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ABSTRACT: Over the past two decades, advances in molecular biology have greatly expanded our
understanding of microbiomes — the diverse assemblages of microorganisms that inhabit the human body
as well as the world around us, and applications in microbiome science have become an active area of
research. Differences in the diversity (i.e., richness) and composition of microbiomes has been found to be
informative in varied areas of science, including human health, agronomy, and forensic science. Soil
harbors microbiomes that vary based on many factors, including the geology of the soil (e.g., sand, silt, or
clay), climate, and use of the soil. As a result, the microbiological composition of any two soil samples will
never be exactly alike. This inherent variation between microbiomes of different locations has proven to be
specific enough to be potentially useful in forensic investigations to associate a person or piece of evidence

to a source site.
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In this study, a soil microbiome was extracted from the sock of a criminal suspect and compared to
the microbiome of soil samples taken from locations traveled to by the suspect. The locations analyzed
varied in their soil microbiome composition, and the microbiome profiled from the sock was found to be
most similar to the location where the suspect was thought to have left the body of a murder victim. These
results provide a case study illustrating that information contained in a soil microbiome may be applied to
link evidence to the location where a crime took place, potentially serving as an investigative tool in law

enforcement.

KEYWORDS: forensic science, microbiome, soil, QIIME 2, DNA, sock

Recent advances in DNA sequencing and bioinformatics analysis methods have led to a better
understanding of microbiomes, communities of different species of microscopic organisms whose
metabolisms are tightly linked to one another, to their environments, or to their plant and animal hosts.
These technological advances have led to our recent recognition that there are orders of magnitude more
microbial species than were previously thought to have existed (1). This has led to a revolution in
microbiology, with new sub-fields of science forming to understand the composition and functional
activities of microbiomes. The microbiome of the skin and inside the human body varies substantially
depending on the body location sampled and has revealed itself as an important indicator of health (2). For
example, individuals with chronic conditions like Crohn’s Disease and chronic rhinosinusitis harbor gut (3)
and sinus microbiomes (4), respectively, with lower richness (i.e., fewer different species present) than the
microbiomes of healthy individuals. Similarly, individuals with acute viral gastroenteritis also have less
diverse gut microbiomes (5). Although fecal supplementation following antibiotic treatment has seen fringe
use in medicine since the 1950s (6), we are now beginning to formally develop applications of this
knowledge in human health. For example, the transplantation of a healthy individual’s gut microbiome into

a patient suffering from recurring Clostridium difficile infections is now becoming common (7).

Microbiome analysis techniques extend beyond human health and already have some recognized

forensic applications. For example, skin microbiomes differ between human subjects, and enough of this
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unique microbial fingerprint is left behind on the objects that we touch that objects, such as keyboards and
computer mice, can be linked to their owner solely based on the microbes found on their surfaces (8).
Similarly, the bacterial community microbiome found in human saliva was shown to be unique to an
individual (9). Even time of death information may be gleaned from the succession of microbial
communities which are involved in decomposition (10). Taken together, these studies suggest a role for

microbiome science in forensics applications.

Microbes, and bacteria and fungi in particular, are integral components of soil. The specific
microbial composition of a soil sample is driven by factors including the physicochemical properties of the
soil (e.g., pH, salinity) (11, 12), environmental features (13), and land use (14), such that no two soil samples
will ever be exactly alike. This variation between soils from different locations has proven to be specific

enough to be potentially useful in forensic investigations (15).

We therefore hypothesized that soil extracted from a piece of evidence may provide sufficient

information to link that evidence to the soil’s source.

In October of 2017, our laboratory was contacted by the Flagstaff Police Department. A woman
was missing and presumed dead. A suspect was in custody but was not revealing the location of the missing
woman. Using various investigative tools, the police knew where the suspect had traveled since being
released on bail from the Flagstaff jail a few days earlier. The police were trying to decide whether to focus
their search efforts in the town of Mayer, Arizona (Yavapai County) or Williams, Arizona (Coconino
County), with a distance between the two of 87 to 118 miles depending on the route taken. A sock embedded
with soil, believed to have been worn by the suspect while not wearing a shoe, was in the custody of the
police. Their hope was that the sock could be analyzed and linked to one of the two locations to aid in
finding the body. During the following few days (before the microbiome analysis was completed), the body
was recovered in Mayer, Arizona. Even though the police no longer needed assistance with the recovery of
the body, we attempted to analyze soil embedded in the sock in order to compare it to various locations

around Yavapai and Coconino Counties in the state of Arizona to determine if the soil microbiome could
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be a useful forensic tool in future investigations. Knowing that there are inherent variations in soil microbial
community depending on location, we compared the bacterial community found on the sock with bacterial

communities found in multiple soil samples collected from locations traveled to by the suspect during the

days prior to his arrest.

Methods

Reference surface soil samples were obtained from 18 locations around Williams (Coconino
County) and Mayer (Yavapai Country), Arizona (Table 1). Locations were selected because they were
either near the site where the body was found (Fig. 1) or were places the suspect was known to have traveled
in the days after he was last seen with the victim. Five soil samples collected from other locations in Arizona
were also obtained from the Center for Ecosystem Science and Society (Ecoss) at Northern Arizona
University to serve as additional reference samples (the “Ecoss reference samples”). Together this resulted
in 23 reference samples where K1-11 and K13 refer to the Mayer soil samples, K12, K14-16, and K18 refer

to the Williams soil samples, K17 refers to the Chino Valley soil sample and W0.GL.1, WO0.PJ.1, WO.MC.1,

available under aCC-BY-NC-ND 4.0 International license.

WO. PP.1 and 217 refer to the Ecoss reference samples.

TABLE 1- Information for samples used for analysis.

Sample Name Description
Ql small cutting from sock, ball of foot area
Q2 small cutting from sock, heel area
Q3 swabbing of visibly dirt-covered area of sock for 3 minutes
Q4 swabbing of visibly dirt-covered area of sock for 3 minutes
K1 soil, right off highway Mayer, AZ
K2 soil, Road by trailer of owner of land where body was found, Mayer, AZ
K3 soil, off Road A, Mayer, AZ
K4 soil, dry, cracked ground near where body was found, Mayer, AZ
K5 soil, near body site, Mayer, AZ
K6 soil, 5 ft west of body site decomposition area, Mayer, AZ
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K7 soil, 5 ft north of body site decomposition area, Mayer, AZ

K8 soil, 5 ft east of body site decomposition area, Mayer, AZ

K9 soil, body site with visual decomposition residue, Mayer, AZ

K10 soil, body site with visual decomposition residue, Mayer, AZ

K11 soil, behind body site, more plants, Mayer, AZ

K12 soil, Williams, AZ

K13 soil, 5 ft south of body site decomposition area, Mayer, AZ

K14 soil, Williams, AZ

K15 soil, off Forest Service Road, Williams, AZ

K16 soil, Forest Service Road, Williams, AZ

K17 Soil, Chino Valley, AZ

K18 Soil, Williams, AZ
WO0.GL.1 Grassland site of C. Hart Merriam Gradient, Northern Arizona
WO0.PJ.1 Pinyon-Juniper site of C. Hart Merriam Gradient, Northern Arizona
WO0.MC.1 Mixed Conifer site of C. Hart Merriam Gradient, Northern Arizona
WO.PP.1 Ponderosa Pine site of C. Hart Merriam Gradient, Northern Arizona

217 Mixed Conifer site of C. Hart Merriam Gradient, Northern Arizona

Reagent Blank Sock (RBsock) Reagent Blank extracted alongside sock samples
Reagent Blank Soil (RBsoil) Reagent Blank extracted alongside soil samples
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98  FIG. 1 - Locations of reference soil samples collected at and near the body site in Mayer, Arizona. Inset
99  map shows geographic relationships between the Mayer site and other locations relevant to the case.

100  Mayer Soil Samples include K1, K2, and K3. Body site soil samples include K4-K11 and K13 (Table 1).
101

102 The sock belonging to the suspect was visibly soiled over most of its surface. DNA extraction
103  from the sock was performed in two ways with two replicates per extraction approach, yielding four query
104  samples, referred to here as Q 1-4. Two DNA samples were extracted from cuttings of the sock itself
105  (approximately 2 cm? each). One cutting was taken from the ball of the foot area (Q1) and one cutting was

106  taken from the heel area (Q2). For the second extraction method, 2 pre-moistened cotton swabs (Q3, Q4)


https://doi.org/10.1101/2020.07.10.198044
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.10.198044; this version posted July 12, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

107  were rubbed over the visibly soiled area of the outside of the sock for 3 minutes each, as described by Goga
108  (16). The swabs were then removed from the applicator and used for the remainder of the extractions. The
109  extractions were performed using the Qiagen DNeasy® PowerSoil Kit (Qiagen, Germantown, MD)
110  according to the manufacturer's protocol, with the following variations. The cuttings and swabs were placed
111 at 65°C for 10 minutes followed by 2 minutes of horizontal vortexing at the maximum speed of the vortexer.

112 The final elution volume was 100 pL.

113 For the reference soil samples (K1-18), approximately 0.25 grams of each of the 18 soil samples
114  (Table 1) were added to a PowerBead tube containing solution C1. This tube was placed at 65°C for 10
115  minutes followed by 2 minutes of horizontal vortexing at maximum speed. The remainder of the extraction

116  was performed according to the Qiagen DNeasy® PowerSoil Kit’s manufacturer's instructions.

117 The EcoSS reference soil samples differed from the reference samples collected for this study in
118  that they were collected below the soil surface (0-10 cm) while K1-18 were taken from the surface (as the
119  surface soil would be the most likely to come into contact with the suspect’s sock). There is known variation
120  in soil microbiome composition depending on sampling depth (17), but these samples were included to

121  provide additional background soils to which we could compare our query samples.

122 Extractions from Q1-4 and K1-18 were performed at different times in 2017. DNA was extracted
123 from the EcoSS reference samples in 2014 and 2015 by using a MO BIO PowerSoil™ DNA Isolation Kit
124  (Qiagen, Germantown, MD) and following the manufacturer’s directions. Briefly, approximately 0.25 g of
125  soil was added to the lysis tube and lysed using a MP Biomedicals FastPrep Homogenizer (MP Biomedicals,

126  Irvine, CA). The final elution volume was 100 ul.

127 During the extractions for Q1-4 and K1-18, a reagent blank was taken through the entire process to
128  monitor laboratory and extraction reagent contamination. For the sock samples, the reagent blank (RBsock)
129  consisted of a cotton tipped swab moistened with UltraPure distilled H>O and cut with scissors used for the

130  sock and handled with tweezers used for the sock extraction. The reagent blank was processed alongside
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131  the sock extractions. For the reference soil reagent blank (RBsoil), water was added to a weigh boat and

132 then placed in a PowerBead tube and processed alongside the known soil samples.

133 The hypervariable V4 region of the 16S rRNA gene was amplified from each of the reference soil
134  samples and sock samples, as well as the reagent blanks. This amplified DNA was then prepared for
135  sequencing on the Illumina MiSeq instrument according to the protocol presented by Caporaso et al (18).
136  Theresulting sequences were analyzed using QIIME 2 microbiome bioinformatics platform (19). Sequence
137  quality control was performed using the denoise-paired method of QIIME 2’s DADAZ2 (20) plugin with the
138  following parameter settings: trunc_len_f 293; trunc_len_r 208; trim_left_f 6, trim_left_r 6. The resulting
139  amplicon sequence variants were assigned taxonomy using q2-feature-classifier’s classify-sklearn method
140  against (21) GreenGenes (22) 13_8. ASV sequences were aligned using MAFFT (23) (giime alignment
141  mafft), highly variable positions were filtered (qiime alignment mask), an unrooted tree was constructed
142 using FastTree (24) (qiime phylogeny fasttree), and the tree was rooted by midpoint rooting (giime
143 phylogeny midpoint-root). Weighted and unweighted UniFrac (25) distances were computed 100 times
144  each at an even sampling depth of 1000 sequences per sample. This low depth of coverage was used to
145  retain all samples in the analysis, and 100 iterations were run to confirm that conclusions were robust across
146  rarefied feature tables. These analyses were performed using the beta-rarefaction visualizer in QIIME 2’s

147  diversity plugin. Sample tree illustrations were generated with ete3 (26).

148 Results

149 DNA was successfully extracted and the V4 region of the 16S rRNA gene was amplified from the
150 4 sock samples, the 2 reagent blanks, and the 23 reference soil samples. Weighted and unweighted UniFrac
151  neighbor joining trees were constructed to evaluate the similarity of microbiomes (Fig. 2a and 2b,
152  respectively). Briefly, the UniFrac metrics provide distances between pairs of microbiome samples. Smaller
153  values indicate that a pair of samples are similar in their composition, while larger values indicate that a
154  pair of samples are dissimilar in their composition. The unweighted UniFrac metric is considered a

155  qualitative metric in that it only compares samples based on which microbes are present, but does not
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156  consider the abundance of those microbes. The weighted UniFrac metric is considered a quantitative metric
157  because it compares the abundances of different microbes in the samples. Because estimation of microbial
158  abundances is imperfect using the techniques applied for microbiome profiling, both weighted and
159  unweighted UniFrac metrics are often computed and compared. These metrics are applied to compute
160  distances between all pairs of microbiome samples, and the resulting distance matrix can be summarized
161 by constructing a neighbor joining tree. In this tree, samples are represented as the leaves (or tips), and the

162  length of the branches between leaves represents the distance between the samples.
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(b) Unweighted UniFrac
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165  FIG. 2- Neighbor joining trees illustrating (a) unweighted Unifrac and (b) weighted UniFrac distances
166  between samples. Leaves of the trees represent samples, and the branch length between pairs of leaves
167  represents the dissimilarity between samples. Values above the internal nodes of the tree represent
168  jackknife support values, ranging between 0 and 1. Larger values indicate more robust groupings of

169  samples.

170
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171 Both the weighted and unweighted UniFrac neighbor joining trees illustrate that the sock samples
172 are all most similar to each other in composition, and that the closest soil samples are all from Mayer, where
173 the suspect left the remains of the victim. Clustering of the sock and Mayer soil samples was highly robust,
174  and suggest that the soil on the suspect’s sock could have informed investigators of which cities should be

175 the focus of search efforts.

176 Analysis of the taxonomic composition revealed typical soil microorganisms for all soil samples
177  (Fig. 3). As would be expected, the dominant microorganisms in the sock sample were taxa commonly
178  found on human skin. Because the victim’s body was left at sites K9 and K10, we were concerned that skin
179  microbes found at those sites would link those samples to the sock, irrespective of the soil microbial
180  composition. We therefore performed parallel analyses to those presented here after filtering the dominant
181  skin bacterial family found here, Staphylococcaceae, from the sock and soil samples. This resulted in the
182  taxonomic compositions presented in Fig. S2. The sock samples were still most similar to the Mayer

183  samples, even after removal of all Staphylococcaceae (Fig. S1).
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185  FIG 3- Microbiome taxonomic composition at the phylum levels for all samples.
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187

188 The sock swabbing technique obtained more of the soil profile with less human-associated
189  microbes compared to the cutting of the sock method (Fig. 3), though all of the sock samples clustered
190 together in our analyses, suggesting that either approach would have led us to the same conclusion (Fig. 2).
191  Because the swabbing technique produced less human-associated microbes and was not destructive of the

192  evidence, this approach is likely a better choice than extraction of DNA from the sock cuttings.

193 Microbial DNA amplification was observed in the reagent blanks. This is to be expected as bacteria
194  are ubiquitous in any environment so careful monitoring of contamination from laboratory equipment and
195  reagents is crucial (27). Reagent blanks were processed alongside both the sock and reference soil samples.
196  Although bacteria were present in both reagent blanks, the composition and abundance varied greatly from

197  the reference soil samples and the query sock samples (Fig. S3).

198 Discussion

199 The QIIME 2 platform was applied for analysis of microbiome data in this study. QIIME 2’s
200 retrospective data provenance tracking feature may prove to be helpful in microbiome-based forensics
201  work. All analysis steps, including versions of software installed on the system when each step was run, are
202  automatically tracked as metadata associated with its results. This would allow an expert to determine with
203  complete certainty what computational steps were taken to generate a result. As DNA analysis workflows
204  can be complex, this automated recording will provide experts with the information they need to be
205 confidentin a given result or to identify potential issues such as the presence of a software bug or suboptimal
206  analysis step in a workflow that may impact conclusions drawn from the data. Data provenance can be
207  viewed for the results generated for this paper by loading the QIIME 2 results from Supplementary File 1

208  with QIIME 2 View (https://view.qgiime2.org).

209 The ability to associate a piece of evidence to a location is a valuable tool to law enforcement. In

210  the case presented here, a murder suspect was known to have traveled over a long distance during a few
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211  days’ time. Other evidence pointed to this individual having committed a murder, and both police and the
212 victim’s family were anxious to discover the remains of the victim. With the police having narrowed down
213 some possible locations for the body site, we were able to link an item of evidence to the location where
214  the victim’s body was left. This result was possible because we were able to create a small database of
215  locations known to have been visited by the suspect through police investigative techniques. Although the
216  victim’s body was located with the assistance of the suspect, we believe that had this not happened, we
217  would have been able to advise law enforcement that the soil embedded in the suspect’s sock most likely
218  came from the Mayer, Arizona area rather than other locations where soil was collected based on the data
219  presented here. In cases where areas coming in contact with the item of evidence are not known, a database

220  of known soils from across a county or even a state would be very useful.

221
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(a) Weighted UniFrac excluding all Staphylococcaceae
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(b) Unweighted UniFrac excluding all Staphylococcaceae
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318  FIG. S1- Neighbor joining trees illustrating (a) unweighted Unifrac and (b) weighted UniFrac distances

319  between samples after excluding all Staphylococcaceae.
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320 FIG. S2-
321  Microbiome taxonomic composition at the phylum levels for all samples after excluding all
322 Staphylococcaceae.
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324  FIG. S3- Microbiome taxonomic composition at the phylum levels for all samples including reagent

325  blanks RBQ and RBK.
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