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Abstract

Computational modeling in neuroscience has largely focused on simulating the electrical
activity of neurons, while ignoring other components of brain tissue, such as glial cells
and the extracellular space. As such, most existing models can not be used to address
pathological conditions, such as spreading depression, which involves dramatic changes
in ion concentrations, large extracellular potential gradients, and glial buffering
processes. We here present the electrodiffusive neuron-extracellular-glia (edNEG) model,
which we believe is the first model to combine multicompartmental neuron modeling
with an electrodiffusive framework for intra- and extracellular ion concentration
dynamics in a local piece of neuro-glial brain tissue. The edNEG model (i) keeps track
of all intraneuronal, intraglial, and extracellular ion concentrations and electrical
potentials, (ii) accounts for neuronal somatic action potentials, and dendritic calcium
spikes, (iii) contains a neuronal and glial homeostatic machinery that gives
physiologically realistic ion concentration dynamics, (iv) accounts for electrodiffusive
transmembrane, intracellular, and extracellular ionic movements, and (v) accounts for
glial and neuronal swelling caused by osmotic transmembrane pressure gradients. We
demonstrate that the edNEG model performs realistically as a local and closed system,
i.e., that it maintains a steady state for moderate neural activity, but experiences
concentration-dependent effects, such as altered firing patterns and homeostatic
breakdown, when the activity level becomes too intense. Furthermore, we study the role
of glia in making the neuron more tolerable to hyperactive firing and in limiting
neuronal swelling. Finally, we discuss how the edNEG model can be integrated with
previous spatial continuum models of spreading depression to account for effects of
neuronal morphology, action potential generation, and dendritic Ca2+ spikes which are
currently not included in these models.

Author summary

Neurons communicate by electrical signals mediated by the movement of ions across the
cell membranes. The ionic flow changes the ion concentrations on both sides of the cell
membranes, but most modelers of neurons assume ion concentrations to remain
constant. Since the neuronal membrane contains structures called ion pumps and
cotransporters that work to maintain close-to baseline ion concentrations, and the brain
contains a cell type called astrocytes that contribute in keeping an appropriate ionic
environment for neurons, the assumption is justifiable in many scenarios. However, for
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several pathological conditions, such as epilepsy and spreading depression, the ion
concentrations may vary dramatically. To study these scenarios, we need models that
account for changes in ion concentrations. In this paper, we present what we call the
electrodiffusive neuron-extracellular-glia model (edNEG), which keeps track of all ions
in a closed system containing a neuron, the extracellular space surrounding it, and an
astrocytic “domain”. The edNEG model ensures a complete and consistent relationship
between ion concentrations and charge conservation. We envision that the model can be
used to study a range of pathological conditions such as spreading depression and,
hence, be of great value for the field of neuroscience.

Introduction 1

Computational modeling in neuroscience has largely focused on simulating the electrical 2

activity of neurons and networks of such, while ignoring other components of brain 3

tissue, such as glial cells and the extracellular space. Within that paradigm, 4

biophysically detailed neuron models are typically based on a combination of a 5

Hodgkin-Huxley type formalism for membrane mechanisms (see, e.g., [1, 2]), and cable 6

theory for how signals propagate in dendrites and axons (see, e.g., [3, 4]). Two 7

underlying assumptions in these standard models are that (i) the extracellular space 8

(ECS) is isopotential and grounded, and thus does not affect the neurodynamics, and 9

(ii) that the concentrations of the main charge carriers (Na+, K+, and Cl−) remain 10

constant over the simulated period. 11

The assumptions (i-ii) are never strictly true. Neuronal activity does give rise to 12

electric fields in the ECS, and in principle, a field will affect the membrane potential 13

dynamics of both the neuron that gave rise to the field and of its neighbors. Such 14

so-called ”ephaptic” effects have been the topic of many studies (see, e.g., [5–12]). 15

Furthermore, electrical signals in neurons are generated by transmembrane ion fluxes, 16

which will alter both intra- and extracellular ion concentrations. This may change ionic 17

reversal potentials, and the effect that this may have on neurodynamics has also been 18

the topic of many studies (see, e.g., [13–17]). 19

As homeostatic mechanisms, such as ion pumps and cotransporters, strive to 20

maintain ion concentrations close to constant baseline levels [18], and as ECS potentials 21

tend to be very small compared to the membrane potentials of neurons [9], the 22

assumptions (i-ii) are still warranted under many conditions. However, there are also 23

many conditions where these assumptions are not justified. For example, in tightly 24

packed bundles of axons, it is likely that the activity in one axon may affect its 25

neighbors both (ephaptically) through the electric field that it evokes [6, 10], and 26

through the ion concentration changes it generates in the narrow ECS separating 27

them [16]. On the much larger spatial scale of brain tissue, spreading depression (SD) 28

and a number of related pathological conditions are associated with dramatic shifts in 29

the K+ concentration and giant DC-like voltage gradients in the ECS, which may be as 30

large as several tens of millimolar and millivolts, respectively [19–24]. The 31

pathophysiology of SD is believed to largely depend on the dynamics of extracellular 32

K+ [20,23,25,26], which in turn is likely to involve numerous processes such as neuronal 33

re-uptake, electrodiffusion through the ECS, and glial spatial buffering processes [27]. 34

Accurate modeling of conditions that involve notable changes in ion concentrations 35

and ECS potentials requires a unified, electrodiffusive framework that ensures 36

conservation of ions and charge, and a physically consistent relationship between ion 37

concentrations and electrical potentials in both the intra- and extracellular space [17]. 38

Until recently, models that were consistent in this regard (see, e.g., [16, 27–29]), had not 39

accounted for morphological aspects of neurons, such as, e.g., the differential expression 40

of membrane mechanisms in dendrites versus somata. The morphology of a neuron is 41
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important not only for its somatodendritic signaling and integration of synaptic inputs 42

but also has implications for the extracellular dynamics of electrical potentials and ion 43

concentrations. For example, the large extracellular shifts seen during SD have been 44

suggested to originate in superficial layers of hippocampus and cortex, and to depend 45

strongly on ion channel openings in the apical dendrites of pyramidal 46

cells [19, 20, 24,30–32]. Hence, morphological details may have important implications 47

also for understanding dynamical processes at the level of brain tissue. 48

Recently, we developed the electrodiffusive Pinsky-Rinzel (edPR) model, which we 49

believe is the first model that combines morphologically explicit neuron modeling with 50

biophysically consistent modeling of ion concentrations, electrical charge, and electrical 51

potentials in both the intra- and extracellular space [17]. In that work, we equipped the 52

well established Pinsky-Rinzel model [33] with a homeostatic machinery and equations 53

for ion concentration dynamics in the intra- and extracellular space. The objective was 54

to supply the neuroscience community with a model that can simulate neural dynamics 55

not only under a steady-state scenario (S1), where the homeostatic machinery succeeds 56

in maintaining ion concentrations close to baseline, but also under a scenario (S2) where 57

homeostasis is incomplete, so that ion concentrations change over time. 58

Two important contributors to ion concentration dynamics were not accounted for in 59

the edPR model, namely the effects of glial cells and cellular swelling or shrinkage. In 60

particular, a type of glial cells called astrocytes is known to be important for regulating 61

the ionic content of the ECS [34], and especially for the uptake of excess K+ that may 62

develop during neuronal hyperactivity [35–38]. Furthermore, when ion concentrations 63

change in neurons, astrocytes, and the ECS, it will cause osmotic pressure gradients 64

over the cellular membrane. This can lead to cellular swelling or shrinkage [39–42], 65

which in turn will alter the ionic concentrations in the swollen or shrunken volumes. 66

Cellular swelling and a corresponding shrinkage of the ECS is, for example, and 67

important trademark of pathological conditions such as seizures and SD [18,23,43]. 68

In this work, we present an expanded version of the edPR model, which also accounts 69

for effects of glial ion uptake and neuronal and glial swelling due to osmotic pressure 70

gradients. In the expanded version, which we will refer to as the electrodiffusive 71

neuron-extracellular-glia (edNEG) model, the neuron and glial domain interact through 72

a shared ECS. The edNEG model thus includes the main machinery responsible for ion 73

concentration dynamics in a ”unit” piece of brain tissue, i.e., corresponding to a single 74

neuron, and the ECS and glial ion uptake that it has to its disposal. The edNEG model 75

has six compartments, two for each of the three domains. It has the functionality that it 76

(1) keeps track of all ion concentrations (Na+, K+, Ca2+, and Cl−) in all compartments, 77

(2) keeps track of the electrical potential in all compartments, (3) has different ion 78

channels in neuronal soma and dendrites so that the neuron can fire somatic action 79

potentials (APs) and dendritic calcium spikes, (4) contains the neuronal and glial 80

homeostatic machinery that maintains a realistic dynamics of the membrane potential 81

and ion concentrations, (5) accounts for transmembrane, intracellular and extracellular 82

ionic movements due to both diffusion and electrical migration, and (6) accounts for 83

cellular swelling of neurons and glial cells due to osmotic pressure gradients. 84

In this first implementation, we study the edNEG model as a closed system, i.e., ions 85

are conserved and confined to stay within the six-compartment system. We focus on 86

illustrating the model tuning required to achieve (1)-(6) and the exploration of its 87

dynamical properties. We show that, like for the edPR model, this closed system (i) has 88

a stable resting state, (ii) maintains steady-state firing for (S1) moderate neural activity, 89

and (iii) experiences homeostatic breakdown (S2), mimicking the onset of SD, once the 90

activity level becomes too high. As the main novelty of the edNEG model, compared to 91

the edPR model, is the glial compartment, we put an emphasis on examining the role of 92

glia in making the neuron more tolerable to hyperactive firing and in limiting neuronal 93
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swelling. 94

Results 95

An electrodiffusive Pinsky-Rinzel model with neuron-glia 96

interactions and cellular swelling 97

The edNEG model consisted of a neuron, an extracellular (ECS) domain, and a glial 98

domain, all of which had two compartments (Fig 1). For the neuron, the two 99

compartments represent the somatic (bottom) and dendritic (top) parts of its 100

morphology, as in the original Pinsky-Rinzel model [33]. For the ECS, the two 101

compartments represent the average ECS that the single neuron has to its disposal 102

surrounding its somata (bottom) and dendrites (top). Finally, the glial cells most 103

involved in ion homeostasis, the astrocytes, are typically interconnected via gap 104

junctions into a continuous syncytium. The glial compartments could thus be 105

interpreted not as two compartments of a single glial cell, but rather as a representative 106

for the average glial buffering surrounding the neural somata (bottom) and dendrites 107

(top). Like for the ECS, we will hence refer to the glia as a ”domain” rather than to a 108

single glial cell. 109

The neuron and the ECS domain were adopted from the previously published 110

electrodiffusive Pinsky-Rinzel (edPR) model [17] and modified slightly (see Methods). 111

The neuron was based on the Pinsky-Rinzel model, which, despite having only two 112

compartments, can reproduce a variety of realistic firing patterns when responding to 113

somatic or dendritic stimuli, including somatic APs and dendritic calcium spikes [33]. 114

The model for the glial domain was taken from a previous model for astrocytic spatial 115

buffering [38] and added to the edPR model so that both the neuron and glial domain 116

interacted with the ECS. Unlike the previous neuron [17] and glial [38] models that it 117

was based upon, the edNEG model was constructed so that it also accounted for cellular 118

swelling due to osmotic pressure gradients. We implemented the edNEG model using 119

the electrodiffusive KNP framework [17,38], which consistently outputs the voltage- and 120

ion concentration dynamics in all compartments. 121

The edNEG model is depicted in Fig 1. Both the neuron and glial domain contained 122

cell-specific and ion-specific passive leakage channels, cotransporters, and ion pumps 123

that ensured a homeostatic ion balance in the system. The neuron contained additional 124

active ion channels that were different in the somatic versus dendritic compartment, 125

making it susceptible to fire somatic action potentials and dendritic Ca2+ spikes. Both 126

glial compartments contained inward rectifying K+ channels. All included membrane 127

mechanisms are summarized in Fig 1 and described in further detail in the Methods 128

section. 129

Action potential firing and resting state in the edNEG model 130

The neuron in the edNEG model was based on the previous two-compartment 131

Pinsky-Rinzel model for a hippocampal pyramidal neuron in CA3. A feature of the 132

original Pinsky-Rinzel model was that it produced somatic action potentials and 133

dendritic Ca2+ spikes. Also, for weak coupling (high intracellular resistance) between 134

the soma and dendrite, the interplay between somatic action potentials and dendritic 135

Ca2+ spikes could give rise to a wobbly spike shape (Fig 2A), while for a stronger 136

coupling (low intracellular resistance), the interplay rather lead to a broadening of the 137

AP shape (Fig 2B). These features of the original Pinsky-Rinzel model has been 138

analyzed thoroughly in previous studies [17, 33,45]. 139

July 7, 2020 4/36

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 13, 2020. ; https://doi.org/10.1101/2020.07.13.200287doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.13.200287
http://creativecommons.org/licenses/by/4.0/


IK-DR

INa

Ileak

IK-IR

Ipump,g

ICa
  

IK-C

IK-AHP

Ileak

Ileak

Ipump,n

IKCC2

INKCC1

Ipump,n

IKCC2

INKCC1

neuron ECS

ICa-dec

ICa-dec

Ileak

IK-IR

Ipump,g

glianeuron glia

A B

jk,mdn

jk,msn
soma

  

jk,ejk,in

dendrite

ECS

jk,ig

jk,msg

jk,mdg

Fig 1. Model architecture. (A) The edNEG model contained three domains
(neuron, index n, ECS, index e, and glia, index g). Initial neuronal/extracellular/glial
volume fractions were 0.4/0.2/0.4. Each domain contained two compartments (soma
level, index s, and dendrite level, index d). Ions of species k were carried by two types
of fluxes: transmembrane (index m) fluxes (jk,msn, jk,mdn, jk,msg, jk,mdg) and
intra-domain fluxes in the neuron (jk,in), the ECS (jk,e), and the glial domain (jk,ig).
An electrodiffusive framework was used to calculate ion concentrations and electrical
potentials in all compartments. (B) The neuronal membrane contained the same
mechanisms as in [17]. Active ion channels were taken from [33]. The soma contained
Na+ and K+ delayed rectifier currents (INa and IK−DR), and the dendrite contained a
voltage-dependent Ca2+ current (ICa), a voltage-dependent K+ afterhyperpolarization
current (IK−AHP), and a Ca2+-dependent K+ current (IK−C). Both compartments
contained Na+, K+, and Cl− leak currents (I leak), 3Na+/2K+ pumps (Ipump,n),
K+/Cl− cotransporters (IKCC2), and Na+/K+/2Cl− cotransporters (INKCC1), modeled
as in [44]. They also contained Ca2+/2Na+ exchangers (ICa−dec), mimicking the Ca2+

decay in [33] and modeled like in [17]. The glial membrane mechanisms were taken
from [38], and they were the same in both compartments. They included Na+ and Cl-

leak currents (I leak), inward rectifying K+ currents (IK−IR), and 3Na+/2K+ pumps
(Ipump,g).

To verify that we preserved the characteristic firing properties of the Pinsky-Rinzel 140

model when we made it ion conserving and embedded it within the edNEG model, we 141

implemented two versions of the edNEG model, one with a strong coupling between the 142

soma and dendrite layers, and one with a weak coupling (see Methods for definition of 143

weak and strong coupling). When we stimulated the two versions with constant current 144

injections to the neuronal soma, they elicited spikes that were similar to that of the 145

original Pinsky-Rinzel model: Compare Fig 2A and Fig 2C for weak coupling, and Fig 146

2B and Fig 2D for strong coupling. Hence, the neuron in the edNEG model preserved 147

the key dynamical properties of the previously developed CA3 hippocampal cell 148

model [33]. The model version with the strong coupling between layers was used as 149
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default in all other simulations in this paper. 150

When we in the edNEG model combined a previous neuron model [17] and a previous 151

glial model [38], and made them share ECS, the original resting state of both the 152

previous models were disturbed. To obtain realistic resting potentials in the new system, 153

we had to re-tune selected parameters (see section titled Model tuning for details). The 154

existence of a realistic resting state for the tuned edNEG model is verified in Fig 2E. It 155

shows a simulation where the neuron was stimulated between t = 10 s and t = 20 s with 156

a constant current injection that made it fire at 1 Hz. Both the neuron and glial domain 157

stayed at their resting potentials of approximately −70 mV and −83 mV, respectively, 158

when unstimulated (t < 10 s), and returned to this resting state after the stimulus had 159

been turned off (t > 20 s). The dynamics of the membrane potentials and ion 160

concentrations during on-going activity is analyzed in further detail in the next section. 161

Steady-state firing in the edNEG model 162

In standard (Hodgkin-Huxley type) neuron models, which the original Pinsky-Rinzel 163

model [33] is an example of, the key dynamical variable is the membrane potential. In 164

addition to modeling the membrane potential, the edNEG model presented here keeps 165

track of all neuronal, glial, and extracellular ion concentrations, and accounts for 166

changes in cellular and extracellular volume fractions due to osmotic gradients. It also 167

accounts for the effect that changes in these variables may have on neuronal firing 168

properties. 169

When the neuron is active, the exchange of ions due to AP firing will be 170

counteracted by the homeostatic mechanisms striving to restore baseline concentration 171

gradients. Hence, we expect that for moderately low neuronal firing, the edNEG model 172

will enter a dynamic steady-state scenario (S1) where homeostasis is successful, and 173

firing can prevail for an arbitrarily long period of time without ion concentrations 174

diverging far off from baseline. We also expect that for a too-high neuronal activity 175

level, the edNEG model will enter a scenario (S2) where the homeostatic mechanisms 176

fail to keep up, and where gradual changes in ion concentrations will lead to gradual 177

changes in neuronal firing properties, and eventually to ceased AP firing. 178

The existence of a dynamic steady-state scenario (S1) is illustrated in Fig 3, which 179

shows how selected variables vary in the edNEG model during a 1400 s simulation. The 180

neuron received a stimulus from t = 1 s to t = 600 s that made it fire at 1 Hz (Fig 3A). 181

To examine the steady-state scenario (S1), we have divided the simulation into four 182

phases: an initial phase (the first column in Fig 3B-D), covering transient dynamics 183

immediately after stimulus onset), a steady-state phase (the second column in Fig 184

3B-D), covering the last ten seconds of firing, a recovery phase (the third column in Fig 185

3B-D), covering the transient dynamics immediately after the stimulus offset, and a 186

recovered phase (the fourth column in Fig 3B-D), covering the last 10 s of the simulation, 187

when the system had returned to the original resting state. In all these phases, we 188

examined the temporal development of the neuronal (Fig 3B) and glial (Fig 3C) reversal 189

potentials, and the neuronal and glial swelling (Fig 3D). 190

In the initial phase, the concentrations of all ion species varied with time due to the 191

influxes and effluxes associated with cellular activity. In Fig 3B-C, the concentration 192

variations in the soma layer are reflected in the ionic reversal potentials (Ek), which are 193

proportional to the logarithm of the ratio between the extra- and intracellular ion 194

concentration of a given species k (cf. Eq 32). As the soma contained no Ca2+ channels, 195

variations in ECa were very small, although not strictly zero, since minor concentration 196

shifts could occur due to electrodiffusion of Ca2+ between the soma and dendrite layer. 197

The glial domain did not contain any Ca2+ conducting channels. For the other ion 198

species, Ek had a zig-zagging shape, most pronounced for EK, where the upstroke 199

reflects the efflux of K+ during the repolarization phase of an action potential (AP), 200

July 7, 2020 6/36

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 13, 2020. ; https://doi.org/10.1101/2020.07.13.200287doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.13.200287
http://creativecommons.org/licenses/by/4.0/


16.52 16.54 16.56
−70

0

20

m
V

A
PR (weak)

soma

dendrite

10.06 10.08 10.10
−70

0

20B
PR (strong)

16.58 16.60 16.62

time [s]

−70

0

20

m
V

C
edNEG (weak)

10.00 10.02 10.04

time [s]

−70

0

20D
edNEG (strong)

0 5 10 15 20 25 30

time [s]

−70

0

20

m
V

E
φms

neuron

glia

Fig 2. Membrane potential dynamics and resting state in the edNEG
model. The neuron in the edNEG model (C,D) and the original Pinsky-Rinzel (PR)
model (A,B) exhibited the same spike shape characteristics for weak coupling (A,C)
and strong coupling (C,D) between the soma and dendrite layers. (E) The somatic
membrane potential φms of the neuron (black line) and the glial domain (purple line).
The neuron received a step current injection to the somatic compartment between
t = 10 s and t = 20 s tuned to give it a firing frequency of 1 Hz. The neuron and the
glial domain rested at approximately −70 mV and −83 mV, respectively, when the
neuron was not stimulated, and returned to these values after stimulus offset. The
stimulus current was 1.35µA/cm2 in (A), 0.78µA/cm2 in (B), 44 pA in (C), and
36 pA in (D,E). (A,B) The original PR model was simulated with the code provided
in [17]. The coupling conductance of the PR model was 2.26 mS/cm2 in (A), and
8.86 mS/cm2 in (B) (C-E) See methods subsection titled Model tuning for definition of
weak and strong coupling in the edNEG model. The strong coupling was used in (E),
and as default in all simulations in the reminder of this paper.

while the downstroke reflects the homeostatic mechanisms that were active between APs, 201

working to restore the baseline concentrations. The fact that EK showed the largest 202

variations was as expected, as the extracellular K+ had the lowest baseline value of all 203

ion species, and therefore experienced the largest relative changes during AP firing. 204

The homeostatic recovery between APs was incomplete during the initial phase, and 205

the reversal potentials zig-zagged away from baseline for each consecutive AP (Fig 206
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Fig 3. Steady-state firing in the edNEG model. Model response to a 36 pA
step-current injection to the somatic compartment of the neuron between t = 1 s and
t = 600 s. The neuron responded with a firing rate of 1 Hz. The simulation covered
1400 s of biological time, and the last 800 s shows recovery to baseline. (A) The somatic
membrane potential φms of the neuron (black line) and the glial domain (purple line).
(B) Reversal potential dynamics of the neuronal soma for all ion species (Na+, K+,
Cl−, Ca2+) shown in terms of their deviance from baseline values. (C) Reversal
potential dynamics of the glial ”soma” for ion species k (Na+, K+, Cl−). The glial
domain did not contain any Ca2+ channels. (D) Volume dynamics of the three domains
shown in terms of relative changes. Volume changes were computed for the whole
domain (soma layer + dendrite layer). Initial neuronal/extracellular/glial volume
fractions were 0.4/0.2/0.4. (B-D) Rows 1-4 show four selected time intervals, (1)
initially after stimulus onset, (2) when the system had reached dynamic steady state, (3)
initially after stimulus offset, and (4) when the system had restored baseline.

3B1,C1). However, the gradual divergence from baseline increased the homeostatic 207
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activity, so that after a period of regular firing, the system entered a dynamic 208

steady-state phase where the zigs and the zags became equal in magnitude, and the 209

reversal potential did not deviate further from baseline (Fig 3B2,C2). 210

In this simulation, EK deviated by maximally ∼3 mV from the baseline reversal 211

potential, which was not enough to have a visible impact on the regular firing of the 212

neuron. Hence, the edNEG model supported a steady-state scenario (S1), where the 213

neuron could fire regularly and continuously without dissipating its concentration 214

gradients. For firing in scenario S1, the neuron in the edNEG model performs similarly 215

to the original Pinsky-Rinzel model [33], which does not model ion concentrations, but 216

assumes that they remain constant. 217

When the stimulus was turned off, the recovery phase started. The membrane 218

potentials returned rapidly to values very close to the resting potential (Fig 3A), while 219

the ion concentrations (and thus the reversal potentials) returned more slowly towards 220

baseline (Figs 3B3,C3). At the end of the simulation, ion concentrations had recovered 221

the baseline values (Figs 3B4,C4). If we define recovery (rather arbitrary) as the time it 222

took for all reversal potentials to return to values less than 0.1 mV away from their 223

resting baseline values, recovery took about 300 s, i.e., it occurred at about t = 900 s. 224

The fact that the membrane potentials were almost constant during the recovery of the 225

reversal potentials, indicates that the ion concentration recovery was due to a close-to 226

electroneutral exchange of ions over the neuronal and glial membranes. Hence, the 227

edNEG model predicts that ”memories” of previous spiking history may linger in a 228

neuron for several minutes, in the form of altered concentrations, even if it appears to 229

have returned to baseline by judging from its membrane potential. 230

When the ion concentrations changed, so did the osmotic pressure gradients. This 231

caused the neuron and glial domain to swell over the simulated time course (Fig 3D). 232

Given the rather modest concentration changes observed during 1 Hz firing, the cellular 233

swelling was not dramatic. The neuron swoll maximally by 0.44 %, the glial domain by 234

maximally 0.36 %, and the extracellular space shrunk correspondingly by 1.60 % (Fig 235

3D2). As initial neuronal/extracellular/glial volume fractions were 0.4/0.2/0.4, this 236

preserved the total volume. After the stimulus was turned off, the three domains 237

recovered their original volume fractions (Fig 3D3-D4), and at about t = 1100 s, all 238

volumes were less than 0.01 % away from baseline. 239

Homeostatic breakdown in the edNEG model 240

The existence of a scenario (S2) where the homeostatic mechanisms fail to keep up with 241

the neuronal exchange is illustrated in Fig 4. There, the neuron received a strong input 242

current (150 pA) for three seconds, which gave it a high firing rate (Fig 4A1). While the 243

neuron fired, ion concentrations gradually changed, leading to changes in ionic reversal 244

potentials (Fig 4B1,C1), which in turn caused a gradual depolarization of the neuron 245

and made it fire even faster. The neuron could tolerate this strong input for only a little 246

more than 2 s before it became unable to re-polarize to levels below the AP firing 247

threshold, and the firing ceased due to a permanent inactivation of the AP generating 248

Na+ channels. This condition, when a neuron is depolarized to voltage levels making it 249

incapable of eliciting further APs, is known as depolarization block. It is a well-studied 250

phenomenon, often caused by high extracellular K+ concentrations [46]. This kind of 251

dynamics can not be captured with standard neuron models constructed under the 252

assumption that ion concentrations remain constant under the simulated period. The 253

dynamical characteristics of the neuron in the S2 scenario resembled what we saw in a 254

previous study, including only the neuron and the ECS [17], and is not further analyzed 255

here. 256

We note that although the input was turned off after 3 s, the neuron lingered in 257

depolarization block, and continued to dissipate its concentration gradients so that 258
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changes in ionic reversal potentials and cellular swelling went on for a long time (Fig 259

4B2,C2,D2). Interestingly, the glial swelling was transient. After having swollen by 260

13.2 % during the first 100 s of the simulation, it began to shrink, while the neuron swoll 261

monotonously during the entire simulation. At the end of the simulation, ionic reversal 262

potentials were several tens of millivolts away from their baseline values, the neuron had 263

swollen by 42.6 %, and the glial and ECS domains had shrunken by 0.13 % and 85.0 %, 264

respectively. 265

In this simulation, the system never returned to its baseline resting state, and the 266

neuron never regained its ability to elicit APs. This has previously been referred to as a 267

wave-of-death-like dynamics [44, 47]. It also resembles the neural dynamics seen under 268

the onset of SD [44], but during SD, neurons tend to recover baseline activity after 269

about one minute as the SD wave passes [23]. Putatively, this recovery depends on K+
270

being transported away from the local region by ECS electrodiffusion and spatial 271

buffering through the astrocytic network, and quite likely also vascular clearance. As the 272

edNEG model studied here represented a local and closed system, such spatial riddance 273

of K+ did not occur, but we anticipate that recovery might be observed if the edNEG 274

model were expanded to a spatially continuous model (see Discussion for more on this). 275

Soma versus dendrite 276

It is known that the leading edge of the SD wave tends to occur in the layers containing 277

the apical dendrites [20, 32]. Inspired from this, we wanted to explore if the edNEG 278

model expressed such layer-specific differences. Assuming that the SD wavefront 279

coincides with neurons going into depolarization block, we used the simulation from Fig 280

4 for this comparison. We studied the ECS K+ concentration and neuronal swelling in 281

the soma and dendrite layer at a short time scale, as the neuron approached 282

depolarization block (Fig 5A1), and at a longer time scale, when the neuron lingered in 283

depolarization block (Fig 5A2). 284

In line with the notion that the dendritic layer is the leading edge of the SD 285

wavefront, Fig 5A1 shows that the ECS K+ concentration during neuronal firing 286

(t < 2.3 s) was highest in the dendrite layer, but was bypassed by the ECS K+
287

concentration in the soma layer shortly after the neuron had entered depolarization 288

block, after which it stayed highest in the soma layer (Fig 5A2). Similarly, the neuronal 289

dendrite also swoll more than the soma during neuronal firing (Fig 5B1), whereas the 290

somatic swelling caught up after the neuron had entered depolarization block (Fig 5B2). 291

To some degree, these observations are in agreement with the notion that SD initiates in 292

dendritic layers, although the differences between the layers were admittedly rather 293

small in the edNEG model (see Discussion for further comments). 294

The effect of the glial domain on neuronal tolerance levels 295

As the subsystem containing only the neuron and ECS was studied thoroughly in [17], 296

we here put an emphasis on exploring what difference the new glial domain made for 297

the system, especially in terms of how it (i) affected the neuronal tolerance level for AP 298

firing, and (ii) how it affected the dynamics of ECS K+ concentrations and cellular 299

swelling. To do this, we compared two versions of the model, one being the full edNEG 300

model with glia included, and one without glia included. In the latter case, we removed 301

the glial influence by setting all glial membrane conductances and water permeabilities 302

to zero, i.e., we sealed the glial membrane. 303

When comparing, we wanted to make sure that the neuron fired with the same rate 304

in both versions, something that we could not control using a continuous step current 305

injection, partly because the two model versions had a different response to the same 306

stimulus, and partly because the firing rate could vary over time as the ion 307
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Fig 4. Homeostatic breakdown in the edNEG model. Model response to a
150 pA step-current injection to the somatic compartment of the neuron between
t = 0.1 s and t = 3 s. (A1) The neuron responded with an initial firing rate of 50 Hz,
but both the firing rate and spike shapes varied throughout the simulation due to
variations in the ion concentrations. Both the neuron and glial domain experienced a
gradual depolarization throughout the simulation, and the neuron eventually went into
depolarization block. The gradually changing dynamics patterns were due to
activity-induced changes in ionic reversal potentials (B-C). (D) The system
experienced massive neuronal and glial swelling. The first row (A1-D1) shows
dynamics on a short time scale, and the second row (A2-D2) shows the same
simulation on a longer time scale.

concentrations changed. To control the firing rate, we, therefore, used a stimulus 308

protocol where we stimulated the neuronal soma periodically with a train of brief and 309

strong 10 ms pulses, each evoking a single AP. 310

Both versions of the model could maintain sustained regular firing (cf. scenario S1 in 311
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Fig 5. Extracellular potassium and neuronal swelling in the soma versus
dendrite layer. Comparison of (A) extracellular K+ dynamics, and (B) neuronal
swelling in the soma versus dendrite layer for the simulation in Fig 4. Panels (A1,B1)
show the first 4 s of the simulation, where the neuron went into depolarization block
around t = 2.3 s, while (A2,B2) show the long term effect of the depolarization block.
In the results shown, we stimulated the soma with an inward K+ current, but the
results were very similar when we stimulated with an inward Na+ current, or when the
stimulus was applied to the dendritic compartment instead of the soma.

Fig 3), provided that the stimulus frequency was low enough, as in the example in Fig 312

6A,C where the input pulse frequency (and resulting firing rate) was 4 Hz. For the 4 Hz 313

simulations, we verified that both model versions could sustain regular firing for at least 314

1000 s. However, all other simulations considered in Fig 6 were run for only 90 s, so that 315

”sustained” in this context will mean ”sustained for at least 90 s”. We chose to stop the 316

simulations at t = 90 s, partly to reduce computation time, and partly because this is a 317

typical time window within which an SD wave passes [23]. 318

Whereas the membrane potential dynamics at 4 Hz firing were very similar in the 319

versions with and without glia, the ion concentration dynamics were not (Fig 6E). In 320

the case without glia, the ECS K+ concentration peaked at 11.4 mM, while it stayed 321

below 7.7 mM when glia was included. In both versions, however, the K+ concentration 322

reached a ceiling level and eventually stabilized at a constant value, so that the system 323

entered a dynamic steady state (cf. scenario S1 in Fig 3). 324

To study homeostatic breakdown (cf. scenario S2 in Fig 4), we increased the 325

stimulus frequency until neither the version with, nor the version without, glia could 326

maintain sustained regular firing for 90 s, as in the example in Fig 6B,D where the input 327

pulse frequency (and resulting initial firing rate) was 8 Hz (Fig 6A,C). Both versions of 328

the model then sustained 8 Hz firing for only a limited period. In both versions, the 329

8 Hz firing caused the ECS K+ concentration to increase (Fig 6F) until it exceeded a 330
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Fig 6. Neuronal firing with and without the presence of glia. The edNEG
model tolerated higher neuronal firing frequencies when glia was present. Simulations
show responses to trains of 10 ms step-pulses of 320 pA injected to the neuronal soma,
each inducing exactly one action potential. The first pulse was applied at t = 0.1 s and
all simulations covered 90 s of biological time. (A,C) Somatic membrane potential of
the neuron responding to a pulse train with frequency of 4 Hz, in the case when glia was
present (A) and not present (C). (B,D) Somatic membrane potential of the neuron
responding to a pulse train with frequency of 8 Hz, in the case when glia was present
(B) and not present (D). (E) ECS K+ concentrations (in soma layer) during the
simulations in (A) (black line) and C (red line). (F) ECS K+ concentrations (in soma
layer) during the simulations in (B) (black line) and (D) (red line). (I-J) Summary of
20 simulations (as those in (A-D)) with varying stimulus frequency, showing (I)
maximum extracellular (soma) K+ concentration as a function of stimulus frequency,
and (I) relative neuronal volume change at the end of the simulations (t = 90 s) as a
function of stimulus frequency. (A-D) show the 10 first seconds of the simulations, and
(E-F) show only the 20 first seconds of the simulations.

ceiling level where the neuron entered depolarization block and AP firing ceased. 331

As the increase in the ECS K+ concentration was much faster when glia was not 332

present, the version without glia entered depolarization block after less than 5 s of 333

activity (Fig 6D), while the version including glia maintained the 8 Hz AP firing for 334

almost 9 s (Fig 6B). The time points where depolarization block was reached can be 335

seen as a dent in the ECS K+ concentration curves (Fig 6F), which occurred at a 336

concentration of about 14 mM in the version without glia and at about 15 mM in the 337

version with glia included. 338

We were surprised to observe that the afterhyperpolarization following APs 339

increased during the journey towards depolarization block in Fig 6B, despite the K+
340

reversal potential becoming more depolarized during the simulation. When exploring 341
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this phenomenon, we found that the increased afterhyperpolarization was caused by the 342

electrogenic 3Na+/2K+ pump, which increased its activity level as the intracellular Na+ 343

concentration and ECS K+ concentration increased during the simulation (cf. Eq 62), 344

leading to an increased outward current. Such hyperpolarization by the ATP-ase driven 345

3Na+/2K+ pump has also been reported in other studies [48, 49]. 346

Fig 6I summarizes a number of simulations of the model versions with and without 347

glia, and shows the peak ECS K+ concentration (maximum reached during simulation) 348

as a function of stimulus frequency. The highest tolerated frequency, i.e., the maximum 349

stimulus frequency for which the neuron could sustain AP firing throughout the 350

simulated 90 s, is easily identifiable as the point where the curves make a sharp dent. 351

With glia present, the edNEG model could sustain firing up to 7.6 Hz (black curve), 352

while without glia, it could only maintain regular firing for frequencies up to 4.7 Hz (red 353

curve). Also, the presence of glia reduced the peak ECS K+ concentration occurring 354

after homeostatic breakdown from about 23 mM (black curve) to about 21 mM (red 355

curve). The differences were due to the glial support in clearing the ECS from excess 356

K+. 357

As the ion concentrations changed during the simulations, so did the osmotic 358

pressure gradients over the membrane, and this caused cellular swelling and ECS 359

shrinkage. The swelling depended not only on K+, but on all ion concentrations 360

changing during the simulation. However, the pattern of how the presence of glia 361

affected the swelling of the neuron was similar to how it affected the ECS K+
362

concentration (Fig 6G,H,J). During steady-state firing, the neuron swoll by up to only 363

1.6 % when glia was present, and by 3.7 % when glia was not present (Fig 6J for 364

frequencies below the ”dent”-frequency). 365

The swelling was much more dramatic in the simulations where the neuron entered 366

depolarization block. For the maximal stimulus frequency (f = 10 Hz), the neuron had 367

swollen by 16.3 % when glia was present, the glial domain had swollen by 13.1 %, and 368

the ECS had shrunken by 58.8 % at the end of the simulation (glial and ECS volume 369

fractions were not included in the plot, but were computed in the same simulation). We 370

note again that the simulation ended at t = 90 s, and the glial swelling of 13.1 % was 371

close to the peak glial swelling (13.2 %) seen at t = 100 s in Fig 4. When glia was not 372

present, neural swelling was more dramatic, and the neuron had then swollen by 22.3 % 373

at the end of the simulation, with a corresponding shrinkage of the ECS by 44.5 %. 374

Discussion 375

We presented the edNEG model for local ion concentration dynamics in brain tissue 376

containing a neuronal, extracellular, and glial domain (Fig 1). The model contained 377

essential ion channels and homeostatic mechanisms, and accounted for somatodendritic 378

signaling by neurons, for electrodiffusive ion concentration dynamics within all domains, 379

as well as for neuronal and glial swelling due to concentration-dependent osmotic 380

pressure gradients. 381

We demonstrated that the edNEG model had realistic dynamical properties in the 382

sense that it supported a scenario (S1) when the homeostatic mechanisms could 383

maintain constant ion concentrations so that the neuron could maintain low firing 384

frequencies for an arbitrary long time (Fig 3), and a scenario (S2) when the neuron fired 385

too fast for the homeostatic mechanisms to keep up, so that ionic concentrations 386

gradually changed, leading eventually to the neuron entering depolarization block and 387

losing its ability to generate further action potentials (Fig 4). The first scenario (S1) 388

represents normal physiological conditions and could be modeled fairly well with simpler 389

and more conventional neuronal models assuming constant ion concentrations and 390

reversal potentials. The second scenario (S2) resembles the onset of pathological 391
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conditions such as spreading depression (SD) and the wave of death [44] and requires 392

models that explicitly account for variations in ion concentrations. Of course, 393

concentration effects are not only relevant during homeostatic breakdown. As Fig 3 394

showed, concentrations vary at a much slower time course than the membrane potential, 395

and may give neurons ”memories” of previous spiking history that may last for several 396

minutes. Furthermore, we also showed that the homeostatic machinery in itself can 397

affect the firing patterns of a neuron, as the afterhyperpolarizations seen in Fig 6A-D 398

were concentration-dependent effects evoked by the electrogenic 3Na+/2K+ pump. 399

As the edNEG model was constructed by expanding a previous model [17] by (i) 400

adding a glial domain and (ii) accounting for cellular swelling due to osmotic gradients, 401

we put an extra emphasis on exploring how the presence of glia affected neuronal firing 402

and swelling. In Fig 6, we showed that the glial support increased the tolerance level for 403

neuronal firing and that the neuron could maintain steady-state firing for at least 90 s 404

at frequencies up to 7.6 Hz in the presence of glia, but only up to 4.7 Hz when the glia 405

domain was inactivated. Furthermore, the presence of glia reduced the swelling of the 406

neuron from a maximum value of 3.7 % to a maximum value of 1.6 % during steady-state 407

firing, and from 22.3 % to 16.3 % during depolarization block. The maximal neuronal 408

and glial swelling coincided with a corresponding shrinkage of the extracellular space by 409

58.8 % of the original value for the version with glia, and 44.5 % for the version without 410

glia. These quantitative predictions do of course depend on the included neuronal and 411

glial mechanisms, the volume fractions, and the (sealed) boundary conditions used in 412

the current simulation. However, they are in agreement with experimental studies, 413

where reports of ECS shrinkage during SD range from 40 % to 78 % [20,50–54]. 414

Although the current implementation of the edNEG model contained only two 415

neuronal compartments, the framework it was based upon can essentially be seen as a 416

general framework for combining multicompartmental neural modeling with 417

electrodiffusive ion concentration dynamics in neuroglial brain tissue. To our knowledge, 418

the edNEG model is the first model to do this in a biophysically consistent manner, 419

although many previous models have parts of the same 420

functionality [13–16,44,47,55–83]. 421

The outlook for an improved model of spreading depression 422

A key motivation for developing the edNEG model was its potential use in addressing 423

SD and other pathological conditions associated with dramatic extracellular ion 424

concentration changes. 425

SD was first described by Leão as a wave of silence propagating across cortex [84]. 426

The spread of the wave coincides with shifts in the ECS K+ concentration by several 427

tens of millimolar, DC-like voltage shifts in the ECS that may be as large as several tens 428

of millivolts, swelling of neurons and glial cells, and changes in numerous other variables 429

including the extracellular glutamate concentration and intracellular calcium 430

concentrations [18, 23,85]. The leading hypothesis, proposed by Grafstein already in 431

1956, is that diffusion of K+ through the ECS is the main propagator of the 432

wave [25,26]. However, buffering of K+ through the glial syncitium [86,87], and 433

electrical drift of K+ along the large DC-like voltage shifts [28, 88] are also likely to 434

contribute to the wave propagation. Initiation of SD, and the leading edge of the SD 435

wave, are often seen to occur in superficial (dendritic) layers of cortex and hippocampus, 436

suggesting that dendritic membrane mechanisms play an important role for its 437

pathophysiology [19,20,24,30–32]. 438

To our knowledge, only one computational model exists that has combined spatial 439

propagation of SD with morphologically detailed neuron models [82]. However, this 440

model was not based on an electrodiffusive formalism, and did not account for effects of 441

extracellular potentials on neurodynamics and K+ transport. Other spatial models of 442
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SD [27–29,40, 88] have been inspired by the coarse-grained bi-domain model [89], which 443

previously has been used to simulate cardiac tissue [90, 91]. These models are 444

electrodiffusive, and treat brain tissue as a homogeneous, coarse-grained, continuum, 445

making them computationally efficient to allow for large scale simulations of SD 446

propagation. However, they are limited in terms of neuronal detail, as none of them 447

include fast neuronal mechanisms for action potential generation, or account for any 448

morphological aspects of neurons, i.e., they do not account for the differences between 449

dendritic and somatic layers. 450

The edNEG model was highly inspired by the previous tri-domain continuum model 451

by Tuttle et al. 2019 [27], which is the most advanced of the spatial SD models. It 452

includes neurons, glia, and extracellular space (Fig 7A), and it accounts for cellular 453

swelling, a number of (slow) membrane mechanisms, and electrodiffusive ion 454

concentration dynamics. Unlike other local models of ion concentration dynamics in 455

tissue (see, e.g., [13, 44, 60,71]), the edNEG model was based on the same kind of 456

electrodiffusive formalism as the model by Tuttle et al. 2019 [27], and should in that 457

regard be compatible with the tri-domain continuum framework used there (Fig 7A). 458

We envision that the edNEG model can be integrated with this framework to obtain a 459

tri-times-two-domain model (Fig 7B) that expands the functionality of the original 460

tri-domain framework by accounting for (i) fast neuronal dynamics of AP firing and 461

dendritic Ca2+ spiking, and (ii) differences between a deep (somatic) and superficial 462

(dendritic) layer. 463

If the edNEG model is embedded in a tri-times-two domain framework for 464

SD-susceptible brain tissue, it will become the first SD model that combines 465

morphologically and biophysically detailed description of neurons with electrodiffusive 466

continuum modeling of ion concentration- and voltage dynamics in 467

neuron-ECS-glial-brain tissue at a large spatial scale. We anticipate that such a 468

framework will be of great value for the field of neuroscience, partly because it gives a 469

deepened insight into the balance between neuronal firing, ion homeostasis, and glial 470

buffering at a local scale, partly because it may lead to new insight in the physiology of 471

brain tissue in general, but most importantly because it invites detailed mechanistic 472

studies of a number of pathological conditions associated with shifts in extracellular 473

concentrations, such as SD, ischemic or hemorrhagic stroke, traumatic brain injury, 474

migraine, and epileptic seizures [18, 20–23,85,92]. 475

As a preliminary result, using the increase in the ECS K+-concentration as an 476

indicator of SD initiation, the edNEG model was in agreement with the notion of earlier 477

SD initiation in the dendritic layer, although layer differences were admittedly quite 478

small in our simulations (Fig 5). We note, however, that the model was not in any way 479

tuned to reproduce explicit SD data, and that these layer specificities followed directly 480

from adopting a set of membrane mechanisms from a previous CA3 neuron model [33]. 481

Putatively, larger differences between the layers could be obtained by adjusting either 482

the somatic and dendritic ion channel conductances or the compartment sizes. In the 483

current version, the neuronal soma and dendrite compartment were implemented with 484

identical volumes and surface areas (cf. the version of the Pinsky-Rinzel model 485

presented in [45]). If, for example, the neuronal surface-to-volume area was assumed to 486

be larger in the dendritic layer, which would sound like a plausible assumption, we 487

would expect a faster dissipation of the concentration gradients, and thus a more rapid 488

increase in the ECS K+ concentration in the dendritic layer. Hence, if embedded in a 489

tri-times-two continuum model for SD, there would be several approaches to retuning 490

the edNEG model to make it in agreement with specific experimental data. 491
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Fig 7. Tri-domain models for tissue dynamics (A) Tri-domain model with a
neuronal, ECS, and glial domain. At each point in space, a set of variables (voltage, ion
concentrations, volume fractions) are defined for each of the three domains. At each
local point (tricolored module), the three domains interact via transmembrane fluxes.
In addition, modules interact with neighboring modules via spatiotemporal
electrodiffusion in the glial domain (spatial buffering through glial syncytium), and the
ECS domain. Neurons are typically assumed not to interact laterally in such a spatially
continuous fashion. The spatial dynamics can, in principle, occur in all directions (3D),
but a 1D illustration was used in the figure. (B) Tri-times-two domain model, where
the local module has been replaced with the edNEG model so that it has two layers: a
somatic (deep) layer, and a dendritic (superficial) layer. The local module then contains
six domains: a neuronal, ECS, and glial domain in each of the two layers. Within each
layer (xy-plane), the dynamics are modeled in the same fashion as in (A). In addition,
the tri-times-two domain model contains between-layer dynamics in terms of
electrodiffusive transports intracellularly in neurons, intracellularly in the glial
syncytium, and extracellularly. The key novelty is that the tri-times-two domain model
can include different ion channels in the soma versus dendrites of neurons, and can
capture somatodendritic signaling in neurons.

Methods 492

The Kirchoff-Nernst-Planck (KNP) framework for a 493

tri-times-two compartment model 494

In a previous study [17], we derived the Kirchhoff-Nernst-Planck (KNP) 495

framework [16,38,83,93] for a closed-boundary system containing 2 × 2 compartments, 496

representing a soma, a dendrite, and extracellular space (ECS) outside the soma and 497

dendrite. In the edNEG model, we expanded the KNP framework to also include a glial 498

domain, and to account for osmotically induced volume changes. The three domains 499

(neuron + ECS + glia) were all represented as two-compartment models (one 500
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compartment in the soma layer and one in the dendrite layer). Within each layer, the 501

neuron and glial domain interacted with the ECS through transmembrane currents 502

(Fig 1). Volume changes were due to osmotic pressure gradients that we implemented as 503

functions of the ionic concentrations (see section titled Volume dynamics). Geometrical 504

parameters, including initial volumes, are listed in Table 1. 505

Table 1. Geometrical parameters

Parameter Value Reference

∆x (distance between the two layers) 667 · 10−6 m [17]
Am (membrane area of each cellular compartment) 616 · 10−12 m2 [17]
Ai (intracellular cross-section areas) α ·Am

† [17]
Ae (extracellular cross-section area) Ai/2 [17]
V sn,0, V dn,0 (initial neuronal volumes) 1437 · 10−18 m3 [17]
V se,0, V de,0 (initial extracellular volumes) 718.5 · 10−18 m3 [17]
V sg,0, V dg,0 (initial glial volumes) 1437 · 10−18 m3

† The parameter α determines the coupling strength between the soma and dendrite
layers of the model. Its default value was 2, same as in [17].

Electrodiffusion 506

Two kinds of fluxes transport ions in the system: transmembrane fluxes and axial fluxes. 507

The axial fluxes are driven by electrodiffusion, and we describe them using the 508

Nernst-Planck equation. It follows that the intracellular flux density of the neuron for 509

ion species k is expressed as: 510

jk,in = −
Dk

λ2
i

γk([k]dn − [k]sn)

∆x
−

DkzkF

λ2
i RT

[k]n
φdn − φsn

∆x
. (1)

In Eq 1, we use the same notation as in [17] so that Dk is the diffusion constant, γk is
the fraction of freely moving ions, that is, ions that are not buffered or taken up by the
endoplasmatic reticulum, λi is the tortuosity, which represents hindrances in free
diffusion due to obstacles, γk([k]dn − [k]sn)/∆x is the longitudinal concentration
gradient, zk is the charge number of ion species k, F is the Faraday constant, R is the
gas constant, T is the absolute temperature, [k]n is the average concentration, that is,
γk([k]dn + [k]sn)/2, and (φdn − φsn)/∆x is the longitudinal potential gradient. Likewise,
the extracellular flux densities and the glial intracellular flux densities are described,
respectively, by

jk,e = −
Dk

λ2
e

[k]de − [k]se
∆x

−
DkzkF

λ2
eRT

[k]e
φde − φse

∆x
, (2)

jk,ig = −
Dk

λ2
i

[k]dg − [k]sg
∆x

−
DkzkF

λ2
i RT

[k]g
φdg − φsg

∆x
. (3)

All ions can move freely in the extracellular and glial space, thus, γk is not included in 511

Eqs 2 and 3. Diffusion constants, tortuosities, and intracellular fractions of freely 512

moving ions are listed in Table 2. 513
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Table 2. Diffusion constants, tortuosities, and intraneuronal fractions of
freely moving ions†

Parameter Value Reference

DNa (Na+ diffusion constant) 1.33 · 10−9 m2/s [93, 94]
DK (K+ diffusion constant) 1.96 · 10−9 m2/s [93, 94]
DCl (Cl− diffusion constant) 2.03 · 10−9 m2/s [93, 94]
DCa (Ca2+ diffusion constant) 0.71 · 10−9 m2/s [93, 94]
λi (intracellular tortuosity) 3.2 [36, 38]
λe (extracellular tortuosity) 1.6 [36, 38]
γNa, γK, γCl (intraneuronal fractions of free ions) 1 [17]
γCa (intraneuronal fraction of free ions) 0.01 [17]

† The table is adopted from [17].

Ion conservation 514

To keep track of all ions in the system, we solve six differential equations for each ion
species k. Conservation of ions gives:

dNk,sn

dt
= −jk,msnAm − jk,inAi, (4)

dNk,se

dt
= +jk,msnAm − jk,eAe + jk,msgAm, (5)

dNk,sg

dt
= −jk,msgAm − jk,igAi, (6)

dNk,dn

dt
= −jk,mdnAm + jk,inAi, (7)

dNk,de

dt
= +jk,mdnAm + jk,eAe + jk,mdgAm, (8)

dNk,dg

dt
= −jk,mdgAm + jk,igAi, (9)

where N is the amount of substance, in units of mol. To find the change in N , all ion 515

flux densities are multiplied by the area they go through. The variable jk,m represents 516

the sum of all membrane flux densities of ion species k, and jk,in, jk,e, and jk,ig 517

represent the axial flux densities. To find the ion concentrations, which appear in many 518

of the following equations, we divide the amounts of substance in a compartment by the 519

compartment volume at the beginning of each time step. 520

We insert the Nernst-Planck equation for the axial flux density (Eq 1) into Eq 4 and 521

get: 522

dNk,sn

dt
= −jk,msnAm +

AiDk

λi
2∆x

[

γk([k]dn − [k]sn) +
zkF

RT
[k]n(φdn − φsn)

]

. (10)

In Eq 10, [k]dn and [k]sn are the intraneuronal ion concentrations of the dendrite and 523

soma, defined as Nk,dn/V dn and Nk,sn/V sn, respectively. We define the voltage 524

variables φdn and φsn below. 525

Six constraints to derive φ 526

If we have four ion species (Na+, K+, Cl−, and Ca2+) in six compartments, we get 24 527

equations to solve (Eqs 4-9 times four) and 30 unknowns (N and φ). We overcome this 528

by defining φ in terms of ion concentrations using a set of constraints similar to those 529

used in [17]. 530
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1. Arbitrary reference point for φ. The first constraint is simple; we can choose an 531

arbitrary reference point for φ. We define it to be outside the dendrite, which 532

gives us: 533

φde = 0. (11)

2. Neuronal membrane is a parallel plate capacitor (dendrite). As the second 534

constraint, we use that the membrane is a parallel plate capacitor. This means 535

that it will always separate a charge Q on one side from an opposite charge −Q 536

on the other side. This gives rise to a voltage difference across the membrane 537

φmdn = Q/Cm, (12)

where Cm is the total capacitance of the membrane, i.e., Cm = cmAm, where cm is 538

the capacitance per membrane area. We know, by definition, that 539

φmdn = φdn − φde, and since φde = 0, we get: 540

φmdn = φdn =
Qdn

Cm

. (13)

We assume bulk electroneutrality, meaning that all net charge in the dendritic 541

compartment must be on the membrane. It follows that Qdn = F
∑

k

zk[k]dnV dn, 542

where F is the Faraday constant, zk is the charge number of ion species k, [k]dn is 543

the ion concentration, and V dn is the volume. By inserting this into Eq 13, we get 544

φdn = (F
∑

k

zk[k]dnV dn)/(cmAm). (14)

3. Neuronal membrane is a parallel plate capacitor (soma). The second constraint 545

also applies to the soma, and gives us the criterion: 546

φsn − φse =
Qsn

Cm

= (F
∑

k

zk[k]snV sn)/(cmAm). (15)

Here, the outside potential is not set to zero, so this constraint is not sufficient to 547

determine φsn and φse separately. 548

4. Glial membrane is a parallel plate capacitor (dendrite layer). The glial membrane 549

is no different than the neuronal membrane when it comes to acting as a parallel 550

plate capacitor, so we get: 551

φdg =
Qdg

Cm

= (F
∑

k

zk[k]dgV dg)/(cmAm), (16)

where we have used that φde = 0. 552

5. Glial membrane is a parallel plate capacitor (soma layer). Constraint number (iv) 553

also applies to the soma layer, and gives us: 554

φsg − φse =
Qsg

Cm

= (F
∑

k

zk[k]sgV sg)/(cmAm). (17)

We can now calculate φdn and φdg from Eqs 14 and 16 but to determine φsn, φse, 555

and φsg, we need a sixth constraint. 556
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6. Current anti-symmetry. The sixth constraint is to ensure charge (anti-)symmetry. 557

We must define the initial conditions so that the membrane separates a charge Q 558

on one side from an opposite charge −Q on the other side, and the system 559

dynamics so that it stays this way. The membrane fluxes (alone) fulfill this 560

criterion, since a charge that leaves a compartment automatically pops up on the 561

other side of the membrane, making sure that dQi/dt = −dQe/dt. For the axial 562

fluxes to fullfill the criterion, we must have that: 563

Aiiin + Aiiig = −Aeie, (18)

where i stands for current density. We find expressions for iin, iig, and ie, by
multiplying Eqs 1-3 by Fzk and sum over all ion species k. Expressions for the
current densities then become:

iin = −
F

λ2
i ∆x

∑

k

Dkzkγk([k]dn − [k]sn) −
F 2

RTλ2
i ∆x

∑

k

Dkz
2
k[k]n(φdn − φsn),

(19)

iig = −
F

λ2
i ∆x

∑

k

Dkzk([k]dg − [k]sg) −
F 2

RTλ2
i ∆x

∑

k

Dkz
2
k[k]g(φdg − φsg), (20)

ie = −
F

λ2
e∆x

∑

k

Dkzk([k]de − [k]se) −
F 2

RTλ2
e∆x

∑

k

Dkz
2
k[k]e(φde − φse). (21)

The first term in Eq 19 is the diffusion current density and is defined by the ion 564

concentrations: 565

idiff,in = −
F

λ2
i ∆x

∑

k

Dkzkγk([k]dn − [k]sn). (22)

The second term is the field driven current density 566

ifield,in = −σn
(φdn − φsn)

∆x
, (23)

where σn is the conductivity: 567

σn =
F 2

RTλ2
i

∑

k

Dkz
2
k[k]n. (24)

Likewise, Eq 20 can be written in terms of idiff,ig, ifield,ig, and σg, and Eq 21 in 568

terms of idiff,e, ifield,e, and σe. We combine Eqs 18-21 and obtain: 569

−Aiidiff,in+Aiσn
(φdn − φsn)

∆x
−Aiidiff,ig+Aiσg

(φdg − φsg)

∆x
= Aeidiff,e−Aeσe

(φde − φse)

∆x
.

(25)
In Eq 25, we know φdn, φde, and φdg from Eqs 14, 11, and 16, and idiff and σ
from the ion concentrations. We solve Eqs 15, 17, and 25 to find φsn, φsg, and φse:

φse =(−∆xAiidiff,in + Aiσnφdn −Aiσn
Qsn

cmAm

− ∆xAiidiff,ig (26)

+ Aiσgφdg −Aiσg
Qsg

cmAm

− ∆xAeidiff,e) (27)

/(Aeσe + Aiσn + Aiσg), (28)

φsn =
Qsn

cmAm

+ φse, (29)

φsg =
Qsg

cmAm

+ φse. (30)
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Neuronal membrane mechanisms 570

The neuronal membrane mechanisms were equal to those in [17]. We list them again 571

here for easy reference. 572

Leakage channels 573

Both neuronal compartments contained Na+, K+, and Cl− leak currents. The flux 574

densities were modeled as in [44]: 575

jk,leak = ḡk,leak(φm − E
k
)/(Fzk), (31)

where k denotes the ion species, ḡk,leak is the ion conductance, φm is the membrane 576

potential, E
k

is the reversal potential, F is the Faraday constant, and zk is the charge 577

number. Reversal potentials are given by the Nernst equation: 578

Ek =
RT

zkF
ln

[k]e
γk[k]i

, (32)

where R is the gas constant, T is the absolute temperature, γk is the intracellular 579

fraction of freely moving ions, and [k]e and [k]i are the extra- and intracellular 580

concentrations of ion species k, respectively. 581

Active ion channels 582

We adopted all active ion channels from the Pinsky-Rinzel model [33]. This included
Na+ and K+ delayed rectifier fluxes in the soma (jNa, jDR), and a voltage-dependent
Ca2+ flux (jCa), a voltage-dependent K+ afterhyperpolarization flux (jAHP), and a
Ca2+-dependent K+ flux (jC) in the dendrite:

jNa = gNa(φm − ENa)/(FzNa), (33)

jDR = gDR(φm − EK)/(FzK), (34)

jCa = gCa(φm − ECa)/(FzCa), (35)

jAHP = gAHP(φm − EK)/(FzK), (36)

jC = gC(φm − EK)/(FzK). (37)

Here, gk is the ion conductance, φm is the membrane potential, Ek is the reversal
potential, F is the Faraday constant, and zk is the charge number for ion species k. We
used the Hodkin-Huxley formalism to model the voltage-dependent conductances, with
differential equations for the gating variables:

dx

dt
= αx(1 − x) − βxx, with x = m,h, n, s, c, q, (38)

dz

dt
=

z∞ − z

τ
z

, (39)
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and

gNa = ḡNam
2
∞h, (40)

gDR = ḡDRn, (41)

gCa = ḡCas
2z, (42)

gC = ḡCcχ([Ca+2]n), (43)

gAHP = ḡAHPq, (44)

αm = −
3.2 · 105 · φ1

exp(−φ1/0.004) − 1
, with φ1 = φm + 0.0469 (45)

βm =
2.8 · 105 · φ2

exp(φ2/0.005) − 1
, with φ2 = φm + 0.0199 (46)

m∞ =
αm

αm + βm

(47)

αh = 128 exp
−0.043 − φm

0.018
, (48)

βh =
4000

1 + exp(−φ3/0.005)
, with φ3 = φm + 0.02 (49)

αn = −
1.6 · 104 · φ4

exp(−φ4/0.005) − 1
, with φ4 = φm + 0.0249 (50)

βn = 250 exp(−φ5/0.04), with φ5 = φm + 0.04 (51)

αs =
1600

1 + exp(−72(φm − 0.005))
, (52)

βs =
2 · 104 · φ6

exp(φ6/0.005) − 1
, with φ6 = φm + 0.0089 (53)

z∞ =
1

1 + exp(φ7/0.001)
, with φ7 = φm + 0.03 (54)

τz = 1, (55)

αc =

{

52.7 exp
(

φ8

0.011
−

φ9

0.027

)

, if φm ≤ −0.01 V

2000 exp(−φ9/0.027), otherwise
(56)

with φ8 = φm + 0.05 and φ9 = φm + 0.0535 (57)

βc =

{

2000 exp(−φ9/0.027) − αc, if φm ≤ −0.01 V

0, otherwise
(58)

χ = min(
γCa[Ca+2]n − 99.8 · 10−6

2.5 · 10−4
, 1), (59)

αq = min(2 · 104(γCa[Ca+2]n − 99.8 · 10−6), 10), (60)

βq = 1. (61)

In Eqs 38-61, rates (α’s, β’s) are in units of 1/s, τ z is in units of s, and voltages φ are in 583

units of V. 584

Homeostatic mechanisms 585

Both neuronal compartments contained a 3Na+/2K+ pump, a K+/Cl− cotransporter
(KCC2), a Na+/K+/2Cl− cotransporter (NKCC1), and a 2Na+/Ca2+ exchanger. The
functional forms of the pumps and cotransporters were taken from [44], while the
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2Na+/Ca2+ exchanger was modeled as in [17]:

jpump,n =
ρn

1.0 + exp((25 − [Na+]n)/3)
·

1.0

1.0 + exp(3.5 − [K+]e)
, (62)

jkcc2 = Ukcc2 ln

(

[K+]n[Cl−]n
[K+]e[Cl−]e

)

, (63)

jnkcc1 = Unkcc1f([K+]e)

(

ln

(

[K+]n[Cl−]n
[K+]e[Cl−]e

)

+ ln

(

[Na+]n[Cl−]n
[Na+]e[Cl−]e

))

, (64)

f([K+]e) =
1

1 + exp(16 − [K+]e)
, (65)

jCa−dec = UCa−dec · ([Ca+2]n − [Ca+2]n,b) ·
V n

Am

. (66)

Here, ρn, Ukcc2, and Unkcc1 are pump and cotransporter strengths, UCa−dec is the Ca2+ 586

decay rate, and [Ca+2]n,b is the basal Ca2+ concentration.. 587

Glial membrane mechanisms 588

We modeled the glia as an astrocytic domain and adopted the membrane mechanisms 589

from [38]. They included Na+ and Cl− leak channels, modeled as in Eq 31, an inward 590

rectifying K+ channel, and a 3Na+/2K+ pump: 591

jK−IR = ḡK−IRfK−IR(φm − EK)/(FzK), (67)

fK−IR =

√

[K+]e
[K+]e,b

(

1 + exp(18.4/42.4)

1 + exp((∆φ · 1000 + 18.5)/42.5)

)

·

(

1 + exp(−(118.6 + EK,b · 1000)/44.1)

1 + exp(−(118.6 + φm · 1000)/44.1)

)

(68)

jpump,g = ρg
[Na+]1.5g

[Na+]1.5g + [Na+]1.5g,threshold

[K+]e
[K+]e + [K+]e,threshold

. (69)

Here, ḡK−IR is the K+ ion conductance, φm is the membrane potential, EK is the K+
592

reversal potential, F is the Faraday constant, zK is the K+ charge number, [K+]e,b is 593

the basal K+ concentration in the extracellular space, ∆φ = φm − EK, EK,b is the 594

reversal potential for K+ at basal concentrations, ρg is the pump strength, and 595

[Na+]g,threshold and [K+]e,threshold are the pump’s threshold concentrations for Na+ and 596

K+, respectively. We included the same set of membrane mechanisms in both astrocytic 597

compartments. 598
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Volume dynamics 599

To calculate the osmotically induced volume changes dV/dt, we used the formalism
outlined in [42]:

dV sn

dt
= Gn(Ψ

se
− Ψsn), (70)

dV sg

dt
= Gg(Ψ

se
− Ψsg), (71)

dV dn

dt
= Gn(Ψ

de
− Ψdn), (72)

dV dg

dt
= Gg(Ψ

de
− Ψdg), (73)

dV se

dt
= −

(

dV sn

dt
+

dV sg

dt

)

, (74)

dV de

dt
= −

(

dV dn

dt
+

dV dg

dt

)

. (75)

Here, Gn and Gg are the neuronal and glial water permeabilities, respectively, given in 600

units of m3/Pa/s, and Ψ is the water potential, given in units of Pa. We assumed the 601

hydrostatic pressure differences to be zero, so that water flow was driven by osmotic 602

pressure differences only, and we calculated the solute potentials from: 603

Ψ = −iMRT. (76)

Here, i is the ionization factor (van’t Hoff factor), which is 1 for ions, M is the osmotic 604

concentration of solutes measured in moles per cubic meter, R is the gas constant, and 605

T is the absolute temperature. Equations 74 and 75 follow from the assumption that 606

the total volume did not change, that is, the system was closed. 607

Like in [27], we only considered effects of transmembrane water flow, and 608

intra-domain water flow due to hydrostatic pressures were neglected. As predicted in a 609

previous study, bulk flow at physiological hydrostatic pressure is expected to be low [95]. 610

Model summary 611

To keep track of all ions in the system, we solved six differential equations for each ion
species k:

dNk,sn

dt
= −jk,msnAm − jk,inAi, (77)

dNk,se

dt
= +jk,msnAm − jk,eAe + jk,msgAm, (78)

dNk,sg

dt
= −jk,msgAm − jk,igAi, (79)

dNk,dn

dt
= −jk,mdnAm + jk,inAi, (80)

dNk,de

dt
= +jk,mdnAm + jk,eAe + jk,mdgAm, (81)

dNk,dg

dt
= −jk,mdgAm + jk,igAi. (82)
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The total membrane flux densities are summarized here:

jNa,msn = jNa + jNa,leak,n + 3jpump,n + jnkcc1 − 2jCa−dec, (83)

jK,msn = jDR + jK,leak,n − 2jpump,n + jnkcc1 + jkcc2, (84)

jCl,msn = jCl,leak,n + 2jnkcc1 + jkcc2, (85)

jCa,msn = jCa−dec, (86)

jNa,mdn = jNa,leak,n + 3jpump,n + jnkcc1 − 2jCa−dec, (87)

jK,mdn = jAHP + jC + jK,leak,n − 2jpump,n + jnkcc1 + jkcc2, (88)

jCl,mdn = jCl,leak,n + 2jnkcc1 + jkcc2, (89)

jCa,mdn = jCa + jCa−dec, (90)

jNa,msg = jNa,leak,g + 3jpump,g, (91)

jK,msg = jK−IR − 2jpump,g, (92)

jCl,msg = jCl,leak,g, (93)

jNa,mdg = jNa,leak,g + 3jpump,g, (94)

jK,mdg = jK−IR − 2jpump,g, (95)

jCl,mdg = jCl,leak,g. (96)

At each time step, we derived φ algebraically in all six compartments:

φde =0, (97)

φdn =(F
∑

k

zk[k]dnV dn)/(cmAm), (98)

φdg =(F
∑

k

zk[k]dgV dg)/(cmAm), (99)

φse =(−∆xAiidiff,in + Aiσnφdn −Aiσn
Qsn

cmAsn

− ∆xAiidiff,ig (100)

+ Aiσgφdg −Aiσg
Qsg

cmAm

− ∆xAeidiff,e) (101)

/(Aeσe + Aiσn + Aiσg), (102)

φsn =
Qsn

cmAm

+ φse, (103)

φsg =
Qsg

cmAm

+ φse. (104)

Volume dynamics was given by:

dV sn

dt
= Gn(Ψ

se
− Ψsn), (105)

dV sg

dt
= Gg(Ψ

se
− Ψsg), (106)

dV dn

dt
= Gn(Ψ

de
− Ψdn), (107)

dV dg

dt
= Gg(Ψ

de
− Ψdg), (108)

dV se

dt
= −

(

dV sn

dt
+

dV sg

dt

)

, (109)

dV de

dt
= −

(

dV dn

dt
+

dV dg

dt

)

. (110)

Fig 1 summarizes the model and model parameters are listed in Tables 1-5. 612
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Table 3. Temperature and physical constants†

Parameter Value Reference

T (absolute temperature) 309.14 K [17,44]
F (Faraday constant) 9.648 · 104 C/mol
R (gas constant) 8.314 J/(mol K)

† This table is adopted from [17].

Table 4. Membrane parameters

Parameter Value Reference

cm 3 · 10−2 F/m2 [33, 45]
ḡNa,leak,n 0.246 S/m2 eq. 111
ḡK,leak,n 0.245 S/m2 eq. 111
ḡCl,leak,n 0.668 S/m2 eq. 111
ḡNa 300 S/m2 [33, 45]
ḡDR 150 S/m2 [33, 45]
ḡCa 141 S/m2 tuned
ḡAHP 8 S/m2 [33, 45]
ḡC 150 S/m2 [33, 45]
ρn 1.87 · 10−6 mol/(m2s) [17, 44]
Ukcc2 7.0 · 10−7 mol/(m2s) [17, 44]
Unkcc1 2.33 · 10−7 mol/(m2s) [17, 44]
UCa−dec 75 s−1 [33, 45]
ḡNa,leak,g 1 S/m2 [38]
ḡCl,leak,g 0.5 S/m2 [38]
ḡK−IR 16.96 S/m2 [38]
ρg 1.12 · 10−6 mol/(m2s) [38]
[Na+]g,threshold 10 mM [38]
[K+]e,threshold 1.5 mM [38]
Gn 2 · 10−23 m3/Pa/s [96]
Gg 5 · 10−23 m3/Pa/s [41]

Simulations 613

Model tuning 614

The edNEG model combined two previous models, one consisting of a neuron and 615

ECS [17], and the other of a glial domain (astrocyte) and ECS [38]. When we combined 616

the models, we set the initial ionic concentrations in the neuron identical to those 617

in [17], the initial ionic concentrations in the glial domain identical to those in [38], and 618

made the two cells share the same ECS where we set the initial concentrations equal to 619

those in the previous glia model [38]. As these initial concentrations (Table 5) differed 620

from the initial ECS concentrations in the previous neuron model [17], the neuron was 621

not in equilibrium with the (new) ECS. This was because the altered ECS 622

concentrations gave rise to altered concentration-dependent activity of the ion pumps, 623

cotransporters, and ionic currents through ion channels. We found that the leakage 624

currents were most important, and that a re-tuning of the leak conductances (ḡNa,leak,n, 625

ḡK,leak,n, and ḡCl,leak,n) in the neuron model was sufficient to obtain a system with a 626

plausible resting state. The tuning was done by requiring that the initial leakage 627

currents should be identical to those in [17], i.e., we set: 628

ḡk,new(φm − Ek,new) = ḡk,old(φm − Ek,old), (111)
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with φm being the resting potential in [17] (−67.7 mV), Ek,old being the reversal 629

potential for ion species k at steady state in [17], and Ek,new being the reversal 630

potential obtained by the new initial ion concentrations (Table 5). By solving this 631

equation, we obtained a final set of passive conductances for the neuronal membrane 632

(Table 4). After calibrating (running it for 5000 s) the edNEG model with the (new) 633

derived passive conductances, it settled at a resting state where the neuronal resting 634

membrane potential was −70.3 mV, and the glial membrane resting potential was 635

−82.6 mV, which was close to the original resting potentials for the neuron and glial 636

domain (original values were −67.7 mV [17] and −83.6 mV [38], respectively). The 637

reason why the new and original values were not identical was that not only the leakage 638

currents, but also the ion pumps and cotransporters, and to a small extent the active 639

channels, were active at rest. 640

To obtain comparable spike shapes between the edNEG model and the original 641

Pinsky-Rinzel model (Fig 2), we manually tuned the Ca2+ conductance of the neuron 642

(ḡCa), as well as the coupling strength between the soma and dendrite layers. The 643

coupling strength was regulated by adjusting the intracellular cross-section areas αAi (cf. 644

Table 1) by adjusting the unit-less parameter α. The parameter α was 2 for simulations 645

with stong coupling between the soma and dendrite layers, and 0.51 for simulations with 646

weak coupling. Strong coupling was used in all simulations except in the simulation 647

shown in Fig 2C where it was 0.51. The Ca2+ conductance (ḡCa), along with the other 648

membrane mechanisms, were the same in all simulations (values as in Table 4). 649

Initial conditions 650

Before tuning the edNEG model, we defined its initial volumes (Table 1), amounts of 651

ions, membrane potentials, and gating variables (Table 5, Pre-calibrated column) using 652

values from the two previous models in [17] and [38]. After re-tuning selected 653

parameters (as described in the previous subsection), the system was close to, but not 654

strictly in equilibrium, and for this reason we calibrated the edNEG model for 5000 s. 655

The water permeabilities were set to zero during the calibration. 656

We wrote the final values from the calibration to file (see Table 5, Post-calibrated 657

column) and used them as initial conditions in all simulations shown throughout this 658

paper. Note that the edNEG model takes amounts of ions (in units of mol) as input, 659

while we have listed ion concentrations in Table 5. The post-calibrated values of the ion 660

concentrations correspond to the following reversal potentials: ENa,n = 55 mV, 661

ENa,g = 62 mV, EK,n = −96 mV, EK,g = −88 mV, ECl,n = −90 mV, ECl,g = −83 mV, 662

and ECa,n = 124 mV. 663

To ensure charge symmetry and electoneutrality, we defined a set of static residual 664

charges, based on the initial amounts of ions. These represent negatively charged 665

macromolecules present in real cells. We defined them as constant amounts of ion 666

species X− with charge number zX = −1 and diffusion constant DX = 0. To ensure 667

strict electroneutrality, we did not read residual charges to/from file, but calculated 668

them at the beginning of each simulation.They were given by the following expressions: 669

NX,n = zNaNNa,n,0 + zKNK,n,0 + zClNCl,n,0 + zCaNCa,n,0 − φmn,0
cmAm

F
, (112)

NX,e = zNaNNa,e,0 + zKKK,e,0 + zClNCl,e,0 + zCaNCa,e,0 + (φmn,0 + φmg,0)
cmAm

F
,

(113)

NX,g = zNaNNa,g,0 + zKNK,g,0 + zClNCl,g,0 − φmg,0
cmAm

F
. (114)
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Additionally, we introduced a set of static residual molecules to ensure zero osmotic
pressure gradients across the membranes at the beginning of each simulation. These
were defined as osmotic concentrations of a molecule M:

[M]n = (NNa,n,0 + NK,n,0 + NCl,n,0 + NCa,n,0)/V sn,0, (115)

[M]e = (NNa,e,0 + NK,e,0 + NCl,e,0 + NCa,e,0)/V se,0, (116)

[M]g = (NNa,g,0 + NK,g,0 + NCl,g,0)/V sg,0. (117)

Table 5. Initial conditions

Variables Pre-calibrated Post-calibrated1 Reference

φmn,0
† −67.7 mV −70.3 mV [17]

φmg,0
† −83.6 mV −82.6 mV [38]

[Na+]n,0 16.9 mM 18.4 mM [17]
[Na+]e,0 144.622 mM 144.0 mM [38]
[Na+]g,0 15.189 mM 14.0 mM [38]
[K+]n,0 139.5 mM 137.1 mM [17]
[K+]e,0 3.082 mM 3.8 mM [38]
[K+]g,0 99.959 mM 102.0 mM [38]
[Cl−]n,0 5.4 mM 4.5 mM [17]
[Cl−]e,0 133.71 mM 133.7 mM [38]
[Cl−]g,0 5.145 mM 6.0 mM [38]
[Ca2+]n,0 0.01 mM* 0.01 mM* [17]
[Ca2+]e,0 1.1 mM 1.1 mM [17]
n0 0.0003 0.0002 [17]
h0 0.999 0.9997 [17]
s0 0.007 0.0057 [17]
c0 0.005 0.0042 [17]
q0 0.011 0.0092 [17]
z0 1.0 1.0 [17]

1 Values with more decimals included were read to/from file and used in the simulations.
(Available at https://github.com/CINPLA/edNEGmodel_analysis.)
† φm is not an independent state variable, but defined at each time point from the ion
concentrations.
* Only 1% of the total intracellular Ca2+, that is, a 100 nM, was assumed to be free
(unbuffered).

Stimulus current 670

We stimulated the neuron like we did in [17], that is, by applying a K+ injection current
istim into the soma, and removing the same amount of K+ from the corresponding
extracellular compartment to ensure ion conservation:

d[K+]sn
dt

+ =
istim

FzKV sn

, (118)

d[K+]se
dt

− =
istim

FzKV se

. (119)

Numerical implementation 671

We implemented the code in Python 3.6 and solved the differential equations using the 672

solve ivp function from SciPy with its Runge-Kutta method of order 3(2). We set the 673
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maximal allowed step size to 10−4. The code can be downloaded from 674

https://github.com/CINPLA/edNEGmodel and 675

https://github.com/CINPLA/edNEGmodel_analysis. 676
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