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ABSTRACT

Background: One of the most important recent discoveries in brain glioma biology has been the
identification of the isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion status as
markers for therapy and prognosis. 1p/19q co-deletion is the defining genomic marker for
oligodendrogliomas and confers a better prognosis and treatment response than gliomas without
it. Our group has previously developed a highly accurate deep-learning network for determining
IDH mutation status using T2-weighted MRI only. The purpose of this study was to develop a
similar 1p/19q deep-learning classification network.

Methods: Multi-parametric brain MRI and corresponding genomic information were obtained
for 368 subjects from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas
(TCGA). 1p/19 co-deletions were present in 130 subjects. 238 subjects were non co-deleted. A
T2w image only network (1p/19g-net) was developed to perform 1p/19q co-deletion status
classification and simultaneous single-label tumor segmentation using 3D-Dense-UNets. Three-
fold cross-validation was performed to generalize the network performance. ROC analysis was
also performed. Dice-scores were computed to determine tumor segmentation accuracy.

Results: 1p/19g-net demonstrated a mean cross validation accuracy of 93.46% across the 3 folds
(93.4%, 94.35%, and 92.62%, standard dev=0.8) in predicting 1p/19q co-deletion status with a
sensitivity and specificity of 0.90 £0.003 and 0.95 £0.01, respectively and a mean AUC of 0.95
+0.01. The whole tumor segmentation mean Dice-score was 0.80 + 0.007.

Conclusion: We demonstrate high 1p/19g co-deletion classification accuracy using only T2-
weighted MR images. This represents an important milestone toward using MRI to predict

glioma histology, prognosis, and response to treatment.
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Keypoints — 1. 1p/19 co-deletion status is an important genetic marker for gliomas. 2. We

developed a non-invasve, MRI based, highly accurate deep-learning method for the

determination of 1p/19q co-deletion status that only utilizes T2 weighted MR images
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IMPORTANCE OF THE STUDY

One of the most important recent discoveries in brain glioma biology has been the
identification of the isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion status as
markers for therapy and prognosis. 1p/19q co-deletion is the defining genomic marker for
oligodendrogliomas and confers a better prognosis and treatment response than gliomas without
it. Currently, the only reliable way to determine 1p/19q mutation status requires analysis of
glioma tissue obtained either via an invasive brain biopsy or following open surgical resection.
The ability to non-invasively determine 1p/19q co-deletion status has significant implications in
determining therapy and predicting prognosis. We developed a highly accurate, deep learning
network that utilizes only T2-weighted MR images and outperforms previously published image-
based methods. The high classification accuracy of our T2w image only network (1p/19g-net) in
predicting 1p/19qg co-deletion status marks an important step towards image-based stratification
of brain gliomas. Imminent clinical translation is feasible because T2-weighted MR imaging is

widely available and routinely performed in the assessment of gliomas.
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INTRODUCTION

Genetic profiling and molecular subtyping of glial neoplasms has revolutionized our
ability to optimize therapeutic strategies and enhance prognostic accuracy. Perhaps the most
compelling evidence supporting this paradigm is the 2016 revision of the World Health
Organization’s (WHO) classification of gliomas which now includes genetic analysis. The
impact of glioma reclassification based on molecular profiling has subsequently been studied and
three genetic adterations have been extensively vaidated: O-6-methylguanine-DNA

methyltransferase (MGMT), Isocitrate dehydrogenase (IDH), and 1p/19q co-deletion status.*

MGMT is a DNA repair enzyme that protects normal and glioma cells from alkylating
chemotherapeutic agents. Mutations that result in methylation of the MGMT promoter result in
loss of function of the enzyme and its protective effect. Mutations of IDH alter the function of
the enzyme to produce D-2-hydroxyglutarate instead of a-ketoglutarate. This altered function
results in increased senditivity of the glioma to radiation and chemotherapy. Gliomas that are
IDH mutated can be further divided into gliomas with or without a 1p/19q co-deletion. The
1p/19q co-deletion is defined as the combined loss of the short arm of chromosome 1 (1p) and
the long arm of chromosome 19 (19q). According to the 2016 WHO classification of gliomas, an
IDH mutated glioma with a 1p/19q co-deletion is classified as an oligodendroglioma, whereas an
IDH mutated glioma without a 1p/19q co-deletion is classfied as a diffuse astrocytoma.
Oligodendrogliomas have a better prognosis when compared to diffuse astrocytomas.
Additionally, even patients with an IDH-mutated anaplastic oligodendroglioma (WHO grade I11)
have alonger median overall survival than IDH-wild type, 1p/19q non co-deleted, WHO grade |1

astrocytomas and are more responsive to chemotherapy.? Therefore, determination of 1p/19q
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status in IDH mutated gliomas is critical for guiding therapy and predicting prognosis.
Currently, the only reliable way to determine 1p/19q mutation status requires analysis of glioma
tissue obtained either via an invasive brain biopsy or following open surgical resection. These
diagnostic procedures carry the burden of implicit risk. Therefore, considerable attention has

been dedicated to devel oping non-invasive, image-based diagnostic methods.

Recent advances in deep-learning have led to a significant interest in advancing
techniques for non-invasive, image-based molecular profiling of gliomas. Our group has
previously demonstrated a highly-accurate, MRI-based, voxel-wise deep-learning IDH-
classification network using only T2-weighted (T2w) MR images.® T2w images facilitate clinical
trandation because they are routingly acquired, they can be obtained within 2 minutes, and high
quality T2w images can even be obtained in the presence of active patient motion. Because the
current standard of care for IDH mutated gliomas is heavily influenced by 1p/19q co-deletion
status, the purpose of this study was to develop a highly accurate, fully automated deep-learning

3D network for 1p/19 co-deletion classification using T2-weighted images only.

MATERIAL & METHODS
Data and Pre-processing

Multi-parametric brain MRI data of glioma patients were obtained from the Cancer
Imaging Archive (TCIA) database.*> Genomic information was provided from both the TCIA
and TCGA (the cancer genome atlas) databases.*® Only pre-operative studies were used. Studies
were screened for the availability of 1p/19q status and T2w image series. The final dataset of 368

subjectsincluded 268 low grade glioma (LGG, 130 co-deleted, 138 non co-deleted) and 100 high
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grade glioma (HGG, all non co-deleted) subjects. TCGA subject IDs, 1p/19q co-deletion status,

and tumor grade are listed in Table 1 of the supplementary data.

Tumor masks for 209 subjects were available through previous expert segmentation. "2
Tumor masks for the remaining 159 subjects were generated by the 3D-IDH network® and
validated by in-house neuro-radiologists. The tumor masks were used as ground truth for tumor
segmentation in the training step. Ground truth whole tumor masks for 1p/19q co-deleted type
were labelled with 1s and the ground truth tumor masks for 1p/19q non co-deleted type were
labelled with 2s (Figure 1). Data preprocessing steps included (&) co-registering the T2w image
to SR124 T2 template’ using ANTs affine registration', (b) skull stripping using Brain
Extraction Tool (BET)™ from FSL™*, (c) N4BiasCorrection to remove RF inhomogeneity™,

and (d) intensity normalization to zero-mean and unit variance. The pre-processing took less than

1p/19q
Co-deleted type

1p/19q non
co-deleted type

Fig. 1. Ground truth whole tumor masks.
Red voxels represent 1p/19q co-del etion status (values of 1) and green voxels represent 1p/199 non
co-deletion status (values of 2). The ground truth labels have the same co-deletion status for all
voxelsin each tumor.
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5 minutes per dataset.

Network Details

Transfer learning was performed with the previoudly trained 3D-IDH network for 1p/19q
classification.® The decoder part of the network was fine-tuned for a voxel-wise dual-class
segmentation of the whole tumor with Classes 1 and 2 representing 1p/19q co-deleted and
1p/19qg non co-deleted type respectively. The schematics for the network architecture are shown

in Figure 2B. A detailed description of the network is given in the supplemental material section.
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Fig. 2. (A) 1p/19g-net overview.

Voxel-wise classification of 1p/19q co-deletion statusis performed to create 2 volumes
(1p/19q co-deleted and 1p/19q non co-deleted). Volumes are combined using dual
volume fusion to eliminate fal se positives and generate a tumor segmentation volume.
Majority voting across voxels is used to determine the overall 1p/19q co-deletion status.
Fig. 2. (B) Network architecturefor 1p/19g-net.
3D-Dense-UNets were employed with 7 dense blocks, 3 transition down blocks, and 3
transition up blocks.
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Networ k I mplementation and Cross-validation

To generalize the reiability of the networks, a 3-fold cross-validation was performed on
the 368 subjects by randomly shuffling the dataset and distributing it into 3 groups
(approximately 122 subjects for each group). During each fold of the cross-validation procedure,
the 3 groups were aternated between training, in-training validation and held-out testing. Group
1 had 122 subjects (43 co-deleted, 79 non co-deleted), Group 2 had 124 subjects (44 co-deleted,
80 non co-deleted), and Group 3 had 122 subjects (43 co-deleted, 79 non co-deleted). An in-
training validation dataset helps the network improve its performance during training. Each fold
of the cross-validation is a new training phase based on a unique combination of the 3 groups.
However, network performance is only reported on the held-out testing group for each fold as it
is never seen by the network. The group membership for each cross-validation fold is listed in

Table 1 of the supplementary data.

Seventy-five percent overlapping patches were extracted from the training and in-training
validation subjects. No patch from the same subject was mixed with the training, in-training
validation or testing datasets in order to avoid the data leakage problem.’*'” The Data
augmentation steps included vertical flipping, horizontal flipping, trandation rotation, random
rotation, addition of Gaussian noise, addition of sat & pepper noise and projective
transformation. Additionally, all images were down-sampled by 50% and 25% (reducing the
voxel resolution to 2mm x 2mm x 2mm & 4mm x 4mm x 4mm) and added to the training and
validation sets. Data augmentation provided atotal of approximately 300,000 patches for training
and 300,000 patches for in-training validation for each fold. Networks were implemented using

Keras'® and Tensorflow™ with an Adaptive Moment Estimation optimizer (Adam).?® The initial
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learning rate was set to 10 with a batch size of 15 and maximal iterations of 100. Initial
parameters were chosen based on previous work with Dense-UNets using brain imaging data and

semantic segmentation. *#%

1p/19g-net yields two segmentation volumes. Volume 1 provides the voxel-wise
prediction of 1p/19q co-deleted tumor and Volume 2 identifies the predicted 1p/19q non co-
deleted tumor voxels. A single tumor segmentation map is obtained by fusing the two volumes
and obtaining the largest connected component using a 3D connected component algorithm in
MATLAB®. Mgjority voting over the voxel-wise classes of co-deleted type or non co-deleted
type provided a single 1p/19q classification for each subject. Networks were implemented on
TeslaV100s, P100, P40 and K80 NVIDIA-GPUs. The 1p/19q classification process developed is
fully automated, and a tumor segmentation map is a natural output of the voxe-wise

classification approach.

Statistical Analysis

MATLAB® and R were used for statistical analysis of the network’s performance.
Magjority voting (i.e. voxel-wise cutoff of 50%) was used to evaluate the accuracy of the network.
The accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive
value (NPV) of the model for each fold of the cross-validation procedure were calculated using
this threshold. A Receiver Operating Characteristic (ROC) curve was also generated for each
fold. A Dice-score was used to evaluate the performance of the networks for tumor
segmentation. The Dice-score calculates the amount of spatial overlap between the ground truth

segmentation and the network segmentation.
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RESULTS

The network achieved a mean cross-validation testing accuracy of 93.46% across the 3
folds (93.4%, 94.35%, and 92.62%, standard dev=0.8). Mean cross-validation sengtivity,
specificity, PPV, NPV and AUC for 1p/19g-net was 0.90 £0.003, 0.95 +£0.01, 0.91 £0.02, 0.95
+0.0003 and 0.95 *+0.01 respectively. The mean cross-validation Dice-score for tumor
segmentation was 0.80 + 0.007. The network misclassified 8, 7 and 9 cases for each fold
respectively (24 total out of 368 subjects). Twelve subjects were misclassified as non co-deleted,
and 12 as co-deleted.

Table 1. Cross-validation results.

Fold
1p/19g-net
Description

Fold Number % Accuracy AUC Dice-score
Fold 1 934 0.9571 0.8151
Fold 2 94.35 0.9688 0.8057
Fold 3 92.62 0.9351 0.8000

AVERAGE 93.46 +/-0.86 | 0.953 +/-0.01 | 0.801 +/- 0.007

ROC analysis

The ROC curves for each cross-validation fold for the network is provided in Figure 3.
The network demonstrated very good performance curves with high sensitivities and
specificities.

11
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Fig. 3. ROC analysisfor 1p/199-net.

Separate curves are plotted for each cross-validation fold along with corresponding AUC value.
Voxel-wise classification

Since the network is a voxel-wise classifier, it performs a simultaneous tumor
segmentation. Figures 4A and 4B show examples of the voxel-wise classification for a co-
deleted type, and non co-deleted type respectively using the network. The volume fusion
procedure was effective in removing false positives to increase accuracy. This procedure
improved the dice-scores by approximately 4% for the network. We also computed the voxel-
wise accuracy for the network. The mean voxel-wise accuracies were 85.86% +0.01 for non co-

deleted type and 80.51% +0.01 for co-deleted type.
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Fig. 4. Example voxe-wise segmentation from 1p/199-net.

(A) Example for a 1p/19q co-deleted tumor. Native T2 image (a). Ground truth segmentation (b).
Network output after DVF (c). Red voxels correspond to 1p/19q co-deleted class and green voxels
correspond to 1p/19q non co-deleted class.

(B) Example for a 1p/19qg non co-deleted tumor. The sharp borders visible between co-deleted and non
co-deleted type result from the patch-wise classification approach.

Training and segmentation times

It took approximately 1 week to fine-tune the decoder portion of the network. The trained

network took approximately three minutes to segment the whole tumor, and predict the

1p/19qco-deletion status for each subject.

DISCUSSION

We developed a fully-automated, highly accurate, deep-learning network that
outperforms previously reported 1p/19q co-deletion status classification agorithms.”>% When

comparing our T2-network with previous work, our results suggest that algorithm accuracy can
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be improved by using T2-weighted images only. Clinical transation becomes much smpler
using only T2 weighted images because these images are routinely acquired and are robust to
motion. When compared to previously published algorithms, our methodology is fully-
automated. The time required for 1p/19g-net to segment the whole tumor and predict the 1p/19q
co-deletion status for one subject is approximately 3 minutes on a K80, P40, P100 or V100s

NVIDA-GPU.

The higher performance achieved by our network when compared to previous work is
likely due to several factors. Similar to our IDH classification network we employed 3D
networks whereas prior attempts at 1p/19q co-deletion status classification have relied on 2D
networks.® The dense connections in a 3D network architecture are advantageous because they
cary information from all the previous layers to the following layers.® Additionally, 3D
networks are easier to train and can reduce over-fitting.”” As we previously reported, the Dual
Volume Fusion (DVF) post-processing step helps in effectively eliminating false positives while
improving the segmentation accuracy by excluding extraneous voxels not connected to the
tumor. DVF improved the dice-scores by approximately 4% for the network. The 3D networks
interpolate between dlices to maintain inter-dlice information more accurately. The network does
not require extraction of pre-engineered features from the images or histopathological data.?® Our
approach also uses voxel-wise classifiers and provides a classification for each voxel in the
image. This provides a smultaneous single-label tumor segmentation. Another factor that may
explain the higher performance achieved by our network is that previous approaches required
multi-contrast input which can be compromised due to patient motion from lengthier

examination times, and the need for gadolinium contrast. High quality T2-weighted images are

14
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amost universally acquired during clinical brain tumor diagnostic evaluation. Clinically, T2w
images are typically acquired within 2 minutes at the beginning of the exam and are relatively
resistant to the effects of patient motion. Several of the previous 1p/19q deep learning studies
were trained and tested on only low-grade gliomas achieving accuracies ranging from 65.9% -
87.7%.% Our agorithm was trained and evaluated on a mix of high grade and low grade
gliomas, which is a better representative of real-world performance and potential clinical

utilization.

In the clinical setting, histologic evaluation remains the gold standard for genetic
profiling of gliomas. Severa different methods to detect 1p/19g co-deletion have been
employed: fluorescence in-situ hybridization (FISH), array comparative genomic hybridization,
multiplex ligation dependent probe amplification, and PCR-based loss of heterozygosity
analysis.® FISH is the most routinely performed method.®* FISH relies on fluorescent labeled
DNA probes to directly detect chromosomal abnormalities on a tissue dlide in interphase
nucle.®® The fraction of nuclei that demonstrate a deletion or relative deletion (in cases with
polysomy) are summed and a percentage is calculated.** When the percentage of “deleted” nuclei
exceeds a pre-determined cut-off, the tumor is classified as 1p/19q co-deleted.® A drawback of
FISH isthat it lacks standardized criteria for analysis of 1p/19qco-deletion status.® For example,
there is no consensus on what cut-off level to use when classifying co-deletion status. As a result,
variability in ingtitutional-based cut-off values can span from 20% to 70% and can affect
accurate diagnosis.* This limitation affects the sensitivity, specificity, PPV, and NPV of 1p/19q

detection by FISH based on the cut-off value selected.*
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There are interesting parallel considerations when studying our deep-learning method of
1p/19q determination. Our network is a voxel-wise classifier and as a result some portions within
each glioma are classified as 1p/19 co-deleted while other areas are 1p/19q non co-deleted. The
overall determination of 1p/19q co-deletion status is based on the magjority of voxels in the
tumor. Given the variability in the cut-off values for FISH detection of 1p/19q co-deletion, we
performed a Youden's statistical index analysis to determine if the optimal cut-off for our deep
learning algorithm was different than mgjority voting (>50%). The analysis demonstrated that
maximum accuracy, sensitivity, specificity, PPV, and NPV were obtained at an optimal cut-off

of 50%, the same as majority voting.

The agorithm misclassified 24 cases: 12 subjects were misclassified as non co-deleted
and 12 as co-deleted. Despite these misclassifications, our network achieved a mean cross-
validation testing accuracy of 93.46% which is similar to what is reported for FISH.** However,
our sensitivity, specificity, PPV, and NPV were significantly better than when compared to
FISH.*® While FISH requires tissue to be obtained from an invasive procedure and subsequent
tissue processing for at least 48 hours, our deep learning algorithm can segment the entire glioma
and provide a 1p/19q co-deletion status in 3 minutes. The deep learning algorithm can aso be
fine-tuned to variations in ingitutional MRI scanners, while FISH analysis currently lacks

standardi zation as mentioned above.

The limitations of our study are that deep learning studies require large amounts of data
and the relative number of subjects with 1p/19g co-deetions is small. Additionally, acquisition

parameters and imaging vendor platforms vary across imaging centers that contribute data.
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Despite these caveats our algorithm demonstrated high 1p/19g co-deletion classification

accuracy.

CONCLUSION
We demonstrate high 1p/19q co-deletion classification accuracy using only T2-weighted
MR images. This represents an important milestone toward using MRI to predict glioma

histology, prognosis, and response to treatment.
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