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Abstract

Computational modeling in neuroscience has largely focused on simulating the electrical
activity of neurons, while ignoring other components of brain tissue, such as glial cells
and the extracellular space. As such, most existing models can not be used to address
pathological conditions, such as spreading depression, which involves dramatic changes
in ion concentrations, large extracellular potential gradients, and glial buffering
processes. We here present the electrodiffusive neuron-extracellular-glia (edNEG) model,
which we believe is the first model to combine multicompartmental neuron modeling
with an electrodiffusive framework for intra- and extracellular ion concentration
dynamics in a local piece of neuro-glial brain tissue. The edNEG model (i) keeps track
of all intraneuronal, intraglial, and extracellular ion concentrations and electrical
potentials, (ii) accounts for neuronal somatic action potentials, and dendritic calcium
spikes, (iii) contains a neuronal and glial homeostatic machinery that gives
physiologically realistic ion concentration dynamics, (iv) accounts for electrodiffusive
transmembrane, intracellular, and extracellular ionic movements, and (v) accounts for
glial and neuronal swelling caused by osmotic transmembrane pressure gradients. We
demonstrate that the edNEG model performs realistically as a local and closed system,
i.e., that it maintains a steady state for moderate neural activity, but experiences
concentration-dependent effects, such as altered firing patterns and homeostatic
breakdown, when the activity level becomes too intense. Furthermore, we study the role
of glia in making the neuron more tolerable to hyperactive firing and in limiting
neuronal swelling. Finally, we discuss how the edNEG model can be integrated with
previous spatial continuum models of spreading depression to account for effects of
neuronal morphology, action potential generation, and dendritic Ca?t spikes which are
currently not included in these models.

Author summary

Neurons communicate by electrical signals mediated by the movement of ions across the
cell membranes. The ionic flow changes the ion concentrations on both sides of the cell
membranes, but most modelers of neurons assume ion concentrations to remain
constant. Since the neuronal membrane contains structures called ion pumps and
cotransporters that work to maintain close-to baseline ion concentrations, and the brain
contains a cell type called astrocytes that contribute in keeping an appropriate ionic
environment for neurons, the assumption is justifiable in many scenarios. However, for
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several pathological conditions, such as epilepsy and spreading depression, the ion
concentrations may vary dramatically. To study these scenarios, we need models that
account for changes in ion concentrations. In this paper, we present what we call the
electrodiffusive neuron-extracellular-glia model (edNEG), which keeps track of all ions
in a closed system containing a neuron, the extracellular space surrounding it, and an
astrocytic “domain”. The edNEG model ensures a complete and consistent relationship
between ion concentrations and charge conservation. We envision that the model can be
used to study a range of pathological conditions such as spreading depression and,
hence, be of great value for the field of neuroscience.

Introduction

Computational modeling in neuroscience has largely focused on simulating the electrical
activity of neurons and networks of such, while ignoring other components of brain
tissue, such as glial cells and the extracellular space. Within that paradigm,
biophysically detailed neuron models are typically based on a combination of a
Hodgkin-Huxley type formalism for membrane mechanisms (see, e.g., [1,2]), and cable
theory for how signals propagate in dendrites and axons (see, e.g., [3,4]). Two
underlying assumptions in these standard models are that (i) the extracellular space
(ECS) is isopotential and grounded, and thus does not affect the neurodynamics, and
(ii) that the concentrations of the main charge carriers (Nat, K*, and Cl ) remain
constant over the simulated period.

The assumptions (i-ii) are never strictly true. Neuronal activity does give rise to
electric fields in the ECS, and in principle, a field will affect the membrane potential
dynamics of both the neuron that gave rise to the field and of its neighbors. Such
so-called ”ephaptic” effects have been the topic of many studies (see, e.g., [5-12]).
Furthermore, electrical signals in neurons are generated by transmembrane ion fluxes,
which will alter both intra- and extracellular ion concentrations. This may change ionic
reversal potentials, and the effect that this may have on neurodynamics has also been
the topic of many studies (see, e.g., [13-17]).

As homeostatic mechanisms, such as ion pumps and cotransporters, strive to
maintain ion concentrations close to constant baseline levels [18], and as ECS potentials
tend to be very small compared to the membrane potentials of neurons [9], the
assumptions (i-ii) are still warranted under many conditions. However, there are also
many conditions where these assumptions are not justified. For example, in tightly
packed bundles of axons, it is likely that the activity in one axon may affect its
neighbors both (ephaptically) through the electric field that it evokes [6,10], and
through the ion concentration changes it generates in the narrow ECS separating
them [16]. On the much larger spatial scale of brain tissue, spreading depression (SD)
and a number of related pathological conditions are associated with dramatic shifts in
the KT concentration and giant DC-like voltage gradients in the ECS, which may be as
large as several tens of millimolar and millivolts, respectively [19-24]. The
pathophysiology of SD is believed to largely depend on the dynamics of extracellular
K™ [20,23,25,26], which in turn is likely to involve numerous processes such as neuronal
re-uptake, electrodiffusion through the ECS, and glial spatial buffering processes [27].

Accurate modeling of conditions that involve notable changes in ion concentrations
and ECS potentials requires a unified, electrodiffusive framework that ensures
conservation of ions and charge, and a physically consistent relationship between ion
concentrations and electrical potentials in both the intra- and extracellular space [17].
Until recently, models that were consistent in this regard (see, e.g., [16,27-29]), had not
accounted for morphological aspects of neurons, such as, e.g., the differential expression
of membrane mechanisms in dendrites versus somata. The morphology of a neuron is
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important not only for its somatodendritic signaling and integration of synaptic inputs
but also has implications for the extracellular dynamics of electrical potentials and ion
concentrations. For example, the large extracellular shifts seen during SD have been
suggested to originate in superficial layers of hippocampus and cortex, and to depend
strongly on ion channel openings in the apical dendrites of pyramidal

cells [19,20,24,30-32]. Hence, morphological details may have important implications
also for understanding dynamical processes at the level of brain tissue.

Recently, we developed the electrodiffusive Pinsky-Rinzel (edPR) model, which we
believe is the first model that combines morphologically explicit neuron modeling with
biophysically consistent modeling of ion concentrations, electrical charge, and electrical
potentials in both the intra- and extracellular space [17]. In that work, we equipped the
well established Pinsky-Rinzel model [33] with a homeostatic machinery and equations
for ion concentration dynamics in the intra- and extracellular space. The objective was
to supply the neuroscience community with a model that can simulate neural dynamics
not only under a steady-state scenario (S1), where the homeostatic machinery succeeds
in maintaining ion concentrations close to baseline, but also under a scenario (S2) where
homeostasis is incomplete, so that ion concentrations change over time.

Two important contributors to ion concentration dynamics were not accounted for in
the edPR model, namely the effects of glial cells and cellular swelling or shrinkage. In
particular, a type of glial cells called astrocytes is known to be important for regulating
the ionic content of the ECS [34], and especially for the uptake of excess KT that may
develop during neuronal hyperactivity [35-38]. Furthermore, when ion concentrations
change in neurons, astrocytes, and the ECS, it will cause osmotic pressure gradients
over the cellular membrane. This can lead to cellular swelling or shrinkage [39-42],
which in turn will alter the ionic concentrations in the swollen or shrunken volumes.
Cellular swelling and a corresponding shrinkage of the ECS is, for example, and
important trademark of pathological conditions such as seizures and SD [18,23,43].

In this work, we present an expanded version of the edPR model, which also accounts
for effects of glial ion uptake and neuronal and glial swelling due to osmotic pressure
gradients. In the expanded version, which we will refer to as the electrodiffusive
neuron-extracellular-glia (edNEG) model, the neuron and glial domain interact through
a shared ECS. The edNEG model thus includes the main machinery responsible for ion
concentration dynamics in a "unit” piece of brain tissue, i.e., corresponding to a single
neuron, and the ECS and glial ion uptake that it has to its disposal. The edNEG model
has six compartments, two for each of the three domains. It has the functionality that it
(1) keeps track of all ion concentrations (Na®™, KT, Ca?* and C17) in all compartments,
(2) keeps track of the electrical potential in all compartments, (3) has different ion
channels in neuronal soma and dendrites so that the neuron can fire somatic action
potentials (APs) and dendritic calcium spikes, (4) contains the neuronal and glial
homeostatic machinery that maintains a realistic dynamics of the membrane potential
and ion concentrations, (5) accounts for transmembrane, intracellular and extracellular
ionic movements due to both diffusion and electrical migration, and (6) accounts for
cellular swelling of neurons and glial cells due to osmotic pressure gradients.

In this first implementation, we study the edNEG model as a closed system, i.e., ions
are conserved and confined to stay within the six-compartment system. We focus on
illustrating the model tuning required to achieve (1)-(6) and the exploration of its
dynamical properties. We show that, like for the edPR model, this closed system (i) has
a stable resting state, (ii) maintains steady-state firing for (S1) moderate neural activity,
and (iii) experiences homeostatic breakdown (S2), mimicking the onset of SD, once the
activity level becomes too high. As the main novelty of the edNEG model, compared to
the edPR model, is the glial compartment, we put an emphasis on examining the role of
glia in making the neuron more tolerable to hyperactive firing and in limiting neuronal
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swelling.

Results

An electrodiffusive Pinsky-Rinzel model with neuron-glia
interactions and cellular swelling

The edNEG model consisted of a neuron, an extracellular (ECS) domain, and a glial
domain, all of which had two compartments (Fig 1). For the neuron, the two
compartments represent the somatic (bottom) and dendritic (top) parts of its
morphology, as in the original Pinsky-Rinzel model [33]. For the ECS, the two
compartments represent the average ECS that the single neuron has to its disposal
surrounding its somata (bottom) and dendrites (top). Finally, the glial cells most
involved in ion homeostasis, the astrocytes, are typically interconnected via gap
junctions into a continuous syncytium. The glial compartments could thus be
interpreted not as two compartments of a single glial cell, but rather as a representative
for the average glial buffering surrounding the neural somata (bottom) and dendrites
(top). Like for the ECS, we will hence refer to the glia as a ”domain” rather than to a
single glial cell.

The neuron and the ECS domain were adopted from the previously published
electrodiffusive Pinsky-Rinzel (edPR) model [17] and modified slightly (see Methods).
The neuron was based on the Pinsky-Rinzel model, which, despite having only two
compartments, can reproduce a variety of realistic firing patterns when responding to
somatic or dendritic stimuli, including somatic APs and dendritic calcium spikes [33].
The model for the glial domain was taken from a previous model for astrocytic spatial
buffering [38] and added to the edPR model so that both the neuron and glial domain
interacted with the ECS. Unlike the previous neuron [17] and glial [38] models that it
was based upon, the edNEG model was constructed so that it also accounted for cellular
swelling due to osmotic pressure gradients. We implemented the edNEG model using
the electrodiffusive KNP framework [17,38], which consistently outputs the voltage- and
ion concentration dynamics in all compartments.

The edNEG model is depicted in Fig 1. Both the neuron and glial domain contained
cell-specific and ion-specific passive leakage channels, cotransporters, and ion pumps
that ensured a homeostatic ion balance in the system. The neuron contained additional
active ion channels that were different in the somatic versus dendritic compartment,
making it susceptible to fire somatic action potentials and dendritic Ca?* spikes. Both
glial compartments contained inward rectifying K™ channels. All included membrane
mechanisms are summarized in Fig 1 and described in further detail in the Methods
section.

Action potential firing and resting state in the edNEG model

The neuron in the edNEG model was based on the previous two-compartment
Pinsky-Rinzel model for a hippocampal pyramidal neuron in CA3. A feature of the
original Pinsky-Rinzel model was that it produced somatic action potentials and
dendritic Ca?* spikes. Also, for weak coupling (high intracellular resistance) between
the soma and dendrite, the interplay between somatic action potentials and dendritic
Ca?" spikes could give rise to a wobbly spike shape (Fig 2A), while for a stronger
coupling (low intracellular resistance), the interplay rather lead to a broadening of the
AP shape (Fig 2B). These features of the original Pinsky-Rinzel model has been
analyzed thoroughly in previous studies [17,33,45].
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Fig 1. Model architecture. (A) The edNEG model contained three domains
(neuron, index n, ECS, index e, and glia, index g). Initial neuronal/extracellular/glial
volume fractions were 0.4/0.2/0.4. Each domain contained two compartments (soma
level, index s, and dendrite level, index d). Tons of species k were carried by two types
of fluxes: transmembrane (index m) fluxes (Jk,msn, Jk,mdn; Jk,msgs Jkmdg) and
intra-domain fluxes in the neuron (jk in), the ECS (jk,e), and the glial domain (j ig)-
An electrodiffusive framework was used to calculate ion concentrations and electrical
potentials in all compartments. (B) The neuronal membrane contained the same
mechanisms as in [17]. Active ion channels were taken from [33]. The soma contained
Na™ and KT delayed rectifier currents (In, and I'x_pr), and the dendrite contained a
voltage-dependent Ca2™ current (I¢,), a voltage-dependent K+ afterhyperpolarization
current (I'x_app), and a Ca?*-dependent K+ current (Ix_c). Both compartments
contained Na®™, K*, and C1™ leak currents ([jeax), 3Na®/2K* pumps (Ipump,n),
K*/Cl~ cotransporters (Ikccz), and Nat /K+/2C1™ cotransporters (Inkcc1), modeled
as in [44]. They also contained Ca?*/2Na™ exchangers (Ica_dec), mimicking the Ca?*
decay in [33] and modeled like in [17]. The glial membrane mechanisms were taken
from [38], and they were the same in both compartments. They included Na™ and ClI-
leak currents (I}eax), inward rectifying K currents (Ix_ir), and 3Na* /2K pumps

(Ipump,g) .

To verify that we preserved the characteristic firing properties of the Pinsky-Rinzel
model when we made it ion conserving and embedded it within the edNEG model, we
implemented two versions of the edNEG model, one with a strong coupling between the
soma and dendrite layers, and one with a weak coupling (see Methods for definition of
weak and strong coupling). When we stimulated the two versions with constant current
injections to the neuronal soma, they elicited spikes that were similar to that of the
original Pinsky-Rinzel model: Compare Fig 2A and Fig 2C for weak coupling, and Fig
2B and Fig 2D for strong coupling. Hence, the neuron in the edNEG model preserved
the key dynamical properties of the previously developed CA3 hippocampal cell
model [33]. The model version with the strong coupling between layers was used as
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default in all other simulations in this paper.

When we in the edNEG model combined a previous neuron model [17] and a previous
glial model [38], and made them share ECS, the original resting state of both the
previous models were disturbed. To obtain realistic resting potentials in the new system,
we had to re-tune selected parameters (see section titled Model tuning for details). The
existence of a realistic resting state for the tuned edNEG model is verified in Fig 2E. It
shows a simulation where the neuron was stimulated between ¢ = 10s and ¢t = 20s with
a constant current injection that made it fire at 1 Hz. Both the neuron and glial domain
stayed at their resting potentials of approximately —70 mV and —83 mV, respectively,
when unstimulated (¢ < 10s), and returned to this resting state after the stimulus had
been turned off (¢ > 20s). The dynamics of the membrane potentials and ion
concentrations during on-going activity is analyzed in further detail in the next section.

Steady-state firing in the edNEG model

In standard (Hodgkin-Huxley type) neuron models, which the original Pinsky-Rinzel
model [33] is an example of, the key dynamical variable is the membrane potential. In
addition to modeling the membrane potential, the edNEG model presented here keeps
track of all neuronal, glial, and extracellular ion concentrations, and accounts for
changes in cellular and extracellular volume fractions due to osmotic gradients. It also
accounts for the effect that changes in these variables may have on neuronal firing
properties.

When the neuron is active, the exchange of ions due to AP firing will be
counteracted by the homeostatic mechanisms striving to restore baseline concentration
gradients. Hence, we expect that for moderately low neuronal firing, the edNEG model
will enter a dynamic steady-state scenario (S1) where homeostasis is successful, and
firing can prevail for an arbitrarily long period of time without ion concentrations
diverging far off from baseline. We also expect that for a too-high neuronal activity
level, the edNEG model will enter a scenario (S2) where the homeostatic mechanisms
fail to keep up, and where gradual changes in ion concentrations will lead to gradual
changes in neuronal firing properties, and eventually to ceased AP firing.

The existence of a dynamic steady-state scenario (S1) is illustrated in Fig 3, which
shows how selected variables vary in the edNEG model during a 1400 s simulation. The
neuron received a stimulus from ¢ = 1s to ¢ = 600s that made it fire at 1 Hz (Fig 3A).
To examine the steady-state scenario (S1), we have divided the simulation into four
phases: an initial phase (the first column in Fig 3B-D), covering transient dynamics
immediately after stimulus onset), a steady-state phase (the second column in Fig
3B-D), covering the last ten seconds of firing, a recovery phase (the third column in Fig
3B-D), covering the transient dynamics immediately after the stimulus offset, and a
recovered phase (the fourth column in Fig 3B-D), covering the last 10s of the simulation,
when the system had returned to the original resting state. In all these phases, we
examined the temporal development of the neuronal (Fig 3B) and glial (Fig 3C) reversal
potentials, and the neuronal and glial swelling (Fig 3D).

In the initial phase, the concentrations of all ion species varied with time due to the
influxes and effluxes associated with cellular activity. In Fig 3B-C, the concentration
variations in the soma layer are reflected in the ionic reversal potentials (Fy), which are
proportional to the logarithm of the ratio between the extra- and intracellular ion
concentration of a given species k (cf. Eq 32). As the soma contained no Ca?" channels,
variations in F ¢, were very small, although not strictly zero, since minor concentration

shifts could occur due to electrodiffusion of Ca?* between the soma and dendrite layer.

The glial domain did not contain any Ca?* conducting channels. For the other ion
species, Fy had a zig-zagging shape, most pronounced for Fx, where the upstroke
reflects the efflux of KT during the repolarization phase of an action potential (AP),
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Fig 2. Membrane potential dynamics and resting state in the edNEG
model. The neuron in the edNEG model (C,D) and the original Pinsky-Rinzel (PR)
model (A,B) exhibited the same spike shape characteristics for weak coupling (A,C)
and strong coupling (C,D) between the soma and dendrite layers. (E) The somatic
membrane potential ¢, of the neuron (black line) and the glial domain (purple line).
The neuron received a step current injection to the somatic compartment between

t =10s and ¢t = 20s tuned to give it a firing frequency of 1 Hz. The neuron and the
glial domain rested at approximately —70mV and —83mV, respectively, when the
neuron was not stimulated, and returned to these values after stimulus offset. The
stimulus current was 1.35 uA/cm? in (A), 0.78 pA/cm? in (B), 44 pA in (C), and

36 pA in (D,E). (A,B) The original PR model was simulated with the code provided
in [17]. The coupling conductance of the PR model was 2.26 mS/cm? in (A), and
8.86 mS/cm? in (B) (C-E) See methods subsection titled Model tuning for definition of
weak and strong coupling in the edNEG model. The strong coupling was used in (E),
and as default in all simulations in the reminder of this paper.

while the downstroke reflects the homeostatic mechanisms that were active between APs,
working to restore the baseline concentrations. The fact that Ex showed the largest
variations was as expected, as the extracellular K+ had the lowest baseline value of all
ion species, and therefore experienced the largest relative changes during AP firing.

The homeostatic recovery between APs was incomplete during the initial phase, and
the reversal potentials zig-zagged away from baseline for each consecutive AP (Fig
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Fig 3. Steady-state firing in the edNEG model. Model response to a 36 pA
step-current injection to the somatic compartment of the neuron between ¢t = 1s and

t = 600s. The neuron responded with a firing rate of 1 Hz. The simulation covered
1400's of biological time, and the last 800s shows recovery to baseline. (A) The somatic
membrane potential ¢p,s of the neuron (black line) and the glial domain (purple line).
(B) Reversal potential dynamics of the neuronal soma for all ion species (Nat, K,
Cl~, Ca?") shown in terms of their deviance from baseline values. (C) Reversal
potential dynamics of the glial "soma” for ion species k (Na®, K*, C17). The glial
domain did not contain any Ca?* channels. (D) Volume dynamics of the three domains
shown in terms of relative changes. Volume changes were computed for the whole
domain (soma layer + dendrite layer). Initial neuronal/extracellular/glial volume
fractions were 0.4/0.2/0.4. (B-D) Rows 1-4 show four selected time intervals, (1)
initially after stimulus onset, (2) when the system had reached dynamic steady state, (3)
initially after stimulus offset, and (4) when the system had restored baseline.

3B1,C1). However, the gradual divergence from baseline increased the homeostatic
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activity, so that after a period of regular firing, the system entered a dynamic
steady-state phase where the zigs and the zags became equal in magnitude, and the
reversal potential did not deviate further from baseline (Fig 3B2,C2).

In this simulation, Ex deviated by maximally ~3 mV from the baseline reversal
potential, which was not enough to have a visible impact on the regular firing of the
neuron. Hence, the edNEG model supported a steady-state scenario (S1), where the
neuron could fire regularly and continuously without dissipating its concentration
gradients. For firing in scenario S1, the neuron in the edNEG model performs similarly
to the original Pinsky-Rinzel model [33], which does not model ion concentrations, but
assumes that they remain constant.

When the stimulus was turned off, the recovery phase started. The membrane
potentials returned rapidly to values very close to the resting potential (Fig 3A), while
the ion concentrations (and thus the reversal potentials) returned more slowly towards
baseline (Figs 3B3,C3). At the end of the simulation, ion concentrations had recovered
the baseline values (Figs 3B4,C4). If we define recovery (rather arbitrary) as the time it
took for all reversal potentials to return to values less than 0.1 mV away from their
resting baseline values, recovery took about 300s, i.e., it occurred at about t = 900s.
The fact that the membrane potentials were almost constant during the recovery of the
reversal potentials, indicates that the ion concentration recovery was due to a close-to
electroneutral exchange of ions over the neuronal and glial membranes. Hence, the
edNEG model predicts that ”memories” of previous spiking history may linger in a
neuron for several minutes, in the form of altered concentrations, even if it appears to
have returned to baseline by judging from its membrane potential.

When the ion concentrations changed, so did the osmotic pressure gradients. This
caused the neuron and glial domain to swell over the simulated time course (Fig 3D).
Given the rather modest concentration changes observed during 1 Hz firing, the cellular
swelling was not dramatic. The neuron swoll maximally by 0.44 %, the glial domain by
maximally 0.36 %, and the extracellular space shrunk correspondingly by 1.60 % (Fig
3D2). As initial neuronal/extracellular/glial volume fractions were 0.4/0.2/0.4, this
preserved the total volume. After the stimulus was turned off, the three domains
recovered their original volume fractions (Fig 3D3-D4), and at about ¢ = 1100s, all
volumes were less than 0.01 % away from baseline.

Homeostatic breakdown in the edNEG model

The existence of a scenario (S2) where the homeostatic mechanisms fail to keep up with
the neuronal exchange is illustrated in Fig 4. There, the neuron received a strong input
current (150 pA) for three seconds, which gave it a high firing rate (Fig 4A1). While the
neuron fired, ion concentrations gradually changed, leading to changes in ionic reversal
potentials (Fig 4B1,C1), which in turn caused a gradual depolarization of the neuron
and made it fire even faster. The neuron could tolerate this strong input for only a little
more than 2s before it became unable to re-polarize to levels below the AP firing
threshold, and the firing ceased due to a permanent inactivation of the AP generating
Na™ channels. This condition, when a neuron is depolarized to voltage levels making it
incapable of eliciting further APs, is known as depolarization block. Tt is a well-studied
phenomenon, often caused by high extracellular K™ concentrations [46]. This kind of
dynamics can not be captured with standard neuron models constructed under the
assumption that ion concentrations remain constant under the simulated period. The
dynamical characteristics of the neuron in the S2 scenario resembled what we saw in a
previous study, including only the neuron and the ECS [17], and is not further analyzed
here.

We note that although the input was turned off after 3 s, the neuron lingered in
depolarization block, and continued to dissipate its concentration gradients so that
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changes in ionic reversal potentials and cellular swelling went on for a long time (Fig
4B2,C2,D2). Interestingly, the glial swelling was transient. After having swollen by
13.2 % during the first 100s of the simulation, it began to shrink, while the neuron swoll
monotonously during the entire simulation. At the end of the simulation, ionic reversal
potentials were several tens of millivolts away from their baseline values, the neuron had
swollen by 42.6 %, and the glial and ECS domains had shrunken by 0.13 % and 85.0 %,
respectively.

In this simulation, the system never returned to its baseline resting state, and the
neuron never regained its ability to elicit APs. This has previously been referred to as a
wave-of-death-like dynamics [44,47]. It also resembles the neural dynamics seen under
the onset of SD [44], but during SD, neurons tend to recover baseline activity after
about one minute as the SD wave passes [23]. Putatively, this recovery depends on K+
being transported away from the local region by ECS electrodiffusion and spatial
buffering through the astrocytic network, and quite likely also vascular clearance. As the
edNEG model studied here represented a local and closed system, such spatial riddance
of K™ did not occur, but we anticipate that recovery might be observed if the edNEG

model were expanded to a spatially continuous model (see Discussion for more on this).

Soma versus dendrite

It is known that the leading edge of the SD wave tends to occur in the layers containing
the apical dendrites [20,32]. Inspired from this, we wanted to explore if the edNEG
model expressed such layer-specific differences. Assuming that the SD wavefront
coincides with neurons going into depolarization block, we used the simulation from Fig
4 for this comparison. We studied the ECS K* concentration and neuronal swelling in
the soma and dendrite layer at a short time scale, as the neuron approached
depolarization block (Fig 5A1), and at a longer time scale, when the neuron lingered in
depolarization block (Fig 5A2).

In line with the notion that the dendritic layer is the leading edge of the SD
wavefront, Fig 5A1 shows that the ECS KT concentration during neuronal firing
(t < 2.3s) was highest in the dendrite layer, but was bypassed by the ECS K+
concentration in the soma layer shortly after the neuron had entered depolarization
block, after which it stayed highest in the soma layer (Fig 5A2). Similarly, the neuronal
dendrite also swoll more than the soma during neuronal firing (Fig 5B1), whereas the

somatic swelling caught up after the neuron had entered depolarization block (Fig 5B2).

To some degree, these observations are in agreement with the notion that SD initiates in
dendritic layers, although the differences between the layers were admittedly rather
small in the edNEG model (see Discussion for further comments).

The effect of the glial domain on neuronal tolerance levels

As the subsystem containing only the neuron and ECS was studied thoroughly in [17],
we here put an emphasis on exploring what difference the new glial domain made for
the system, especially in terms of how it (i) affected the neuronal tolerance level for AP
firing, and (ii) how it affected the dynamics of ECS K% concentrations and cellular
swelling. To do this, we compared two versions of the model, one being the full edNEG
model with glia included, and one without glia included. In the latter case, we removed
the glial influence by setting all glial membrane conductances and water permeabilities
to zero, i.e., we sealed the glial membrane.

When comparing, we wanted to make sure that the neuron fired with the same rate
in both versions, something that we could not control using a continuous step current
injection, partly because the two model versions had a different response to the same
stimulus, and partly because the firing rate could vary over time as the ion
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Fig 4. Homeostatic breakdown in the edNEG model. Model response to a
150 pA step-current injection to the somatic compartment of the neuron between

t =0.1s and t = 3s. (A1) The neuron responded with an initial firing rate of 50 Hz,
but both the firing rate and spike shapes varied throughout the simulation due to
variations in the ion concentrations. Both the neuron and glial domain experienced a
gradual depolarization throughout the simulation, and the neuron eventually went into
depolarization block. The gradually changing dynamics patterns were due to
activity-induced changes in ionic reversal potentials (B-C). (D) The system
experienced massive neuronal and glial swelling. The first row (A1-D1) shows
dynamics on a short time scale, and the second row (A2-D2) shows the same
simulation on a longer time scale.

concentrations changed. To control the firing rate, we, therefore, used a stimulus
protocol where we stimulated the neuronal soma periodically with a train of brief and
strong 10 ms pulses, each evoking a single AP.

Both versions of the model could maintain sustained regular firing (cf. scenario S1 in
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Fig 5. Extracellular potassium and neuronal swelling in the soma versus
dendrite layer. Comparison of (A) extracellular K™ dynamics, and (B) neuronal
swelling in the soma versus dendrite layer for the simulation in Fig 4. Panels (A1,B1)
show the first 4 s of the simulation, where the neuron went into depolarization block
around t = 2.3 s, while (A2,B2) show the long term effect of the depolarization block.
In the results shown, we stimulated the soma with an inward Kt current, but the
results were very similar when we stimulated with an inward Na™ current, or when the
stimulus was applied to the dendritic compartment instead of the soma.

Fig 3), provided that the stimulus frequency was low enough, as in the example in Fig
6A,C where the input pulse frequency (and resulting firing rate) was 4 Hz. For the 4 Hz
simulations, we verified that both model versions could sustain regular firing for at least
1000 s. However, all other simulations considered in Fig 6 were run for only 90s, so that
”sustained” in this context will mean ”sustained for at least 90s”. We chose to stop the
simulations at ¢ = 90s, partly to reduce computation time, and partly because this is a
typical time window within which an SD wave passes [23].

Whereas the membrane potential dynamics at 4 Hz firing were very similar in the
versions with and without glia, the ion concentration dynamics were not (Fig 6E). In
the case without glia, the ECS KT concentration peaked at 11.4 mM, while it stayed
below 7.7mM when glia was included. In both versions, however, the KT concentration
reached a ceiling level and eventually stabilized at a constant value, so that the system
entered a dynamic steady state (cf. scenario S1 in Fig 3).

To study homeostatic breakdown (cf. scenario S2 in Fig 4), we increased the
stimulus frequency until neither the version with, nor the version without, glia could
maintain sustained regular firing for 90s, as in the example in Fig 6B,D where the input
pulse frequency (and resulting initial firing rate) was 8 Hz (Fig 6A,C). Both versions of
the model then sustained 8 Hz firing for only a limited period. In both versions, the
8 Hz firing caused the ECS KT concentration to increase (Fig 6F) until it exceeded a
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Fig 6. Neuronal firing with and without the presence of glia. The edNEG
model tolerated higher neuronal firing frequencies when glia was present. Simulations
show responses to trains of 10 ms step-pulses of 320 pA injected to the neuronal soma,
each inducing exactly one action potential. The first pulse was applied at ¢ = 0.1s and
all simulations covered 90s of biological time. (A,C) Somatic membrane potential of
the neuron responding to a pulse train with frequency of 4 Hz, in the case when glia was
present (A) and not present (C). (B,D) Somatic membrane potential of the neuron
responding to a pulse train with frequency of 8 Hz, in the case when glia was present
(B) and not present (D). (E) ECS KT concentrations (in soma layer) during the
simulations in (A) (black line) and C (red line). (F) ECS K concentrations (in soma
layer) during the simulations in (B) (black line) and (D) (red line). (I-J) Summary of
20 simulations (as those in (A-D)) with varying stimulus frequency, showing (I)
maximum extracellular (soma) K concentration as a function of stimulus frequency,
and (I) relative neuronal volume change at the end of the simulations (¢ = 90s) as a
function of stimulus frequency. (A-D) show the 10 first seconds of the simulations, and
(E-F) show only the 20 first seconds of the simulations.

ceiling level where the neuron entered depolarization block and AP firing ceased.

As the increase in the ECS KT concentration was much faster when glia was not
present, the version without glia entered depolarization block after less than 5s of
activity (Fig 6D), while the version including glia maintained the 8 Hz AP firing for
almost 9s (Fig 6B). The time points where depolarization block was reached can be
seen as a dent in the ECS KT concentration curves (Fig 6F), which occurred at a
concentration of about 14 mM in the version without glia and at about 15mM in the
version with glia included.

We were surprised to observe that the afterhyperpolarization following APs
increased during the journey towards depolarization block in Fig 6B, despite the KT
reversal potential becoming more depolarized during the simulation. When exploring

July 7, 2020

13/36

331

332

333

334

335

336

337

338

339

340

341


https://doi.org/10.1101/2020.07.13.200287
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.13.200287; this version posted July 13, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

this phenomenon, we found that the increased afterhyperpolarization was caused by the
electrogenic 3Na™ /2K pump, which increased its activity level as the intracellular Na™
concentration and ECS KT concentration increased during the simulation (cf. Eq 62),
leading to an increased outward current. Such hyperpolarization by the ATP-ase driven
3Na™ /2K™ pump has also been reported in other studies [48,49].

Fig 61 summarizes a number of simulations of the model versions with and without
glia, and shows the peak ECS KT concentration (maximum reached during simulation)
as a function of stimulus frequency. The highest tolerated frequency, i.e., the maximum
stimulus frequency for which the neuron could sustain AP firing throughout the
simulated 90s, is easily identifiable as the point where the curves make a sharp dent.
With glia present, the edNEG model could sustain firing up to 7.6 Hz (black curve),
while without glia, it could only maintain regular firing for frequencies up to 4.7 Hz (red
curve). Also, the presence of glia reduced the peak ECS K+ concentration occurring
after homeostatic breakdown from about 23 mM (black curve) to about 21 mM (red
curve). The differences were due to the glial support in clearing the ECS from excess
K.

As the ion concentrations changed during the simulations, so did the osmotic
pressure gradients over the membrane, and this caused cellular swelling and ECS
shrinkage. The swelling depended not only on K¥, but on all ion concentrations
changing during the simulation. However, the pattern of how the presence of glia
affected the swelling of the neuron was similar to how it affected the ECS K™
concentration (Fig 6G,H,J). During steady-state firing, the neuron swoll by up to only
1.6 % when glia was present, and by 3.7 % when glia was not present (Fig 6J for
frequencies below the ”dent”-frequency).

The swelling was much more dramatic in the simulations where the neuron entered
depolarization block. For the maximal stimulus frequency (f = 10Hz), the neuron had
swollen by 16.3 % when glia was present, the glial domain had swollen by 13.1 %, and
the ECS had shrunken by 58.8 % at the end of the simulation (glial and ECS volume
fractions were not included in the plot, but were computed in the same simulation). We
note again that the simulation ended at t = 90s, and the glial swelling of 13.1 % was
close to the peak glial swelling (13.2 %) seen at ¢t = 100s in Fig 4. When glia was not
present, neural swelling was more dramatic, and the neuron had then swollen by 22.3 %
at the end of the simulation, with a corresponding shrinkage of the ECS by 44.5 %.

Discussion

We presented the edNEG model for local ion concentration dynamics in brain tissue
containing a neuronal, extracellular, and glial domain (Fig 1). The model contained
essential ion channels and homeostatic mechanisms, and accounted for somatodendritic
signaling by neurons, for electrodiffusive ion concentration dynamics within all domains,
as well as for neuronal and glial swelling due to concentration-dependent osmotic
pressure gradients.

We demonstrated that the edNEG model had realistic dynamical properties in the
sense that it supported a scenario (S1) when the homeostatic mechanisms could
maintain constant ion concentrations so that the neuron could maintain low firing
frequencies for an arbitrary long time (Fig 3), and a scenario (S2) when the neuron fired
too fast for the homeostatic mechanisms to keep up, so that ionic concentrations
gradually changed, leading eventually to the neuron entering depolarization block and
losing its ability to generate further action potentials (Fig 4). The first scenario (S1)
represents normal physiological conditions and could be modeled fairly well with simpler
and more conventional neuronal models assuming constant ion concentrations and
reversal potentials. The second scenario (S2) resembles the onset of pathological
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conditions such as spreading depression (SD) and the wave of death [44] and requires
models that explicitly account for variations in ion concentrations. Of course,
concentration effects are not only relevant during homeostatic breakdown. As Fig 3
showed, concentrations vary at a much slower time course than the membrane potential,
and may give neurons "memories” of previous spiking history that may last for several
minutes. Furthermore, we also showed that the homeostatic machinery in itself can
affect the firing patterns of a neuron, as the afterhyperpolarizations seen in Fig 6A-D
were concentration-dependent effects evoked by the electrogenic 3Na™ /2K* pump.

As the edNEG model was constructed by expanding a previous model [17] by (i)
adding a glial domain and (ii) accounting for cellular swelling due to osmotic gradients,
we put an extra emphasis on exploring how the presence of glia affected neuronal firing
and swelling. In Fig 6, we showed that the glial support increased the tolerance level for
neuronal firing and that the neuron could maintain steady-state firing for at least 90s
at frequencies up to 7.6 Hz in the presence of glia, but only up to 4.7 Hz when the glia
domain was inactivated. Furthermore, the presence of glia reduced the swelling of the
neuron from a maximum value of 3.7 % to a maximum value of 1.6 % during steady-state
firing, and from 22.3% to 16.3 % during depolarization block. The maximal neuronal
and glial swelling coincided with a corresponding shrinkage of the extracellular space by
58.8% of the original value for the version with glia, and 44.5 % for the version without
glia. These quantitative predictions do of course depend on the included neuronal and
glial mechanisms, the volume fractions, and the (sealed) boundary conditions used in
the current simulation. However, they are in agreement with experimental studies,
where reports of ECS shrinkage during SD range from 40 % to 78 % [20,50-54].

Although the current implementation of the edNEG model contained only two
neuronal compartments, the framework it was based upon can essentially be seen as a
general framework for combining multicompartmental neural modeling with
electrodiffusive ion concentration dynamics in neuroglial brain tissue. To our knowledge,
the edNEG model is the first model to do this in a biophysically consistent manner,
although many previous models have parts of the same
functionality [13-16, 44,47, 55-83].

The outlook for an improved model of spreading depression

A key motivation for developing the edNEG model was its potential use in addressing
SD and other pathological conditions associated with dramatic extracellular ion
concentration changes.

SD was first described by Ledo as a wave of silence propagating across cortex [84].
The spread of the wave coincides with shifts in the ECS K* concentration by several
tens of millimolar, DC-like voltage shifts in the ECS that may be as large as several tens
of millivolts, swelling of neurons and glial cells, and changes in numerous other variables
including the extracellular glutamate concentration and intracellular calcium
concentrations [18,23,85]. The leading hypothesis, proposed by Grafstein already in
1956, is that diffusion of K* through the ECS is the main propagator of the
wave [25,26]. However, buffering of K™ through the glial syncitium [86,87], and
electrical drift of KT along the large DC-like voltage shifts [28,88] are also likely to
contribute to the wave propagation. Initiation of SD, and the leading edge of the SD
wave, are often seen to occur in superficial (dendritic) layers of cortex and hippocampus,
suggesting that dendritic membrane mechanisms play an important role for its
pathophysiology [19,20, 24, 30-32].

To our knowledge, only one computational model exists that has combined spatial
propagation of SD with morphologically detailed neuron models [82]. However, this
model was not based on an electrodiffusive formalism, and did not account for effects of
extracellular potentials on neurodynamics and KT transport. Other spatial models of
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SD [27-29, 40, 88] have been inspired by the coarse-grained bi-domain model [89], which
previously has been used to simulate cardiac tissue [90,91]. These models are
electrodiffusive, and treat brain tissue as a homogeneous, coarse-grained, continuum,
making them computationally efficient to allow for large scale simulations of SD
propagation. However, they are limited in terms of neuronal detail, as none of them
include fast neuronal mechanisms for action potential generation, or account for any
morphological aspects of neurons, i.e., they do not account for the differences between
dendritic and somatic layers.

The edNEG model was highly inspired by the previous tri-domain continuum model
by Tuttle et al. 2019 [27], which is the most advanced of the spatial SD models. It
includes neurons, glia, and extracellular space (Fig 7A), and it accounts for cellular
swelling, a number of (slow) membrane mechanisms, and electrodiffusive ion
concentration dynamics. Unlike other local models of ion concentration dynamics in
tissue (see, e.g., [13,44,60,71]), the edNEG model was based on the same kind of
electrodiffusive formalism as the model by Tuttle et al. 2019 [27], and should in that
regard be compatible with the tri-domain continuum framework used there (Fig 7A).
We envision that the edNEG model can be integrated with this framework to obtain a
tri-times-two-domain model (Fig 7B) that expands the functionality of the original
tri-domain framework by accounting for (i) fast neuronal dynamics of AP firing and
dendritic Ca?" spiking, and (ii) differences between a deep (somatic) and superficial
(dendritic) layer.

If the edNEG model is embedded in a tri-times-two domain framework for
SD-susceptible brain tissue, it will become the first SD model that combines
morphologically and biophysically detailed description of neurons with electrodiffusive
continuum modeling of ion concentration- and voltage dynamics in
neuron-ECS-glial-brain tissue at a large spatial scale. We anticipate that such a
framework will be of great value for the field of neuroscience, partly because it gives a
deepened insight into the balance between neuronal firing, ion homeostasis, and glial
buffering at a local scale, partly because it may lead to new insight in the physiology of
brain tissue in general, but most importantly because it invites detailed mechanistic
studies of a number of pathological conditions associated with shifts in extracellular
concentrations, such as SD, ischemic or hemorrhagic stroke, traumatic brain injury,
migraine, and epileptic seizures [18,20-23,85,92].

As a preliminary result, using the increase in the ECS K*-concentration as an
indicator of SD initiation, the edNEG model was in agreement with the notion of earlier
SD initiation in the dendritic layer, although layer differences were admittedly quite
small in our simulations (Fig 5). We note, however, that the model was not in any way
tuned to reproduce explicit SD data, and that these layer specificities followed directly
from adopting a set of membrane mechanisms from a previous CA3 neuron model [33].
Putatively, larger differences between the layers could be obtained by adjusting either
the somatic and dendritic ion channel conductances or the compartment sizes. In the
current version, the neuronal soma and dendrite compartment were implemented with
identical volumes and surface areas (cf. the version of the Pinsky-Rinzel model
presented in [45]). If, for example, the neuronal surface-to-volume area was assumed to
be larger in the dendritic layer, which would sound like a plausible assumption, we
would expect a faster dissipation of the concentration gradients, and thus a more rapid
increase in the ECS K™ concentration in the dendritic layer. Hence, if embedded in a
tri-times-two continuum model for SD, there would be several approaches to retuning
the edNEG model to make it in agreement with specific experimental data.
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Fig 7. Tri-domain models for tissue dynamics (A) Tri-domain model with a
neuronal, ECS, and glial domain. At each point in space, a set of variables (voltage, ion
concentrations, volume fractions) are defined for each of the three domains. At each
local point (tricolored module), the three domains interact via transmembrane fluxes.
In addition, modules interact with neighboring modules via spatiotemporal
electrodiffusion in the glial domain (spatial buffering through glial syncytium), and the
ECS domain. Neurons are typically assumed not to interact laterally in such a spatially
continuous fashion. The spatial dynamics can, in principle, occur in all directions (3D),
but a 1D illustration was used in the figure. (B) Tri-times-two domain model, where
the local module has been replaced with the edNEG model so that it has two layers: a
somatic (deep) layer, and a dendritic (superficial) layer. The local module then contains
six domains: a neuronal, ECS, and glial domain in each of the two layers. Within each
layer (zy-plane), the dynamics are modeled in the same fashion as in (A). In addition,
the tri-times-two domain model contains between-layer dynamics in terms of
electrodiffusive transports intracellularly in neurons, intracellularly in the glial
syncytium, and extracellularly. The key novelty is that the tri-times-two domain model
can include different ion channels in the soma versus dendrites of neurons, and can
capture somatodendritic signaling in neurons.

Methods

The Kirchoff-Nernst-Planck (KNP) framework for a
tri-times-two compartment model

In a previous study [17], we derived the Kirchhoff-Nernst-Planck (KNP)

framework [16, 38,83,93] for a closed-boundary system containing 2 x 2 compartments,
representing a soma, a dendrite, and extracellular space (ECS) outside the soma and
dendrite. In the edNEG model, we expanded the KNP framework to also include a glial
domain, and to account for osmotically induced volume changes. The three domains
(neuron + ECS + glia) were all represented as two-compartment models (one
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compartment in the soma layer and one in the dendrite layer). Within each layer, the
neuron and glial domain interacted with the ECS through transmembrane currents
(Fig 1). Volume changes were due to osmotic pressure gradients that we implemented as
functions of the ionic concentrations (see section titled Volume dynamics). Geometrical
parameters, including initial volumes, are listed in Table 1.

Table 1. Geometrical parameters

Parameter Value Reference
Az (distance between the two layers) 667 - 10~%m [17]

Ay, (membrane area of each cellular compartment) 616 - 10712 m? [17]

A; (intracellular cross-section areas) a- Ap' [17]

A, (extracellular cross-section area) A; /2 [17]

V0, Vin,o (initial neuronal volumes) 1437 - 10~ 8 m3 [17]

Vse,0s Vdeo (initial extracellular volumes) 718.5-10718m?  [17)

V.0, Vdg,o (initial glial volumes) 1437 - 10~ 8 m?

T The parameter o determines the coupling strength between the soma and dendrite
layers of the model. Its default value was 2, same as in [17].

Electrodiffusion

Two kinds of fluxes transport ions in the system: transmembrane fluxes and axial fluxes.

The axial fluxes are driven by electrodiffusion, and we describe them using the
Nernst-Planck equation. It follows that the intracellular flux density of the neuron for
ion species k is expressed as:

. - Dy 'Yk([k]dn - [k]sn) Dyzy F— ¢dn - ¢sn
Jlein = 72 Az NRT KAy (1)

In Eq 1, we use the same notation as in [17] so that Dy is the diffusion constant, 7y is
the fraction of freely moving ions, that is, ions that are not buffered or taken up by the
endoplasmatic reticulum, ); is the tortuosity, which represents hindrances in free
diffusion due to obstacles, Yk ([k]an — [k]sn)/Ax is the longitudinal concentration
gradient, zy is the charge number of ion species k, F' is the Faraday constant, R is the
gas constant, T is the absolute temperature, mﬂ is the average concentration, that is,
Yi([K]dan + [k]sn)/2, and (¢pan — ¢sn)/Ax is the longitudinal potential gradient. Likewise,
the extracellular flux densities and the glial intracellular flux densities are described,
respectively, by

Dk [k}de - [k]se DkaFi ¢de - (bse

. Dy ~ )
ke =TT Az eRT Mo Az @)
. o Dk [k}dg - [k}sg DkaFi ¢dg — ¢sg

T T TN T A NRT s A ®)

All ions can move freely in the extracellular and glial space, thus, vy is not included in
Eqs 2 and 3. Diffusion constants, tortuosities, and intracellular fractions of freely
moving ions are listed in Table 2.
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Table 2. Diffusion constants, tortuosities, and intraneuronal fractions of
freely moving ions'

Parameter Value Reference
Dna (Na™ diffusion constant) 1.33-10%m?/s  [93,94]
Dk (K™ diffusion constant) 1.96-10%m?/s  [93,94]
D¢y (C1~ diffusion constant) 2.03-10"m?/s  [93,94]
D¢, (Ca?* diffusion constant) 0.71-10%m?/s  [93,94]

A;i (intracellular tortuosity) 3.2 [36, 38]

Ae (extracellular tortuosity) 1.6 [36, 38]
YNas YK, Yc1 (intraneuronal fractions of free ions) 1 [17]

~Yca (intraneuronal fraction of free ions) 0.01 [17]

T The table is adopted from [17].

Ion conservation

To keep track of all ions in the system, we solve six differential equations for each ion
species k. Conservation of ions gives:

de sn . .
— 7 = msnAm - inAi7 4
gt Jx, Jik, )
dN se . . .
dlz? = +JkmsnAm — Jkede + Ji,msgAms (5)
dNy s . .
Tg = _]k,msgAm - ]ngAi’ (6)
dN1 dn . .
@V k,dn = _]k,mdnAm + ]k,inAh (7)
dt
dN . . .
dlz,de = +JjkmdnAm + Jkede + JimdgAm, (8)
dN . .
% = —JkmdgAm + Jk,igAi, )

where N is the amount of substance, in units of mol. To find the change in N, all ion
flux densities are multiplied by the area they go through. The variable jx ,, represents
the sum of all membrane flux densities of ion species £, and ji in, jk,e, and Jji ig
represent the axial flux densities. To find the ion concentrations, which appear in many
of the following equations, we divide the amounts of substance in a compartment by the
compartment volume at the beginning of each time step.

We insert the Nernst-Planck equation for the axial flux density (Eq 1) into Eq 4 and
get:

de,sn _ . A Dk 2k
dt - _]k,msnAm + —— N YN ([k]dn — [k] )_|_ BT [ ] (

¢dn d)sn) . (10)

In Eq 10, [k]dan and [K]sy are the intraneuronal ion concentrations of the dendrite and
soma, defined as N an/Van and Ny sn/Vsn, respectively. We define the voltage
variables ¢4, and ¢g, below.

Six constraints to derive ¢

If we have four ion species (Nat, KT, C17, and Ca?") in six compartments, we get 24
equations to solve (Eqgs 4-9 times four) and 30 unknowns (N and ¢). We overcome this
by defining ¢ in terms of ion concentrations using a set of constraints similar to those
used in [17].
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1. Arbitrary reference point for ¢. The first constraint is simple; we can choose an

arbitrary reference point for ¢. We define it to be outside the dendrite, which
gives us:

Pde = 0. (11)

. Neuronal membrane is a parallel plate capacitor (dendrite). As the second

constraint, we use that the membrane is a parallel plate capacitor. This means
that it will always separate a charge () on one side from an opposite charge —Q
on the other side. This gives rise to a voltage difference across the membrane

¢mdn = Q/Onu (12)

where C, is the total capacitance of the membrane, i.e., C, = cinAm, where ¢y, is
the capacitance per membrane area. We know, by definition, that
(rbmdn = ¢dn - ¢dea and since (rbde = 0, we get:

o _ an
¢mdn - ¢dn = Cm . (13)

We assume bulk electroneutrality, meaning that all net charge in the dendritic
compartment must be on the membrane. It follows that Qan = F > 2k[K]dnVdn,
k

where F is the Faraday constant, zj is the charge number of ion species k, [K]an is
the ion concentration, and V4, is the volume. By inserting this into Eq 13, we get

Gan = (FY_ 2i[KlanVan)/(cmAm)- (14)

k

. Neuronal membrane is a parallel plate capacitor (soma). The second constraint

also applies to the soma, and gives us the criterion:

_ Qs _

¢sn - ¢se - Cm —

(FY " ziKsnVien)/ (emAm)- (15)
k

Here, the outside potential is not set to zero, so this constraint is not sufficient to
determine ¢g, and ¢ separately.

. Glial membrane is a parallel plate capacitor (dendrite layer). The glial membrane

is no different than the neuronal membrane when it comes to acting as a parallel
plate capacitor, so we get:

¢dg = %(jj = (F; Zk[k]dgvdg)/(cmAm)a (16)

where we have used that ¢q. = 0.

. Glial membrane is a parallel plate capacitor (soma layer). Constraint number (iv)

also applies to the soma layer, and gives us:

- gsg = (Fzzk[k}sgvsg)/(cmAm)_ (17)
m K

(bsg - (bse

We can now calculate ¢4, and ¢4 from Eqgs 14 and 16 but to determine ¢gy, Pse,
and ¢sg, we need a sixth constraint.
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6. Current anti-symmetry. The sixth constraint is to ensure charge (anti-)symmetry. ss
We must define the initial conditions so that the membrane separates a charge Q  sss
on one side from an opposite charge —@Q on the other side, and the system 559
dynamics so that it stays this way. The membrane fluxes (alone) fulfill this 560
criterion, since a charge that leaves a compartment automatically pops up on the s«
other side of the membrane, making sure that dQ;/dt = —dQ./dt. For the axial  se
fluxes to fullfill the criterion, we must have that: 563

Aiiin + Aiiig = *Aeiey (18)

where ¢ stands for current density. We find expressions for 4y, 7ig, and e, by
multiplying Eqs 1-3 by F'zy and sum over all ion species k. Expressions for the
current densities then become:

. F F?
lin = 7@ ;Dkzk'}/k([k]dn - [k]gn) RT)\2A Z Dkzk (¢dn - ¢sn)a

(19)

F F?
iig = _m ;Dkzk([k]dg - [k]sg) RT)\QA ZDk (¢dg ¢sg)a (20)

F F?
le = —m ZDkzk([k]de — [k]se) - RT)\QA ZDk (¢de ¢se)~ (21)
€ k

The first term in Eq 19 is the diffusion current density and is defined by the ion  se

concentrations: 565
. F
Ldiff,in = _m Xk: Dkzk'Yk([k}dn - [k]sn) (22)
The second term is the field driven current density 566
. den - ¢ n
Ufield,in = _UII%? (23)
where o, is the conductivity: 567
o
n k], 24
Likewise, Eq 20 can be written in terms of 4qifr ig, ificld,ig, and 0g, and Eq 21 in 568
terms of idisf e, %ficld,e, ad .. We combine Eqs 18-21 and obtain: 560
. (d)dn - ¢Sn) . (¢d - d)s ) . (¢de d)se)
_Aildiff,in+AiUnT_Aﬂdiff,ig'i‘AiUg% = Aclgiffe—AeOe—— (2A5§ .

In Eq 25, we know ¢dn, ¢de, and ¢qg from Eqgs 14, 11, and 16, and qir and o
from the ion concentrations. We solve Eqs 15, 17, and 25 to find ¢gpn, ¢sg, and ¢se:

QSH

bse =(—AzAjiqite in + Aionddn — Aioy . — Az Ajiqifr ig (26)
+ Ajogpas — Aiog Qs — Az Acigiste) (27)
J(AcOe + Aion + Aioyg), (28)

an
sn se 29
bsg = ij + Pse- (30)
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Neuronal membrane mechanisms

The neuronal membrane mechanisms were equal to those in [17]. We list them again
here for easy reference.

Leakage channels

Both neuronal compartments contained Nat, K+, and Cl~ leak currents. The flux
densities were modeled as in [44]:

Jk,leak = Tk leak (Pm — E, )/ (Fzx), (31)

where k denotes the ion species, g jeak is the ion conductance, ¢, is the membrane
potential, E, is the reversal potential, F' is the Faraday constant, and zx is the charge
number. Reversal potentials are given by the Nernst equation:

RT [k]e
B = ——In e
KT 2 F YKl

(32)

where R is the gas constant, T' is the absolute temperature, vy is the intracellular
fraction of freely moving ions, and [k]e and [k]; are the extra- and intracellular
concentrations of ion species k, respectively.

Active ion channels

We adopted all active ion channels from the Pinsky-Rinzel model [33]. This included
Na*t and K delayed rectifier fluxes in the soma (jna, jpr), and a voltage-dependent
Ca?" flux (jca), a voltage-dependent KT afterhyperpolarization flux (japp), and a
Ca?T-dependent KT flux (j¢) in the dendrite:

w
w

JNa = gNa(Pm — ENa)/(F2Na),
JDR = gDR(Pm — Ex)/(F2x),
Jca = gca(¢m — Eca)/(Fzca),
Janp = ganp(ém — Ex)/(Fzk),
jo = gc(ém — Ex)/(Fzk).

w
>~

w
(=)

~ o~~~
w w
~ ot
—_ T —

Here, gy is the ion conductance, ¢, is the membrane potential, Ey is the reversal
potential, F' is the Faraday constant, and zy is the charge number for ion species k. We
used the Hodkin-Huxley formalism to model the voltage-dependent conductances, with
differential equations for the gating variables:

d

d—f = ay(1l —x) — Bxx, with x =m,h,n,s,c,q, (38)
dz  Zoo — 2

o 39
dt T (39)

z
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and
gNa = gNamgoha (40)
9gDR = gDRM, (41)
gca = GCas 2, (42)
gc = goex([Ca™?]y), (43)
gAHP = JAHPY, (44)
3.2-10° - ¢y .
m=— , with ¢1 = ¢ + 0.0469 45
@ oxp(—g1/0.004) — 1" Vith O1= 0+ (45)
2.8-10° - ¢y
m — 3 ith = Q@m 0.0199 46
P = e (92/0.005) =17 Vith 92 = fm F (46)
O
o= —2 47
m al’ll + Bm ( )
—0.043 — ¢
= 128exp ———— 48
an SPTo 08 (48)
4000
= ith ¢3 = ¢ + 0.02 49
B ¥ oxp(—3/0005)" ™ ¢3 = ¢m + (49)
1.6-10% - ¢y .
n=— , with ¢4 = ¢ + 0.0249 50
“ xD(—01/0.005) — 1’ Vith 91= dm + (50)
ﬂn = 250 exp(—¢5/0.04), with ¢5 = Qbm +0.04 (51)
1600
s = ; 52
@ 1 + exp(—=72(¢m — 0.005)) (52)
2-10% - ¢ .
s = , with ¢g = ¢m + 0.0089 53
p exp(¢e/0.005) — 1 with g6 = 6 + (53)
1
= ith ¢7 = ¢ + 0.03 54
0 = T exp(gr/0.001) " 97 = Gt (54)
=1, (55)
P ¢ :
e 52.7exp (%51 — %% )+ 1 6w < —0.01 V -
2000 exp(—¢9/0.027), otherwise
with ¢ = ¢m + 0.05 and ¢g = ¢ + 0.0535 (57)
2000 exp(—¢9/0.027) — e, if ¢ < —0.01 V
0, otherwise
. ycalCat?, —99.8-10°°
X = min 25-10* b, (59)
aq = min(2 - 10*(yca[Cat?], — 99.8 - 107°),10), (60)
Bq=1 (61)

In Eqgs 38-61, rates (a’s, 8’s) are in units of 1/s, 7, is in units of s, and voltages ¢ are in
units of V.

Homeostatic mechanisms

Both neuronal compartments contained a 3Nat/2K* pump, a K*/Cl™ cotransporter
(KCC2), a Nat /K+/2C1~ cotransporter (NKCC1), and a 2Nat /Ca?* exchanger. The
functional forms of the pumps and cotransporters were taken from [44], while the
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2Nat /Ca?* exchanger was modeled as in [17]:

. _ Pn ) 1.0 (62)
Jpump.n = b (25 — [Nat]n)/3) 1.0+ exp(3.5 — [K+]o)’

) K [C1 ]

Jkee2 = Ukeez In <[[I<+]]JCI_L> , (63)

Jueet = Unioor S ]e) (ln (W) Fin (W)) RN

[K+]e[Cl~]e [Nat][Cl7]e
1
FKM) = T ats — T (65)
jCa—dec = UCa—dec : ([Ca+2]n - [Ca+2]n,b) : % (66)

Here, ppn, Ukee2, and Upieer are pump and cotransporter strengths, Uca—dec is the Ca?t
decay rate, and [Ca™?], 1, is the basal Ca?t concentration..

Glial membrane mechanisms

We modeled the glia as an astrocytic domain and adopted the membrane mechanisms
from [38]. They included Na™ and C1~ leak channels, modeled as in Eq 31, an inward
rectifying K™ channel, and a 3Na* /2K pump:

Jk—1R = k—RfK—-1R(¢m — Ex)/(FzK), (67)

B [K+]e 1+ exp(18.4/42.4)
St = e (1 T exp((Ag - 1000 + 18.5)/42.5))

1+ exp(—(118.6 + Ex_p, - 1000)/44.1) (68)
1+ exp(—(118.6 + ¢ - 1000)/44.1)
— [Na]y® [K*]e (69)
e ¢ [Na'Jr]éﬁ + [NaJr]é;?hreshold [K+]C + [KJF}CvthrCShOld

Here, gx_1r is the KT ion conductance, ¢y, is the membrane potential, Fx is the K+
reversal potential, F' is the Faraday constant, zx is the K* charge number, [K*].1, is
the basal Kt concentration in the extracellular space, A¢ = ¢, — Fxk, Ex b is the
reversal potential for KT at basal concentrations, p, is the pump strength, and

[Nat]g threshold and [K™]e threshola are the pump’s threshold concentrations for Na® and
K™, respectively. We included the same set of membrane mechanisms in both astrocytic
compartments.
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Volume dynamics

To calculate the osmotically induced volume changes dV/dt, we used the formalism
outlined in [42]:

o Gy, - W), (10)
Wos _ (v~ w), (71)
dztd“ = Gu(T,, — Tan), (72)
Wis — Gy(w,, ~ Way), (73)
T - (B2 + ). ()
() @

Here, G, and G, are the neuronal and glial water permeabilities, respectively, given in
units of m3/Pa/s, and ¥ is the water potential, given in units of Pa. We assumed the
hydrostatic pressure differences to be zero, so that water flow was driven by osmotic
pressure differences only, and we calculated the solute potentials from:

U = —iMRT. (76)

Here, i is the ionization factor (van’t Hoff factor), which is 1 for ions, M is the osmotic
concentration of solutes measured in moles per cubic meter, R is the gas constant, and
T is the absolute temperature. Equations 74 and 75 follow from the assumption that
the total volume did not change, that is, the system was closed.

Like in [27], we only considered effects of transmembrane water flow, and
intra-domain water flow due to hydrostatic pressures were neglected. As predicted in a

previous study, bulk flow at physiological hydrostatic pressure is expected to be low [95].

Model summary

To keep track of all ions in the system, we solved six differential equations for each ion
species k:

de,sn

= —9 m nAm -7 inAi7 v
dt Jhoms a "
dN . ; i
d;’se = +]k,msnAm - ]k,eAe + jk7msgAII]7 (78)
dNy s . :
GV ksg = —]k,msgAm - ]k,igAh (79)
dt
dN n - y
dkt’d = _]k,mdnAm + ]k,inAh (80)
dN . ; i
dl;,de = +.]k,rndnAm + .]k,eAe =+ jk,mdgAm? (81)
dN , ;
—kdg = _]k,mdgAm + ]k7igAi~ (82)
dt
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The total membrane flux densities are summarized here:

jNa,msn = jNa + jNa,leak,n + 3jpump,n + jnkccl - 2jCa7deC7 (83)
jK,msn = jDR + jK,leak,n - ijump,n + jnkccl + jkccQa (84)
jCl,msn = jCl,leak,n + 2jnkcc1 + jkcc27 (85)
jCa,msn = jCafdec; (86)
jNa,mdn = jNa,leak,n + 3jpump,n + jnkccl - 2jCéaLfdecv (87)
jK,mdn = jAHP + jC + jK,leak,n - ijump,n + jnkccl + jkccQa (88)
JClmdn = JClleak,n + 2Jnkeel + Jkee2s (89)
jCa,mdn = jCa + jCafdeca (90)
jNa,msg = jNa,lcak,g + 3jpump,g7 (91)
jK,msg = jK—IR - 2jpump,g7 (92)
JClLmsg = JClleak g (93)
jNaqmdg = jNa,leak,g + 3jpump,g7 (94)
jK,mdg = jK—IR - ijump,gv (95)
jCl,mdg = jCl,leak,g- (96)
At each time step, we derived ¢ algebraically in all six compartments:
¢de :Oa (97)
Pan =(F Z 2k[KlanVan)/(cmAm), (98)
k
bag =(F Y 2k [KlagVag)/ (cmAm), (99)
k
bse =(—AxAsiagitr,in + Aion®dn — AiaanZ‘ — Az Ajiaitr ig (100)
+ A10g¢dg - Aiag Cleg — Aeridiff’e) (101)
/(ACJC + Aign + Aio—g)v (102)
an
sn — ses 1
o =)+ (103)
Qsg
=28 104
¢ 13 CmAm + ¢ ( )
Volume dynamics was given by:
dVsn
— GV — W), 105
Vo Gy, W) (105)
dVs
dtg = Gg(V,, — Usy), (106)
dV gn
= Gu(¥,, — Van), (107)
dVy4
dt t = Gg(\:[jde - qjdg)» (108)
dVge AV dVg
= _ 109
dt ( dt at )’ (109)
dVde dVdn dVdg
= — . 110
dt ( a (110)

Fig 1 summarizes the model and model parameters are listed in Tables 1-5.

July 7, 2020 26/36


https://doi.org/10.1101/2020.07.13.200287
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.13.200287; this version posted July 13, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Table 3. Temperature and physical constants!

Parameter Value Reference
T (absolute temperature) 309.14 K [17,44]

F (Faraday constant) 9.648 - 10* C/mol

R (gas constant) 8.314 J/(mol K)

 This table is adopted from [17].

Table 4. Membrane parameters

Parameter Value Reference
Cm 3-1072F/m? [33,45]
gNa,leak,n 0.246 S/m2 eq. 111
JK leak,n 0.245S/m? eq. 111
gCl,leak,n 0.668 S/m? eq. 111
JNa 300S,/m? [33,45]
JDR, 150 S/m? [33,45]
Jca 141S/m? tuned
JAHP 8S/m? [33,45]
Jc 150 S/m? [33,45]
Pn 1.87-10~%mol/(m?2s)  [17,44]
Ukee2 7.0 - 10~ " mol/(m?s) [17,44]
U nkeel 2.33-10""mol/(m?s)  [17,44]
Uca—dec 75571 [33, 45]
JNa,leak,g 1 S/m2 [38]
JCl leak g 0.5S/m? [38]
JK—IR 16.96 S/m2 [38]
Pe 1.12-10%mol/(m?s)  [38]
[Na+]g,threshold 10 mM [38]
[K+]e,threshold 1.5mM [38]
Gh 2-1072m3/Pa/s [96]
Gg 5102 m3/Pa/s [41]
Simulations

Model tuning

The edNEG model combined two previous models, one consisting of a neuron and
ECS [17], and the other of a glial domain (astrocyte) and ECS [38]. When we combined
the models, we set the initial ionic concentrations in the neuron identical to those

in [17], the initial ionic concentrations in the glial domain identical to those in [38], and
made the two cells share the same ECS where we set the initial concentrations equal to
those in the previous glia model [38]. As these initial concentrations (Table 5) differed
from the initial ECS concentrations in the previous neuron model [17], the neuron was
not in equilibrium with the (new) ECS. This was because the altered ECS
concentrations gave rise to altered concentration-dependent activity of the ion pumps,
cotransporters, and ionic currents through ion channels. We found that the leakage
currents were most important, and that a re-tuning of the leak conductances (gna,jeak n;
OK leak,n; and §ci leak,n) In the neuron model was sufficient to obtain a system with a
plausible resting state. The tuning was done by requiring that the initial leakage
currents should be identical to those in [17], i.e., we set:

gk,new(d)m - Ek,new) = gk,old(d)m - Ek,old)v (111)
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with ¢, being the resting potential in [17] (=67.7mV), Ex o4 being the reversal 629
potential for ion species k at steady state in [17], and Fy new being the reversal 630
potential obtained by the new initial ion concentrations (Table 5). By solving this 631
equation, we obtained a final set of passive conductances for the neuronal membrane 632
(Table 4). After calibrating (running it for 5000 s) the edNEG model with the (new) 633
derived passive conductances, it settled at a resting state where the neuronal resting 634
membrane potential was —70.3mV, and the glial membrane resting potential was 635
—82.6 mV, which was close to the original resting potentials for the neuron and glial 636
domain (original values were —67.7mV [17] and —83.6 mV [38], respectively). The 637

reason why the new and original values were not identical was that not only the leakage 63
currents, but also the ion pumps and cotransporters, and to a small extent the active 639

channels, were active at rest. 640

To obtain comparable spike shapes between the edNEG model and the original 641
Pinsky-Rinzel model (Fig 2), we manually tuned the Ca?* conductance of the neuron e
(gca), as well as the coupling strength between the soma and dendrite layers. The 643

coupling strength was regulated by adjusting the intracellular cross-section areas aA; (cf. s
Table 1) by adjusting the unit-less parameter . The parameter o was 2 for simulations s
with stong coupling between the soma and dendrite layers, and 0.51 for simulations with e

weak coupling. Strong coupling was used in all simulations except in the simulation 647
shown in Fig 2C where it was 0.51. The Ca?* conductance (gca), along with the other e
membrane mechanisms, were the same in all simulations (values as in Table 4). 649
Initial conditions 650

Before tuning the edNEG model, we defined its initial volumes (Table 1), amounts of e
ions, membrane potentials, and gating variables (Table 5, Pre-calibrated column) using s
values from the two previous models in [17] and [38]. After re-tuning selected 653
parameters (as described in the previous subsection), the system was close to, but not s
strictly in equilibrium, and for this reason we calibrated the edNEG model for 5000s. 655
The water permeabilities were set to zero during the calibration. 656

We wrote the final values from the calibration to file (see Table 5, Post-calibrated s
column) and used them as initial conditions in all simulations shown throughout this s

paper. Note that the edNEG model takes amounts of ions (in units of mol) as input, 650
while we have listed ion concentrations in Table 5. The post-calibrated values of the ion e
concentrations correspond to the following reversal potentials: Enan = 55mV, 661
ENa,g =62 HlV7 EK,n =-96 mV, EK,g = —88 mV, ECl,n =-90 mV, ECl,g = —83 mV, 662
and Fgoapn = 124mV. 663

To ensure charge symmetry and electoneutrality, we defined a set of static residual e
charges, based on the initial amounts of ions. These represent negatively charged 665
macromolecules present in real cells. We defined them as constant amounts of ion 666
species X~ with charge number zx = —1 and diffusion constant Dx = 0. To ensure 667
strict electroneutrality, we did not read residual charges to/from file, but calculated 668

them at the beginning of each simulation.They were given by the following expressions: s

CIII Al’l’l

Nxn = 2NaNNan,0 + 2KNK 1,0 + 21V 1,0 + 2calVcan,0 — Pmn,0 ol (112)
CmAm
Nx.e = 2NalNNaye,0 + 2k KK e,0 + 2c1Ncle,0 + 2calNca,e,0 + (@mn,0 + ¢mg,0)T»
(113)
CInAm
NX,g = ZNaNNa,g,O + ZKNK,g,O + ZCINCl,g,O - ¢mg,0 Ia (114)
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Additionally, we introduced a set of static residual molecules to ensure zero osmotic
pressure gradients across the membranes at the beginning of each simulation. These
were defined as osmotic concentrations of a molecule M:

[M]n == (NNa,n,O + NK,n,O + NCl,n,O + NCa,n,O)/Vsn,Ov (]—15)
[M]e = (NNa,e,O + NK,e,O + NCl,e,O + NCa,e,O)/Vse,Oa (116)
[M]g = (NNa7g70 + Nkgo+ NCl,g,O)/ng,O- (117)

Table 5. Initial conditions

Variables Pre-calibrated Post-calibrated! Reference

Bran0" —67.7mV —~70.3mV [17]
o —83.6mV —82.6mV [38]
[Nat]n0 16.9 mM 18.4mM [17]
[Nat]e 0 144.622 mM 144.0 mM 38]
[Nat]so 15.189 mM 14.0 mM 38]
[K*Tn0 139.5 mM 137.1mM [17]
[K*]e.0 3.082mM 3.8mM [38]
[K*]g.0 99.959 mM 102.0 mM 38]
[C17 a0 5.4mM 4.5mM [17]
[C17 o0 133.71 mM 133.7mM [38]
[CT]g0 5.145 mM 6.0 mM [38]
[Ca?t],o 0.0l mM* 0.01 mM* [17]
[Ca?t]. o 1.1mM 1.1mM [17]
no 0.0003 0.0002 [17]
ko 0.999 0.9997 [17]
50 0.007 0.0057 [17]
co 0.005 0.0042 [17]
% 0.011 0.0092 [17]
20 1.0 1.0 [17]

! Values with more decimals included were read to/from file and used in the simulations.

(Available at https://github.com/CINPLA/edNEGmodel_analysis.)

T ¢m is not an independent state variable, but defined at each time point from the ion
concentrations.

* Only 1% of the total intracellular Ca?T, that is, a 100 nM, was assumed to be free
(unbuffered).

Stimulus current

We stimulated the neuron like we did in [17], that is, by applying a K injection current
istim iNto the soma, and removing the same amount of K* from the corresponding
extracellular compartment to ensure ion conservation:

d[KJr]sn + = Z.stim

= 118
dt FZKVSH ’ ( )
d[K+]Se Z'Stim
— = . 119
dt Fzx Ve (119)

Numerical implementation

We implemented the code in Python 3.6 and solved the differential equations using the
solve_ivp function from SciPy with its Runge-Kutta method of order 3(2). We set the
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maximal allowed step size to 107%. The code can be downloaded from 674
https://github.com/CINPLA/edNEGmodel and 675
https://github.com/CINPLA/edNEGmodel_analysis. 676
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