theta rhythms. Indeed if we chose to consider an even smaller tissue volume some517

of the inhibitory cells wouldn’t even be part of the network purely because of their empirically518

derived connectivity profiles. At this point, we note that the presence of theta rhythms requires519

that PYR cells are connected with each other, since the rhythms do not exist if gpyr−pyr conductances520

are zeroed (see Figure 8-Figure Supplement 1). That is, some recurrent excitation is required, as521

was already shown in Bezaire et al. (2016b). Also, not surprisingly, given the large contribution522

of the external drive in the detailed model, the theta rhythm cannot be maintained if external523

drive to the PYR cells is removed by setting gec∕ca3−pyr to zero (see Figure 8-Figure Supplement 1).524

Interestingly, what becomes evident in the segment model is that the generation of the theta525

rhythms is not specifically due to phasic drives from the inhibitory cells. Indeed, in these networks526

most of the inhibitory cell populations haven’t yet organized into periodically firing populations.527
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This is particularly noticeable in Figure 9D where theta rhythms are present and can be seen to be528

due to the PYR cell population firing in bursts of theta frequency. Even more, we notice that the529

pattern of the input current to the PYR cells isn’t theta-paced or periodic (see Figure 10Bi). Despite530

this, the PYR cell population can organize into a theta frequency bursting population, and initiate531

the theta rhythm. This indicates that provided the appropriate level of net input to the PYR cells, a532

theta rhythm can start, and the initiation does not depend upon sequential, externally imposed533

inhibition form other rhythmically firing inhibitory cells. Of course, with a larger network, other534

inhibitory cells organize into periodically firing populations and contribute to the robustness and535

strength of the theta rhythm. However, at its initiation stages, we can clearly say that the theta536

rhythm ’sparks off ’ from the PYR cells.537

Experimental constraints expand the understanding of theta-generating mechanisms in538

the hippocampus539

Given the not unexpected degeneracy in the segment model, an important aspect to consider is540

which of the theta rhythm-generating pathways might be occurring in the biological system. As a541

step in this direction, we turn to experimental observations from the intact hippocampus in which542

PV+ cells were optogenetically manipulated by Amilhon et al. (2015). Specifically, it was found that543

optogenetically silencing the PV+ cells significantly reduced the theta rhythm. Thus, removing PV+544

cells in the segment model should have a detrimental effect on theta rhythms as well. As already545

noted, there are several sets of parameters that produce theta rhythms, and these are shown in546

Figure 9B.547

Let us go back to our previous examples of case a and case b. As can be seen in Figure 9G,H,548

these two networks produce theta rhythms of similar power. To consider the experimental results549

of Amilhon et al. (2015), we removed the PV+ cells (BCs, AACs, BiCs) from the two network cases550

to mimic an ‘optogenetic’ silencing, and we measured the resulting change in the theta rhythm.551

This was done by removing the PV+ cells from the network by zero-ing all of the inhibitory synaptic552

conductances emanating from them (Figure 11A, Figure 11B-G). It is evident that the PV+ cell553

removal has a negative effect on the power of the theta rhythms in case a but not in case b, simply554

based on their respective periodograms (compare Figure 11F,G with Figure 9G,H). Interestingly,555

there was a large increase in gamma frequencies with PV+ cell removal in case a. In case a, the556

net input to the PYR cells is the sum of both strong inhibitory and excitatory currents; thus, the557

rhythm cannot be maintained when the inhibitory inputs from PV+ cells are lost due to the severe558

disruption of the E-I balance. However, in case b, the net input to the PYR cells is mostly defined by559

the excitatory cells. In this case, removing the PV+ cells did not affect the E-I balance enough to560

disrupt the theta rhythms - indeed, it enhanced them (compare the peak values in the periodograms561

of Figure 9H and Figure 11G). This implies that the different E-I balances in the segment model562

that allow LFP theta rhythms to emerge are not all consistent with the experimental data, and by563

extension, the biological system. Thus it appears that lower gec∕ca3−pyr conductance values, as in case564

a, that rely on both inhibitory and excitatory currents are more consistent with the experimental565

data.566

In Figure 12 we show a summarized, aggregate comparison of the measurements for case a and567

case b segment models before and after the removal of the PV+ cells from the network. In case a568

(Figure 12Ai-iv), removing the PV+ cells diminishes the theta power, while the frequency of the LFP569

signal and the net input current to the PYR cells which are correlated, remained intact. A noticeable570

decrease appears in the standard deviation of the current. This decrease reveals that removing571

the PV+ cells in this regime increases the ‘noisiness’ of the net current, or the fluctuation around572

its mean, which could potentially underlie the decrease in theta power in this example. Indeed,573

after examining the minimal model in the first part of this study, we proposed an ’inhibition-based574

tuning’ mechanism for the theta rhythm, in which the PV+ cells ’tune’ the PYR cell firing and by575

consequence regularize and enhance the robustness of the theta rhythm. Such a mechanism is576

supported by the segment model for case a.577
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Figure 11. Effect on the theta rhythms with removal of input from PV+ cells.

A. Schematic illustrating examination of the effects of PV+ cell (BCs, AACs, BiCs) input removal to the PYR cells. B.

Histograms of cellular activities for case a with PV+ to PYR cell inputs removed. Bin size = 1ms. C. Same as B.,

but for case b. D. Filtered theta signal for case a with PV+ to PYR cell inputs removed (peak at 6.7Hz). E. Same as

D., but for case b (peak at 3.7Hz). F. Welch’s Periodogram of LFP for case a with PV+ to PYR cell inputs removed.

G. Same as F., but for case b. Acronyms are defined in the main text.

As shown for case b (Figure 12Bi-iv), removing the PV+ cells actually increases the power of the578

theta rhythm while keeping the same theta frequency in the LFP signal and the same net input579

current. However, in this case, the standard deviation of the net current did not change, unlike580

for case a. Thus, from the perspective of the experiments of Amilhon et al. (2015) theta rhythm581

generation via a case a type pathway seems more biologically realistic while it also supports the582

proposed inhibition-based tuning mechanism from the minimal model. In Figure 12C, we provide a583

schematic of the biophysical theta generation mechanism and frequency control. This comparison584

with experiment brings forth the importance of understanding the inner mechanisms underpinning585

the dynamic output of a system, as high-dimensional models are likely to express degeneracy,586

which could however come forth via separable “pathways” of different biological implications.587

Discussion588

Including biological complexity in cellular-based network models challenges our ability to under-589

stand their dynamic behaviours. To tackle this challenge, we have brought together two previously590

published models of the CA1 microcircuit that generate theta rhythms without oscillatory inputs.591

The two models mimic the intrinsic theta rhythms of an intact, whole hippocampus preparation592

(Goutagny et al., 2009). One of them - the minimal model (Ferguson et al., 2017) - only has fast-593

firing PV+ and PYR cells, whereas the other - the detailed model (Bezaire et al., 2016b) - has eight594

different inhibitory cell types and PYR cells. The minimal model uses a simplified Izhikevich mathe-595

matical model structure for cellular representations, with parameter values determined from fits to596

experimental data from the whole hippocampus preparation, whereas the detailed model uses597

multi-compartment conductance-based cellular representations, determined from an extensive598
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Figure 12. Aggregate comparison of theta rhythms before and after the removal of inputs to PYR cells

from PV+ cells and schematic of ’biophysical theta’.

A. Results for case a. (i): Normalized theta power, (ii): theta frequency, (iii): mean current, and (iv): standard

deviation of current, with and without PV+ cells for case a. B. Same as A., but for case b. C. The net PYR cell input

controls the resulting theta frequency. The PV+ cells contribute to the net input while they also regularize it and

amplify theta power.

knowledge-based review of the literature (Bezaire and Soltesz, 2013).599

The wide variety of cell types that make up brain circuits leads to high-dimensional sets of600

nonlinear, differential equations described by large sets of parameters incorporated into models.601

This makes application of theoretical analyses difficult and parametric explorations computationally602

expensive. In our approach of bringing together the two models in this study, we implemented a603

focused, hypothesis-driven parametric search of a fragment of the detailed model, the segment604

model, guided by the minimal model. This allowed us to establish a cellular basis for how intrinsic605

theta rhythms are generated and how their frequencies are controlled in CA1 microcircuits of606

the hippocampus. The importance of considering multi-level and multi-granular networks to607

understand brain phenomena as done here, was recently discussed by Einevoll et al. (2019).608

Summary overview609

We started from the minimal model where it was previously shown that population bursts of theta610

frequency can be generated in E-I networks with sparse firing of PYR cells and EPSC/IPSC current611
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amplitude ratios as observed experimentally. This occurred due to SFA, Rheo and PIR building block612

features. Using heterogeneous PYR cell populations and quantification of SFA, Rheo and PIR building613

block features, we explored the robustness of the theta generation mechanism in the minimal614

model and found that it is sensitive to specific Rheo and PIR quantified values, but not to SFA. We615

subsequently used PRCs to determine how the frequency of theta rhythms could be controlled,616

and proposed an ’inhibition-based tuning’ mechanism in which inhibitory inputs to the PYR cell617

population allow a stable theta rhythm to emerge, given an appropriate net input to the PYR cells.618

This paved the way for investigations with the detailed model where this could be directly examined.619

Since the detailed model was not explicitly built with the whole hippocampus preparation in620

mind, we computed EPSC/IPSC amplitude ratios and confirmed that they were in line with those621

observed experimentally in the whole hippocampus. Comparisons between minimal and detailed622

models validated the predicted connectivity balance in the minimal model and exposed notable623

differences.624

We extracted a ’piece’ of the detailed model of comparable cell numbers as the minimal model -625

termed the segment model - and showed that it could generate theta rhythms, albeit noisy and of626

low LFP power. This finding supports the experimental observations of Goutagny et al. (2009) that627

the theta rhythm in the whole hippocampus is composed of a set of coupled oscillators, and only a628

part of the entire hippocampus is required to generate theta rhythmic output, an ’oscillator’. With629

this smaller segment model, we focused our investigation on the differences between the minimal630

and the detailed model, namely the PYR-PYR synaptic weights and the external drives.631

We found a strong correlation between the theta oscillation frequency and the average net632

input delivered to the PYR cells. This indicates that the frequency of the LFP theta rhythm can be633

predicted by the inputs to the individual PYR cells of the network. Further investigations of the634

segment model revealed that the theta rhythm is initiated by the PYR cells but is regularized by635

the PV+ cells since their removal caused a large decrease in the LFP power and an increase in the636

variability of the net current received by the PYR cells. Together, this supports an inhibition-based637

tuning mechanism for theta generation (see Figure 12C).638

Mechanism underpinnings and leveraging of theoretical insights639

From our previous work we already knew that minimally connected PYR cell networks produced640

theta frequency population bursts on their own (Ferguson et al., 2015a), but the majority of the641

PYR cells would fire during population theta bursts which is unlike the experimental observations642

of sparse PYR cell firing. With the inclusion of PV+ cells to create E-I networks, the population of643

PYR cells fired sparsely, which makes sense since the addition of inhibitory cells leads to less firing644

of PYR cells due to silencing from the inhibition. Relatedly, it has been shown that feedforward645

inhibition plays a role in maintaining low levels of correlated variability of spiking activity (Middleton646

et al., 2012).647

It is important to point out different PYR cell aspects in the minimal and detailed models. As648

mentioned, for the minimal model we know that the PYR cell population on its own can generate649

a population theta rhythm, and this is by virtue of its intrinsic properties that includes an SFA650

building block feature (Ferguson et al., 2015a). In that previous work, we had used a PYR cell model651

that is strongly adapting based on fits to the experimental data, or weakly adapting based on652

another experimental dataset in the same paper (Ferguson et al., 2015b), that could produce theta653

frequency population bursts in both cases. As discussed in Ferguson et al. (2015b), it is unlikely654

that there are distinct types of biological PYR cells that are strongly or weakly adapting, but rather a655

continuum of adaptation amount dependent on the underlying balances of biophysical ion channel656

currents. Our explorations of the robustness of the theta generation mechanism in the minimal657

model revealed that theta rhythms are not sensitive to the specific quantified value of the SFA658

building block feature, so long as there is some adaptation. Thus, although the minimal model from659

Ferguson et al. (2017) used a strongly adapting PYR cell model and the mimimal model database660

used here started from this strongly adapting PYR cell model basis, it is unlikely that our results661
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would be affected.662

For the detailed model, the PYR cell model is based on experimental data in which some663

adaptation can be seen in the experimental recording, but is not apparent in the PYR cell model664

output of the detailed model (see Appendix of Bezaire et al. (2016b)). This then suggests that the665

prediction of the segment model that the PYR cells are the initiator of theta rhythms is not simply666

due to adaptation. It must thus involve other intrinsic characteristics of the the biophysical PYR cell667

models. That excitatory networks can produce population bursts in of themselves is not new to668

the theoretical, modeling world, but it has not been previously shown that this could be the case in669

a biophysically detailed CA1 microcircuit model. An important candidate among PYR cell intrinsic670

properties that affect PIR is the hyperpolarization-activated (h-) channel (Ascoli et al., 2010). The671

h-channel has been shown to be a pacemaking current and contributes to subthreshold resonance672

(Biel et al., 2009). It has been a focus in general network modeling studies (e.g., Avella Gonzalez673

et al. (2015)), as well as specific to inhibitory cells in the generation of coherent oscillations (Rotstein674

et al., 2005). It is interesting to note that the h-channel, with its non-uniform distribution, has been675

shown to play an important role in shaping the output of LFP recordings, as determined from676

multi-compartment LFP modeling studies (Ness et al., 2016, 2018; Sinha and Narayanan, 2015).677

How exactly h-channels in PYR cells influence the dynamics and frequency of LFP theta rhythms in678

CA1 microcircuits will be interesting to investigate further.679

As shown in our heterogeneous PYR cell E-I network explorations, the presence of theta rhythms680

(i.e., population bursts in the minimal model) was sensitive to the specific quantified values of PIR681

and Rheo building block features. It is expected that there would be a sensitivity to Rheo as the682

rheobase current of PYR cells dictate whether a PYR cell would spike or not. We had noted that an683

Izhikevich cellular model requires a positive b value in order for PIR to occur - i.e., for a spike to fire684

after hyperpolarization, and while there is sensitivity to this PIR value, it is not the case that PYR cell685

firing occurs on rebound from inhibition during the ongoing theta population bursts (see Figure 4).686

In actual CA1 PYR cells, it has been shown that PIR spiking does occur, mediated by h-channels,687

and is locally controlled by biophysical ion channel balances (Ascoli et al., 2010). Whether PYR688

cells actually fire due to PIR during ongoing theta rhythms may or may not be the case, and one689

could potentially disentangle this in the model with consideration of the variety of inhibitory cell690

types. However, this seems less critical to figure out now that we have exposed a strong correlation691

between the frequency of the theta rhythm and the net current to the individual PYR cells. We know692

that PIR is present in CA1 PYR cells, and we know that the minimal model indicates it as a sensitive693

feature for theta rhythms, and we thus predict that changes to the PYR cell’s intrinsic properties694

that affect PIR would affect the resulting theta rhythms.695

PRC theory has been used in a variety of ways in the neuroscience field (Schultheiss et al., 2011),696

and particularly in consideration of network dynamics. For example, Hansel et al. (1995) used PRCs697

to explain the differential capacity for excitatory signalling to synchronize networks of Type I or Type698

II neurons (these types are differentiated by their bifurcation type (Izhikevich, 2006)), Rich et al.699

(2016) analyzed synchronization features in purely inhibitory networks using PRCs, and Achuthan700

and Canavier (2009) used PRCs to understand clustering in networks. We took advantage of PRC701

theory by considering phase-resetting of the PYR cells in the E-I networks due to incoming inhibitory702

input. In this way, we were able to hypothesize an inhibition-based tuning mechanism for control of703

the theta rhythm frequency based on the PRC shape (amount of advance or delay) and the PYR704

cell’s intrinsic firing frequency. Our use of PRCs relied on our observations of the effect of different705

PRC shapes on the resulting theta rhythm. Such a consideration is similar to that used by Rich et al.706

(2016) to explain differential synchrony patterns in inhibitory networks of Type 1 vs Type II neurons.707

Physiological considerations and related studies708

Based on the number of cells, the minimal and segment models are designed to represent a709

’piece’ of CA1 microcircuitry, and not the whole hippocampus preparation. However, the ability of710

these models to generate population theta rhythms on their own, is in line with the observations of711
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Goutagny et al. (2009) where transmission between portions of the whole hippocampus preparation712

were blocked with procaine (see their supplementary Fig.11). With each piece of tissue being713

able to generate theta oscillations on its own, the whole hippocampus would represent a set714

of coupled oscillators. Indeed, traveling theta waves in hippocampus and neocortex have been715

considered in this fashion (Lubenov and Siapas, 2009; Zhang et al., 2018). In previous work, we used716

phase-coupled oscillator models, assumed inhibitory coupling between oscillators and examined717

asymmetries in coupling strengths that could be responsible for the experimentally observed718

propagation of slow rhythms (Skinner et al., 2001). In that vein, it may be worth considering719

whether one could combine the mechanistic insights from microcircuit and coupled oscillator720

model studies.721

The extensive set of simulations performed with the segment model showed that different722

cell-specific pathways dominate LFP theta rhythms of similar frequency and power, exposing degen-723

eracy. While model degeneracy in high-dimensional model systems is expected, it underlines the724

importance of probing generation mechanisms whenever possible, and not just comparing outputs.725

There are multiple pathways in the circuitry, and at the in vivo level, one cannot unambiguously dis-726

entangle these pathways or have cell-type considerations (Benito et al., 2014). Using the segment727

model, we were able to consider two distinct ‘pathways’ by which theta rhythms are generated -728

one where the EC/CA3 to PYR cell inputs dominated (case b) and another where they did not (case729

a). Based on perturbative responses to the model to mimic the experiments, only case a was in730

accordance with experimental data (Amilhon et al., 2015). We note that the differences between731

the cases could actually reflect differences in the contributions of particular inhibitory populations732

since, for example, the recordings that we compare our simulations to are taken from the superficial733

layers of the hippocampus. Indeed, in a very recent modeling study by Navas-Olive et al. (2020)734

that built on the detailed model of Bezaire et al. (2016b), it was shown that deep and superficial735

PYR cells fire at different phases of the theta oscillation and are driven by different inhibitory cell736

populations. In that study, the authors found that in CA1, PV+ BCs preferentially innervate PYR cells737

at the deep sublayers while CCK+ BCs are more likely to target superficial PYR cells. It is possible738

thus, that our case b regime reflects a theta rhythm relevant to the deep CA1 layers which is highly739

modulated by the CCK+ BCs, which, in contrast to the PV+ BCs, happen to be particularly active in740

case b. However, what is clear from our work is that specific perturbations could determine the741

dominance of different cellular pathways by comparing LFP output characteristics.742

The determination of an inhibition-based tuning mechanism for theta generation stemmed from743

this study is essential, as it forms a foundation from which to consider E-I ‘balances’ during theta744

rhythms from detailed physiological and experimental perspectives. E-I balances have been shown745

to be quite precise in feedforward networks from CA3 to CA1 (Bhatia et al., 2019), and fine-scale746

mapping studies show structured synaptic connectivity between different cell types in these regions747

(Kwon et al., 2018). Thus, in the absence of a detailed enough cellular-based network model one748

could not really situate emerging biological details’ contributions to theta rhythms. On the other749

hand, in the absence of some mechanistic understanding, the importance of various biological750

details is challenging to contain. In this work, we have combined the strengths of minimal and751

detailed models, and have perhaps reached an ‘inflection point’ (Gjorgjieva et al., 2016) by having752

enough, but not too much, biological realism to obtain a cellular-based mechanistic understanding.753

Had we started from models that were either more abstract or more detailed, model linkages and754

mechanism translations may have not been possible (i.e., too far from an ’inflection point’).755

Limitations and future work756

Even though our modeling study sheds light on the foundation of the theta mechanism, more can757

still be unveiled in terms of the specific roles of the variety of inhibitory cell types in the segment758

model and their inter-relationships. Through optogenetic perturbations, experimental studies759

have already explored how PV+ as well as somatostatin-positive (putative OLM cells) cells affect760

intra-hippocampal theta rhythms (Amilhon et al., 2015). Our previous modeling work examined the761
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contribution of BiCs, BCs and OLM cells to ongoing theta rhythms and LFP generation (Chatzikalym-762

niou and Skinner, 2018; Ferguson et al., 2015c) in light of these experimental studies. However, the763

segment model, with its complement of eight inhibitory cell types and its computational tractability,764

provides an exciting opportunity to extract and predict specific inhibitory pathways and their activa-765

tion machinery during theta rhythms. Achieving this will help guide and target perturbation and766

stimulation paradigms in pathological states.767

Besides Bezaire et al. (2016b), other detailed CA1 microcircuit models that include multiple768

inhibitory cell types have been developed ((Cutsuridis et al., 2010; Shuman et al., 2020; Turi et al.,769

2019)). However, these models were used to examine higher level behaviours and theta rhythms770

were imposed, not generated within the models. Recently, a very detailed quantification of synaptic771

anatomy and physiology that includes short-term plasticity has been done, and is provided as772

a resource for the community (Ecker et al., 2020). It may be possible to examine these other773

detailed models in light of our mechanistic understanding, and further, to design a strategy that774

would appropriately include additional inhibitory cell types in the CA1 microcircuit model via the775

determined mechanism.776

Concluding remarks and a proposal: A ‘pacemaker circuit’777

Six years ago, Siegle and Wilson’s work (Siegle and Wilson, 2014) showed strong support for phase778

coding in the hippocampus, using the encoding and retrieval paradigm developed by Hasselmo779

(Hasselmo et al., 2002) with theta rhythms. Recognizing the multi-layered aspects of theta rhythms -780

different cholinergic sensitivities, distinct phase relationships with different inhibitory cell types, low781

and high frequency theta types, different behavioural correlates and information processing, dorsal782

and ventral differences, heavy dependence on medial septal circuitry interactions (Chauvière, 2020;783

Colgin, 2013, 2016; Hinman et al., 2018) - our work plants a seed.784

Until now, it was not clear how one could consider theta rhythms from both cell-type pathways785

with E-I balances and functional behavioural perspectives. Our work suggests that there is no longer786

a need to separately impose theta rhythms on network models, as the cells in these networks are787

themselves part of the theta rhythm-generating machinery and this ‘separation’ eliminates some of788

the interactions that may be critical and thus hinder our understanding of the system. What is clear789

is that there is a theta rhythm generator in the hippocampus, i.e., intrinsic theta rhythms can be790

generated in a whole hippocampus preparation (Goutagny et al., 2009). We know that interactions791

with the medial septum (MS) are important for theta, but we note that lesioning the MS reduces,792

but does not terminate theta rhythms (Colgin, 2013;Winson, 1978). Modeling work has suggested793

that theta rhythms could arise due to hippocampo-septal interactions (Hajós et al., 2004; Wang,794

2002). It is likely that interactions with the MS circuitry act to make the intrinsic hippocampus theta795

rhythms more robust, and impose theta rhythms in MS. Interestingly, experimental data has shown796

that rhythmic stimulation of the hippocampo-septal fibers can ’phase’ MS neurons at that exact797

frequency due to rebound dependent h-channels, suggesting that the intrinsic hippocampus theta798

generator could be transferred to MS neurons via E-I interactions (Manseau et al., 2008). At present,799

we are not aware of any evidence supporting that the MS can generate theta rhythms on its own.800

Thus we propose that CA1 PYR cells act as theta rhythm initiators tuned by the inhibitory cell801

populations to create a ‘pacemaker circuit’ - a core theta generator - in the hippocampus, with PYR802

cells sensitively dependent on ‘pacemaking’ h-channels. Amplification of these rhythms occurs803

due to inputs from the MS, while the net input received by the PYR cells controls the resulting804

theta frequency. From this intrinsic theta rhythm foundation, we can build, and in the process,805

disentangle the cellular-based and multi-layered aspects of theta rhythm generation and function806

in the hippocampus (Brandon et al., 2011; Koenig et al., 2011; Jaramillo and Kempter, 2017), and807

possibly other brain structures, since interestingly, functional connectivity studies have shown808

that the hippocampus is a brain hub (Battaglia et al., 2011;Mišić et al., 2014). A schematic of our809

proposal is shown in Figure 13.810
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Figure 13. Proposing a theta pacemaker circuit in a hippocampus hub.

The hippocampus can produce intrinsic theta oscillations on its own, without the need for any oscillatory input.

In the work here, we have shown that theta rhythms can be generated by the PYR cell population, and are

’tuned’ and regularized by the inhibitory cell population, as illustrated in the rectangle. We propose that this

theta pacemaker circuit is amplified by connections with the MS via hippocampo-septal cellular interactions, as

illustrated by the dark blue thick arrows. That is, the MS is not a theta rhythm generator, but rather acts to

enhance and amplify the existing intrinsic theta rhythm in the hippocampus, and would play a role in setting

the particular theta rhythm frequency. This would occur due to the MS cellular inputs affecting the net input

current to the PYR cells in the hippocampus. The theta rhythm would further interact with other regions such as

neocortex and amygdala, as illustrated by the light blue thick arrows (Battaglia et al., 2011). The possibility of a

hippocampus hub is supported by connectivity studies (Mišić et al., 2014). The whole hippocampus schematic

is adapted from Fig 1 of Huh et al. (2016).

Methods811

The minimal model and expanded explorations812

Details of the minimal model rationale and setup are previously published in Ferguson et al. (2017),813

but some background relevant to the present work is summarized here. The minimal model814

represents an approximate one mm3 ‘piece’ of the CA1 region of the hippocampus determined to815

be enough to generate theta rhythms (Goutagny et al., 2009). It has 30,500 cells (30,000 excitatory,816

PYR cells and 500 inhibitory, fast-firing PV+ cells). In analyses of excitatory networks on their817

own, a scaling relationship between cell number, connection probability and excitatory synaptic818

weight allowed us to use 10,000 PYR cells rather then 30,000 in the excitatory network simulations819

(Ferguson et al., 2015a). As the model is minimal, we could perform thousands of simulations on820

high-performance computing to ascertain parameter balances that would produce theta rhythms821

as well as capture experimental data results of EPSC/IPSC amplitude ratios. For this to be the case,822

we found that the connection probability from PV+ to PYR cells should be larger than from PYR to823

PV+ cells (Ferguson et al., 2017).824

We note that the PV+ cells have intrinsic and synaptic connectivity aspects derived from experi-825

ment and that inhibitory PV+ cell networks fire coherently given appropriate excitatory drives and826

synaptic weights (Ferguson et al., 2013). In the E-I networks of the minimal model, the excitatory827

drive to PV+ cells comes from the PYR cell population (see schematic in Figure 1). We note that828

when we did the E-I network simulations in Ferguson et al. (2017), we chose the synaptic weight829

(between PV+ cells) to be such that it could be at the ’edge’ of firing coherently (high frequency)830

or not (see Fig. 3 in Ferguson et al. (2013)). As such, given an appropriate excitatory drive, it can831

be switched into a high frequency coherent regime so that the PV+ cell network could produce832

an inhibitory ’bolus’. From estimates of EPSCs onto the PV+ cells of 1000 pA, the synaptic weight833

between PV+ cells was set to 3 nS (Ferguson et al., 2017).834
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Cellular specifics and equations835

The network structure and cellular details for the minimal model simulations in the present paper836

are similar to those in Ferguson et al. (2017). That is, cellular models (PYR and PV+ cells) are based on837

experimental data from the in vitro whole hippocampus preparation (Ferguson et al., 2013, 2015b).838

They use the mathematical model structure developed by Izhikevich (Izhikevich, 2010, 2006), in839

which the subthreshold behaviour and the upstroke of the action potential are captured, and a840

reset mechanism to represent the spike’s fast downstroke is used. Despite being relatively simple,841

parameter choices can be made such that they have a well-defined (albeit limited) relationship to842

the electrophysiological recordings. It has a fast variable representing the membrane potential,843

V (mV ), and a variable for the slow “recovery” current, u (pA). We used a slight modification to be844

able to reproduce the spike width. It is described by the following set of equations:845

CmV̇ = k(V − vr)(V − vt) − u + Iotℎer − Isyn (1)

u̇ = a[b(V − vr) − u]

if V ≥ vpeak, then V ← c, u ← u + d

where k = klow if V ≤ vt, k = kℎigℎ if V > vt

where Cm (pF ) is the membrane capacitance, vr (mV ) is the resting membrane potential, vt (mV ) is846

the instantaneous threshold potential, vpeak (mV ) is the spike cut-off value, a (ms−1) is the recovery847

time constant of the adaptation current, b (nS) describes the sensitivity of the adaptation current848

to subthreshold fluctuations - greater values couple V and umore strongly resulting in possible849

subthreshold oscillations and low-threshold spiking dynamics, c (mV ) is the voltage reset value,850

d (pA) is the total amount of outward minus inward currents activated during the spike and affecting851

the after-spike behaviour, and k (nS∕mV ) represents a scaling factor. Isyn = 0 for the isolated cell.852

Iotℎer is as described below for computing metrics for the PYR cell or E-cell.853

Model parameter values for the PV+ cell or I-cell (units above) are: vr=-60.6; vt=-43.1; vpeak=-2.5; c=-854

67; kℎigℎ=14; Cm=90; a=0.1; b=-0.1; d=0.1; klow=1.7. These parameters are as previously determined855

(Ferguson et al., 2013), and are not varied. Model parameter values (units above) for the PYR cell856

are: vr=-61.8; vt=-57; vpeak=22.6; c=-65.8; kℎigℎ=3.3; Cm=115; a=0.0012; b=3; d=10; klow=0.1. These857

parameters are as previously determined for strongly adapting cells (Ferguson et al., 2015b), and858

the a, b, d, klow parameters are varied.859

Network specifics and equations860

The cellular models described above were used to create excitatory-inhibitory (E-I) networks as861

done in Ferguson et al. (2017). Specifically, synaptic input between PYR cells (E-cells), PV+ cells862

(I-cells) and between PYR and PV+ cells by representing synaptic input in Equation 1 as:863

Isyn = g ⋅ s(V − Erev) (2)

where g (nS) is the maximal synaptic conductance of the synapse from a presynaptic neuron to the864

postsynaptic neuron, Erev (mV ) is the reversal potential of the synapse, and V (mV ) is the membrane865

potential of the postsynaptic cell. The gating variable, s, represents the fraction of open synaptic866

channels, and is given by first order kinetics (Destexhe et al. (1994), and see p.159 in Ermentrout867

and Terman (2010)):868

ṡ = �[T ](1 − s) − �s (3)

The parameters � (in mM−1ms−1) and � (in ms−1) in Equation 3 are related to the inverse of the rise869

and decay time constants (�R, �D in ms). [T ] represents the concentration of transmitter released by870
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a presynaptic spike. Suppose that the time of a spike is t = t0 and [T ] is given by a square pulse of871

height 1 mM lasting for 1 ms (until t1). Then, we can represent872

s(t − t0) = s∞ + (s(t0) − s∞)e
−

t−t0
�s , t0 < t < t1

where s∞ =
�

�+�
and �s =

1

�+�
. After the pulse of transmitter has gone, s(t) decays as873

s(t) = s(t1)e
−�(t−t1) (4)

For network simulations, Iotℎer in Equation 1 represents ‘other input’ to the PYR cell population874

(see Figure 1), and is given by Iotℎer = −ge(t)(V − Erev). ge(t) is a stochastic process similar to the875

Ornstein-Uhlenbeck process as used by Destexhe and colleagues (Destexhe et al., 2001)876

dge(t)

dt
= −

1

�e
(ge(t) − ge,mean) +

√

2�2
e

�e
�e(t) (5)

where �e(t) is an independent Gaussian white noise process of unit standard deviation and zero877

mean, ge,mean (nS) is the average conductance, �e (nS) is the noise standard deviation value, and �e878

is the time constant for excitatory synapses. �e is fixed based on values as used in Destexhe et al.879

(2001) (�e = 2.73 ms).880

Parameter values (rationale and refs given in Ferguson et al. (2017)) are: Erev= -15 or -85 mV881

for excitatory or inhibitory reversal potentials respectively. Rise and decay time constants are,882

respectively, 0.27 and 1.7 msec for PV+ to PV+ cells; 0.3 and 3.5 msec for PV+ to PYR cells; 0.37 and883

2.1 msec for PYR to PV+ cells; 0.5 and 3 msec for PYR to PYR cells. Connection probabilities are884

fixed at 0.12 for PV+ to PV+ cells and 0.01 for PYR to PYR cells, as estimated from the literature. For885

the simulations in this paper, we use connection probabilities that were found to be in line with886

the experimental data. That is, where the connection probability from PV+ to PYR cells (cPV ,PY R) be887

larger than from PYR to PV+ cells (cPY R,PV ).888

Specifically, for the heterogeneous networks examined in this paper, we mainly focus on889

parameter values from Table 5 of Ferguson et al. (2017)): gpyr=0.094 nS, �e=0.6 nS, gpyr−pv=3 nS,890

gpv−pyr=8.7 nS, cPY R,PV =0.02, cPV ,PY R=0.3, ge,mean = 0 nS. An actual instantiation of the ‘other input’891

that these parameter values produce can be seen in the schematic figure of Figure 5. We also892

consider networks with parameter values of: gpyr=0.014 nS, �e=0.6 nS, cPY R,PV =0.02, cPV ,PY R=0.3;893

and gpyr=0.084 nS, �e=0.2 nS, cPY R,PV =0.04, cPV ,PY R=0.5; and gpyr=0.084 nS, �e=0.6 nS, cPY R,PV =0.02,894

cPV ,PY R=0.5 (gpyr−pv, gpv−pyr, ge,mean the same as focused parameter values), and similar results are895

obtained. From the minimal model we know that theta population bursts occur when PYR cells896

receive zero mean excitatory drive with fluctuations of ≈ 10-30 pA (as estimated from 0.2 to 0.6 nS897

‘noise’) (Ferguson et al., 2017).898

PYR cell (E-cell) model database and building block feature quantifications899

To create a database of PYR cell models, we range the a, b, d, klow model parameter values to create900

10,000 models, 10 different values for each parameter, so as to encompass the default values901

from Ferguson et al. (2015b) obtained in creating the strongly-adapting PYR cell model based on902

experimental data from the whole hippocampus preparation. The default values of the strongly903

adapting PYR cell model are: a=0.0012ms−1; b=3.0nS, d=10pA, klow=0.10nS∕mV and for the PYR cell904

model database, the parameter ranges are: [initial value, final value, resolution]: a = [0.0, 0.00216,905

0.00024]; b = [0.0, 5.4, 0.6]; d = [0, 18, 2]; klow = [0.0, 0.18, 0.02].906

For each PYR cell model, spike frequency adaptation (SFA), post-inhibitory rebound (PIR) and907

rheobase (Rheo) building block features are quantified to allow comparisons to be made. The908

Euler integration method is used to integrate the cell equations with a timestep of 0.1 msec.909

Quantification of building block features is done as follows:910

Rheo: Starting from vr, each PYR cell model is given a constant current from -25 to 25 pA in 0.5 pA911

increments. If a spike is generated within the first 500 msec, then that constant current value is912
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considered as the rheobase current, and is taken as the Rheo quantified value.913

PIR: Starting from vr, each PYR cell model is subjected to a one second hyperpolarizing step current914

for current values from 0 to -25 pA with a resolution of 0.5 pA. If a spike occurred upon termination915

of a given hyperpolarization step (i.e., a PIR spike) but not at the previous step value, then that step916

value is considered as the PIR quantified value.917

SFA: Starting from vr, each PYR cell model is subjected to input currents for one second, from 0 to918

98 pA (inclusive) in 2 pA increments. For each input current, the number of spikes is recorded, and919

the interspike interval is calculated between the first and second spikes, and the last and second920

from last spike. The inverse is taken and defined as the initial and final frequency at that current.921

The initial and final frequencies as a function of the current steps creates a smooth, approximately922

linear relationship, so lines are fitted to the initial and final frequency plots. The slopes of those lines923

are subtracted from one another (the initial slope is always steeper) to produce the SFA quantified924

value.925

The range of quantified values obtained from the model database of 10,000 PYR cells is: SFA:926

-0.001 to 0.64 (Hz/pA); Rheo: 1.5 to 6.5 (pA); PIR: -23.5 to -1.0 (pA). How they end up being distributed927

is shown in Figure 2, and while clearly not a uniform or normal distribution, they encompass a wide928

range of values. The quantified values for the strongly adapting PYR cell model that we use as our929

starting basis in generating the model database (see above for full model and parameter values)930

are: SFA= 0.46; Rheo= 4.0; PIR = -5.0. We refer to them as the base values.931

Heterogeneous PYR cell setup932

The two ways in which heterogeneous PYR cell populations are created is as follows:933

(i) Using narrow (N) or broad (B) ranges of values for [SFA, Rheo, PIR] relative to base values, where N934

or Bmeans that [SFA, Rheo, PIR] metric values are ± [0.1, 0.5, 0.5] or ± [0.45, 3.0, 5.0] respectively, of935

base values. Thus, NNN refers to models with [SFA, Rheo, PIR] values of: [(0.36 to 0.56 exclusive of936

bounds; 4.0; -5.0], and BBB refers to models with [SFA, Rheo, PIR] values of: [(0.01 to 0.64 exclusive937

of bounds (noting that 0.64 is the maximum possible in the model database set); 1.5, 2.0, 2.5, 3.0,938

3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5; -0.5, -1.0, -1.5, -2.0, -2.5, -3.0, -3.5, -4.0, -4.5, -5.0, -5.5, -6.0, -6.5, -7.0,939

-7.5, -8.0, -8.5, -9.0, -9.5]. Note that since the resolution of the Rheo and PIR quantified values are 0.5,940

and the manner in which it is defined (see above), the N range for Rheo has models in which Rheo =941

4.0 only, and similarly, the N range for PIR has models in which PIR = -5.0 only.942

The other sets (using ranges as defined above) have quantified values as follows: BBN=[(0.01 to943

0.64 exclusive of bounds; 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5; -5.0]; BNB=[(0.01 to 0.64944

exclusive of bounds; 4.0; -0.5, -1.0, -1.5, -2.0, -2.5, -3.0, -3.5, -4.0, -4.5, -5.0, -5.5, -6.0, -6.5, -7.0, -7.5,945

-8.0, -8.5, -9.0, -9.5]; NBN=[(0.36 to 0.56 exclusive of bounds; 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0,946

5.5, 6.0, 6.5; -5.0]; and so on for BNN, NBB, and NNB. These eight possible cases and the number947

of models in each of them is given in Table 2, along with the population frequency and power.948

Parameter value histograms for each of these combinations from the model database set are949

given in https://osf.io/yrkfv/, and what ranges of the quantified values in the database that they950

encompass is shown in Figure 2.951

(ii) Using low (L), medium (M) or high (H) values, with SFA quantified value ranges exclusive of952

endpoints given as: SFA: L = [(0.0 to 0.2)],M = [(0.2 to 0.4)], H = [(0.4 to 0.6)]; Rheo: L = [1.5, 2.0, 2.5],M953

= [3.5, 4.0, 4.5], H = [5.5, 6.0, 6.5]. PIR: L = [-3.5, -4.0, -4.5], M = [-6.5, -7.0, -7.5], H = [-9.5, -10.0, -10.5].954

This means that the base values fall into the HML case, with the small caveat that the PIR base value955

is just outside the L range. The gaps in these ranges are due to the automation of the exploration956

and to ensure that there is no overlap in the quantified values for a given case. Note that there957

ended up being no models for the cases: HHH, HHL, MHH, MHL, LHH, LHL, from the created model958

database. Thus there are 21 cases from the generated model database, and the number of models959

present in each case is given in Table 2, along with population frequency and power. Parameter960

value histograms for eight of these cases are given in https://osf.io/yrkfv/, and what ranges of the961

quantified values in the database that they encompass is shown in Figure 2.962
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E-I networks and simulations963

To build E-Imodel networks, we choose PYR cells from the model database in two ways in consider-964

ation of SFA, Rheo and PIR building block features, referring to them as a trio in the following order:965

[SFA, Rheo, PIR]. The chosen PYR cells are distributed among the 10,000 cells to be used in the E-I966

network simulations in the following way: An individual PYR cell model is randomly chosen from967

the set of models of a particular heterogeneous PYR cell population that have [SFA, Rheo, PIR] values968

within the specified range. For example, if there are 33 PYR cell models in the set, then the number969

of cells conforming to each of the 33 PYR cell models should approach 10,000/33 in the E-I network,970

but there may not be an exactly equal number of the different PYR cell models. That is, we do971

the following: If there are 33 PYR cell models in the given heterogeneous PYR cell model set, then972

each PYR cell model out of 10,000 in the E-I network is given a random number between 1 and 33,973

and assigned that model’s parameters. We note that comparisons between the heterogeneous E-I974

networks are not perfectly ideal since the number of different PYR cell models varies (see Table 2),975

and so the ‘amount’ of heterogeneity would vary in the various E-I networks. However, since we are976

mainly considering whether the theta rhythm would be lost or not, this is deemed to be acceptable.977

The minimal model E-I network simulations are done using the Neuroscience Gateway (NSG) for978

high-performance computing (Sivagnanam et al., 2013). Simulations are run for 10 seconds using979

the Euler integration method with a timestep of 0.04 msec. The frequency and network power of980

the network simulation is computed as before (Ferguson et al., 2017). That is, for each network981

simulation, the population activity is defined as the average membrane potential of all the cells,982

with the frequency and network power taken as frequency and spectral peak from a fast Fourier983

transform (FFT) calculation of the population activity.984

Code details are provided in https://github.com/FKSkinnerLab/CA1_Minimal_Model_Hetero and985

simulation output in https://osf.io/yrkfv/.986

Phase response curve computation specifics987

Phase response curves (PRCs) are calculated for each of the PYR cell models as described below.988

In Figure 6 the PRCs in each “model set" are averaged and presented along with a range of ± one989

standard deviation (shown by the shading around the curve).990

Each PRC is calculated in the following fashion: A set input current (either 20 or 30 pA) is tonically991

applied to the cell, and the period (defined �) of the cell’s firing is calculated as the time between992

the ninth and tenth cell spike. The inverse of the period represents the firing frequency of the993

cell, reported as averages and standard deviations for entire model sets in Figure 6. We calculate994

the phase response of the neuron to a perturbation at 100 equidistant times in its normal firing995

cycle. Here, the perturbation is a 1 ms current pulse with -500 pA amplitude. For 1 ≤ i ≤ 100,996

we define Δp =
�

100
and deliver the perturbation at i ∗ Δp ms after the 10th cell spike. We then997

measure the time between the 10th and 11th cell spike as the “perturbed period” (defined �p). We998

calculate the difference between this and the previously calculated period (in the absence of any999

perturbation) and normalize this by the normal firing period, meaning that in the PRC plots the1000

y-axis is
� − �p

�
. This means that negative values plotted in the PRC correspond with a phase-delay,1001

i.e. the perturbed period was longer than the unperturbed period, and vice-versa. The x-axis in the1002

PRC plots are the normalized time at which the perturbation was delivered, simply calculated as1003

i

100
. We note that we perform this calculation separately for each i, i.e. we re-initialize the cell and1004

let it respond naturally to a tonic input until the 10th spike for each value of i, rather than perform1005

these perturbations sequentially and risk confounding the responses.1006

The code for generating and plotting these PRCs can be found at https://github.com/sbrich/1007

Theta_PRCs.1008
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The segment and detailed models and explorations1009

The segment model is simply a 10% piece of the detailed model of the rodent CA1 microcircuit1010

(Bezaire et al., 2016b) as illustrated in Figure 1 and Figure 8A. To create and use the segment model,1011

one must first be able to access and use the detailed model.1012

In segment and detailed models, there are eight different inhibitory cell types and excitatory1013

PYR cells. All of these cell types are connected in empirically specific ways based on an extensive1014

knowledge-based review of the literature (Bezaire and Soltesz, 2013). The cells are evenly distributed1015

within the various layers of the CA1 (stratum lacunosum-moleculare, radiatum, pyramidale, oriens)1016

in a three-dimensional prism. Afferent inputs from CA3 and EC are also included in the form of1017

Poisson-distributed spiking units from artificial CA3 and EC cells. We note that although there1018

are layer-dependent specifics regarding how the different cell types are arranged in the full-scale1019

detailed model (Figure 1), there are not any differences along the longitudinal axis of the full-scale1020

model. As such, the connection profile at any location along the longitudinal axis does not vary. In1021

other words, the connection probabilities in any particular part of the longitudinal axis would be1022

the same assuming that there are enough cell numbers for meaningfulness in the calculations.1023

Accessing the CA1 microcircuit model1024

The code that we use for this work starts from the original CA1 microcircuit repository which1025

can be found at ModelDB at: https://senselab.med.yale.edu/ModelDB/showModel.cshtml?model=1026

187604. The model version we used can be downloaded from: https://bitbucket.org/mbezaire/1027

ca1/pull-requests/3/d1efeb957848/commits. Analysis of simulation outputs can be recreated1028

using the publicly available SimTracker tool (Bezaire et al., 2016a) which can be downloaded from:1029

http://mariannebezaire.com/simtracker/. It is recommended that users install SimTracker first and1030

then install and register the ca1 model under SimTracker, to take advantage of the visualization1031

functionalities of the SimTracker package. This tool is offered both as a stand-alone, compiled1032

version for those without access to MATLAB (for Windows, Mac OS X, and Linux operating systems),1033

and as a collection of MATLAB scripts for those with MATLAB access. Once the SimTracker and1034

the ca1 repository are installed, users can run simulations either on their local machines using a1035

small scale of the CA1 network, or on supercomputers as needed for full scale network simulations.1036

To reproduce the findings presented here, one needs to first familiarize oneself with the CA11037

microcircuit background and code.1038

The segment model is created from the detailed model by setting the "Scale" parameter = 10,1039

which reduces the number of cells in the network by a tenth, and then dividing all connections in1040

the network by a factor of 10. If this latter step is not done, then each cell would have ten times as1041

many connections relative to a cell in the full-scale detailed network. That is, the parameter scaling1042

is a ‘normalization’ in which the ‘scaled’ network assumes that each cell is a representative of ‘101043

cells’. We did not want this, as the segment model is simply a piece of the detailed model and so we1044

‘removed’ the normalization by dividing the number of connections by ten.1045

Calculation of connection probabilities and synaptic weights in the detailed model1046

To be able to compare connectivities betweenminimal and detailedmodels, we compute connection1047

probabilities in the detailed model. They are computed by dividing the total number of connections1048

from a single presynaptic cell of a given type, to the cells of the postsynaptic population, divided by1049

the total number of (postsynaptic) cells, of that particular population They are thus computed as1050

divergent connection probabilities, as it was done in the minimal model where random divergent1051

connection probablities were employed. To compute connection probabilities when PV+ cells are1052

assumed to consist of more than one inhibitory cell type, a combination is required. For example,1053

in considering BCs and BiCs as fast-firing PV+ cells in one population, the number of connections1054

each cell (either BC or BiC) receives is the average of presynaptic connections each receives, as1055

given in the detailed model. For example, the number of connections from PYR cells onto BC/BiC1056

population equals the total number of presynaptic connections that BCs and BiCs receive from1057
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PYR cells. The connection probability from PYR to PV+ cells (BC/BiC combination) is calculated by1058

dividing this total number of connections by the total number of BCs and BiCs. All numbers and1059

connection probabilities are shown in Table 4.1060

The synaptic weight in the detailed model is given by the synaptic conductance multiplied by the1061

number of synapses per connection. So, for example, as a single BC cell has 11 synapses/connection1062

onto a PYR cell and a synaptic conductance of 0.2 nS, then the synaptic weight is 2.2 nS. In the1063

case of combined cell type populations, the average synaptic weight for the given cell type with its1064

number of synapses/connection and synaptic conductance as reported by Bezaire et al. (2016b).1065

All of the computed synaptic weights are shown in Table 4.1066

Calculation of EPSC/IPSC amplitude ratios in the detailed model1067

For comparison with experimental data, we examine what EPSC/IPSC amplitude ratios exist for cells1068

in the detailed model. We choose 15 cells of each type from the full-scale model (Bezaire et al.,1069

2016b). These types are PYR cells and fast-firing PV+ cell types - BCs, BiCs and AACs. In doing this1070

examination it is important to note that experimental estimates of these ratios as derived from1071

voltage clamp recordings are not precise as there are associated experimental limitations such as1072

due to space clamp. However, the experimental data shows that EPSCs received by PV+ cells are1073

much larger in amplitude than EPSCs received by PYR cells, and since IPSCs received by PV+ and1074

PYR cells are similar in amplitude, the experimental limitations are moot as it is clearly the case that1075

the EPSC/IPSC amplitude ratios for PYR cells are much less than for PV+ cells (Huh et al., 2016).1076

In considering the detailed model, several aspects need to be taken into consideration. First,1077

in the detailed model, we consider fast-firing PV+ cell types as BCs, BiCs or AACs in different1078

combinations (see main text). Next, with the detailed model, morphological representations of1079

cells are used and there are eight different inhibitory cell types. These different inhibitory cell1080

types synapse onto different parts of the PYR cell tree and as such, IPSCs onto PYR cells would1081

be attenuated by different amounts when examining synaptic currents at their somata. We note1082

that to directly compare synaptic currents from the experiments with the detailed model, one1083

could consider performing a voltage clamp on model cells and separately examining EPSCs and1084

IPSCs as done experimentally, but one would additionally need to separate IPSCs that are due to1085

the different inhibitory cell types to consider PV+ or PYR cells. Undertaking this in the detailed1086

model would be a highly non-trivial endeavour, and indeed, decades of research has uncovered1087

the richness and complexities of dendritic integration (Stuart and Spruston, 2015). Thus, since we1088

know that the EPSC/IPSC amplitude ratios are very different on PYR and PV+ cells, we focus on1089

EPSCs and IPSCs on either PYR or PV+ cells at somatic locations without trying to compensate for1090

voltage clamp or attenuation issues due to different synaptic input locations from the different cell1091

types. From the consideration that the comparison is with experiment, we consider that EPSCs1092

onto the different cell types are due to inputs from PYR cells and EC and CA3, whereas IPSCs are1093

from the various inhibitory cell types of the detailed network model (Bezaire et al., 2016b). As we1094

are mainly considering comparisons with the minimal model, we consider IPSCs that are due to PV+1095

fast-firing cell type could encompass BCs, BiCs and AACs.1096

The network clamp tool in SimTracker enables extraction of a particular cell from the full-scale1097

model while keeping synaptic properties (Bezaire et al., 2016a). We network clamp each of the 151098

selected cells of each type for 1000 msec and detect the peak EPSCs and IPSCs by implementing1099

the minimum peak distance algorithm in MATLAB. For EPSC/IPSC amplitude ratio calculations for1100

a specific cell, all excitatory currents are summed and divided by the summed inhibitory currents1101

that the cell receives. For EPSC/IPSC amplitude ratios on to PYR cells, IPSCs due to only BCs,1102

only BiCs, a combination of BCs and BiCs, a combination of BCs/BiCs/AACs, and all inhibitory1103

cells are shown in Table 3. We note that there is no EPSC/IPSC amplitude ratio consideration of1104

AACs to themselves as there are no AAC to AAC synapses in the detailed model. When there1105

is a combination, the ratio calculations are based on dividing the mean EPSCs by mean IPSCs,1106

after summing IPSCs from each PV+ cell type. The EPSCs are flipped before peak detection for1107
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its mechanistic advantage using the MATLAB code. All 225 (15x15) combinations of EPSC/IPSC1108

amplitude ratios in each BC/BiC/PYR and BC/AAC/PYR populations as well as 3375 (15x15x15)1109

combinations in BC/BiC/AAC/PYR are examined, and they are in accordance with the experimental1110

data. The mean EPSC/IPSC amplitude ratios and their standard deviations for the various cell types1111

are given in Table 3. Voltage recordings and currents plots from the 15 chosen cells can be accessed1112

at https://osf.io/yrkfv/. The scripts for the EPSC/IPSC amplitude ratio calculations can be found at1113

https://github.com/FKSkinnerLab/CA1_SimpleDetailed.1114

Parametric explorations in the segment model1115

To generate the heatmaps of Figure 9 we use the following process on the created segment model.1116

We perform exhaustive parametric explorations of the theta power dependence on the excitatory1117

drives in the segment model. We vary the EC/CA3 to PYR cell synaptic conductance gec∕ca3−pyr, the PYR-1118

PYR synaptic conductance gpyr−pyr and the level of external stimulation, which represents the firing1119

rate of our external EC and CA3 cells. For every pair of gpyr−pyr and gec∕ca3−pyr, we search for the level1120

of external stimulation that maximizes the normalized theta power. The normalized theta power1121

is defined as the maximum theta power (net theta power) in the power spectrum, divided by the1122

mean power across all frequencies. We search a range of 0.15-0.65 Hz of stimulation per network1123

(below that range the network is inactive, above that range the network is hyper-active). We plot the1124

value of that maximum normalized theta power in Figure 9Bi, and the corresponding stimulation1125

required to reach that value in Figure 9Biii. Every pair of gpyr−pyr and gec∕ca3−pyr corresponds to a1126

specific conndata#.dat file. These conndata#.dat files should be created and stored under the1127

"datasets" directory of the CA1 repository. The code for the generation of the heatmaps of Figure 9B1128

can be found here: https://github.com/alexandrapierri/CA1-Segment-Microcircuit1129

Current extractions and linear regression in the segment model1130

As described above for ratio calculations in the detailed model, we use the network clamp tool of1131

SimTracker to extract PSCs delivered to the PYR cells in the model from all other cells in the network1132

and the external drives. We examine the PSCs received by 10 PYR cells for each of the 50 networks1133

underpinning the heatmaps of Figure 9B. we calculate the mean current amplitude for each of the1134

10 cell over a 4sec simulation period, and refer to this as the net current. We take the average1135

and standard deviation of the net current of the 10 cells and plot it against the frequency of that1136

network (Figure 10C).1137

As we examine 10 cells per network and we have 50 networks, this gives as a total of 5001138

network clamp simulations which corresponds to analysis of 500 cells’ input currents. To perform1139

a linear regression of net current vs network frequency, we use custom MATLAB code which can1140

be found here: https://github.com/alexandrapierri/CA1-Segment-Microcircuit. The correlation1141

coefficient between theta frequency and net current ( � ) and the p-value for testing the hypothesis1142

of no correlation (null hypothesis) against the alternative hypothesis of a nonzero correlation, are1143

estimated using MATLAB’s built-in functions.1144

Power analysis and signal filtering1145

To analyze the signal power we used the Welch’s Periodogram, a method for estimating power1146

spectra based on FFT analysis https://ccrma.stanford.edu/~jos/sasp/Welch_s_Method.html. To filter1147

the LFP signal for theta we used a broadband filter with stopband frequencies ±1 Hz and passband1148

frequencies ± 1.75 Hz from the peak theta frequency as derived from the Welch’s Periodogram.1149

High performance computing simulations1150

We implement our simulations on Scinet (Loken et al., 2010; Ponce et al., 2019) on the Niagara1151

clusters, using 10-12 nodes per simulation with 40 cores per node. Each network simulation takes1152

approximately 8 hours real time to be executed. The results we present in this study are the1153

distillation of approximately 300 network simulations requiring a total of 150 core years processing1154

power on the clusters.1155
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Figure 3–Figure supplement 1. Loss of Rhythm - Raster plots of PYR cells in heterogeneous

E-I networks. Simulations of E-I networks with 10,000 heterogeneous PYR cells and 500 PV+ cells

produce PYR cell raster plots as shown here with a one second time range. The specific examples

are labelled as (R-supp) in Table 2 and refer to the following sets: MLH (top-left), HMH (top-right),

MLM (bottom-left), LLH (bottom-right).

1345

Figure 6–Figure supplement 1. PRCs calculated with a 20 pA input show similar features in

the three PYR cell populations. Mean and standard deviation of the PRCs calculated for PYR cell

models from each of the three heterogeneous E-I network cases (MMH in panel A, HML in panel B,

and LML in panel C) with an input current of 20 pA show similar patterns to those seen in Figure 6.

Insets include mean and standard deviation of the individual firing frequencies of the PYR cells.
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Figure 8–Figure supplement 1. Recurrent excitation and feed-forward external drive to the

PYR cells is needed for theta rhythms. Normalized theta power of the segmentmodel (Figure 8A)

with parameter values as shown in Figure 8B is eliminated with the removal of feed-forward external

drive and recurrent excitation to the PYR cells, i.e., gpyr−pyr and gec∕ca3−pyr set to zero.

1347

Figure 9–Figure supplement 1. Dependence of net theta power on the PYR cells’ excitatory

drives. Heatmaps of net theta power as a function of gpyr−pyr and gec∕ca3−pyr.

1348

Figure 9–Figure supplement 2. Dependence of theta and delta power on the PYR cells’ ex-

citatory drives. Heatmaps of Normalized theta and delta power, frequency and afferent input

stimulation as a function of gpyr−pyr and gec∕ca3−pyr.
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Figure 9–Figure supplement 3. Dependence of "high" theta (6-12Hz) power on the PYR cells’

excitatory drives. Heatmaps of Normalized "high" theta power, frequency and afferent input

stimulation as a function of gpyr−pyr and gec∕ca3−pyr.
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