

1 **Genome wide identification of QTL associated with yield and yield components in two popular**
2 **wheat cultivars TAM 111 and TAM 112**

3 Yan Yang^{1,2}, Smit Dhakal^{1,2}, Chenggen Chu^{1#}, Shichen Wang³, Qingwu Xue¹, Jackie C. Rudd¹,
4 Amir M.H. Ibrahim², Kirk Jessup¹, Jason Baker¹, Maria Pilar Fuentealba¹, Ravindra Devkota¹,
5 Shannon Baker¹, Charles D. Johnson³, Richard Metz³, and Shuyu Liu^{1*}

6 ¹ Texas A&M AgriLife Research and Extension Center, Amarillo, Texas, United States of
7 America, ²Department of Soil and Crop Science, Texas A&M University, College Station,
8 Texas, United States of America, ³ Genomics and Bioinformatics Service Center, Texas A&M
9 AgriLife Research, College Station, TX 77843

10

11 **Abstract**

12 Two drought-tolerant wheat cultivars, 'TAM 111' and 'TAM 112', have been widely grown in
13 the Southern Great Plains of the U.S. and used as parents in many wheat breeding programs
14 worldwide. This study aimed to reveal genetic control of yield and yield components in the two
15 cultivars under both dryland and irrigated conditions. A mapping population containing 124 F_{5:7}
16 recombinant inbred lines (RILs) was developed from the cross of TAM 112/TAM 111. A set of
17 5,948 SNPs from the wheat 90K iSelect array and double digest restriction-site associated DNA
18 sequencing was used to construct high-density genetic maps. Data for yield and yield
19 components were obtained from 11 environments. QTL analyses were performed based on 11
20 individual environments, across all environments, within and across mega-environments. Thirty-
21 six unique consistent QTL regions were distributed on 13 chromosomes including 1A, 1B, 1D,
22 2A, 2D, 3D, 4B, 4D, 6A, 6B, 6D, 7B, and 7D. Ten unique QTL with pleiotropic effects were
23 identified on four chromosomes and eight were in common with the consistent QTL. These QTL
24 increased dry biomass grain yield by 16.3 g m⁻², plot yield by 28.1 g m⁻², kernels spike⁻¹ by 0.7,
25 spikes m⁻² by 14.8, thousand kernel weight by 0.9 g with favorable alleles from either parent.
26 TAM 112 alleles mainly increased spikes m⁻² and thousand kernel weight while TMA 111 alleles
27 increased kernels spike⁻¹, harvest index and grain yield. The saturated genetic map and markers
28 linked to significant QTL from this study will be very useful in developing high throughput
29 genotyping markers for tracking the desirable haplotypes of these important yield-related traits in
30 popular parental cultivars.

31

32 **Keywords**

33 yield component, mega-environments, epistasis, additive-by-environment interactions, epistasis-
34 by-environment

35

36 **Introduction**

37

38 Wheat (*Triticum aestivum* L.) is one of the most important food crops worldwide. The
39 significance of wheat lies on its physical and chemical properties of grains, which provide over
40 20% of the calories and protein requirements for human nutrition. Yield is a polygenic complex
41 trait and the most important to breeders and farmers. However, environmental conditions and the
42 genetic-by-environmental interactions throughout all processes of vegetative and reproductive
43 growth and development could seriously affect yield [34]. In general, grain yield can be broken
44 into three major components as number of spikes m⁻² (SPM), kernels spike⁻¹ (KPS), and thousand
45 kernel weight (TKW) with each controlled by multiple genes or quantitative trait loci (QTL).

46 Interactions among QTL and between QTL and environments also modify the expression of the
47 QTL in different genetic backgrounds (Barton and Keightley 2002). Typically, a QTL detected
48 in one environment but not in another might be a indication of QTL × environment interaction
49 (QEI). However, assessing the effects of such interactions is difficult due to the unpredictable
50 random change of environments. Goldringer et al. [8] first proposed the additive and epistatic
51 genetic variances for agronomic traits in a doubled haploid population and demonstrated that
52 yield and its components showed either additive or additive plus epistatic effects. Significant
53 epistasis and QEI for yield were identified subsequently in other researches [11, 29, 36, 27, 20].
54 Thus, dissection of QTL effects and their interactions may facilitate better understanding of the
55 genetic control of the complex yield traits [3].

56 Saturated genetic linkage maps play a crucial role in QTL identification for providing
57 measurements of the relative effects of alleles in a mapped chromosomal region as well as
58 selectable DNA markers for breeders to integrate the traits through marker-assisted selection
59 (MAS) [30]. More recently, single nucleotide polymorphisms (SNPs) as the common source of
60 genetic variation among individuals of any species and the smallest unit of genetic variation with
61 virtually unlimited numbers (Deschamps and Campbell 2010), were used to develop high-density
62 linkage maps and QTL identification in many crops. The availability of diverse SNP genotyping
63 platforms, particularly genotyping-by-sequencing (GBS) based on the next-generation
64 sequencing, were facilitated in genetic dissection, marker discovery, and genomic selection of
65 complex traits [5,10]. However, the extensive abundance of conserved repetitive element nature
66 of the hexaploid wheat genome (~80%) has slowed the progress in SNP discovery and detection
67 [32]. Cavanagh et al. [4] developed 9K SNP assays and constructed the first high-density wheat
68 consensus SNP map containing 7,504 polymorphic loci. A set of 40K out of 90K SNP assay
69 from wheat was mapped onto chromosomes [31], thus provides a powerful resource for genome-
70 wide dissecting traits of interests and developing new tools for efficient selection in breeding.
71 Liu et al. [16] mapped 4k to 8k array SNPs in three wheat bi-parental mapping populations.

72 In this study, the highly-saturated genetic maps constructed with SNPs from 90K iSelect
73 array and double digest restriction-site associated DNA sequencing (ddRADseq) were used to
74 dissect QTL associated with yield, yield components, and other agronomic traits in popular
75 cultivars TAM 111 and TAM 112. Additionally, through extensive analysis of additive-by-
76 environment interactions, epistasis, and epistasis-by-environment interactions in individual and
77 mega environments, the consistent and pleiotropic QTL were identified and summarized.

78

79 **Materials and Methods**

80 **Plant Material and Phenotyping**

81 A population of 124 $F_{5:7}$ recombinant inbred lines (RILs) was derived from the cross between
82 TAM 112 and TAM 111. Both the parents are hard red winter wheat (HRWW) released by
83 Texas A&M AgriLife Research, and they are the top-ranked cultivars grown in the U.S. Great
84 Plains. TAM 111 has the pedigree of 'TAM 107'//TX78V3630/ 'Centurk78'//TX87V1233 with
85 excellent performance under both drought and irrigated conditions, whereas TAM 112 has the
86 pedigree of U1254-7-9-2-1/TXGH10440 and is highly adapted to drought condition [13, 28].

87 Genetic analysis of the population thus can detect the favorable alleles from the two parents.

88 The 124 recombinant inbred line (RILs) of TAM 112/TAM 111 along with their parents
89 were evaluated for yield and yield component traits in field experiments across 11 environments
90 during five crop years harvested in 2011, 2012, 2013, 2014, and 2017. The combination of the
91 location-year-irrigation level is an environment. Field locations used in this study included Texas
92 AgriLife Research stations in Bushland ($35^{\circ} 06' N$, $102^{\circ} 27' W$) in 2011, 2012 and 2017
93 (designated as 11BD, 12BD for dryland and 17BI for irrigated, respectively), Chillicothe ($34^{\circ} 07' N$,
94 $99^{\circ} 18' W$) in 2012 and 2014 (designated as 12CH and 14CH, respectively), two irrigation
95 levels (75% and 100%) in Etter ($35^{\circ} 59' N$, $101^{\circ} 59' W$), TX in 2013 and 2014 (designated as
96 13EP4, 13EP5, 14EP4 and 14EP5, accordingly), and Clovis ($34^{\circ} 24' N$, $103^{\circ} 12' W$), NM
97 (designated as 17CVI), Dumas ($35^{\circ} 51' N$, $101^{\circ} 58' W$) (designated as 17DMS), TX in 2017. All
98 trials were planted using alpha lattice design with an incomplete block size of five plots, and
99 each trial has two replications in every environment. Standard agronomic practices were carried
100 out for each environment. The data collection followed similar procedures as outlines by
101 Assanga et al. [1]. Plot grain yield from combine harvester (YLD) was recorded. Biomass

102 sample harvested from a random half-meter inner row showing uniform plant performance from
103 each plot was oven-dried for 72 hrs at 60 °C and used to measure total dry biomass (BM), grain
104 weight from the biomass sample (BMYLD), and yield components. Thousand kernel weight
105 (TKW) was calculated by the weight of 200 seeds and scaling to 1000 seeds from biomass
106 sample; the number of spikes m⁻² (SPM) was calculated from the plot sample by counting the
107 number of heads. Kernels spike⁻¹ (KPS) was calculated using BMYLD, TKW and SPM; the
108 harvest index (HI) was calculated as grain weight (BMYLD) divided by total weight of biomass
109 sample (BM) from each plot. Single head dry weight (SHDW) was calculated through dividing
110 the total dry head weight including glumes and awns per plot biomass sample by the number of
111 heads. Single head grain weight (SHGW) was calculated by dividing the total BMYLD by the
112 number of heads.

113

114 **DNA extraction and genotyping**

115 Whole genomic DNA was extracted from leaf samples of parents and 124 RILs using the CTAB
116 method with minor modification as described by Liu et al. [15]. SNP genotyping with Infinium
117 iSelect assays containing 90K SNPs was performed in USDA Small Grains Genotyping
118 Laboratory at Fargo, ND according to manufacturer's protocol (Illumina Inc., San Diego, CA,
119 USA), and the assay was designed under the International Wheat SNP Consortium protocols [4].
120 The fluorescence signal was captured by Illumina scanner and analyzed using GenomeStudio
121 software (www.illumina.com). More details for polymorphic SNP sorting and conversion in this
122 population were outlined in Liu et al. [16] and Dhakal et al. [6].

123 The 124 RILs and two parents were also genotyped in Texas AgriLife Research
124 Genomics & Bioinformatics Services at College Station, TX (<http://www.txgen.tamu.edu/>)

125 following the Double digest restriction-site associated DNA (ddRADSeq) method with some
126 noted modifications. The libraries were constructed using a 96-plex plate with single random
127 blank well included for quality control. DNA was co-digested with the restriction enzymes *PstI*
128 (CTGCAG) and *MspI* (CCGG), and barcoded adapters were ligated to individual samples. SNP
129 calling was processed as described by Yang et al. [35].

130 **Adapters:** All oligos were purchased from Integrated DNA Technologies (IDT), and
131 were received as a 100 μ M stock in IDTE. Adapters were made by mixing equimolar
132 amounts (30 μ M of top and bottom oligos in 100 μ l 1X annealing buffer (10mM Tris-HCl, pH
133 8.0, 50 mM NaCl, 1 mM EDTA). The oligos were held at 95°C for 10 sec, then cooled
134 to 12°C at a rate of 0.1°C per sec. P5-Index Adapters were made by annealing the following
135 oligos (where XXXXXXXX represents 8-base i5 index sequences): Top (5' to 3'): AAT GAT
136 ACG GCG ACC ACC GAG ATC TAC ACX XXX XXX XTC TTT CCC T, Bottom (5' to
137 3'): /5Phos/AXX XXX XXX GTG TAG ATC TCG GTG GTC GCC GTA TCA TT. The P5-
138 *PstI*-Bridge adapters was made by annealing top (Pster_T, 5' to 3'): /5Phos/ACA CGA CGC
139 TCT TCC GAT CTT GCA and bottom (Pster_B, 5' to 3'): AGA TCG GAA GAG
140 CGT CGT GTA GGG AAA G oligos. P7-*MluCI* Adapter was made by annealing top (P7-
141 *MluCI*_T, 5' to 3'): AAT TAG ATC GGA AGA GCA CAC GTC TGA ACT CCA GTC AC and
142 bottom (P7-*MluCI*_B, 5' to 3'): GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC T.
143 **Dual Ligation ddRAD:** At the end of each step in this protocol, samples were quantified on
144 a DeNovix DS-11 spectrophotometer. One hundred nanograms of DNA per sample in 96 well
145 plate format was digested in a final volume of 25 μ l in 1X NEB Cut Smart
146 Buffer and 200 U *PstI*-HF and 100 U *MluCI* (New England Biolabs) at 37°C for 4
147 hours. Following a 20 min 80°C enzyme inactivation, samples were held at 12°C until

148 ligation. To each 25 μ l digest, 5.7 μ l of a master mix was added such that each well got the
149 equivalent of 3.2 μ l 10X Ligase buffer (NEB), 0.25 μ l T4 DNA Ligase (New England
150 Biolabs) and P5-*Pst*I-Bridge and P7-*Mlu*CI adapters at a final concentration of 500
151 nM. In addition, each well got 1 of 48 unique P5-Index Adapters (400nM final concentration)
152 and were mixed by pipetting. Plates were spun down and incubated at 16°C for 8 hr followed by
153 a 15 min heat inactivation at 65°C and held at 4°C. Pools were made by combining no more
154 than 48 samples with unique P5 indexes. To each pool, EDTA was added to 0.25mM to further
155 inhibit ligase activity. Pools were precipitated by adding 1/10th volume of 3M sodium acetate
156 (pH 5.2), evenly dividing them into two or three 2.0 ml microcentrifuge tubes and adding 2
157 volumes 100% ethanol and placing them at -20°C for at least 1 hr. Tubes were spun
158 at 20,000 xg for 10 min and supernatant poured out. Tubes were washed with 1 ml 70% ethanol,
159 spun 5 min and supernatant removed. Pellets were resuspended in 200 μ l EB and purified
160 through QIAquick PCR Purification Kits as per manufacturer's protocol (Qiagen) eluting twice
161 with 50 μ l EB. Combined elutants (100 μ l total) were further purified to
162 remove unligated adapters using 0.9X volume AMPure XP beads as per the manufacturer's
163 protocol (Beckman-Coulter) eluting in 35 μ l EB.

164 Up to 3000ng of each pool was size selected at 390-610 bp (280-600 bp inserts plus 110bp
165 adapters) on Pippin prep 2% dye-free gels (Sage Science). Recovered DNA was purified with
166 0.9X AMPure XP beads as described earlier (Beckman-Coulter) and eluted in 32 μ l EB.

167 Incorporation of a biotin moiety at the P5 side (for further purification - described
168 later) and the addition of the i7 index was accomplished in a Pre-Selection PCR step. Using the
169 primers P5_Select (5'-3'): /5BiotinTEG/AAT GAT ACG GCG ACC ACC GAG ATC TAC
170 AC and one of twenty four i7 indexed reverse primers (TDX 1-24, 5'-3' where XXXXXXXX

171 represent bases used for
172 indexes: CAAGCA GAA GAC GGC ATA CGA GAT XXX XXX XGTGAC TGG AGT TCA G
173 AC GTG TGC). PreSelect PCR reactions (200 μ l total volume, split into two reactions of 100 μ l
174 each) contained up to 150 ng size-selected DNA, 0.4 mM dNTPs, 1 μ M each primer (P5-Select
175 and a TDX-reverse index), 20 U of Q5 Polymerase in 1X Q5 High Fidelity DNA Polymerase
176 Buffer. Reactions were denatured at 98°C for 30 sec, then subjected to 15 cycles of 98°C for 10
177 sec, 62°C for 20 sec and 72°C for 40 sec with a final elongation at 72°C for 5 min followed by a
178 10°C hold. Pre-Selection PCR reactions were cleaned up with QIA quick columns
179 and AMPure XP beads as described above with a final elution in 50 μ l EB.
180 Selection of only *PstI-MluCI* fragments was accomplished using Dynabeads M-280 Streptavidin
181 beads (Invitrogen) to capture fragments with biotin incorporated at their P5 ends
182 during PreSelect PCR. Dynabeads (50 μ l per pool) were captured on a magnet and washed
183 twice in 300 μ l 1X bead washing buffer (10mM Tris, pH 7.5, 2 M NaCl, 1 mM EDTA) by
184 resuspending beads in buffer, capturing on a magnet, and removing the supernatant with
185 pipette tips. After the second wash, beads were resuspended in 100 μ l 2X bead wash buffer per
186 pool, and 100 μ l washed beads was mixed with up to 3000 ng of Pre-Selected DNA (in 100 μ l
187 EB). Samples were incubated at RT for 20 min then captured on a magnet. *MluCI-MluCI*
188 fragments lacking biotin were washed away as follows: beads were washed three times in 200
189 μ l 1X bead washing buffer, twice in 200 μ l nuclease free water and once in 100 μ l 1x SSC (150
190 mM NaCl, 15mM sodium citrate, pH 7.0, BIO-RAD Laboratories, Inc.) and finally resuspended
191 in 50 μ l 1X SSC. *PstI-MluCI* fragments were obtained by heating beads at 95°C for 5 min thus
192 denaturing off the non-biotinylated strand (leaving both strands of *PstI-PstI* fragments attached
193 to the beads). Following 5 min at 95°C, tubes were transferred immediately to a magnet and

194 supernatant removed quickly to new tubes. This was repeated for a total of two
195 heated elutions totaling 100 μ l. Elutants were purified with QIA quick PCR columns as
196 described above, eluted in 40 μ l EB and quantified.

197 Final libraries were produced in a PCR reaction of 50 μ l containing 10 ng single-
198 stranded, Dynabead-selected DNA, 0.4 μ M dNTPS, 0.5 μ M each final PCR primers (DuLig-
199 F1, 5'-AAT GAT ACG GCG ACC ACC GAG ATC TAC AC-3' and DuLig-R1, 5'-CAA GCA
200 GAA GAC GGC ATA CGA GAT-3') and 20U/ μ l Q5 DNA Polymerase in 1X Q5 DNA
201 polymerase reaction buffer (New England Biolabs). Reaction conditions were the same as Pre-
202 Selection PCR, but total cycle number was 8. Final PCR reactions were cleaned up with
203 0.9X AMPure XP beads, eluted in 35 μ l EB, quantified and assessed for quality on a Fragment
204 Analyzer (Agilent Technologies) diluted and quantified by qPCR (Kappa Biosystems).
205 Libraries were sequenced on the Illumina NovaSeq 6000 system, S4XP flowcell running 2X 150
206 bp recipe.

207

208 **Statistical analysis**

209 The analysis of variance (ANOVA) from individual and across environment data was calculated
210 to determine the significance of genetic (G), environment (E), and genetic-by-environment
211 interaction (GEI) variances. Broad-sense heritability was calculated, and only single environment
212 with heritability ≥ 0.05 were included into the analysis. Pearson's correlation coefficients among
213 all variables were calculated. Best linear unbiased predictors (BLUP) and best linear unbiased
214 estimator (BLUE) of individual environment and across all environments were computed using a
215 restricted maximum likelihood (REML) approach based on META-R program with lme4
216 package in R software from Matthews and Foulk [18]. Mega-environments for each trait were

217 classified according to the biplot clustering for the environments. In most case, the BLUP values
218 were used for the QTL analyses. The BLUE values were used only if the BLUP values were the
219 same for all the RILs in that environment.

220

221 **Linkage map construction and QTL identification**

222 Linkage map construction in this population has been described in Yang et al. [35]. Of the
223 marker data generated, the false double crossovers were manually checked and removed
224 according to the alignment of SNP orders between genetic maps and physical base pair location
225 from IWGSC RefSeq v1.0 (<https://wheat-urgi.versailles.inra.fr/Seq-Repository/Assemblies>,
226 accessed on February 8, 2020). QTL analysis was performed using QTL IciMapping software
227 [19]. Individual environment QTL analysis was conducted using single trait from single
228 individual environment and across multiple environments. The multi-environment QTL analyses
229 were also performed using single trait across classified mega-environments and within each
230 mega-environment. The genetic position and effects of individual environment QTL and multi-
231 environment trait QTL were determined by integrated composite interval mapping (ICIM)
232 function for additive effect (ICIM-ADD) and epistasis effect (ICIM-EPI). To identify an
233 appropriate threshold likelihood of odd (LOD) score for declaring a significant QTL,
234 permutation test was conducted for 1,000 times for ICIM-ADD for individual and across
235 environments. Consistent QTL was determined if a QTL was significant at least from two
236 individual environments or two out of the four analyses including individual environment, across
237 all individual, within and across mega environments. Pleiotropic QTL was determined if a QTL
238 was significantly associated with two or more traits that were not highly correlated to each other.

239 For ICIM-EPI, since it is too long to run permutation, LOD = 5 was chosen but actual thresholds
240 for each trait from ICIM-ADD as reference or 10 if too many interactions exist.

241 Identified QTL were designated in the format as *Qtrait.tamu.chrom.Mb*, where *trait* is an
242 abbreviation for a trait name, *tamu* represents Texas A&M University, *chrom* is chromosome on
243 which the QTL is located, and *Mb* is a physical position of the QTL peak linked marker
244 according to alignment with the IWGSC RefSeq v1.0 reference genome (International Wheat
245 Genome Sequencing Consortium, 2014).

246

247 **Results**

248 **Trait analysis**

249 The combined ANOVA across environments indicated a significant genetic variance for
250 all traits except dry biomass and significant genetic by environment interactions (GEI) except
251 spikes m⁻² ($P < 0.01$) (Table S1).

252 The entry-mean heritability ranged from moderate (0.4 to 0.6) to high (> 0.6). Yield and
253 three yield components, including thousand kernel weight, kernels spike⁻¹, spikes m⁻², as well as
254 single head dry weight and single head grain weight, exhibited higher heritability (0.75-0.90).
255 Harvest index displayed moderate heritability (0.56), whereas dry biomass and biomass grain
256 yield expressed relatively low heritability of 0.23-0.33. For the overall BLUP means of three
257 duplicated sets across seven to 11 environments, TAM 112 had higher dry biomass and spikes m⁻
258 ² while TAM 111 had higher kernels spike⁻¹, single head dry weight and grain weight (Table S1).

259 Based on the best linear unbiased prediction (BLUP) means, positive genetic correlations
260 were found between yield and the three yield components except thousand kernel weight (TKW)
261 (Table S2). Dry biomass had significant positive correlations with all tested traits except

262 thousand kernel weight and spikes m⁻². Harvest index had significant correlations with all traits
263 except spike m⁻². Thousand kernel weight only had a significant low positive correlation with
264 harvest index but a significant negative correlation with spikes m⁻². Spikes m⁻² had a significant
265 negative correlation with kernels spike⁻¹. Thousand kernel weight had the least significant
266 correlations with other traits related to yield indicated that it could be improved independently.
267 However, kernels spike⁻¹ can be increased along with thousand kernel weight for improved yield
268 but not together with spikes m⁻² due to the significant negative correlations. Across all individual
269 11 environments, harvest index were significantly and positively correlated with all the traits
270 except thousand kernel weight in 12BD, 17CVI, and 17BI (significantly negative), spikes m⁻² in
271 12BD, 12CH, 17DMS, 11BD and 13EP5 (last two significantly negative), kernels spike⁻¹ in
272 14CH, and yield in 13EP5 (Table S2); thousand kernel weight was significantly and negatively
273 correlated with most of the rest traits except kernels spike⁻¹ in 12BD, 12CH, 13EP5, 17CVI,
274 17DMS, 13EP4, 14CH, and 14EP5 (last three significantly positive), spikes m⁻² in 14CH and
275 14EP5, yield in 13EP4, 14EP4, 17CVI, 12BD, 12CH, 14CH 14EP5, and 17DMS (last five
276 significantly positive); spikes m⁻² was significantly and negatively correlated with kernels spike⁻¹
277 in 11BD, 12BD, 12CH, and 13EP4, except in 14CH, 17DMS, and 13EP5 (last one significantly
278 positive), significantly and positively correlated with yield in 11BD, 12BD, and 14CH, except in
279 12CH, 13EP4, 13EP5, and 14EP5 (last two significantly negative); kernels spike⁻¹ was
280 significantly and positively correlated with yield in all 11 environments (Table S2).

281 The significant correlations between yield and its components implied that yield can be
282 increased through the indirect selection of the higher component traits. Hence, mapping the QTL
283 for yield and associated yield components could reveal significant QTL across environments and
284 improve the indirect selections.

285

286 **Boxplot and biplot across all environments, and mega environment classification**

287

288 From the boxplot of all the traits across individual environments, it is easy to define that the
289 lower yield environments were from the drought years (eight environments from 11BD to
290 14EP5) while the higher yield environments were from the irrigated location in a good rainfall
291 year (three environments, 17BI, 17CVI, and 17DMS) with the latter had a higher genetic
292 variations (Table S1a). Similar trends were found on dry biomass and biomass grain yield;
293 however, several other traits did not follow this trend. The three environments having higher
294 harvest index were 11BD, 14EP4, and 14EP5, and all the environments had relatively larger
295 variations, ranging from 20% to 50%. Kernels spike⁻¹ had very similar means across all the
296 environments except 17BI and 17DMS. Thousand kernel weight were classified into two groups
297 and the higher median group included all the irrigated environments in 2014 and 2017. However,
298 spikes m⁻² did not have similar trends as any other traits. Its median and ranges were very similar
299 in the two irrigated environments, 17BI and 17DMS (Fig S1a).

300 Biplot of all the environments for each trait could help us to classify those environments
301 where the performance of individual lines had similar trends; therefore, we classified them as a
302 mega environment (ME) (Fig S1b). Yield had ME1 (17BI, 17CVI, 14EP4, 14EP5); ME2 (12BD,
303 13EP4, 13EP5), and ME3 (12CH, 14CH); dry biomass had ME1 (11BD, 14CH, 14EP4) and
304 ME2 (13EP4, 13EP5); biomass grain yield had ME1 (11BD, 14CH), ME2 (13EP4, 12BD,
305 12CH), ME3 (14EP4, 14EP5, 17CVI); harvest index had ME1 (14EP5, 17BI, 17CVI, 17DMS),
306 ME2 (12CH, 14CH, 13EP4), ME3 (12BD, 11BD, 13EP5); kernels spike⁻¹ had ME1 (17CVI,
307 17DMS, 14EP4, 14EP5), ME2 (11BD, 12BD, 13EP4, 14CH); spikes m⁻² had ME1 (14EP5,

308 14CH), ME2 (12BD, 13EP4, 13EP5, 17CVI), ME3 (12CH, 17DMS); thousand kernel weight
309 had ME1 (11BD, 12BD, 12CH, 13EP4, 13EP5, 14CH), ME2 (14EP4, 14EP5, 17BI, 17CVI,
310 17DMS). The mega environments allowed us to identify some consistent genetic factors across
311 similar individual environments, within and across mega environments.

312

313 **Linkage map**

314 A set of 5,948 markers including 3,193 from ddRADseq and 2,740 from 90K iSelect array SNPs,
315 and 15 microsatellites and kompetitive allele specific PCR (KASP) markers were used to
316 construct 25 linkage groups covering all 21 chromosomes were used for QTL analyses (Table
317 S3). The cumulative genetic map length is 2,703.9 cM with an average marker density of 0.6
318 SNP/cM or 2.8 SNP/Mb. The total covered physical base pair length is about 12.6 Gb with
319 average length of 602.2 Mb per chromosome.

320

321 **Consistent QTL identification for individual trait**

322

323 A set of 87 unique QTL regions significantly associated with nine yield and yield related traits
324 across 11 environments over five years were identified through the analyses of data from
325 individual and mega-environments (Table S4; Fig S2 and S3). Among them, a set of 36 unique
326 consistent QTL was identified to be associated with one trait but from at least two out of the
327 analyses from individual, across all individual, within and across each defined mega
328 environments based on biplot and overall best linear unbiased prediction (BLUP) or best linear
329 unbiased estimation (BLUE) for each trait (Tables 1 and 2; Fig 1). A set of 10 unique pleiotropic
330 QTL was found to be associated with at least two traits that were not highly correlated to each

331 other (Table 2). Among the consistent and pleiotropic QTL, eight were in common (Tables 1 and
332 2; Fig 1).

333

334 **Yield**

335 A set of 14 consistent QTL for yield was identified on chromosomes 1B, 1D, 2A, 4B, 4D, 6A,
336 6D, 7B and 7D (Table 1, Table S4). There were four major QTL at 20.6 and 109.8 Mb on 4D,
337 12.4 Mb on 6A, and 90.2 Mb on 7D that increased yield up to 19.6 - 28.1 g m⁻² from the analyses
338 of individual environment 17BI or 17CVI, ME1 (including 17BI, 17CVI, 14EP4, and 14EP5)
339 and across 11 environments and all had favorable alleles from TAM 111. Eight minor QTL with
340 favorable alleles from TAM 112 that increased yield by 2.5 - 9.9 g m⁻² were located at 376.1 Mb
341 on 1B, 421.8 Mb on 1D, 659.2 Mb on 4B, 455.3 Mb on 4D, 19.6 Mb on 6D, 617.0 Mb on 7B,
342 and 64.3 Mb and 591.2 Mb on 7D. From the LOD score and R² values of additive effects, only
343 five out of the eight minor QTL, *Qyld.tamu.1B.376*, *Qyld.tamu.1D.422*, *Qyld.tamu.7B.16*,
344 *Qyld.tamu.7B.617*, and *Qyld.tamu.7D.64* had larger proportion of additive effects while the rest
345 had larger additive-by-environment interactions than additive effects indicating the complex of
346 yield inheritance. Among the four major QTL that had larger additive effects, results from across
347 individual environment analyses showed that the corresponding additive-by-environment
348 interactions increased yield by 15.8 - 24.0 g m⁻² at 17BI or 17CVI (Table S4).

349

350 **TKW**

351 Eight QTL were identified for thousand kernel weight including one on chromosome 1D at 12.3
352 Mb, four on 2D at 15.7, 63.3, 486.8 and 531.4 Mb, one on 4D at 343.2 Mb, and two on 7D at
353 40.1 and 64.3 Mb (Table 1). Two QTL *Qtkw.tamu.2D.16* and *Qtkw.tamu.4D.343* had the

354 favorable alleles from TAM 111 and increased TKW up to 0.3 g while the other six QTL had
355 alleles from TAM 112 and increased TKW up to 0.9 g. All QTL appeared across 11
356 environments and ME2 (including 14EP4, 14EP5, 17BI, 17CVI, and 17DMS) analyses except
357 three QTL *Qtkw.tamu.1D.12*, *Qtkw.tamu.2D.487*, and *Qtkw.tamu.7D.40*. Four major QTL
358 *Qtkw.tamu.2D.487*, *Qtkw.tamu.2D.531*, *Qtkw.tamu.7D.40* and *Qtkw.tamu.7D.64* increased
359 thousand kernel weight from 0.6 to 0.9 g at 12CH, 17CVI, 11BD, and 17DMS, respectively
360 (Table S4). Their corresponding additive-by-environment interactions increased thousand kernel
361 weight by 0.6, 0.3, 0.5, and 0.3 g, respectively (Table S4).

362

363 **KPS**

364 Only four QTL significantly associated with kernels spike⁻¹ were identified on chromosomes 1A
365 at 13.8 Mb and 411.7 Mb, 4D at 445.5 Mb, and 7B at 647.8 Mb (Table 1). All favorable alleles
366 were from TAM 111 and increased kernels spike⁻¹ up to 0.7 except the *Qkps.tamu.4D.446*. Two
367 of the three QTL appeared in the analyses of across eight environments, or either 17CVI or
368 17DMS and ME1 (including 17CVI, 17DMS, 14EP4, and 14EP5). The corresponding additive-
369 by-environment interactions of the three QTL increased kernels spike⁻¹ by 0.3 - 0.4 at 17DMS or
370 17CVI (Table S4).

371

372 **SPM**

373 For spikes m⁻², three QTL were detected on chromosomes 1A at 356.4 Mb, 4D at 484.7 Mb, and
374 6B at 673.8 Mb (Table 1). *Qspm.tamu.1A.356* and *Qspm.tamu.6B.674* had alleles from TAM 112
375 and increased spikes m⁻² by 14.8 while *Qspm.tamu.4D.459* had allele from TAM 111 and
376 increased spikes m⁻² by 11.5 at 17CVI. All three QTL appeared in the analyses of ME2

377 (including 12BD, 13EP4, 13EP5, 17CVI) and the two QTL on 1A and 6B appeared in the
378 analyses of across seven environments. *Qspm.tamu.6B.674* had the highest additive effects of
379 14.8 from 12BD and its additive-by-environment interactions increased spikes m⁻² by 10.6 while
380 *Qspm.tamu.1A.356* increased spikes m⁻² by 12.8 and its interactions at 13EP4 increased 8.3
381 (Table S4).

382

383 **HI**

384 Five QTL for harvest index were detected, in which the two QTL at 1.7 Mb on chromosome 2D
385 and at 29 Mb on 4D had favorable alleles from TAM 111. *Qhi.tamu.4D.29* increased harvest
386 index by 1.1% and were consistent in two individual environments, 17CVI and 17DMS. The
387 other three QTL on chromosomes 1B, 3D and 7D had favorable alleles from TAM 112 and
388 increased harvest index by 0.6% at environments 17DMS or 12CH. These five QTL could
389 increase harvest index by 0.25 to 0.87 from additive-by-environment interactions at their
390 corresponding environments, 17DMS, 17CVI or 12CH (Tables 1 and S4).

391

392 **BMYLD**

393 For biomass grain yield (BMYLD) collected from 0.5-m long in an inner row, three significant
394 QTL were identified on chromosomes 4D, 6D, and 7D (Table 1). *Qbmyld.tamu.4D.26* had
395 favorable allele from TAM 111 and increased biomass yield by 16.3 g m⁻² at two individual
396 environments 17CVI and 14EP5. The other two QTL at 459.2 Mb on 6D and 64.3 Mb on 7D had
397 favorable alleles from TAM 112 and increased biomass yield up to 13.3 g m⁻² at 12CH. Only the
398 major QTL *Qbmyld.tamu.4D.26* had a larger additive LOD scores compared with those of
399 corresponding additive-by-environment interactions that increased biomass yield by 7.6 and 11.9

400 g m⁻² at environments 17BI and 17CVI, respectively (Table S4). On the other hand, the QTL
401 Qbmyld.tamu.7D.64 had additive-by-environment interaction effect of 16.1 g m⁻² with allele
402 from TAM 111 at 17BI from the analyses of across eight environments (Table S4). At another
403 environment 12CH, the additive-by-environment interaction of the same QTL increased 7.7 g m⁻
404 ² with allele from TAM 112. Only one significant QTL for dry biomass at 455.8 Mb on
405 chromosome 4D and it increased biomass by 12.1 g m⁻² with favorable allele from TAM 112
406 (Table 1).

407 In general, we can see that TAM 111 favorable alleles mainly increased kernels spike⁻¹
408 while TAM 112 favorable alleles mainly increased spikes m⁻² and thousand kernel weight. For
409 biomass yield, yield, and harvest index, almost half QTL had TAM 111 favorable alleles and half
410 had TAM 112 alleles (Table 1). A major QTL had the highest additive effects for certain trait at
411 a particular environment. In the meantime, it had a higher effect from additive-by-environment
412 interactions at the same environment.

413

414 **Pleiotropic QTL**

415 A set of ten unique significant QTL regions was found to affect more than one trait and thus
416 considered having pleiotropic effects (Table 2 and Fig 1). Eight were in common with the 36
417 consistent QTL identified for all nine evaluated traits. They were the QTL at 411.7 Mb on 1A
418 that was linked to yield and kernels spike⁻¹ with all the favorable alleles increasing the traits from
419 TAM 111; the QTL at 20.6 Mb on 2D that was linked to both yield and biomass yield and the
420 QTL at 26 Mb on 4D that was linked to yield and harvest index with all favorable alleles from
421 TAM 111; two additional QTL at 455.3 and 455.8 Mb on 4D that were linked to biomass grain
422 yield and yield, dry biomass and single head dry weight, respectively, with all favorable alleles

423 from TAM 112; the fifth QTL on 4D at 445.5 Mb that increased kernels spike⁻¹ by 0.72 with
424 favorable allele from TAM 112 while it increased dry biomass by 54.1 g m⁻² based on the BLUE
425 value from 14EP4 (Table 2 and Table S4); the QTL at 19.6 Mb on 6D that was associated with
426 yield and single head grain weight with favorable alleles from TAM 112; the QTL at 64.3, 66.3,
427 and 68.3 Mb on 7D that were linked to yield, biomass yield, thousand kernel weight, kernels
428 spike⁻¹, and harvest index with the most favorable alleles increased yield and kernels spike⁻¹ from
429 TAM 111 while the favorable alleles increased thousand kernel weight and harvest index from
430 TAM 112 (Table 2). The last two were not consistent QTL (Tables 1 and 2).

431

432 **Epistasis, epistasis-by-environment, and additive-by-environment interactions**

433 Only those with overall LOD scores > 5.0 were summarized for the epistasis and additive-by-
434 environment interactions (Table S5). Among 375 interactions for yield, only 56 had overall LOD
435 scores >= 10.0, but none of the epistasis and additive-by-environment interactions had LOD >
436 10.0 (Fig S4). Among 28 interactions that increased yield by more than 10 g m⁻², there were six
437 additive-by-environment interactions at 17BI with favorable alleles from TAM 111 that
438 increased yield from 10.4 to 17.5 g m⁻²; two additional additive-by-environment interactions at
439 14EP4 and 17CVI, respectively increased yield by 10.2 and 10.4 g m⁻² with favorable alleles
440 from TAM 112. Among 19 epistasis-by-environment interactions, 17 interactions at 17BI
441 increased yield by 10.1 and 13.1 g m⁻² with seven favorable alleles from TAM 112 and 10
442 favorable alleles from TAM 111.

443 Among 234 interactions for spikes m⁻² with LOD > 5.0, only eight interactions had
444 overall LOD score >= 10.0 and no epistasis LOD >= 10.0. Five epistasis-by-environment
445 interactions occurred in ME2 (including 12BD, 13EP4, 13EP5, and 17CVI) in which three of

446 them had favorable alleles from TAM 112 and increased spikes m^{-2} by 10.8 and two increased
447 spikes m^{-2} by 14.4 with alleles from TAM 111 (Table S5 and Fig S4).

448 For thousand kernel weight (TKW), among 581 interactions with overall LOD ≥ 5.0 ,
449 there were 123 with overall LOD > 10.0 and 26 with epistasis LOD ≥ 10.0 . There were five
450 epistasis that increased TKW by 0.4-0.7 g with four having favorable alleles from TAM 112.
451 However, only two of the five had epistasis LOD ≥ 10.0 . Two of the five occurred within
452 mega-environment ME2 including 14EP4, 14EP5, 17BI, 17CVI, and 17DMS. Among the eight
453 additional interactions that increased TKW by 0.4 to 0.7 g, four were epistasis-by-environment
454 interactions with all favorable alleles from TAM 112 and three of the four occurred in 17BI
455 while the four additive-by-environment interactions occurred in 17CVI and 11BD with three
456 having favorable alleles from TAM 111 (Table S5 and Fig S4).

457 Among 243 interactions with LOD > 5.0 for kernels spike $^{-1}$, only four had overall
458 LOD ≥ 10.0 but none of them could increase the trait by > 0.4 . Among six interactions that
459 increased kernels spike $^{-1}$ by 0.4, four epistasis-by-environment interactions increased kernels
460 spike $^{-1}$ by 0.4-1.0 with two having favorable alleles from TAM 111. The one increased by 1.0
461 had favorable alleles from TAM 111 at 13EP5 while the same interaction increased 0.4 with
462 favorable allele from TAM 112 in 17DMS (Table 5 and Fig S4).

463 For harvest index, there were 240 interactions that had LOD > 5.0 but only one
464 interaction had overall LOD > 10.0 . Four additive-by-environment and six epistasis-by-
465 environment interactions increased harvest index by 0.5-0.8% at 17CVI with eight having
466 favorable alleles from TAM 111.

467 For biomass grain yield, 190 interactions had LOD > 5.0 but only one had LOD > 10.0 .
468 All 16 epistasis-by-environment interactions at 17BI increased biomass grain yield by 15.1 to

469 19.6 g m⁻² with ten having favorable alleles from TAM 112 and six having favorable alleles from
470 TAM 111 (Table S5).

471 For total dry biomass, no interaction had LOD ≥ 10.0 . Only four interactions explained
472 10.3 - 12.2% of total phenotypic variations but none of epistasis and epistasis-by-environment
473 interactions increased more than 10 g m⁻² (Table S5).

474

475 **Discussion**

476 **Evaluation of yield and yield component in individual and mega-environments**

477 Yield is a complex trait affected by genetic, environment and genetic-by-environment
478 interactions. Management in crop growing conditions, such as drought or irrigated, can also
479 interfere with grain yield. Therefore, yield trials from multiple years at multiple locations are
480 crucial to provide data of yield and yield components under various weather and management
481 conditions including dryland and irrigating, and further lead to more reliable genetic analysis for
482 yield plasticity [9]. In this study, we used an alpha lattice experimental design to conduct the
483 trials in five growing seasons and up to five locations, which provided diverse growing
484 conditions to evaluate yield and yield-related traits and thus being able to detect effects due to
485 genetic and genetic-by-environment interactions. Through combined ANOVA and heritability
486 analyses, trait data showed genetic variance at a significance level with heritability higher than
487 0.05 were used for QTL analysis. In addition, Pearson's product moment correlation was
488 conducted among all traits, and most of the correlations are significant, which was further
489 supported by co-localized QTL linked to yield and yield components to indicate the presence of
490 pleiotropy in genomic regions modulating the quantitative traits [17], and the positive correlation

491 thus suggests a possible linkage existing in coupling phase or presence of positive pleiotropic
492 effects [17].

493 Mega-environments (MEs) have been initially defined by CIMMYT as similar biotic and
494 abiotic stress, cropping system requirements, and environments conditions by a volume of
495 production [25]. Besides individual environment QTL analysis from genome-wide scan in this
496 study (Fig S2), QTL analyses across all individual environments (Fig S3), and within mega-
497 environments were also conducted, which minimized environment effects within MEs (Table
498 S4). This also increased the accuracy to identify a potential major QTL under mega environment
499 and they are very important for local adaptation.

500

501 **Dissection of QTL by environment, epistasis and additive-by-environment interactions**

502

503 Some QTL were very significant for the total LOD score but not for the additive effect LOD
504 scores LOD(A) (Table 1 and 2, Table S4). For example, *Qhi.tamu.4D.29* had LOD(A) of 4.6
505 among total LOD of 16.9 and the total explained phenotypic variations by the QTL additive
506 effect was 2.5% compared with 13.0% explained by the additive-by-environment. The total
507 additive effect for harvest index was only increased by 0.2%. On the other hand, when analyzed
508 within ME1 including 14EP4, 17BI, 17 CVI, and 17DMS, all irrigated or with high rainfall in
509 that year, the same QTL had LOD(A) of 13.3 from total LOD of 14.1, and variation explained by
510 additive effects was 15.2% from total 19.0% and increased harvest index by 0.6% (Table S4).
511 The same QTL had additive effect that increased harvest index by 1.1% at 17CVI. This is the
512 advantage of dissecting the additive effects from the additive-by-environment interactions to
513 identify the major QTL with higher additive effects but less additive-by-environment

514 interactions. Among the 75 epistasis and epistasis-by-environment interactions that had LOD \geq
515 10 or the interaction effects increased the traits more than those of most major QTL (10.0 g m⁻²
516 for yield and biomass yield, 0.4 g for thousand kernel weight, 0.4 for kernels spike⁻¹, 10 for
517 spikes m⁻², 0.5% for harvest index, 15 g m⁻² for biomass yield), only six out of 87 significant
518 QTL involved with the epistasis-by-environment interactions (Table 1 and 2, and Table S5).
519 They were *Qyld.tamu.1B.376*, *Qtkw.tamu.2D.531*, *Qhi.tamu.4D.29*, *Qtkw.tamu.4D.409*,
520 *Qyld.tamu.6A.12*, and *Qkps.tamu.7B.19*, which can be a warning for breeding selection. Since
521 breeders can only fix the additive effects by selection, through these analyses, breeders can have
522 a better idea for what QTL are worthy of consideration for selection in breeding practice.
523
524

525 Conclusion

526 In this study, the wheat 90K Infinium iSelect SNP array and whole genome ddRADseq were
527 used in the construction of high-saturated genetic map for QTL mapping associated with yield
528 and yield components collected from 11 environments across five years and five locations across
529 Texas and New Mexico in the US Southern High Plains. QTL were analyzed using single trait
530 with single environment, single trait across multiple environments, and single trait within and
531 across mega-environments in which lines performed similarly. In addition to additive effects, the
532 interactions of additive-by-environment, epistasis and epistasis-by-environment were dissected.
533 Among 87 significant QTL for nine traits, 36 consistent QTL were identified with presence in at
534 least two above-mentioned analyses and ten pleiotropic QTL were found associated with more
535 than one trait. The eight consistent and pleiotropic QTL were located at 411.7 Mb on
536 chromosome 1A, at 20.6, 26.0, 445.5, 455.3 and 455.8 Mb on chromosome 4D, at 19.6 Mb on

537 6D and at 64.3 Mb on 7D. They increased dry biomass by 12.1 g m⁻², harvest index by 0.6%,
538 thousand kernel weight by 0.9 g with favorable alleles from TAM 112 and increased biomass
539 grain yield by 16.3 g m⁻², kernels spike⁻¹ by 0.7, and yield by 20.3 g m⁻² with favorable alleles
540 from TAM 111. Only six of 75 epistasis-by-environment interactions were involved with the
541 major QTL. Major QTL with larger additive effects and less interaction effects were identified

542

543 **Acknowledgments**

544 We thank the technical support from Lisa Garza, Hangjin Yu, Cody Shachter, Srirama Reddy
545 and Chor Tee Tan from the wheat genetic program and graduate students Silvano Assanga and
546 Bharath Reddy from Department of Soil and Crop Science, TAMU.

547

548 **Support information**

549

550 **S1a Fig. Boxplot Analysis of yield and yield component traits.** (DOCX)

551 **S1b Fig. Dendrogram and biplot Analysis of yield and yield component traits to classify**
552 **mega-environments for each trait.** (DOCX)

553 **S2 Fig. LOD profile and additive effects of QTLs detected in each of the 11 environments.**
554 (DOCX)

555 **S3 Fig. Whole genome significance LOD profiles of quantitative trait loci for yield and its**
556 **components.** (DOCX)

557 **S4 Fig. Whole genome significance profiles of epistasis at LOD > 10 for yield and its**
558 **components.** (DOCX)

559 **S1 Table. The combined ANOVA, heritability, and mean performance for all traits across**
560 **environments.** (SLSX)

561 **S2 Table. Genetic correlation among grain yield and other traits based on overall means**
562 **and means measured in individual environments.** (SLSX)

563 **S3 Table. Mapped SNPs on 21 chromosomes, their genetic and physical length.** (SLSX)

564 **S4 Table. Significant SNPs for yield and yield components in all analysis based on 1000**
565 **permutation threshold.** (SLSX)

566 **S5 Table. Epistases and epistasis by environment interactions for yield and yield**
567 **components in all analysis.** (SLSX)

568

569

570 **Author Contributions**

571 Conceptualization: Jackie C. Rudd, Amir M. H. Ibrahim, Qingwu Xue, Shuyu Liu.

572 Data curation: Yan Yang, Smit Dhakal, Chenggen Chu, Shichen Wang, Qingwu Xue, Jackie C.
573 Rudd, Amir M.H. Ibrahim, Kirk Jessup, Jason Baker, Maria Pilar Fuentealba, Ravindra Devkota,
574 Shannon Baker, Charlie D. Johnson, Richard Metz, and Shuyu Liu

575 Formal analysis: Yan Yang, Smit Dhakal, Chenggen Chu, Shichen Wang, Shuyu Liu.

576 Funding acquisition: Jackie C. Rudd, Qingwu Xue, Amir M.H. Ibrahim, Yan Yang, Smit Dhakal,
577 Chenggen Chu, Shichen Wang, Shuyu Liu.

578 Investigation: Smit Dhakal, Maria Pilar Fuentealba, Qingwu Xue, Kirk Jessup, Jackie C. Rudd,
579 Shuyu Liu.
580 Methodology: Yan Yang, Smit Dhakal, Chenggen Chu, Shichen Wang, Qingwu Xue, Shuyu Liu.
581 Project administration: Jackie C. Rudd, Qingwu Xue, Shuyu Liu.
582 Resources: Jackie C. Rudd, Qingwu Xue, Amir M.H. Ibrahim, Charlie D. Johnson, Shuyu Liu.
583 Software: Yan Yang, Smit Dhakal, Chenggen Chu, Shichen Wang, Shuyu Liu.
584 Supervision: Shuyu Liu.
585 Validation: Yan Yang, Smit Dhakal, Shuyu Liu.
586 Visualization: Yan Yang, Smit Dhakal, Shuyu Liu.
587 Writing original draft: Yan Yang, Shuyu Liu.
588 Writing review & editing: Yan Yang, Smit Dhakal, Chenggen Chu, Shichen Wang, Qingwu Xue,
589 Jackie C. Rudd, Amir M.H. Ibrahim, Kirk Jessup, Jason Baker, Maria Pilar Fuentealba, Ravindra
590 Devkota, Shannon Baker, Charlie D. Johnson, Richard Metz, and Shuyu Liu.
591
592 **Reference**

593

594 1. Assanga SO, Fuentealba M, Zhang G, Tan C, Dhakal S, Rudd JC, et al. Mapping of
595 quantitative trait loci for grain yield and its components in a US popular winter wheat TAM
596 111 using 90K SNPs. *PloS ONE*. 2017;12: 0189669.
597 2. Barton NH, and Keightley PD. Understanding quantitative genetic variation. *Nature Rev. Genet.* 2002;1: 11-21.
598 3. Carlberg Ö, and Haley CS. Epistasis: too often neglected in complex trait studies? *Nature Rev. Genet.* 2004.;8 :618-625.
599 4. Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, et al. Genome-wide
600 comparative diversity uncovers multiple targets of selection for improvement in hexaploid
601 wheat landraces and cultivars. *Proc. Nat. Acad. Sci.* 2013;20: 8057-8062.
602 5. Collard BC, and Mackill DJ. Marker-assisted selection: an approach for precision plant
603 breeding in the twenty-first century. *Phil. Trans. R. Soc.* 2008;1491: 557-572.
604 6. Dhakal S, Tan CT, Anderson V, Yu H, Fuentealba MP, Rudd JC, et al. Mapping and KASP
605 Marker Development for Wheat Curl Mite Resistance in 'TAM 112' Wheat Using Linkage
606 and Association Analysis. *Mol. Breed.* 2018;38: 119.
607 7. Ellis MH, Spielmeyer W, Gale KR, Rebetzke GJ, Richards RA. Perfect markers for the *Rht*-
608 *B1b* and *Rht-D1b* dwarfing genes in wheat. *Theor Appl Genet.* 2002;105: 1038-1042.
609 8. Goldringer I, Brabant P, and Gallais A. Estimation of additive and epistatic genetic variances
610 for agronomic traits in a population of doubled-haploid lines of wheat. *Heredity* 1997;79.
611 9. Grogan SM, Anderson J, Baenziger PS, Frels K, Guttieri MJ, Haley SD, et al. Phenotypic
612 Plasticity of Winter Wheat Heading Date and Grain Yield across the US Great Plains. *Crop
613 Science* 2016;56: 2223-2236. doi:10.2135/cropsci2015.06.0357.
614 10. Jannink JL, Lorenz AJ, and Iwata H. Genomic selection in plant breeding: from theory to
615 practice. *Brief. Funct. Genomics.* 2010;9: 166-177.
616 11. Kumar N, Kulwal PL, Balyan HS, and Gupta PK. QTL mapping for yield and yield
617 contributing traits in two mapping populations of bread wheat. *Mol. Breed.* 2007;19: 163-
618 177.
619
620

621 12. Lazar MD, Worrall WD, Peterson GL, Fritz AK, Marshall D, Nelson LR, et al. Registration
622 of 'TAM 111' wheat. *Crop. Sci.* 2004;44: 355-357.

623 13. Lazar MD, Worrall WD, Peterson GL, Porter KB, Rooney LW, Tuleen NA, et al.
624 Registration of 'TAM 110' wheat. *Crop Sci.* 1997;37: 1978-1979.

625 14. Li S, Jia J, Wei X, Zhang X, Li L, Chen H, Fan Y. A intervarietal genetic map and QTL
626 analysis for yield traits in wheat. *Mol. Breed.* 2007;20: 167-178.

627 15. Liu S, Rudd JC, Bai G, Haley SD, Ibrahim AM, Xue Q, et al. Molecular markers linked to
628 important genes in hard winter wheat. *Crop Sci.* 2014;54: 1304-1321.

629 16. Liu S, Ocheya S, Dhakal S, Gu X, Tan CT, Yang Y, Rudd JC, et al. Validation of
630 chromosomal locations of 90K array SNP in US wheat. *Crop Sci.* 2016;56: 364-373. doi:
631 10.2135/cropsci2015.03.0194

632 17. Mackay TFC, Stone EA, Ayroles JF. The genetics of quantitative traits: challenges and
633 prospects. *Nature Rev. Genet.* 2009;10: 565-577

634 18. Matthews GJ and Foulkes AS. MixMAP: An R Package for Mixed Modeling of Meta-
635 Analysis p Values in Genetic Association Studies. *J. of Statistical Software* 2015;66: 1-11.

636 19. Meng L, Li H, Zhang L and Wang J. QTL IciMapping: Integrated software for genetic
637 linkage map construction and quantitative trait locus mapping in biparental populations. *Crop*
638 *J* 2015;3: 269-283.

639 20. Patil RM, Tamhankar SA, Oak MD, Raut AL, Honrao BK, Rao VS, et al. Mapping of QTL
640 for agronomic traits and kernel characters in durum wheat (*Triticum durum* Desf.).
641 *Euphytica* 2013;190: 117-129.

642 21. Perez-Lara E, Semagn K, Chen H, Iqbal M., N'Diaye A, Kamran A, et al. QTLs associated
643 with agronomic traits in the Cutler× AC Barrie spring wheat mapping population using single
644 nucleotide polymorphic markers. *PloS ONE* 2016;11: 160623.

645 22. Peterson BK, Weber JN, Kay EH, Fisher HS, and Hoekstra HE. Double digest RADseq: an
646 inexpensive method for de novo SNP discovery and genotyping in model and non-model
647 species. *PloS one* 2012;7: 37135.

648 23. Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, et al. A high-
649 density genetic map of hexaploid wheat (*Triticum aestivum* L.) from the cross Chinese
650 Spring× SQ1 and its use to compare QTLs for grain yield across a range of environments.
651 *Theor. Appl. Genet.* 2005;110: 865-880.

652 24. Quarrie SA, Pekic Quarrie S, Radosevic R, Rancic D, Kaminska A, Barnes JD, et al.
653 Dissecting a wheat QTL for yield present in a range of environments: from the QTL to
654 candidate genes. *J. Exp. Bot.* 2006;57: 2627-2637.

655 25. Rajaram S, Van Ginkel M, and Fischer RA. CIMMYT's wheat breeding mega- environments
656 (ME). In *Proc. Intl. Wheat Genet. Symp.* 1994;1101-1106.

657 26. Reddy SK, Liu S, Rudd JC, Xue Q, Payton P, Finlayson SA, et al. Physiology and
658 transcriptomics of water-deficit stress responses in wheat cultivars TAM 111 and TAM 112.
659 *J. Plant Physiol.* 2014;171: 1289-1298.

660 27. Reif JC, Maurer HP, Korzun V, Ebmeyer E, Miedaner T, and Würschum T. Mapping QTLs
661 with main and epistatic effects underlying grain yield and heading time in soft winter wheat.
662 *Theor. Appl. Genet.* 2011;123: 283-292.

663 28. Rudd JC, Devkota RN, Baker JA, Peterson GL, Lazar MD, Bean B, Worrall D. 'TAM 112'
664 Wheat, Resistant to Greenbug and Wheat Curl Mite and Adapted to the Dryland Production
665 System in the Southern High Plains. *J. Plant Regis.* 2014;8: 291-297.

666 29. Snape JW, Foulkes MJ, Simmonds J, Leverington M, Fish LJ, Wang Y, et al. Dissecting
667 gene × environmental effects on wheat yields via QTL and physiological analysis.
668 *Euphytica* 2007;154: 401-408.

669 30. Torada A, Koike M, Mochida K, and Ogihara Y. SSR-based linkage map with new markers
670 using an intraspecific population of common wheat. *Theor. Appl. Genet.* 2006;112: 1042-
671 1051.

672 31. Wang S, Wong D, Forrest K, Allen A, Chao S, et al. Characterization of polyploid wheat
673 genomic diversity using a high-density 90 000 single nucleotide polymorphism array. *Plant*
674 *Biotechnol. J.* 2014;12: 787-796.

675 32. Wicker T, Mayer KF, Gundlach H, Martis M, Steuernagel B, et al. Frequent gene movement
676 and pseudogene evolution is common to the large and complex genomes of wheat, barley,
677 and their relatives. *The Plant Cell* 2011;23: 1706-1718.

678 33. Wu QH, Chen YX, Zhou SH, Fu L, Chen JJ, et al. High-density genetic linkage map
679 construction and QTL mapping of grain shape and size in the wheat population Yanda1817×
680 Beinong6. *PLoS ONE* 2015;10: 0118144.

681 34. Wu X, Chang X, and Jing R. Genetic insight into yield-associated traits of wheat grown in
682 multiple rain-fed environments. *PLoS ONE* 2012;7: 31249.

683 35. Yang Y, Basnet BR, Ibrahim AM, Rudd JC, Chen X, et al. Developing KASP Markers on a
684 Major Stripe Rust Resistance QTL in a Popular Wheat TAM 111 Using 90K Array and
685 Genotyping-by-Sequencing SNPs. *Crop Sci.* 2018;59: 165-175

686 36. Zhang K, Tian J, Zhao L, and Wang S. Mapping QTLs with epistatic effects and QTL ×
687 environment interactions for plant height using a doubled haploid population in cultivated
688 wheat. *J. Genet. Genomics* 2008;35: 119-127.

Table 1 Consistent QTL associated with yield and yield components from at least two analyzed across individual or mega environments in TAM 112/TAM 111

QTL Name	Chromosome	Position (Mb)	Traits ^a	Environments ^b	Threshold LOD	Overall LOD(A)	LOD (AbxE)	Total PVE ranges ^c	PVE (A) (%)	PVE (AbxE) (%)	Additive effects ^d	Parental favorable alleles	Peak position 25Lgs cM	QTL CI (cM)	Left SNPs	Left SNPs TAM	Left SNPs 112	Left SNPs chr_bp	Right SNPs TAM	Right SNPs 111	Right SNPs chr_bp	Pleiotropic QTL					
Qbm.tamu.4D.456	4D	455.8	BM	14CH, ME1 across 8 env, 14EP5, 17CVI, ME3, ME123	3.3-4	3.4-4.0	0.3	3.7	17.4	8.7	-	2.7-12.1	TAM 112	4D	29	28.5-29.5	14467522_4dl_v2_2408 CG	C	G	4	chr4D_45576431	chr4D_456087408	y				
Qbmyld.tamu.4D.26	4D	26	BMYLD	across 8 env, 17CVI, ME3	3.3-7.0	4.5-11.6	3.7-7.8	31-7.7	15.1-79.2	4.9-21.3	13.2-14.1	-3.8-(-16.3)	TAM 111	4D	3-4	0-4.5	IWB15038	A/G	A	chr4D_20579748	IWB61488	T/C	T	C	chr4D_25989315		
Qbmyld.tamu.6D.459	6D	459.2	BMYLD	across 8 env, 17CVI, ME3	3.3-4.7	3.4-4.8	1.89	2.9-10.3	11.9-19.3	4.4	14.9	3.8-13.3	TAM 112	6D	99	97.5-99.5	IWB33412	T/G	G	T	1	chr4D_45923767	chr4D_461316144	y			
Qbmyld.tamu.7D.64	7D	64.3	BMYLD	across 8 env, 12CH, ME2	3.4-7.0	6.2-10.4	0.1-3.7	3.1-10.3	8.8-15.2	0.1-7.5	12.1-15.6	5.1-7.0	TAM 112	7D	80	78.5-81.5	IWB35446	T/C	T	C	chr7D_60599997	IWB3020_7ds_5316	C/T	T	C	chr7D_64327425	
Qhi.tamu.1B.92	1B	91.9	HI	17DMS, ME1	3.4-5.1	4.1-5.7	4	1.7	6.2-9.6	4.3	1.8	0.32-0.58	TAM 112	1B	50	49.5-50.5	3424686_1bs_2601	C/T	T	C	chr1B_91880620	3442985_1bs_1519	C/T	C	T	chr1B_93786294	
Qhi.tamu.2D.2	2D	1.7	HI	12CH, ME2, 13EP4	3.4-4.1	4.3-4.9	4.44	0.4	10.4-10.8	7.7	2.6	-0.27-(-0.43)	TAM 111	2D	1	0-1.5	IWB34642	T/C	C	T	chr2D_1669021	IWB3740	T/C	T	C	chr2D_14395525	
Qhi.tamu.3D.574	3D	573.6	HI	17DMS, ME1 across 9 env, 17DMS, 17CVI, ME1	3.4-5.1	4.7-5.2	1.8	3.4	4.7-11.1	2	2.6	0.2-0.6	TAM 112	3D	69	68.5-69.5	6936842_3dl_1518	G/A	A	G	7	chr3D_57360455	6919472_3dl_938	A/G	G	A	chr3D_574518855
Qhi.tamu.4D.29	4D	29	HI	17DMS, ME1 across 9 env, 12CH, ME2	3.3-7.5	5.3-16.9	4.6-13.3	0.8-12.3	13.2-20.9	2.5-15.2	13	-0.2-(-1.1)	TAM 111	4D	6-8	4.5-8.5	IWB30733	A/G	A	chr4D_28994521	IWB3021_4ds_778	G/T	T	G	chr4D_37607464		
Qhi.tamu.7D.64	7D	64.3	HI	ME123	3.4-8.7	5.4-11.9	1.3-5.8	1.4-10.6	4.9-20.9	0.8-10.2	4.2-6.5	0.1-1.7	TAM 112	7D	80	78.5-81.5	IWB35446	T/C	T	C	chr7D_60599997	IWB3020_7ds_5316	C/T	T	C	chr7D_64327425	
Qkps.tamu.1A.14	1A	13.8	KPS	across 8 env, 17DMS	3.4-4.0	4	4.5	12.30	1.8	0.18-0.52	TAM 111	1A	10	9.5-10.5	IWB35537	T/C	T	C	chr1A_13768064	IWB363611	A/G	G	A	chr1A_13768254			
Qkps.tamu.1A.412	1A	411.7	KPS	ME12	3.3-7.1	4.5-9.0	3.1-6.9	1.8-2.1	4.9-16.1	3.1-12.6	1.8-3.5	-0.24-(-0.65)	TAM 111	1A	58	57.5-58.5	3975933_1al_3664	C/T	T	C	6	3930957_1al_1985	G/A	A	G	chr1A_412570026	
Qkps.tamu.4D.446	4D	445.5	KPS	12BD, ME2	3.3-4.6	5.8-6.1	3.4	-	16.8	7.6	-	0.27-0.72	TAM 112	4D	27	24.5-28.5	IWA5751	T/G	T	G	chr4D_40879270	IWB3336	T/C	T	C	chr4D_44550080	
Qkps.tamu.7B.648	7B	647.8	KPS	17DMS, ME1	3.4-4.6	4.8-5.3	3.1	2.2	5.8-14.3	4	1.8	-0.34-(-0.6)	TAM 111	7B1	112	111.5-112.5	IWB56847	T/C	T	A	chr7B_64776100	IWB40231	A/G	A	G	chr7B_648106945	
Qshdw.tamu.1D.389	1D	388.8	SHDW	across 8 env, 14EP5	3.3-7.1	15.9-20.0	11.66	8.4	12.9-19.5	3.1	9.8	-10.7-(-61.2)	TAM 111	1D	53	50.5-53.5	2287319_1dl_5612	G/A	A	G	chr1D_38877489	IWA1736	A/G	A	G	chr1D_408074078	
Qshgw.tamu.7D.64	7D	64.3	SHGW	across 7 env, 12CH	3.4-4.5	6.9-10.2	2.8	7.3	3.0-14.8	1.1	1.9	4.4-16.7	TAM 112	8D	80	79.5-82.5	IWB35446	T/C	T	C	chr7D_60599997	IWB3020_7ds_5316	C/T	T	C	chr7D_64327425	
Qspm.tamu.1A.356	1A	356.4	SPM	across 7 env, 13EP4, ME2	3.3-6.6	3.5-8.4	5.6-5.9	2.4	6.0-8.2	3.3-7.1	2.7	4.3-12.8	TAM 112	1A	41-42	40.5-42.5	IWB30503	A/G	A	G	9	IWB14647	T/C	C	T	chr1A_356473856	
Qspm.tamu.4D.485	4D	484.7	SPM	17CVI, ME2	3.3-4.7	4.3-5.3	3	2.4	5.9-12.0	3.9	2.1	-6.04-(-11.5)	TAM 111	4D	45	35.5-45	14462345_4dl_v2_3077	G/A	G	A	5	IWB328897	A/G	A	G	chr4D_484741659	
Qspm.tamu.7B.674	7B	673.8	SPM	across 7 env, 12BD, 12BD	3.3-6.6	5.2-9.0	2.8-4.7	2.8-4.3	6.2-17.5	2.6-3.5	3.6-4.1	3.9-14.8	TAM 112	6B2	23	22.5-24.5	IWB61320	A/G	G	A	chr6B_673765613	IWB46874	A/G	B	chr6B_680310526		
Qtkw.tamu.1D.12	1D	18.2	TKW	across 11 env, ME1, ME12	41-8.2	5.6-16.4	4.5-10.7	1.1-5.7	2.8-8.2	2.3-8.1	0.5-3.6	0.21-0.33	TAM 112	1D	28-29	24.5-33.5	IWB14343	T/C	T	C	chr1D_12315148	IWB15488	T/C	C	T	chr1D_18222520	
Qtkw.tamu.2D.16	2D	15.7	TKW	across 11 env, ME2	5.6-8.2	6.8-8.9	6.4-7.8	0.4-1.1	3.1-5.5	1.8-4.3	1.2-1.3	-0.24-(-0.3)	TAM 111	2D	28	27.5-29.5	5382109_2ds_265	C/T	C	T	chr2D_15650692	IWB8481	A/G	A	G	chr2D_15967348	
Qtkw.tamu.2D.63	2D	63.3	TKW	across 11 env, ME2, 14EP5	3.3-8.2	4.9-8.7	3.6-4.9	3.1-4.1	1.8-12.4	1.2-2.5	0.6-0.7	0.14-0.43	TAM 112	2D	85	84.8-86.5	5349085_2ds_35	T/C	T	C	chr2D_63289136	5383026_2ds_1396	C/T	C	T	chr2D_77704265	
Qtkw.tamu.2D.487	2D	486.8	TKW	across 11 env, 12CH, 13EP4, ME1, ME12	3.3-8.2	4.5-22.4	3.1-16	3.0-9.4	4.0-21.7	2.9-6.5	1.1-1.6	0.24-0.55	TAM 112	2D	103	98.5-106.5	9861581_2dl_506	G/C	G	C	2	9821121_2dl_24264	C/A	A	C	chr2D_513026603	
Qtkw.tamu.2D.531	2D	531.4	TKW	across 11 env, 17BI, ME2	3.3-8.2	5.3-19.9	4.9-15.8	0.4-4.1	3.7-17.4	3.6-9.2	2.1-5.0	0.27-0.82	TAM 112	2D	116	106.5-11.5	9821121_2dl_24264	C/A	A	C	3	98252937_2dl_2983	C/A	A	C	chr2D_531356936	
Qtkw.tamu.4D.343	4D	343.2	TKW	across 11 env, 14EP5, ME2	3.3-8.2	6.5-9.9	1.9-3.3	5.0-8.0	2.3-16.4	0.4-2.2	1.9	-0.1	TAM 111	4D	21	20.5-21.5	2867136_4dl_v2_357	G/A	G	A	4	chr4D_34181602	14403569_4dl_v2_1	G/A	G	A	chr4D_35880250
Qtkw.tamu.7D.70	7D	40.1	TKW	11BD, 13EP5, ME1	3.3-6.2	3.7-10.5	9.2	1.4	5.5-13.0	3.6	2	0.2-0.6	TAM 112	7D	66-67	58.5-70.5	IWB52359	A/G	G	A	7	chr7D_40128390	3945987_7ds_6173	C/T	T	C	chr7D_45104258
Qtkw.tamu.7D.64	7D	64.3	TKW	across 11 env, 17DMS, ME2	3.4-8.2	7.3-17.6	12.7-15.6	1.0-2.0	6.7-20.1	3.6-8.9	3.1-3.6	0.3-0.9	TAM 112	7D	80	78.5-82.5	IWB35446	T/C	T	C	chr7D_60599997	IWB3020_7ds_5316	C/T	T	C	chr7D_64327425	
Qyld.tamu.1B.376	1B	378.8	YLD	Across 11 env, ME1	5.1-8.1	6.6-8.5	5.9	0.6-2.5	3.3-5.0	2.0-3.0	0.3-3.0	3.4-8.2	TAM 112	1B	67	65.5-69.5	IWA1302	T/C	C	T	chr1B_36902204 IWB9008	T/C	C	T	T	chr1B_379383143	
Qyld.tamu.1D.422	1D	421.8	YLD	across 11 env, 12CH, ME3	3.4-8.1	5.6-10.6	0.9-5.2	0.7-9.6	1.6-12.5	0.3-8.3	1.3-4.3	1.3-6.9	TAM 112	1D	69	68.5-69.5	IWA7675	T/C	C	T	4	chr1D_42229679	IWB74596	T/G	G	T	chr1D_426652630
Qyld.tamu.2A.80	2A	79.8	YLD	across 11 env, ME1, ME123	47-8.1	4.9-8.8	3.2-5.2	1.7-3.7	2.7-30.2	1.7-9.1	2.4-21.1	-3.1-(-7.8)	TAM 112	2A	58	57.5-58.5	IWB6749	T/C	C	T	2A	79474538	5251641_2as_536	G/A	G	A	chr2A_90656384
Qyld.tamu.4B.659	4B	659.2	YLD	across 11 env, 14EP4, ME1	3.3-8.1	3.6-8.9	3.9-5.6	1.2-5.0	3.3-10.5	1.3-2.9	0.4-3.6	2.7-9.9	TAM 112	4B	94	93.5-94.5	IWB35335	A/G	A	G	4B	658195656	IWA27	A/G	A	G	chr4B_659155620
Qyld.tamu.4D.21	4D	20.6	YLD	ME123	3.3-8.1	3.7-10.2	5.1-6.6	0.8-5.2	5.2-47.6	1.6-15.4	1.7-32.1	-3.14-(-20.3)	TAM 111	4D	0-2	4-5	IWA752	A/G	A	G	4D	20579599	IWB15038	A/G	A	G	chr4D_20579748
Qyld.tamu.4D.110	4D	109.8	YLD	across 11 env, 17BI, ME1	3.4-8.1	8.3-13.5	7.4-9.3	2.5-6.1	9.6-18.1	2.5-5.1	4.5-11.2	-3.8-(-28.1)	TAM 111	4D	13	11.5-13.5	2279925_4ds_1008	CT	T	C	6	IWB3255	A/C	C	A	A	chr4D_121181547
Qyld.tamu.4D.455	4D	455.3	YLD	across 11 env, 14CH, ME3	3.3-8.1	13.4-16.2	0.3-8.0	5.7-16.1	0.0-13.1	2.0-6.5	5.0-8.6	TAM 112	4D	28	27.5-28.5	IWB3336	T/C	T	C	0	IWB13535	395012042	T/C	T	C	chr4D_45539346	
Qyld.tamu.6A.12	6A	12.4	YLD	across 11 env, 17BI, ME1	3.4-8.1	4.4-8.7	4.6-5.1	1.2-3.6	5.1-8.8	1.7-2.4	2.7-5.9	-3.24-(-19.6)	TAM 111	6A	20	19.5-20.5	4344525_6as_6773	G/C	C	G	chr6A_12419954	4414591_6as_1756	T/G	G	T	chr6A_12459433	
Qyld.tamu.6D.20	6D	19.6	YLD	14CH, ME3	3.3-4.0	4.3	1.7	2.6	5.0-7.9	2.6	2.4	2.2-4.5	TAM 112	6D	1	0-1.5	2080712_6ds_6490	G/A	A	G	6D	1964322	434592_6ds_3413	G/A	A	G	chr6D_20474555
Qyld.tamu.7B.16	7B	15.6	YLD	12CH, ME3	3.4-4.0	6.1-6.2	5.1	1.1	10.9-13.4	8.4	5.1	-4.0-(-7.2)	TAM 111	7B1	24	23.5-24.5	IWA1089	A/C	A	C	7B1	1592759	IWB3369	T/C	T	C	chr7B_17656855
Qyld.tamu.7B.71	7B	617.0	YLD	12CH, ME3	3.4-4.0	5.1-5.3	4.4	0.9	9.3-11.0	6.8	4.2	3.6-6.7	TAM 112	7B1	100	98.5-100.5	6722360_7bs_819	CT	T	C	7	6743322_7bs_413	A/G	A	G	chr7B_61696433	
Qyld.tamu.7D.64	7D	64.3	YLD	12CH, ME3	3.4-4.0	5.0-5.1	4	1	8.8-10.9	6.4	4.4	3.5-6.4	TAM 112</														

699 17CVI, 17DMS), ME2(12CH, 14CH, 13EP4), ME3(12BD, 11BD, 13EP5); KPS: ME1(17CVI, 17DMS, 14EP4, 14EP5), ME2(11BD,
700 13EP4, 13EP5, 14CH); SPM: ME1(14EP5, 14CH), ME2(12BD, 13EP4, 13EP5, 17CVI), ME3(12CH, 17DMS); TKW: ME1(11BD,
701 12BD, 12CH, 13EP4, 13EP5, 14CH), ME2(14EP4, 14EP5, 17BI, 17CVI, 17DMS).

702 ^c PVE, phenotypic variations explained.

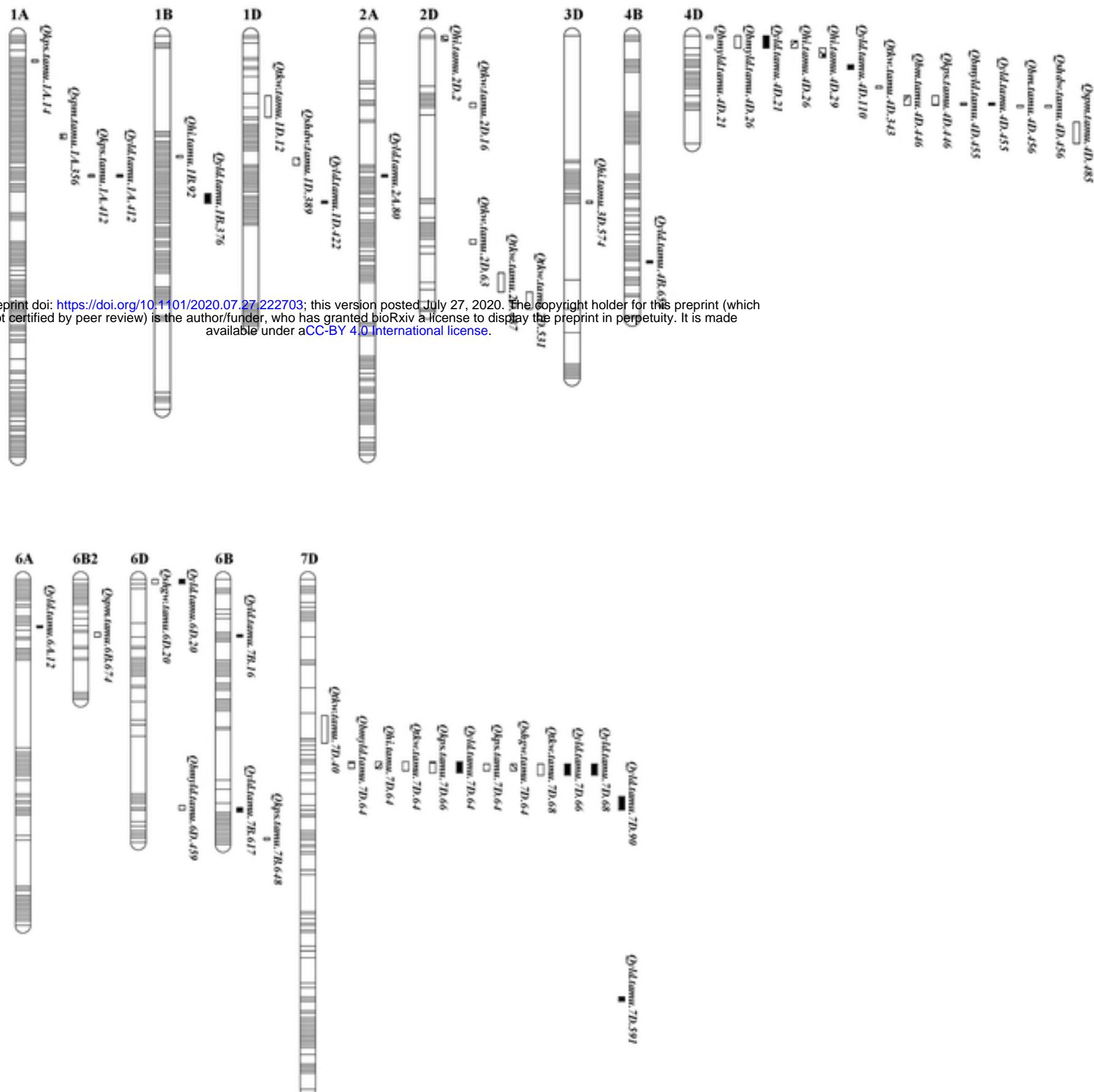
703 ^d Negative additive effects mean the favorable SNP alleles from TAM 111 to increase the traits while positive additive effects mean
704 the favorable SNP alleles from TAM 112 to increase the traits.

705

706 Consistent QTL were chosen based on the significant at least in two from the four analyses (across all env, individual env, within
707 MEs, and across MEs).

708

Table 2 Pleiotropic QTL associated with at least two different traits of yield and yield components in TAM 112/TAM 111


QTL name	Chrom	Position (Mb)	Trait ^a	Environments ^b	Overall threshold	LOD (AbxE)	PVE	PVE(A)	PVE(ABxE)	Additive effects ^c	Parental favorable alleles	Linkage group	Peak position (cM)	QTL eM interval	Left SNPs	Left SNPs 112	Left SNPs 111	Left SNPs chr_bp	Right SNPs	Right SNPs 112	Right SNPs 111	Right SNPs chr_bp	Right SNPs chr_bp		Consistent			
Qkps.tamu.1A.412	1A	411.7	KPS	across all 8 env, 17CVI, ME1, ME12	3.3-7.1	4.5-9.0	3.1-7.0	2.08	4.9-16.1	3.1-12.6	1.75	-0.24(-0.65)	TAM 111	1A	58	57.5-58.5	3975933_1al_3664	C/T	T	C	chr1A_411661876	3930957_1al_1985	G/A	A	G	chr1A_412570026	y	
Qyld.tamu.1A.412	1A	411.7	YLD	17DMS	3.35	5.23			14.29		-10.22		TAM 111	1A	58	57.5-58.5	3975933_1al_3664	C/T	T	C	chr1A_411661876	3930957_1al_1985	G/A	A	G	chr1A_412570026		
Qbmyld.tamu.4D.21	4D	20.6	BMYLD	14EP4	3.3	3.7			12.57		-7.18		TAM 111	4D	0	0-0.5	IWA752	A/G	A	G	chr4D_20579599	IWB15038	A/G	A	G	chr4D_20579748		
Qyld.tamu.4D.21	4D	20.6	YLD	across 11 env, 17CVI, ME1, ME123	3.3-8.1	3.7-10.2	5.1-6.6		5.2-47.6	1.6-15.4	-3.1(-20.3)		TAM 111	4D	0-4.5	IWA752	A/G	A	G	chr4D_20579599	IWB15038	A/G	A	G	chr4D_20579748	y		
Qbmyld.tamu.4D.26	4D	26	BMYLD	across 8 env, 14EP5, 17CVI, ME1, ME123	3.3-7.0	4.5-11.6	3.7-7.8		15.1-79.2	4.9-21.3	-3.8(-16.3)		TAM 111	4D	3-4	0-4.5	IWB15038	A/G	A	G	chr4D_20579748	IWB1488	T/C	T	C	chr4D_25989315	y	
Qhi.tamu.4D.26	4D	26	HI	ME123	4.7	9.41	0.7	8.71	25.75	1.44	24.31	-0.12	TAM 111	4D	4	1.5-4.5	IWB15038	A/G	A	G	chr4D_20579748	IWB1488	T/C	T	C	chr4D_25989315		
Qkps.tamu.4D.446	4D	445.5	KPS	12BD, ME2	3.3-4.6	5.8-6.1	3.4	16.8	7.6		0.27-0.72		TAM 112	4D	27	24.5-28.5	IWA5751	T/G	T	G	chr4D_408792701	IWB3336	T/C	T	C	chr4D_445500980	y	
Qbmt.tamu.4D.446	4D	445.5	BM	14EP5_BLUE	3.3	4.4			15.3		-54.1		TAM 111	4D	27	24.5-28.5	IWA5751	T/G	T	G	chr4D_408792701	IWB3336	T/C	T	C	chr4D_445500980		
Qbmyld.tamu.4D.455	4D	455.3	YLD	across 11 env, 14CH, ME3	3.3-8.1	13.4-16.2	0.03-8.0		2.0-28.8	0.01-13.1	2.0-6.5	5.0-8.6	TAM 112	4D	28	27.5-28.5	IWB3336	T/C	T	C	chr4D_445500980	IWB19353	T/C	T	C	chr4D_45533946	y	
Qbmt.tamu.4D.456	4D	455.8	BM	14CH, ME1	3.3-4	3.4-4.0	0.3		17.4	8.7	2.7-12.1		TAM 112	4D	29	28.5-29.5	IWB3336	C/G	C	G	chr4D_445500980	IWB4875	T/C	T	C	chr4D_456087408	y	
Qshdw.tamu.4D.456	4D	455.8	SHDW	14CH	3.3	4.32			15.62		14.98		TAM 112	4D	29	28.5-29.5	IWB3336	C/G	C	G	chr4D_455764314	IWB4875	T/C	T	C	chr4D_456087408		
Qshgw.tamu.6D.20	6D	19.6	SHGW	12CH	3.36	4.03			8.51		12.75		TAM 112	6D	1	0-1.5	2080712_6ds_6490	G/A	A	G	chr6D_19643622	2122439_6ds_3413	G/A	A	G	chr6D_20474555		
Qyld.tamu.6D.20	6D	19.6	YLD	14CH, ME3	3.3-4.0	4.31	1.68		5.0-7.9	2.6	2.2-4.5		TAM 112	6D	1	0-1.5	2080712_6ds_6490	G/A	A	G	chr6D_19643622	2122439_6ds_3413	G/A	A	G	chr6D_20474555	y	
Qkps.tamu.7D.64	7D	64.3	KPS	across 8 env	7.1	9.77	0.94	8.83	3.68	0.42	3.26	-0.09	TAM 111	7D	80	79.5-82.5	IWB35446	T/C	T	C	chr7D_60599997	3950120_7ds_5316	C/T	T	C	chr7D_64327425		
Qbmyld.tamu.7D.64	7D	64.3	BMYLD	across 8 env, 12CH, ME2	3.4-7.0	6.2-10.4	0.1-3.7		8.8-15.2	0.1-7.5	5.1-7.0		TAM 112	7D	80	78.5-81.5	IWB35446	T/C	T	C	chr7D_60599997	3950120_7ds_5316	C/T	T	C	chr7D_64327425	y	
Qhi.tamu.7D.64	7D	64.3	HI	across 9 env, 12CH, ME2, ME123	3.4-7.5	5.4-11.9	1.3-5.8		4.9-18.4	0.8-10.2	0.1-0.6		TAM 112	7D	80	78.5-81.5	IWB35446	T/C	T	C	chr7D_60599997	3950120_7ds_5316	C/T	T	C	chr7D_64327425	y	
Qshgw.tamu.7D.64	7D	64.3	SHGW	across 7 env, 12CH	3.4-6.5	6.9-10.2	2.8	7.3	3.0-14.8	1.1	1.9	4.4-16.7		TAM 112	7D	80	79.5-82.5	IWB35446	T/C	T	C	chr7D_60599997	3950120_7ds_5316	C/T	T	C	chr7D_64327425	y
Qtkw.tamu.7D.64	7D	64.3	TKW	across 11 env, 17DMS, ME2	3.4-8.2	7.3-17.6	12.7-15.6		6.7-20.1	3.6-8.9	0.3-0.9		TAM 112	7D	80	78.5-82.5	IWB35446	T/C	T	C	chr7D_60599997	3950120_7ds_5316	C/T	T	C	chr7D_64327425	y	
Qyld.tamu.7D.64	7D	64.3	YLD	12CH, ME3	3.4-4.0	5.0-5.1	4		8.8-10.9	6.4	3.5-6.4		TAM 112	7D	80	78.5-83.5	IWB35446	T/C	T	C	chr7D_60599997	3950120_7ds_5316	C/T	T	C	chr7D_64327425	y	
Qkps.tamu.7D.66	7D	66.3	KPS	17BI	3.4	5.07			14.24		-0.53		TAM 111	7D	81	78.5-83.5	3950120_7ds_5316	C/T	T	C	chr7D_64327425	IWA1247	T/C	T	C	chr7D_72946905		
Qyld.tamu.7D.66	7D	66.3	YLD	across 11 env, ME123	4.7-8.1	8.6-10.9	0.25-0.79	8.4-10.1	2.2-11.3	0.23-0.58	10.7	-0.9(-1.2)		TAM 111	7D	81	79.5-84.5	3950120_7ds_5316	C/T	T	C	chr7D_64327425	IWA1247	T/C	T	C	chr7D_72946905	
Qyld.tamu.7D.68	7D	68.3	YLD	across 11 env	8.1	10.90	0.79	10.11	2.18	0.23	1.94	-1.17		TAM 111	7D	82	79.5-84.5	3950120_7ds_5316	C/T	T	C	chr7D_60599997	IWA1247	T/C	T	C	chr7D_72946905	
Qtkw.tamu.7D.68	7D	68.3	TKW	17BI	3.4	3.56			13.87		0.64		TAM 112	7D	82	79.5-84.5	3950120_7ds_5316	C/T	T	C	chr7D_60599997	IWA1247	T/C	T	C	chr7D_72946905		

^a Abbreviation of traits: YLD plot yield from combine, TKW thousand kernel weight, KPS kernels spike⁻¹, SPM spikes m⁻², HI harvest index, BM biomass sample of 0.5 meter long of inner row, BMYLD yield from biomass sample of 0.5 m long in an inner row, MSHW mean single head weight, MHGW mean head grain weight, and AG agronomic score.

^b Abbreviation of environments: Texas AgriLife Research stations in Bushland, TX in 2011, 2012, 2017 (11BD, 12BD, 17BD), irrigated in 2017 (17BI) Chillicothe, TX in 2012 and 2014 (12CH and 14CH), and two irrigated levels (75% and 100%) in Etter, TX in 2013 and 2014 (13EP4, 13EP5, 14EP4 and 14EP5), Clovis, NM irrigated in 2017 (17CVI), Mega-environments (MEs) are as follow: BM: ME1 (11BD, 14CH, 14EP4), ME2 (13EP4, 13EP5); BMYLD: ME1 (11BD, 14CH), ME2 (13EP4, 12BD, 12CH), ME3 (14EP4, 14EP5, 17CVI); YLD: ME1(17BI, 17CVI, 14EP4, 14EP5), ME2(12BD, 13EP4, 13EP5), ME3(12CH, 14CH); HI: ME1(14EP5, 17BI, 17CVI, 17DMS), ME2(12CH, 14CH, 13EP4), ME3(12BD, 11BD, 13EP5); KPS: ME1(17CVI, 17DMS, 14EP4, 14EP5), ME2(11BD, 13EP4, 13EP5, 14CH); SPM: ME1(14EP5, 14CH), ME2(12BD, 13EP4, 13EP5, 17CVI), ME3(12CH, 17DMS); TKW: ME1(11BD, 12BD, 12CH, 13EP4, 13EP5, 14CH), ME2(14EP4, 14EP5, 17BI, 17CVI, 17DMS).

^c Negative additive effects mean the favorable SNP alleles from TAM 111 to increase the traits while positive additive effects mean the favorable SNP alleles from TAM 112 to increase the traits.

Fig 1. Consistent and pleiotropic QTL identified from individual and mega-environments for all traits. Traits include 1) Yield from combine plots (YLD), 2) dry biomass from hand harvested 0.5 m long inner row sample from crown (BM), 3) grain weight from b) as hand harvested dry grain (BMYLD), 4) harvest index (HI), 5) kernels spike⁻¹ (KPS), 6) spikes m⁻² (SPM), 7) thousand kernel weight (TKW), 8) single head dry weight (SHDW), 9) single head grain weight (SHGW). Identified QTL were designated in the format as *Qtrait.tamu.chrom.Mb*.

bioRxiv preprint doi: <https://doi.org/10.1101/2020.07.27.222703>; this version posted July 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.