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Abstract:

The SARS-CoV-2 infected cases and the caused mortalities have been surging since the
COVID-19 pandemic. Viral mutations emerge during the virus circulating in the
population, which is shaping the viral infectivity and pathogenicity. Here we extensively
analyzed 6698 SARS-CoV-2 whole genome sequences with specific sample collection dates
in NCBI database. We found that four mutations, i.e., S’UTR_c-241-t, NSP3 ¢-3037-t,
NSP12 c-14408-t, and S_a-23403-g, became the dominant variants and each of them
represented nearly 100% of all virus sequences since the middle May, 2020. Notably, we
found that co-occurrence rates of three significant multi-site co-mutational patterns, i.e., (i)
S_a-23403-g, NSP12_c-14408-t, S’UTR_c-241-t, NSP3_¢-3037-t, and ORF3a_c-25563-t; (ii)
ORF8_t-28144-c, NSP4_c-8782-t, NSP14_c-18060-t, NSP13_a-17858-g, and NSP13_c-
17747-t; and (iii) N_g-28881-a, N_g-28882-a, and N_g-28883-c, reached 66%, 90%, and
nearly 100% of recent sequences, respectively. Moreover, we found significant decrease of
CpG dinucleotide at positions 241(c)-242(g) in the S’UTR during the evolution, which was
verified as a potential target of human zinc finger antiviral protein (ZAP). The four
dominant mutations, three significant multi-site co-mutations, and the potential escape
mutation of ZAP-target in 5’UTR region contribute to the rapid evolution of SARS-CoV-2
virus in the population, thus shaping the viral infectivity and pathogenicity. This study
provides valuable clues and frameworks to dissect the viral replication and virus-host

interactions for designing effective therapeutics.

One Sentence Summary: Four dominant mutations, three significant multi-site co-mutations,
and 5’UTR CpG escape contribute to the rapid evolution of SARS-CoV-2 virus.

2


https://doi.org/10.1101/2020.07.21.213405
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

15

20

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.21.213405; this version posted July 27, 2020. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Main Text:

Since the outbreak of COVID-19 in December 2019, it has been pandemic in over 200
countries. The infected cases and the mortalities have been surging, which is an ongoing threat to
the public health (/, 2). COVID-19 is caused by infection with a novel coronavirus SARS-CoV-2
(3-5). Even though as a coronavirus, SARS-CoV-2 has genetic proofreading mechanisms (6-8),
the persistent natural selective pressure in the population drives the virus to gradually accumulate
favorable mutations (6, 9). Considerable attention is given to the mutation and evolution of
SARS-CoV-2, for that viral mutations have important impact on the infection and pathogenicity
of viruses (/0). The beneficial mutants can better evolve and adapt to host (9), either
strengthening or weakening the infectivity and pathogenicity. In addition, the variants may
generate drug resistance and shrink the efficacy of vaccine and therapeutics (//, 12). Dissecting
the evolutional trajectory of the virus in the population provides important clues to understand

the viral replication and virus-host interactions and helps designing effective therapeutics.

In this study, we used a NCBI dataset consisting of 6698 high-quality SARS-CoV-2 whole
genome sequences with sample collection dates ranging from Dec. 20, 2019 to Jun. 8, 2020. By
extensive sequence analysis, we identified the significant and convergent features of the
accumulated viral mutations and CpG variations over time. Specifically, in the 29903nt viral
genome, four significant mutations, i.e., S'UTR c¢-241-t, NSP3 ¢-3037-t, NSP12 c-14408-t, and
S a-23403-g, were found to become the dominant variants since early March, 2020, and each of
them reached almost 100% of all virus sequences. By global statistical analyzing, we identified
14 mutation sites with significant high rates. In addition, we evaluated the mutation trajectories
by each day and every 10 days, and notably identified three co-mutation patterns consisting of

these 13 sites (among these 14 sites) with surprisingly high co-occurrence rates. Moreover, we
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found the significant decrease of CpG dinucleotides in the viral genome over time, suggesting an
evolutional escape of host innate immunity of CpG (/3-15). The dissected evolution trajectory
that the four dominant mutations, three significant multi-site co-mutations, and CpG (decrease)
mutation contribute to the rapid evolution of SARS-CoV-2 virus in the population, which shapes
the viral infectivity and pathogenicity. This study provides valuable clues and frameworks to

dissect the viral replication and virus-host interactions for designing effective therapeutics.

RESULTS

Dominant mutations appeared in SARS-CoV-2 in COVID-19 population over time

To explore the mutational landscape of SARS-CoV-2 during virus circulating in the
COVID-19 population since the outbreak of COVID-19, we aligned 6698 high quality full-
length genome sequences across all major regions with viral sample collection dates ranging
from Dec. 20, 2019 to Jun. 8, 2020 (table S1). As the mutation landscape was massive up to date,
we identified 82 mutation sites with mutation rate >1% to draw a heatmap (Fig. 1A). As shown
in Fig. 1, the Y-axis represents the collection dates of COVID-19 samples, each of which
contains 1~225 sequences. According to the first posted viral sequence (NC_045512), there were
accumulated mutations during the virus circulating and apparently new mutation sites gradually
emerged since the end of Feb. 2020. Noted that several highly mutated sites appeared before Feb.
22,2020, which was likely due to the limited collected sequences available at that time and
accidental random mutations, i.e., a high mutation rate resulted from even one mutation site. Up
to now, there were at least four dominant mutations (5’UTR_c-241-t, NSP3 c¢-3037-t, NSP12 c-
14408-t, and S_a-23403-g) (Fig. 1A), where S a-23403-g mutation resulted in the amino acid

change (D614G) that enhances viral infectivity (6, 16), albeit debate exists (/0). In particular,
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each of them covered almost 100% of all virus sequences since the middle May 2020. Focusing
on eight mutation sites (5S'UTR c-241-t, NSP3 ¢c-3037-t, NSP12 c-14408-t, S a-23403-g,
ORF3a g-25563-t, N g-28881-a, N g-28882-a, and N_g-28883-c), all the sites sites began to
have very high mutation rates since May 2020 (Fig. 1B to 1F). Notably, mutations in three
adjacent sites in N (N_g-28881-a, N g-28882-a, and N_g-28883-c) co-occurred (Fig. 1G-I),

suggesting a strong selection pressure.

Strong co-occurrent mutations appeared on multiple sites over time

We assessed the mutations of all residues of the SARS-CoV-2 based on the collected
genome sequences. The top 34 mutation sites (with mutation rate>2%) were listed in Fig. 2A.
Clearly, there were four dominant mutants (S_a-23403-g, NSP12 ¢-14408-t, SSUTR c¢-241-t, and
NSP3 ¢-3037-t). The three adjacent sites in Nucleocapsid (N) also had considerably high
mutation rates (>0.08). By analyzing the top 34 mutations, there were biased mutation patterns,
e.g. the ratio of c-to-t (c-t) was more than 44% (Fig. 2B). We then studied the global co-
occurrence relationships of the 34 mutations. We found that there were strong co-occurrence site
pairs/associations (Fig. 2C) such as the following three multi-site patterns (i) S_a-23403-g,
NSP12 c¢-14408-t, S'UTR c-241-t, NSP3 ¢-3037-t, ORF3a c-25563-t, and ORF3a g-25563-t;
(i) ORF8_t-28144-c, NSP4 c-8782-t, NSP14 c-18060-t, NSP13 a-17858-g, and NSP13 c-
17747-t; and (iii)) N_g-28881-a, N_g-28882-a, and N_g-28883-c. We further quantified the co-
occurrence significance (the ratio of co-occurrence mutants to all sequence examples, also called
Support (/7-19) in data mining) among the top 11 mutation sites (mutation rate>10%) (Fig. 2E
to 2I). The Y-axes represented the co-occurrence site pairs. For simplicity, we used gene names
instead of their mutation sites in Fig. 2E to 2I. The corresponding mutational positions of genes
were given in Fig. 2E in details. From Fig. 2F, every mutational association was significant
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(>0.10) in all collected genome sequences and almost all associations (except NSP4-NSP13a pair)
met strong co-occurrence relationships (>0.60). Figs. 2H-2J show 3-to-6 mutation-site (multi-site)
co-occurrences. Interestingly, all mutational associations in Fig. 2H to 2J follow significant and
strong co-occurrence relationships. The significant co-occurrences of multi-site mutations may

suggest that these sites closely interact with each other during the evolution.

Co-evolution of multi-sites in COVID-19 population

The strong co-occurrence relationships of multi-sites in COVID-19 virus suggested co-
mutational evolution. We then investigated the co-occurrences of three groups involving 14 sites
on a time scale of about per ten days. As shown in Fig. 3A, the mutation rates of the first group
containing 6 sites (S_23403, NSP12 14408, 5'UTR 241, NSP3 3037, ORF3a 25563,

ORF3a 25563, and NSP2 1059) exhibited very similar trends. Strikingly, 4 mutant sites
(S_23403, NSP12 14408, S'UTR 241, and NSP3 3037) almost shared a same mutation rate
curve. A second group involved 5 sites (ORF8 28144, NSP4 8782, NSP14 18060,

NSP13 17858, and NSP13 17747) and two mutant sites (ORF8 28144 and NSP4 8782) shared
a same mutation rate curve whereas the other three mutant sites (NSP14 18060, NSP13 17858,
and NSP13 17747) almost had a same mutation rate curve (Fig. 3B). We analyzed the
correlations of the 11 mutant sites of the first and the second groups on a 15 intervals by Pearson
Correlation Coefficient (PCC) (20-22), and expressed them by heatmap (Fig. 3C). There were
two red (6*6 and 5*5) regions that corresponded to the first and the second mutant groups,
respectively. As expected, the top 5 mutation sites, especially the top 4 sites in the first group
exhibited a very strong correlation. In the second red (5*5) region corresponded to the second

group, there were two subgroups containing a two-site (ORF8 28144 and NSP4 8782) and a

6
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triple-site (NSP14_ 18060, NSP13 17858 and NSP13 17747) exhibited very strong correlations,

respectively (Fig. 3C).

Unlike the first and the second groups, the third group consisted of three adjacent mutation
sites in nucleocapsid region (N_28881, N 28882, and N_28883). The mutation rate curve of
these sites almost overlapped with each other and the mutation rates of these sites increased over
time (Fig. 3D). The correlations of these sites were nearly 1.0 (Fig. 3D), suggesting a strong co-

evolution.

Based on the relationships of the top two multi-site mutation groups, we illustrated the
correlation networks of these mutations. As shown in Fig. 3E, the correlation networks of the
first group mutation sites showed a six-pointed star and that of the second group showed a five-
pointed star network. The mutation sites exhibited strong correlations with each other (Fig. 3E)
within each star/group. Furthermore, we evaluated the correlations from Feb. 21 to May 31, 2020
and found that five sites (S 23403, NSP12 14408, 5'UTR 241, NSP3 3037, ORF3a 25563, and
ORF3a 25563) of the first group and all sites (ORF8 28144, NSP4 8782, NSP14 18060,
NSP13 17858, and NSP13 17747) of the second group very strongly correlated with each other
within their groups (Fig. 3F, Figs. 3G-P). In short, such three significant multi-site co-mutations

involving 13 sites indicated the evolution of SARS-CoV-2 with a rapid rate.

The mutations either changed the amino acid sequence or not. The mutation NSP2 ¢c-1059-t
resulted in an amino acid change (T851) in the NSP2; the mutation NSP12 c-14408-t resulted in
an amino acid change in the viral RNA-dependent RNA polymerase NSP12 (P323L) (Fig. 4B);
the mutation S_a-23403-g resulted in an amino acid change in Spike protein (S)(D614G), which

enhances viral infectivity (6, 16); the mutation ORF3a g-25563-t resulted in an amino acid
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change (Q57H) in Spike protein in ORF3a; the mutation NSP13 ¢-17747-t and NSP13 a-17858-
g resulted in an amino acid changes P504L and Y541C in the NTPase/helicase domain NSP13,
respectively; the mutation ORF8 t-28144-c resulted in an amino acid change (L84S) in the
ORFS8; the mutations N_g-28881-a, N g-28882-a, N g-28883-c resulted amino acid changes
R203K, R203S and G203R in the nucleocapsid N, respectively (Fig. 3P). In contrast, the
mutations NSP14 c-18060-t and NSP3 ¢-3037-t were synonymous mutations without amino
acid changes (Fig. 3P). The mutation 5S'UTR_c-241-t located in the 5'-non-translated region and

did not change the predicted RNA structure of 5'UTR (Fig. 4A).

Significant decrease of CpG dinucleotide content in 5’UTR in COVID-19 population over

time

The CpG content of viral genome is restricted by host intrinsic zinc finger antiviral protein
that interacts with CpG rich-region and mediates depletion of foreign viral RNAs (74, 23).
Comparing with other coronaviruses, SARS-CoV-2 genome exhibits extreme CpG deficiency
(13). However, the evolutional trajectory of SARS-CoV-2 CpG-content within the same species
is still unclear. We investigated the CpG-content changes in SARS-CoV-2 since the outbreak. As
shown in Fig. 5A and 5B, the CpG dinucleotide content exhibited a decreased trend over time.
The CpG-content in each SARS-CoV-2 genome regions varied, with high CpG-contents the
5'UTR, NSP1, E and ORF10 regions and low CpG-contents in NSP8, ORF6 regions. Notably,
the NSP7 region was free of CpG dinucleotide (Fig. 5C). Comparing with the first posted SARS-
CoV-2 genome (NC_045512), in the very recent SARS-CoV-2 genomes, only the CpG-contents
of S'UTR decreased significantly but not the other CpG high content regions NSP1, E and

ORF10 (Fig. 5D, E), suggesting a biased evolution pressure on this region.


http://www.baidu.com/link?url=1s0fLU5HmWFJ_eJPhMYFlpaU1jkMhPL7tGcgjwz__lvOvOUz2QHW9I76gEEGwtebqgwkPYda085-OIlsN9AjTTAc1h0bbZ4eROpLr2rNrP27kRkRBfdqqyeXYBXg3XbS
https://doi.org/10.1101/2020.07.21.213405
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

15

20

25

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.21.213405; this version posted July 27, 2020. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

CONCLUSION

Our comprehensive and massive mutation and correlation analyses identified four dominant
mutation sites (5S'UTR_c-241-t, NSP3 ¢-3037-t, NSP12 c-14408-t, and S a-23403-g) and
revealed three significant multi-site co-mutational patterns (S_a-23403-g, NSP12 c-14408-t,
5'UTR c-241-t, NSP3 ¢-3037-t, ORF3a c-25563-t; ORF8 t-28144-c, NSP4 c-8782-t,

NSP14 c-18060-t, NSP13 a-17858-g, NSP13 c¢-17747-t; and N_g-28881-a, N g-28882-a, N g-
28883-c). Some of the mutations changed the amino acid sequence in the viral RNA-dependent
RNA polymerase nsp12 (P323L), Spike protein (S) (D614G), ORF3a (Q57H), NTPase/helicase
domain nsp13 (P504L, Y541C), ORFS8 (L84S) and nucleocapsid N (R203K, R203S, G203R), or
did not change the amino acid sequence (NSP14 ¢-18060-t and NSP3 ¢-3037-t), which may
affect viral replication or virus-host interaction. Other mutations were synonymous mutations
without amino acid changes (Fig. 3G). And mutations located in the 5'-non-translated region
(5'UTR_c-241-t) that did not change the predicted RNA structure. Moreover, we found gradual
but significant decrease of CpG-content in S'UTR region over time, which suggested the 5'UTR
region as a potential ZAP target. Taken together, our study provides valuable clues and
frameworks to dissect the viral replication and virus-host interactions for designing effective

therapeutics.
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Fig. 1. Ongoing and dominant mutations of SARS-CoV-2 over time. (A) The global
mutational landscape of top 1% mutation rates from Dec. 20, 2019 to May 31, 2020. The
mutation of SARS-CoV-2 is clearly ongoing and yet with a rapid rate. (B)-(I) show the mutation
transitions of 8 sites from Dec. 20, 2019 to May 31, 2020. The sky-blue represents the rates of
the original nucleic acids in reference sequence, and the dark-golden the rates of the mutant
nucleic acids. Note that the 5 mutations (subfigures B to F), i.e., 5'UTR c-241-t, NSP3 ¢-3037-t,
NSP12 c-14408-t, and S_a-23403-g, and ORF3a c-25563-t, especially the top 4 ones have
clearly become the dominant mutants. The three adjacent mutations (subfigures Gto I, N g-
28881-a, N g-28882-a, and N_g-28883-c) increase daily on the whole. The transitions of the six
other significant mutation sites are shown in figs. S1F and figs. S2A-E.
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Fig. 2. Co-ocurrence mutations of SARS-CoV-2 over time. (A) Top 2% mutation sites involve
34 sties. The top 11 sites hold significant high mutation rates. (B) Mutation bias of the top 34
mutants. (C) Co-occurrence heatmap of top 2% mutation sites in order of mutational significance.
The X-axis and Y-axis share the same tick labels (mutation sites along with their positions in
reference sequence NC_045512) as shown in Y-axis. The top 14 sites were clustered into three
high co-occurrence groups. (D) Query table of top 11 mutation sites. We used gene names
instead of their mutation sites in subfigures (E) to (I), for simplicity. (E) Co-occurrences of 2
mutation sites. Each tick label of Y-axis, like S-NSP12, represents the mutation-site
association/pattern of gene S (position 23403) and NSP12 (position 14408). The detailed
positions of these mutations are shown in subfigures (E). (F) Co-occurrences of 3 mutation sites.
(G) Co-occurrences of 4 mutation sites. (H) Co-occurrences of 5 mutation sites. (I) Co-

occurrences of 6 mutation sites.
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Fig. 3. Co-evolution of multi-sites in COVID-19 population over time. (A) Mutation trends of
top 6 sites in Fig. 2A from Dec. 20, 2019 to May 31, 2020. (B) Mutation trends from the 7th to
11th sites in Fig. 2A. (C) Global co-mutational heatmap of top 11 in Fig. 2A sites since Dec. 20,
2019. (D) Mutation trends and co-mutational heatmap of three adjacent Nucleocapsid sites (from
12th to 14th sites in Fig.2A). (E) Correlation networks of significant co-mutation sites. The left
two sites show the correlation relationships from Dec. 20, 2019 to May 31, 2020, and the right
two from Feb. 21, 2020 to May 31, 2020. (F) Co-mutational heatmap of top 11 sites with sample
collection dates from Feb. 21, 2020 to May 31, 2020. (G)-(K) Mutation transitions of five-site
co-mutations in the first group. (L.)-(P) Mutation transitions of five-site co-mutations of the
second group. The mutation transitions of the third group are shown in Fig. 1G-1. (Q) The
mutational positions of multi-site co-mutations consisting of 5-, 5- and 3-site co-mutations.
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Fig. 4. Structure of 5’UTR and SARS-CoV-2 RdARp/RNA complex. (A) Predicted RNA

structure of the SARS-CoV-2 5’UTR. RNA structure of the 400-nt 5’UTR was predicted by

“RNAstructure” (http://rna.urmc.rochester.edu/RNAstructureWeb). The start codon for nspl was

5 in grey. The TRS-L was in orange. The mutated nucleotides were in red. The bottom panel,

alignment of the 5S’UTR of SARS-CoV-2 with 5’UTRs of related viruses. The c241 was

highlighted. (B) Structure of SARS-CoV-2 RdRp/RNA complex. The structure of SARS-CoV-2

RdARp/RNA complex (PDB, 6X2G) was visualized by Chimera (UCSF). The P323 mutation (in

red) was indicated. The alignment of the amino acid sequences of SARS-CoV-2 and related

10 viruses near the P323 position. The P323 was highlighted.
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Fig. 5. CpG-content decrease in COVID-19 population over time. (A) Trend of CpG decrease
of COVID-19 genome per day. (B) Trend of CpG decrease of COVID-19 genome by intervals of
about 10 days. (C) CpG changes of all genes. The significant decrease of only 5’UTR region
indicates that 5’UTR is the potential target gene of ZAP. (D) Trend of CpG decrease of 5’UTR

region by about 10 days. (E) CpG change trends of NSP1, Envelope, and ORF10.
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