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ABSTRACT 11 

Antibiotic stewardship is of paramount importance to limit the emergence of antibiotic-12 

resistant bacteria in not only hospital settings, but also in animal husbandry, 13 

aquaculture, and agricultural sectors. Currently, large quantities of antibiotics are 14 

applied to treat agricultural diseases like citrus greening disease (CGD). The two 15 

commonly used antibiotics approved for this purpose are streptomycin and 16 

oxytetracycline. Although investigations are ongoing to understand how efficient this 17 

process is to control the spread of CGD, to our knowledge, there have been no studies 18 

that evaluate the effect of environmental factors such as sunlight on the efficacy of the 19 

above-mentioned antibiotics. We conducted a simple disc-diffusion assay to study the 20 

efficacy of streptomycin and oxytetracycline after exposure to sunlight for 7- or 14-day 21 

periods using Escherichia coli and Bacillus subtilis as the representative strains of 22 

Gram-negative and Gram-positive organisms respectively. Freshly prepared discs and 23 

discs stored in the dark for 7 or 14 days served as our controls. We show that the 24 
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antibiotic potential of oxytetracycline exposed to sunlight dramatically decreases over 25 

the course of 14 days against both E. coli and B. subtilis. However, the effectiveness of 26 

streptomycin was only moderately impacted by sunlight. It is important to note that 27 

antibiotics that last longer in the environment may play a deleterious role in the rise and 28 

spread of antibiotic-resistant bacteria. Further studies are needed to substantively 29 

analyze the safety and efficacy of antibiotics used for broader environmental 30 

applications. 31 

 32 

IMPORTANCE 33 

Although antibiotics have been used for agricultural purposes for decades, due to the 34 

rapid rise in antibiotic resistance this usage needs to be revisited. Questions remain on 35 

the appropriate mode of application of antibiotics and the actual benefits of using 36 

antibiotics for treating the infections caused by plant pathogens, especially for the ones 37 

that are intracellular in nature. Here we show that the two commonly used commercial 38 

antibiotics, oxytetracycline and streptomycin, lose their efficacy at different rates in the 39 

presence of sunlight. While the former loses its potency within days the latter remains 40 

active for many days. Thus, oxytetracycline may not be active long enough to produce 41 

desired effect and streptomycin may persist in the environment and as a side effect due 42 

to its selective pressure, may force the rise of streptomycin-resistant pathogens. 43 

 44 

INTRODUCTION 45 

Antibiotic resistance-related mortalities are expected to exceed the other leading causes 46 

of death such as cancer worldwide by 2050 [1]. Antibiotic stewardship is therefore 47 
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promoted in all sectors including human health, animal husbandry, and agriculture [2-4]. 48 

The World Health Organization and the United States Centers for Disease Control and 49 

Prevention have recognized antimicrobial resistance as an enormous ongoing threat to 50 

public health [5, 6]. Runoff of antibiotics in hospital waste water [7] and intentional use in 51 

aquaculture [8], animal husbandry [9-11], and crop management [12] contribute to the 52 

rise and spread of antibiotic resistant bacteria. In this context, alarm was raised recently 53 

regarding the spraying of antibiotics in open fields as an infection control strategy to 54 

stem the spread of bacterial disease in plants [13, 14]. Specifically, the strategy 55 

approved by the United States Environmental Protection Agency [13, 15, 16] is to use 56 

streptomycin and oxytetracycline to control the spread of citrus greening disease 57 

(CGD), also known as huanglongbing (yellow dragon disease). CGD is a devastating 58 

bacterial disease caused by Candidatus Liberibacter asiaticus (CLas) that is transmitted 59 

between plants by certain psyllids, which are sap-feeding insects. CLas is a fastidious, 60 

Gram-negative, intracellular plant pathogen that belongs to the phylum of α-61 

proteobacteria [17, 18]. Streptomycin and oxytetracycline are also used to treat 62 

infections caused by another bacterial plant pathogen, Erwinia amylovora, which causes 63 

fire blight in apples, pears, and other related species [19]. E. amylovora has dual growth 64 

modes - an epiphytic mode that is readily accessible for external antibiotics and an 65 

endophytic mode that is less accessible to external antibiotics [19]. In addition, 66 

tetracycline antibiotics including oxytetracycline are used in animal husbandry [20] and 67 

aquaculture [21]. Apart from the uses described above, data also suggests that 68 

antibiotics may find their way into and possibly persist in different animal and plant 69 

tissues [22-25], which could be an alternate pathway that can lead to the development of 70 
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antibiotic-resistant bacteria. Thus, a comprehensive knowledge of the fate of antibiotics 71 

used in agriculture is urgently needed to hopefully curb the rise and spread of antibiotic 72 

resistance. 73 

 74 

Although the application of antibiotics to treat CGD inspired us to pursue this study, the 75 

primary objective of this report is to investigate the effect of environmental factors, 76 

specifically sunlight, on streptomycin and oxytetracycline. To this end, we conducted a 77 

disc-diffusion assay with Gram-negative Escherichia coli and Gram-positive Bacillus 78 

subtilis and monitored the zones of inhibition of antibiotic-containing discs that were 79 

exposed to sunlight for a 7- or 14-day period. Discs that were kept in the dark for 80 

equivalent duration or that were freshly prepared served as our controls. Based on our 81 

results, we report that sunlight significantly impairs the efficacy of oxytetracycline, but 82 

only moderately impacts streptomycin. While short-lived antibiotics may not be active 83 

long enough for their intended purpose, stable antibiotics may apply constant selection 84 

pressure and create an environment conducive for the emergence of antibiotic-resistant 85 

strains [26]. Although this study (designed for undergraduate-level students [27]) is not 86 

comprehensive, our data provides a window into the life span of commercial antibiotics 87 

in nature that we hope highlights the need for further rigorous safety and efficacy 88 

investigations for the environmental use of antibiotics. 89 

 90 

 91 

 92 

 93 
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RESULTS 94 

Oxytetracycline loses its antibiotic potential in the presence of sunlight in the 95 

span of few days. 96 

To monitor the effect of sunlight on the efficacy of oxytetracycline, we conducted a disc-97 

diffusion assay. Briefly, we prepared multiple discs with oxytetracycline (50 µg) 98 

dissolved in water and placed the antibiotic-laden discs in either a natural outdoor 99 

setting with abundant sunlight to simulate agricultural use, or in a dark indoor cabinet for 100 

7 or 14 days. In addition to the discs that were kept in the dark, we also used freshly 101 

prepared discs and vehicle (water) discs as controls. The discs were then placed, as 102 

shown in Fig. 1, on a pre-inoculated plate containing either a lawn of E. coli or B. 103 

subtilis cells. In all cases, as expected, the blank disc (N; negative control) and the 104 

freshly prepared discs (P; positive control) showed negligible and maximum zones of 105 

inhibition (ZOI), respectively (Figs. 1A-D). The discs that were kept in the dark (labeled 106 

“D”) for the duration of 7 or 14 days appeared to produce similar ZOI as our positive 107 

control of approximately 9 mm for E. coli and 8 mm for B. subtilis (Figs. 1EF). This 108 

suggests that oxytetracycline maintains its efficiency in the dark at room temperature for 109 

at least the maximum duration of this experiment (14 days). Next, we quantified the ZOI 110 

of the discs that were exposed to sunlight (labeled “L”) for either a 7- or 14-day period. 111 

We observed that the efficacy of oxytetracycline gradually and significantly decreased 112 

over time to almost similar to our negative control in both E. coli and B. subtilis and only 113 

retained less than 15% activity after 14 days (Figs. 1A-F). This implies that in the 114 

presence of sunlight, oxytetracycline loses its antibiotic potential in a matter of few days. 115 

 116 
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Moderate negative effects of sunlight on the efficacy of streptomycin. 117 

A similar experimental setup to the one discussed above was adopted for studying the 118 

effects of sunlight on streptomycin. As noted earlier, blank discs and freshly prepared 119 

discs with streptomycin (200 µg) served as our negative and positive controls 120 

respectively. As expected, the ZOI were unobservable for our blank discs and at a 121 

maximum for our positive controls (Figs. 1G-L). Similar to oxytetracycline, streptomycin 122 

is also able to maintain its efficacy when kept in darkness for the duration of our 123 

experiment (Figs. 1G-L). However, unlike oxytetracycline, streptomycin appears to be 124 

moderately resistant to sunlight. At the 7-day mark, based on the ZOI (Figs. 1KL), the 125 

discs exposed to sunlight appear to have retained almost approximately 80% and 70% 126 

of their activity in E.coli and B. subtilis respectively, when compared to that of our 127 

positive control. Further measurable decrease to nearly 50% efficiency compared to our 128 

positive control was noted subsequent to 14 days of sunlight exposure for E. coli. 129 

However, the decrease in efficiency for B. subtilis at the 14-day time point was within 130 

the standard error when compared to that of the 7-day time point (Figs. 1HJKL). 131 

  132 

 133 

DISCUSSION 134 

Rapid rise of antibiotic resistance in bacteria is a major concern worldwide with 135 

enormous predicted fatalities. Antibiotics are now routinely used in clinics, animal 136 

husbandry, and agriculture. Acknowledgement of the fact that the rise of antibiotic 137 

resistance stemming from one of those settings could potentially render antibiotics 138 

useless and lead to the formation of a multidisciplinary collaborative initiative under the 139 
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umbrella term One Health [2, 3]. Despite this, environmental antibiotic pollution is a 140 

growing concern that requires urgent attention [28]. 141 

 142 

Some commercial antibiotics such as oxytetracycline and streptomycin are produced by 143 

soil-dwelling Streptomyces spp. However, soil bacteria do not produce antibiotics at 144 

levels comparable to commercial applications – which can occasionally be in the scale 145 

of thousands of kilograms [13, 15, 16]. Also, the efficiency of superficial application of 146 

antibiotics in limiting the growth of plant bacterial pathogens, including some that are 147 

intracellular, is unclear. Recent studies have suggested injection of oxytetracycline 148 

produces better results [19, 29]. The spread of antibiotic resistance has been 149 

documented from agricultural use for antibiotics like tetracycline and streptomycin [30-150 

32]. It has been noted that antibiotic resistance genes are naturally found in the 151 

environment [33, 34]. Therefore, application of consistent selection pressure by 152 

excessive and frequent use of antibiotics may enrich the population of naturally resistant 153 

organisms. However, at least in some instances under certain conditions, it was noted 154 

that streptomycin use did not alter the composition of soil microbial communities 155 

appreciably [35, 36].  156 

 157 

Several reports on degradation kinetics and mechanisms of degradation of the 158 

antibiotics that are discussed here are available [21, 37-44]. It has been reported that the 159 

half-life of oxytetracycline at 25 °C is approximately 7 days, at 35 °C is 3 days and at 60 160 

°C is 0.2 day, indicating a rapid temperature-dependent degradation of oxytetracycline, 161 

as the half-life at 4 °C is 120 days [37]. According to the same study, the half-life due to 162 
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photolysis in the presence of sunlight is in the same order of magnitude. A similar 163 

investigation exists evaluating the photostability and temperature stability of 164 

streptomycin [44]. Briefly, the photodegradation of streptomycin is more modest than 165 

oxytetracycline by nearly 10-fold. The half-life of streptomycin was determined to be 166 

nearly 105, 42 and 30 days at 15 °C, 25 °C, and 40 °C respectively, implying a 167 

decreased rate of degradation when compared to oxytetracycline. A description of the 168 

possible degradation products of oxytetracycline and streptomycin are available [37, 44]. 169 

Our results showing a faster loss of efficacy for oxytetracycline than streptomycin upon 170 

sunlight exposure are therefore in agreement with the reported degradation kinetics of 171 

these antibiotics. To our knowledge, analysis such as the one we have conducted to 172 

monitor the biological efficacy of antibiotics subsequent to exposure to environmental 173 

elements are either lacking or not publicly available (as recognized by this article [14]). 174 

Our experimental conditions simulate the agricultural use of antibiotics and our results 175 

indicate that sunlight (heat and/or ultraviolet radiation) contributes to the degradation of 176 

oxytetracycline and streptomycin. Although our report is limited in scope, we believe it 177 

sheds light on the fate of antibiotics in the environment. Further studies to understand 178 

the effects of antibiotics are needed to inform the public and appropriate regulatory 179 

agencies [2-4]. 180 

 181 

 182 

 183 

 184 

 185 
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MATERIALS AND METHODS 186 

Strains used and general methods  187 

The B. subtilis strain PY79 and the E. coli strain K-12 were incubated in 2 ml LB at 37 188 

°C and grown until the culture OD600 reached 1.0 (exponential growth phase). A 100 µl 189 

aliquot of culture was then spread onto LB agar plates using sterile beads and set to dry 190 

completely prior to the placement of discs, see section below. 191 

 192 

Disc-diffusion assay 193 

UV sterilized Whatman filter paper discs (7 mm) were impregnated with 5 µl of a freshly 194 

made stock antibiotic solution of either 40 mg/ml streptomycin sulfate (MilliporeSigma) 195 

in sterile distilled water or 10 mg/ml oxytetracycline hydrochloride (Alfa Aesar) in sterile 196 

distilled water to reach a concentration of 200 µg for streptomycin and 50 µg for 197 

oxytetracycline in each disc, and then set to dry completely. The concentrations 198 

selected were based on the concentration range recommended for agricultural use [45], 199 

and after empirically ensuring similar initial zones of inhibition for both antibiotics in the 200 

strains tested. To mimic the use of agricultural antibiotics, the discs were then placed 201 

outdoors (during spring months in Tampa, FL, USA where the average daytime 202 

temperature ranged from 27 to 32 °C) in direct sunlight for 7 or 14 consecutive 24-h 203 

periods (days) in parafilm-sealed sterile Petri dishes. Discs that were kept indoors in a 204 

dark cabinet at room temperature for 7 or 14 days, freshly prepared discs made the day 205 

of testing, and 5 µl of sterile water were used as controls. Discs were then transferred 206 

and pressed onto the pre-inoculated LB agar plates and incubated overnight at 37 °C. 207 
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The zone of inhibition measurements were taken from the center of the disc to the edge 208 

of the zone of inhibition, minus disc radius (3.5 mm). 209 

  210 

Statistical analysis 211 

GraphPad Prism Software (version 8.3.1) was used to analyze the data. All data 212 

represent biological triplicate data with technical replicates. Graphs show mean values 213 

and error bars represent standard deviation (SD). 214 

 215 
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FIGURE LEGEND 231 

Figure 1. Oxytetracycline and streptomycin lose antibiotic potential in the 232 

presence of sunlight. Shown are representative disc-diffusion assay results for the 233 

effects of oxytetracycline (A-D) or streptomycin (G-J) on growth of either Gram-positive 234 

B. subtilis or Gram-negative E. coli. Quantification of the zones of inhibition in 235 

millimeters are plotted for each 7- or 14-day cohort of oxytetracycline (E-F) and 236 

streptomycin (K-L). Significance was determined using a one-way ANOVA with Tukey’s 237 

multiple comparisons analysis. Error bars represent standard deviation (SD) of the 238 

mean from three biological replicates. N: negative control (discs prepared with sterile 239 

water), P: positive control (discs prepared the day of testing), L7 or L14: 7 or 14 days in 240 

sunlight, D7 or D14: 7 or 14 days in darkness. ****: p<0.0001, ***: p<0.001, **: p<0.01. 241 

 242 

 243 
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