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A fundamental scientific question concerns the neuronal basis of perceptual
consciousness, which encompasses the perceptual experience and reflexive monitoring
associated with a sensory event. Although recent human studies identified individual
neurons reflecting stimulus visibility, their functional role for perceptual consciousness
remains unknown. Here, we provide neuronal and computational evidence indicating that
perceptual and reflexive consciousness are governed by an all-or-none process
involving accumulation of perceptual evidence. We recorded single-neuron activity in a
participant with a microelectrode implant in the posterior parietal cortex, considered a
substrate for evidence accumulation, while he detected vibrotactile stimuli around
detection threshold and provided confidence estimates. We found that detected stimuli
elicited firing rate patterns resembling evidence accumulation during decision-making,
irrespective of response effectors. Similar neurons encoded the intensity of task-
irrelevant stimuli, suggesting their role for consciousness per se, irrespective of report.
We generalized these findings in healthy volunteers using electroencephalography and
reproduced their behavioral and neural responses with a computational model. This
model considered stimulus detection if accumulated evidence reached a bound, and
confidence as the distance between maximal evidence and that bound. Applying this
mechanism to our neuronal data, we were able to decode single-trial confidence ratings
both for detected and undetected stimuli. Our results show that the specific gradual
changes in neuronal dynamics during evidence accumulation govern perceptual
consciousness and reflexive monitoring in humans.

The processing of sensory signals by the human brain gives rise to two interrelated phenomena:
perceptual consciousness, defined as the subjective experience associated with a sensory
event (Chalmers, 1995; Nagel, 1974; Block 2011), and perceptual monitoring, defined as the
capacity to introspect and reflect upon the subjective experience associated with a sensory
event (Flavell, 1979; Koriat, 2006; Fleming, Dolan, and Frith 2012). The main strategy employed
to study conscious processing consists in relating first-order subjective reports to neural activity
to identify the minimal set of neuronal events and mechanisms sufficient for a specific conscious
percept (i.e., neural correlates of consciousness or NCCs : Koch et al., 2016). To identify NCCs,
most experimental paradigms have adopted a contrastive approach, whereby distinct
phenomenal experiences induced by constant sensory stimulation are compared (Baars, 1998).
One of the simplest contrasts is obtained when stimuli are presented at low intensity or
embedded in noise so that only a certain proportion of them is detected (Dehaene et al., 2006).
A comparison of neural activity elicited by detected and missed stimuli allows distinguishing the
neural correlates of conscious vs. unconscious sensory processing, and therefore identifying
NCCs given that specific confounds are ruled out (Aru et al., 2012). However, although rare
investigations in humans have described single neurons in the temporal lobe encoding stimulus

detection (Quiroga et al., 2008; Reber et al., 2017), the mechanistic role of neuronal activity for
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perceptual consciousness remains unknown. One prominent theory of consciousness, the
global neuronal workspace, proposes that a stimulus is consciously perceived when its
corresponding neural activity is globally broadcasted across the cortex (Mashour, et al., 2020).
This theory assumes that this global broadcast is triggered when an (unconscious) evidence
accumulation process reaches a threshold (Dehaene et al., 2014; Dehaene, 2009; Shadlen
2011), similar to the physiological processes underlying decision-making (Bollimunta & Ditterich,
2012; Katz et al., 2016; Roitman & Shadlen, 2002; Zhou & Freedman, 2019). Although various
neuroimaging studies have interpreted increases in neural activity elicited by detected stimuli
(versus missed stimuli) as evidence accumulation (Salti et al., 2015; Tagliabue et al., 2019;
Wyart & Tallon-Baudry, 2009), little empirical evidence supports an evidence accumulation

account of perceptual consciousness, especially at the single neuron level.

Besides perceptual consciousness, the main strategy to study perceptual monitoring consists in
assessing how second-order reports like confidence judgments co-vary with the accuracy of a
given perceptual task (first-order reports; Fleming & Lau, 2014). As most studies investigating
perceptual monitoring rely on first-order discrimination tasks with stimuli that are always
detected, less is known regarding how the brain monitors the presence or absence of subjective
experience (Li et al., 2014; Mazor et al., 2020). Moreover, the interdependencies between
perceptual consciousness and monitoring remain to be described empirically: while some
theories of consciousness argue that conscious access requires a higher order representation
of a stimulus (Brown et al., 2019; Lau & Rosenthal, 2011), or necessarily comes with a sense of
confidence (Shea & Frith, 2019), other theories argue that first-order representations may be
sufficient (Lamme, 2010; Zeki, 2007). Like for perceptual consciousness, several models
propose that evidence accumulation plays an important role for the formation of perceptual
confidence (Kvam et al., 2015; Pereira et al., 2020; Pleskac & Busemeyer, 2010; van den Berg

et al., 2016). Yet, to our knowledge the underlying neural mechanisms remain to be described.

Here, we sought to investigate the role of evidence accumulation in perceptual consciousness
and perceptual monitoring by asking participants to detect weak vibrotactile stimuli and rate their
confidence in having detected them. We reasoned that both detection and confidence underlie
decision-making processes whereby participants accumulate perceptual evidence over time and
gauge its level relative to decision criteria. We examined this possibility in a patient implanted
with a microelectrode array in the posterior parietal cortex (PPC, Fig. 1A), considered as one of

the functional hotspots of evidence accumulation in the non-human primate brain (Bollimunta &
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71 Ditterich, 2012; Gold & Shadlen, 2007; Katz et al., 2016; Roitman & Shadlen, 2002; Zhou &
72 Freedman, 2019). We isolated 368 putative single neurons (Fig. S1) in three different
73 experiments with immediate, delayed, and no-responses in order to characterize the neural
74  correlates of detection and confidence at the single-neuron and population levels and link
75  evidence accumulation in the PPC to perceptual consciousness irrespective of response
76  effectors. These results were generalized in a fourth experiment involving a group of healthy
77  volunteers in whom we recorded scalp electroencephalography, perceptual consciousness and
78  monitoring responses while they detected the same vibrotactile stimuli. In a final step, we test
79 and propose an evidence accumulation computational model that reproduced the behavioral
80 and neural markers of both detection and confidence. Together, these results indicate that
81  subjective reports of perceptual consciousness and monitoring involve a common mechanism of

82  evidence accumulation orchestrated by the PPC.

83 Results

84  Experiment 1: immediate-response task

85 In Experiment 1, the participant was asked to detect vibrotactile stimuli applied to the right wrist
86  (contralateral to the PPC implant) with an intensity around detection threshold. Responses were
87  provided by a keypress with the left hand, immediately after perceiving a stimulus. A trial was
88  considered a hit when the participant responded within 2 s following stimulus onset (41.20% of
89  trials; mean response time (RT) and 95% confidence interval: 0.71 £ 0.02s), otherwise, it was
90 considered a miss (58.80% of trials Fig. 1B). The participant rarely responded “yes” in the
91 absence of stimuli (0.36%; false-alarms), indicative of conservative behavior. We found 94/186
92  detection-selective neurons (50.54%; p = 0.001, Poisson GLM with permutation test across
93  neurons) with spike counts explained by detection (yes/no responses) between 0.5 to 1.5 s after
94  the stimulus onset. Some neurons were characterized by a hallmark of evidence accumulation
95  where increases in firing rates preceded detection reports depending on their response times
96 (Bollimunta & Ditterich, 2012; Katz et al., 2016; Roitman & Shadlen, 2002; Zhou & Freedman,
97  2019): the cumulative sum of spikes following stimulus onset correlated with the corresponding
98 RT in 67/94 detection-selective neurons (71.28%; p = 0.001; Fig. 1C) with some neurons
99  showing gradually increasing spike counts prior to the keypress (Fig. 1D). To further support
100  that increased spike counts represent an evidence accumulation process, we verified that the
101  proportion of variance not attributed to the point process increased after stimulus onset (Fig. 1E)

102 and that the corresponding covariance decayed with increasing time lag (Fig. 1F), in line with
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103  what is expected for a diffusion process (Churchland et al., 2011). Finally, we replicated the
104  increase in firing rate with electrocorticography (ECoG) by showing that the strongest effect of
105  detection was localized in the PPC and pre-central gyrus (Fig. 1G). To summarize, we
106  uncovered individual neurons in the human PPC with firing rates ramping up prior to detection

107 reports, consistent with evidence accumulation.
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108 Fig.1. Neuronal correlates of detection in an immediate-response task (Experiment 1). (A) Intraoperative photo of the
109 microelectrode array posterior to the postcentral sulcus and dorsal to the intraparietal sulcus. (B) The participant
110 pressed a key as soon as he felt a stimulus (dashed vertical lines). In this example, the first stimulus is a miss (i.e. no
111 key press within 2s following stimulus onset) and the second stimulus is a hit. ISI: inter-stimulus interval. Inset: RT
112 distribution. (C) Example selective neurons with a latency effect for RT. Top: raster plot time-locked to stimulus onset
113 with spike waveform and shaded standard deviation above. Hits were reordered according to RT (black dashed trace).
114 Bottom: average firing rate for three terciles of RT (blue) and for misses (red). Statistics were performed on
115 continuous data. (D) Top: RT-aligned spike count histograms for neurons in C (50 ms bins). Bottom: corresponding
116 raster plots. (E) VarCE increases during the putative decision process for detection—- and RT-selective neurons
117 (N=47). Shaded areas represent 95%-confidence intervals (95%-Cl) across selective neurons. (F) Corresponding
118 analysis of covariance representing CorCE as heat maps, averaged across detection— and RT-selective neurons
119 (N=47). (G) Left: Average ECoG response, aligned to stimulus onset from one electrode posterior to the
120 microelectrode array for three terciles of RT. Right: ECoG grid with beta coefficients for detection. Non-significant
121 electrodes are in black. All shaded areas represent 95%-CI and black horizontal bars represent the analysis window
122 for statistics.
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123 Experiment 2: delayed-response task

124  Next, we tested whether neuronal responses relate to conscious perception irrespective of
125  motor actions by imposing a delay between stimulus onset and reports. We also assessed
126  whether the strength of these neuronal representations co-vary with reported confidence
127  (Rutishauser et al., 2015, 2018). In Experiment 2, we asked the participant to report vocally the
128  detection of the stimuli with a minimal delay of 1 s after stimulus onset (Fig. 2A, upper panel).
129 To assess the role of evidence accumulation for conscious monitoring, we also asked the
130  participant to vocally report his confidence (high, medium, low) in his response. Similar to
131  Experiment 1, 50.5% of stimuli were detected (hits) (20% trials had no stimuli, of which 5% were
132 false-alarms, confirming his conservative strategy). When a stimulus was presented, confidence
133 was higher following hits (2.46 £ 0.10) than misses (2.00 + 0.08; X* = 20.09, p = 4.3"10-5),

134  indicative of accurate detection monitoring processes (Fig. 2A, lower panel).

135  We ran a factorial analysis to identify neurons encoding detection and/or confidence. We found
136  17/86 neurons showing an interaction between detection and confidence (19.77%, p = 0.002,
137  permutation test) driven by an increased firing rate for hits with high confidence (Fig. 2B). Only
138  one neuron showed only a main effect of detection (1.16%, p = 0.57) and two a main effect of
139  confidence (2.33%, p = 0.88). A similar interaction between detection and confidence was found
140 in ECoG electrodes surrounding the microelectrode array (Fig. 2D) and in
141  electroencephalography (EEG) signals from 18 healthy volunteers recruited from Experiment 4
142 (Fig. 2C), consistent with previous EEG studies (Herding et al., 2019; Tagliabue et al., 2019). To
143 characterize how neuronal population activity relates to detection and confidence, we trained
144  decoders on the firing rate of all neurons and evaluated them out-of-sample. We decoded hits
145  from misses better than chance for both high confidence (Fig. 2E; max. area under the curve
146  (AUC): 0.88, 1.16s after stimulus onset) and low confidence (max. AUC: 0.63 accuracy at 0.77
147 s). This indicates that although low confidence hits and misses were indistinguishable based on
148  individual neurons they could be discriminated at the population-level, which confirms that our
149  results were not driven by high-confidence trials only. Finally, the output of the best decoder (at
150  1.13 s) correlated with confidence for hits (R = 0.59; p < 0.001, permutation test) but not for
151 misses (R = 0.16; p = 0.13), confirming that the neuronal signal driving detection also explains
152 confidence for detected stimuli. Together, results from Experiments 1 and 2 show that PPC
153 neurons exhibit evidence accumulation behavior and encode detection and confidence reports
154  irrespective of motor actions and report effector (i.e., keypress in Experiment 1, voice in

155  Experiment 2). Of note, the latency of the evidence accumulation process we uncovered in
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156  Experiment 2 is qualitatively compatible with the distribution of RTs measured in Experiment 1,

157  which suggests that conscious access occurs with a delay of up to 1 s following weak

158 vibrotactile stimulation.
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159 Fig.2. Neuronal correlates of detection and confidence in a delayed-response task (Experiment 2). (A) Top:
160 Vibrotactile stimuli were applied during a 2s window following an auditory cue. After 1s delay, the participant was
161 prompted to give detection and confidence reports. Bottom: Distribution of confidence. For display purposes hereafter,
162 signals corresponding to confidence values of 1 and 2 were merged into low-confidence, while confidence values of 3
163 were considered as high-confidence. Statistics were done on the three levels. (B) Example selective neuron. Top:
164 Raster plot time-locked to stimulus onset with spike waveform with shaded standard deviation above. Bottom:
165 Corresponding firing rates. (C) EEG data showing a topographic map of beta coefficient for the interaction between
166 detection and confidence for hits (dashed trace). The EEG amplitude time-locked to stimulus onset and averaged
167 over 18 healthy controls is shown below. (D) Left: ECoG grid with beta coefficients for detection x confidence. Non-
168 significant electrodes are in black. Right: Average ECoG amplitudes, aligned to stimulus onset from the electrode
169 next to the microelectrode array (E) Decoding performance for different confidence levels. Horizontal lines show
170 times of significant performance (permutation tests). All shaded areas represent 95%-Cl and black horizontal bars

171 represent the analysis window for statistics.
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172  Experiment 3: no-report paradigm

173 To distinguish neuronal activity associated with subjective experience from activity associated
174  with subjective report (Aru et al., 2012; Pitts et al., 2014; Tsuchiya et al., 2015), in Experiment 3
175  we let the participant mind-wander while he was exposed to stimuli ranging between 0.5 to 5
176 ~ times the perceptual-threshold intensity. We reasoned that neuronal activity would still encode
177  the intensity even for task-irrelevant stimuli if evidence accumulation determines conscious
178  perception beyond mere reports. While no behavioral task was enforced, we found that the
179  activity of 14/96 neurons increased with increasing stimulus intensity (14.58%, p = 0.008; Fig.
180  3C), similar to hits in Experiments 1-2 (Fig. 3A, B). The fact that stimulus intensity was
181  represented at the single-neuron level although the participant was not engaged in the task
182  argues against the possibility that our previous results in Experiments 1-2 reflected task activity
183  rather than perceptual processing leading to conscious access (Aru et al., 2012; Pitts et al.,
184  2014; Tsuchiya et al., 2015).
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185 Fig. 3. Average firing rates of responsive neurons. Firing rates were normalized using a 0.3 s pre-stimulus baseline.
186 (A) Normalized firing rate for three bins of RT (hits; blue) and for misses (red), averaged across detection-selective
187 and RT-selective neurons with higher firing rates for hits (N=47). In Experiment 1, the participant answered with a
188 keypress for hits. (B) Normalized firing rate for high and low confidence for hits (blue) and for misses (red), averaged
189 across all detection- and confidence- selective neurons with higher firing rates for hits (N=10). In Experiment 2, the
190 participant waited at least one second before reporting detection and confidence vocally. (C) Normalized firing rate for
191 three bins of stimulus intensity, averaged across intensity-selective neurons (N=14). In Experiment 3, the participant
192 provided no detection or confidence report and was let to mind wander.
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193  Experiment 4: computational model of detection and confidence

194  Informed by these human single-neuron data from Experiments 1-3, we sought to generalize
195  our decisional account of perceptual consciousness by identifying evidence accumulation
196  mechanisms underlying detection and confidence in EEG data (18 healthy volunteers, task
197  similar to Experiment 2). Participants behaved similarly to the aforementioned patient, with a
198  balanced number of hits and misses (Supplementary results) and EEG responses also showed
199  an interaction effect between detection and confidence (Fig. 2C). We developed an evidence
200  accumulation model to fit the behavioral and EEG data, assuming that participants attempted to
201  detect the stimulus by continuously accumulating evidence during a 3s stimulation window (from
202 trial onset until the response cue). To model the time uncertainty in our task (participants did not
203  know when a stimulus could be applied), we assumed that participants started accumulating
204  evidence before the stimulus onset (Devine et al., 2019). This was modelled as a null drift rate
205  across time except for a short-lasting boost triggered by the stimulus. A stimulus was perceived
206 if the simulated evidence accumulation (EA) process reached a bound (Kang et al., 2017) at any
207  time during the stimulus window (Fig. 4A), compatible with all-or-none views of conscious
208  access (Dehaene et al., 2014).

209  Confidence was read out from the distance between accumulated evidence and the decision
210  threshold (Pereira et al., 2020; Pleskac & Busemeyer, 2010). Importantly, we sampled
211 confidence when evidence reached a maximum across the stimulation window, which allowed
212 implementing a confidence readout for misses and correct rejections, for which no decision
213  threshold is crossed. To fit the model parameters to the data, we considered the shape of the
214  electrophysiological signature for hits and misses as a neural correlate of evidence
215  accumulation (O’Connell et al., 2012; Philiastides et al., 2014; Tagliabue et al., 2019), defined
216 by the weighted average of all EEG electrodes that maximally discriminated hits from misses.
217  We first fitted the parameters of a detection model to these electrophysiological responses (Fig.
218 4B, S2) as well as to hit and false alarm rates (Fig. 4B, inset; Fig. S3). We then fitted two
219  additional parameters for confidence bias and sensitivity to observed confidence distributions.
220  The resulting model fitted the confidence ratings well (average R across participants 0.83+0.03
221 for hits, 0.85+0.03 for misses, 0.81+£0.04 for correct rejections and 0.45+0.09 for false alarms;
222 Fig. 4C, S4), suggesting that evidence accumulation is a plausible mechanism underlying
223  perceptual consciousness and its electrophysiological correlates. The data and the model were
224  still consistent when stratifying per confidence level. Metacognitive sensitivity predicted by our

225  model and observed in the data were correlated for both “yes” responses (R=0.60, p=0.001,
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226  permutation test) and “no” responses (R=0.61, p=0.009; Fig. 4E), showing that our model also
227  successfully predicted metacognitive performance. Finally, an alternative model assuming that
228  confidence for detected stimuli is sampled at a fixed latency after crossing the decision
229  threshold and confidence for undetected stimuli is sampled from a random distribution led to a
230  worse fit of the data (BIC = 229.31 + 43.19 compared to BIC = 178.82 £ 38.86 for the maximal
231  evidence model; z = -2.33, p = 0.020; Fig. 4F). This difference in goodness of fit was also
232  observable in the correspondence between observed and simulated averaged confidence for
233 hits (R = 0.81 £ 0.03 for the maximal evidence model compared to R = 0.63 + 0.09 for the
234  alternative model; z = 2.29; p = 0.022).
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235 Fig. 4. Computational model based on evidence accumulation. (A) Time-varying drift rate (d; thick black trace) had a
236 short-lasting boost after a non-decision time following stimulus onset (dashed vertical line). Example evidence
237 accumulation for one trial (EA; cyan trace for a hit, red trace for a miss) rises sharply after the drift boost and is
238 attracted back to zero due to leakage. A stimulus is considered as perceived (hit) if EA reaches a decision threshold
239 (horizontal line), and as non-perceived (miss) if not. The maximum of accumulated evidence with respect to the
240 decision threshold is used as a confidence readout. (B) Model fit of the pEA locked on stimulus onset for hits (cyan
241 trace) and misses (red trace). The corresponding observed EEG data is shown in grey. Average scalp topography of
242 pPEA weights is shown above. (C) Hit rate (HR) and false alarm rate (FAR). Datapoints are represented as ‘o’ and
243 model simulations as x’. (D) Left: Average confidence for hits (cyan), misses (red), correct rejections (green) and
244 false alarms (black). Right: Model fits of the confidence distributions. Histograms show confidence distributions with
245 95%-ClI whiskers. Colored traces show model simulations. All shaded areas represent 95%-Cl. (E). Area under the
246 curve (AUC) correlation between observed data (horizontal axis) and simulated data (vertical axis) for “yes”
247 responses (hits and false alarms; leff) and “no” responses (correct rejections and misses; right). Regression line is
248 shown in red with shaded areas representing 95%-Cl). (F). Model comparison in terms of Bayesian information
249 criterion (BIC) between the maximal evidence model and the alternative model. Whiskers represent 95%-Cl and
250 asterisk indicates statistical significance (p<0.05).
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251 Informed by our modelling results in healthy participants, we set out to verify whether we could
252 decode confidence for misses from single-neuron data in Experiment 2 using a decoder defining
253  confidence as the maximum of accumulated evidence. We took the best decoder for hits and
254  misses (trained on stimulus-locked data) and applied it out-of-sample across the stimulation
255  window (i.e. cue-locked). We decoded confidence for hits (R = 0.49, p = 0.001, permutation test)
256  and confidence for misses (R = -0.31, p = 0.015), which the aforementioned stimulus-locked
257  decoder could not achieve. The time corresponding to the decoded maximal evidence
258  correlated with stimulus onset for hits (R = 0.37, p = 0.001) but not for misses (R = 0.03, p =
259  0.58), suggesting that evidence for confidence in misses was not sampled synchronously with
260  the stimulus, thereby verifying the plausibility of the maximal evidence decoder on our patient’s

261  single-neuron data.

262 Discussion

263  We propose a mechanism of evidence accumulation to explain the behavioral and neural
264  markers of perceptual consciousness and monitoring. We show that tactile detection relates to
265 an increase of the firing rate of single neurons in the posterior parietal cortex of a human
266  participant, as well as an increased scalp EEG response recorded in a group of healthy
267  participants. In both cases, the amplitude of the corresponding neural response was dependent
268  on the confidence in hits. This increase in neural response as well as in the detection reports
269  were well described by a computational model indicating that a plausible mechanism underlying
270  the building of confidence in both the presence and absence of a stimulus is for the brain to take

271 the maximal evidence accumulated over time.

272  Encoding of detection by individual neurons in the posterior parietal cortex

273  We had the opportunity to collect data from individual neurons in the human PPC, at the
274  junction between the postcentral and intraparietal sulcus in the superior parietal lobule. The
275  PPC has been associated with a multitude of functions linking perception to planning and action
276  (Andersen & Cui, 2009) and receives multisensory inputs including those from the primary
277  somatosensory cortex (Pearson & Powell, 1985). In Experiment 1, we found individual neurons
278 in the PPC with higher firing rates following detected stimuli. We argue that these neurons are
279  responsible for evidence accumulation based on the following three findings. Firstly, in

280  Experiment 1 we found neurons whose increase in firing rate for hits was synchronized to
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281 response times (Gold & Shadlen, 2007). Secondly, in Experiment 1 the variance of the
282  corresponding spike rates increased after stimulus onset (Churchland et al., 2011). Thirdly, in
283  Experiment 3, we observed an increase in the firing rates for increasing intensities of (task-
284  irrelevant) stimuli (Gold & Shadlen, 2007). Based on these three hallmarks of evidence
285  accumulation, we argue that our results consist in the first single-neuron account of perceptual
286  evidence accumulation in a human subject capable of subjective reports. Indeed, although
287  electrophysiological correlates of evidence accumulation have been found in various regions of
288  non-human primate brains, including the frontal cortex or subcortical structures (Ding & Gold,
289  2010; Hanks et al., 2015; Odegaard et al., 2018), the arguably most common region studied in
290  relation with neural accumulation of perceptual evidence is the lateral intraparietal (LIP) area of
291 the PPC (Bollimunta & Ditterich, 2012; Katz et al., 2016; Roitman & Shadlen, 2002; Zhou &
292  Freedman, 2019). However, whether perceptual evidence accumulation neurons such as those
293 reported in non-human primate studies could support conscious reports is unclear, as subjective
294  experience cannot be measured explicitly in non-human species, and because such neurons

295  were — to our knowledge — not reported in humans yet.

296  Encoding of confidence by individual neurons in the posterior parietal cortex

297  In Experiment 2, we asked the participant again to detect stimuli and found neurons similar to
298  those in Experiment 1 with higher firing rates after stimuli reported as perceived. The finding of
299  detection-selective neurons when responses were provided by key press (Experiment 1) or
300 orally (Experiment 2) suggests that the mechanism of evidence accumulation we propose is
301  response-invariant. Importantly, we asked the participant to report the confidence he had in his
302  responses, and found that the change in firing rates for detected stimuli was modulated by
303  confidence, showing that confidence relates to the strength of single neuron’s responses to
304  detected stimuli. This mechanistic overlap, which — to our knowledge — was not yet shown in
305 humans capable of reporting subjective confidence was confirmed at the neuronal population
306 level: multivariate decoders trained to discriminate hits vs. misses allowed us to decode
307  confidence for hits when time-locking to the stimulus onset and for both hits and misses when

308 locking on the onset of maximal evidence.

309  Computational modelling and replication at the scalp level
310  Because microelectrode implants in parietal regions are extremely rare in humans, we sought to
311  generalize our findings by recording behavioral and neural data in a group of healthy volunteers

312 in Experiment 4. Behavioral results revealed highly similar patterns between the two samples,
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313  indicating that detection and confidence reports in Experiments 1-2 were not impacted by the
314  clinical condition. Experiment 4 also allowed us to generalize our single-neuron findings at a
315 larger scale based on EEG recordings. EEG data showed a similar dependence of detection-
316  related activity on confidence for hits, similar to previous work in the visual domain using a
317  different awareness scale (Tagliabue et al., 2019) and a discrimination task (Boldt & Yeung,
318 2015; Gherman & Philiastides, 2015). Of note, both neural responses recorded at the
319 intracranial (single-neuron, EcoG; Experiment 1-3) and scalp levels (Experiment 4) were
320 observed at a rather late latency following stimulus onset (>200 ms), suggesting that these
321  responses were not related to early somatosensory perceptual processes. We then reasoned
322 that since similar increases in neural activity are assumed to reflect accumulation of evidence
323  (O’Connell et al., 2012, 2018; Tagliabue et al., 2019), an evidence accumulation model should
324  predict both behavioral results (hit rate, false-alarm rate and confidence for hits, misses, correct
325  rejections and false-alarms) and corresponding neural responses. Using neural data to fit the
326  model instead of response times allowed us to fit a leakage parameter (Yu et al., 2015) and to
327 compensate for the fact that, in a detection task, response times are unavailable for undetected
328 stimuli. The model derives confidence as the distance between the maximal evidence
329  accumulated over time and the decision bound. This flexible readout provides a major
330 advantage when computing confidence in the absence of stimulus detection (i.e. misses) as well
331 as in the absence of a stimulus (i.e. correct rejections and false-alarms), which cannot be
332  achieved with models using decision-locked confidence readouts in discrimination tasks
333 (Pereira et al., 2020; Pleskac & Busemeyer, 2010; van den Berg et al., 2016). An alternative
334  model with a fixed-timing readout and a random confidence for unperceived stimuli performed
335  significantly worse. Our modelling results corroborate our electrophysiological results across
336  Experiments 1-4 and are consistent with decision-making models of confidence applied to
337 animal data, postulating a shared encoding of evidence for decision and confidence (Kiani &
338  Shadlen, 2009), possibly enriched by post-decisional evidence (Fleming et al., 2018; Pleskac &
339  Busemeyer, 2010; van den Berg et al., 2016). Moreover, a recent study comparing models
340  based on signal detection theory showed that the model that best fit observed data involves a
341  second-order “metacognitive” noise to the decisional evidence (Maniscalco & Lau, 2016). Our
342 model implicitly implements this metacognitive noise through the influence of first-order
343  parameters such as leakage on post-decisional evidence readouts. Indeed, in participant with
344  strong leakage, accumulated evidence rises and decays fast, leading to low metacognitive noise.
345 On the contrary, in participants with little leakage, once no more informative evidence is

346 accumulated, the level of evidence accumulation tends to oscillate around the reached
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347  maximum, leading to higher metacognitive noise. A-posteriori analyses showed that the leakage
348  parameter correlated with metacognitive sensitivity (Supplementary information). Our model
349  thus provides a simple mechanism supporting metacognition, including subliminal stimuli,
350  explains neural responses and was verified at the single neuron and EEG level, as we were

351 able to decode confidence ratings above chance using this procedure.

352  Implications for perceptual consciousness

353  Our results posit that stimulus detectability involves the accumulation of sampled evidence
354  towards a decision bound, as previously discussed for discrimination tasks (Kang et al., 2017).
355  Of note, the use of a detection task is compatible with a contrastive study of consciousness
356 (Baars, 1998), as opposed to two-alternative forced choice discrimination tasks for which
357 confidence ratings are well characterized, but which do not offer a direct contrast between
358  perceived and unperceived stimuli. The view of conscious access as an all-or-none process
359 involving a decision bound is compatible with the ignition mechanism put forward by the global
360 workspace theory of consciousness (Mashour et al., 2020), according to which sufficiently
361 activated encapsulated networks may coalesce into a single network responsible for
362  broadcasting neural signals throughout the brain and thereby making them accessible to
363  conscious reports. One could speculate that the triggering of an ignition is governed by
364  bounded-evidence accumulation similar to the one operated by neuronal populations in the
365  posterior parietal cortex. Recently, the use of classical contrastive approaches to delineate the
366  neural correlates of consciousness has been criticized, on the basis that it may be confounding
367 the cognitive and neural mechanisms associated with phenomenal experience per se, and
368  those associated with reporting phenomenal experience (Aru et al., 2012). Some authors have
369  proposed the use of “no-report paradigms”, in which perceptual experience is not inferred from
370  participants’ responses, but from neural or peripheral signals while participants are passively
371 exposed to stimuli (Frassle et al., 2014; Tsuchiya et al., 2015; but see Block, 2019; Phillips &
372 Morales, 2020). Importantly, we found a population of neurons encoding perceptual evidence
373  through a putative evidence accumulation process in Experiment 3, in which the participant was
374  passively exposed to the stimuli similar to such no-report paradigms. Although these effects
375  were weaker than the ones found in Experiment 1-2, they indicate that evidence accumulation
376  operated by a neuronal population in the posterior parietal cortex is involved in conscious
377  perception, even when the stimuli are task-irrelevant. In addition, the mechanistic overlap
378  between detection and confidence we report cannot be due to similar motor responses

379  associated with detection and confidence reports in Experiment 2, as those were collected

13


https://doi.org/10.1101/2020.07.10.196659
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.10.196659; this version posted July 11, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

380  separately, seconds after the end of the stimulation window on which our analysis was based in

381 the delayed detection task.

382  To conclude, our results posit that both detection and confidence for near-threshold stimuli
383  involve the accumulation of evidence towards a criterion orchestrated by the PPC. We argue
384  that this neuronal mechanism involving a decision bound may serve as a trigger for the neural
385  ignition underlying conscious access (Moutard et al., 2015; van Vugt et al., 2018) and explains
386  how contents remaining inaccessible to consciousness may still be subject to self-monitoring
387  (Mazor et al., 2020; Meuwese et al., 2014). Our behavioral, neural, and modeling results clarify

388  how perceptual consciousness and reflexive self-monitoring are intertwined mechanistically.
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STAR METHODS

KEY RESSOURCE TABLE

REAGENT or RESSOURCE SOURCE IDENTIFIER
Software and Algorithms

MATLAB 2018a MathWorks RRID:SCR_001622;

Osort

EEGLAB 2019.1.0

iELVis

Psychophysics toolbox 3

Algorithm to fit an evidence
accumulation model to

behavioral and neural data

http://www.mathworks.com/products/matlab/

RRID:SCR_015869;
http://www.rutishauserlab.org/osort

RRID:SCR_007292;
http://sccn.ucsd.edu/eeglab/index.html

RRID:SCR_016109;
http://ielvis.pbworks.com/w/page/116347253/FrontPage

RRID:SCR_002881; http://psychtoolbox.org/

Upon acceptance

Other

Neuroport recording system  Blackrock

Microsystems

Brain Quick LTM
WaveGuard EEG

Micromed

ANTNeuro

https://www.blackrockmicro.com/

http://www.micromed.eu/en-us/

http://www.ant-neuro.com

CONTACT FOR REAGENT AND RESSOURCE SHARING

Further information and requests for ressources should be addressed directly to the Lead Contact,

Nathan Faivre (nathan.faivre@univ-grenoble-alpes.fr)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

In experiments 1-3, the participant was a 23-year-old right-handed man suffering from drug-resistant

epilepsy due to a focal cortical dysplasia in the left central sulcus. As part of the clinical management of

his condition, he received a 4x6 ECoG grid covering the left premotor, motor, sensory and posterior

parietal cortices. He accepted to participate in a clinical trial on neuronal recordings during invasive
epilepsy monitoring at the Geneva University Hospitals (IN-MAP; NCT02932839) and a Utah

microelectrode array was additionally implanted in the left posterior parietal cortex. The patient provided
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618 informed written consent and the study was approved by the Commission Cantonale d’Ethique de la
619 Recherche de la Républigue et Canton de Genéve (2016-01856). Eighteen healthy participants (7
620 females; age: 25.2 years, SD = 4.1) took part in Experiment 4 for a monetary compensation. Participants
621 gave written informed consent prior to participating and all experimental procedures were approved by
622  the Commission Cantonale d’Ethique de la Recherche de la République et Canton de Genéve (2015-
623 00092 15-273).

624  METHOD DETAILS

625 Experimental paradigms were written in Matlab (Mathworks) using the Psychophysics toolbox (Brainard,
626 1997; Kleiner, n.d.; Pelli, 1997). In all experiments, stimuli were applied on the lateral palmar side of the
627 right wrist using a MMC3 Haptuator vibrotactile device from TactileLabs Inc. (Montréal, Canada) driven by
628 a 230 Hz sinusoid audio signal lasting 100 ms. Experiments started by a simple estimation of the
629 individual detection threshold. The tactile stimulus was applied with decreasing intensity with steps
630 corresponding to 2% of the initial intensity until the participant reported not feeling it anymore three times
631 in a row. We then repeated the same procedure but with increasing intensity and until the participant
632 reported feeling the vibration three times in a row. The perceptual threshold was estimated to be the
633 average between the two thresholds found using this procedure. This approximation was then used as a
634 seed value for an adaptive staircase during the main experiments (see below). Experiments 1-3 were

635 performed on different days at the patient’s bedside.

636 Experiment 1

637 Stimuli were applied in a pseudo-random way with an inter-stimulus interval of two seconds plus an
638 exponentially distributed time (mean: 2 s). The participant was provided with a keypad and asked to press
639 a key every time he felt a stimulus. Answers provided during the two seconds following a stimulus were

640 considered as hits. Only one keypress occurred out of this two second post-stimulus window.

641 Experiment 2

642  An auditory cue signaled the start of the two seconds stimulus window during which the stimulus could be
643 applied at any time (uniform distribution) in 80% of trials (the remaining 20% served as catch ftrials,
644 unbeknownst to the participant). Stimulus onset was followed by a one second delay to ensure that
645 stimulus-locked activity was not contaminated by the detection response. After this delay, a second
646 auditory cue probed the participant for his detection response (“yes” or “no”), followed by a three levels
647 confidence rating (1: “unsure”, 2: “somewhat sure”, 3: “very sure”). Detection and confidence ratings were

648 provided vocally and registered by the experimenter.
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649 Experiment 3

650 Stimuli were applied in a pseudo-random way with an inter-stimulus interval of two seconds plus an
651 exponentially distributed time (mean: 2 s) with a random amplitude sampled from 11 intensities ranging
652 from zero to five times the participant’s perceptual threshold. The participant was not given any

653 instructions and was left free to mind-wander during the experiment.

654 Experiment 4

655 Participants sat in front of a computer screen. A white fixation cross appeared in the middle of the screen
656 for 2 s. From the moment the fixation cross turned green, participants were told that a tactile stimulus
657 could be applied at any moment during the next 2 s. During this period, stimulus onset was uniformly
658 distributed in 80% of trials, the 20% remaining trials served as catch trials, as in Experiment 2. In all trials,
659 1 second after the green cross disappeared, participants were prompted to answer with the keyboard
660  whether they felt the stimulus or not. Following a 500 ms stimulus onset asynchrony, participants were
661 asked to report the confidence in their first order response by moving a slider on a visual analog scale
662  with marks at O (certainty that the first-order response was erroneous), 0.5 (unsure about the first-order
663 response) and 1.0 (certainty that the first-order response was correct). Detection and confidence reports
664  were provided with the left (non-stimulated) hand, using different keys. The total experiment included 500
665 trials divided in 10 blocks, and lasted about 2 hours.

666 Electrophysiological data acquisition

667 A 96-channel silicon-based microelectrode array (“‘Utah array”; Blackrock Microsystems, Salt Lake City,
668 USA) was implanted in the posterior parietal cortex, immediately posterior to the postcentral sulcus and
669  the hand representation of sensorimotor cortex (Fig. 1A). The location was confirmed through post-hoc
670  electrode localization (Fig. 1G), performed through a coregistration of a preoperative MRI structural T1
671 scan and a postoperative CT scan using the iELVIS toolbox (Groppe et al., 2017). The data from each of
672  the 96 channels was amplified and sampled at 30 KHz for offline analysis (NeuroPort system, Blackrock
673 Microsystems LLC, Salt Lake City, USA). Additionally, a 24 electrode ECoG grid (Ad-Tech Medical)
674 covered the left hemisphere from the premotor cortex to the superior parietal lobule (Fig.1G, 2D). The
675 data was amplified and sampled at 2048 Hz (Brain Quick LTM, Micromed, Treviso, Italy). In Experiment 4,
676  electroencephalographic data were acquired from 62 active electrodes (10-20 montage) using a
677  WaveGuard EEG cap and amplifier (ANTNeuro, Hengelo, The Netherlands) and digitized at a sampling
678 rate of 1024 Hz. Horizontal and vertical electrooculography (EOG) was derived using bipolar referenced
679 electrodes placed around participants’ eyes. The audio signal driving the vibrotactile actuator was

680 recorded as an extra channel to precisely realign data to stimulus onset.

681 QUANTIFICATION AND STATISTICAL ANALYSIS
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682 Invasive electrophysiological data processing and univariate analysis

683 The raw signal from the microelectrode array was bandpass filtered between 300 and 3000 Hz for spike
684 sorting. Trials with epileptic activity or other artifacts were removed from further analysis following visual
685 inspection of ECoG data. Spikes were extracted and sorted using the semi-automatic template matching
686 ‘Osort’ algorithm (Rutishauser et al., 2006). Standard quality metrics were computed for each putative
687  single unit in order to assess their quality (Fig. S1). We computed the firing rate every 1ms with a 100 ms
688  standard deviation Gaussian sliding window.

689 In Experiment 1, a neuron was considered detection-selective when a significant (two-sided test) effect of
690 detection was found on the number of spikes during a time window between 0.5 and 1.5 seconds after
691 stimulus onset using a generalized linear model (GLM) with a Poisson distribution (Fu et al., 2019;
692 Rutishauser et al., 2018). For this, we fitted a model with one beta regressor: #spikes ~ B0 + B1*detection
693 (hit or miss). For the latency analysis, we computed the cumulative sum of spikes starting at stimulus
694  onset and correlated (Spearman) it with RTs for every time step (1 ms) between 0 and 1.5 s after stimulus
695 onset. A neuron was considered RT-selective if the correlation was significant within this time range after
696 correcting for false-discovery rate (FDR). To ensure that there was no overfitting and that our results were
697 not driven by outliers, we used a non-parametric permutation test to assess whether the number of
698 selective neurons was significantly above chance; we repeatedly (N=1000) applied the same tests on
699 shuffled data and counted the number of selective neurons. We defined the p-value as the proportion of
700 times that the number of selective neurons for shuffled data was higher than the number of selective
701 neurons found in the data (Fu et al.,, 2019; Kaminski et al., 2017; Rutishauser et al., 2018). When no
702  selective neuron was found in the shuffled data, we set p = 1/N = 0.001. In Experiment 2, we also used a
703 Poisson GLM to regress the number of spikes during a time window between 0.5 and 1.5 seconds after
704  stimulus onset. We fitted a model with three beta regressors: #spikes ~ B0 + PB1*detection +
705 B2*confidence + B3*detection*confidence. We only interpreted main effects (31, B2) in the absence of
706 interactions (B3). If B3 was significant (two-sided test), we considered the neuron as detection- and
707 confidence-selective. If 1 was significant but B3 was not, we considered the neuron only detection-
708 selective (idem for confidence-selective). We applied the same permutation test as for Experiment 1. In
709 Experiment 3, we fitted a Poisson GLM with one beta regressors: #spikes ~ B0 + B1*intensity to find
710 intensity-selective neurons showing an increased firing rate with increasing stimulus intensity and applied

711 the same permutation test as for Experiment 1 and 2.

712 For ECoG analyses, we re-referenced the channels to a common average and applied a lowpass filter
713 (Hamming window with a cutoff frequency of 40 Hz). Trials with epileptic activity or other artifacts were
714 removed from further analysis following visual inspection. We used linear models (LM) for statistics using
715 the same regressors as for spike counts (see above). For display purposes only, we additionally
716  smoothed the data with a 200 ms Savitzky-Golay filter (Savitzky & Golay, 1964).

23


https://doi.org/10.1101/2020.07.10.196659
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.10.196659; this version posted July 11, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

717 Analysis of variance for Experiment 1

718 To further relate our results to evidence accumulation, we analyzed some typical signatures of drift
719 diffusion-like processes: the variance in the number of spikes during an epoch can be decomposed into i)
720 the variance of the point process expected if the neuron had a constant firing rate across trials, and ii) the
721 remaining variance of the conditional expectation (VarCE) which is due to the variability of the neuron’s
722 underlying firing rate across trials. If neuronal activity follows a diffusion process, then VarCE should
723 increase with decision time. Similarly, the correlation between conditional expectations (CorCE) should be
724  stronger between adjacent time windows and decrease with time lag between time windows (Churchland
725 et al., 2011). We followed the approach in Churchland and colleagues. In brief, we relied on an upper

726 bound estimate of VarCE, assuming that the point process variance is proportional to the spike count so:

727  s2= Varcg + ¢N,

728 with s2 the total variance and N the average number of spikes for one 50 ms epoch. We used 10 non-
729 overlapping epochs ranging from 0 to 1.5 s post-stimulus. The variance of the point process was
730 computed as is a weighted average of the variance of the point process for hits and for misses. The
731 constant ¢ can be set based on some heuristics such as by considering that VarCE is zero when the ratio
732 of variance and mean firing rate is minimal (e.g. at the beginning of the decision process). Due to the
733 limited number of trials available in this study, we preferred this approach to more complex methods

734 involving data fitting.

735  We computed CorCE by dividing the covariance of the number of spikes for different epochs by the
736  square root of the product of the VarCE:

ij _ ij i J
737 CorCE = Covl /\/Var’CE*VarCE,

738 with Cov'/the covariance between epoch i and j and VariCEthe VarCE for epoch i. For all computations,

739 we reduced ¢ by 20% to have positive semi-definite covariance matrices.

740  Multivariate decoding (Experiment 2)

741 We fed single neurons firing rates sampled every 10 ms into linear discriminant decoders with a L2
742 regularization factor of 0.8 (similar results were obtained with different regularization factors). These
743 decoders separated the space of input features with a linear hyperplane that best discriminates hits and
744 misses. The decoders predict a hit when the distance of a sample to the separating hyperplane is higher
745 than zero and a miss otherwise. To avoid overfitting, we separated our data in 10 cross-validation folds so

746  that for each fold we trained decoders on the 90% of the data and tested them on the 10% remaining (i.e.
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747  out-of-sample). The distance to the separating hyperplane was also used to compute the area under the
748 curve (AUC) for out-of-sample data at each time point. We used permutation tests to assess whether
749 similar AUC could have been obtained by chance while correcting for multiple comparisons across time
750 points. We selected contiguous clusters of time points when AUC was higher than 0.6 or lower than 0.4
751 and then computed the proportion of similar or bigger clusters obtained with shuffled labels. For each
752  permutation, we computed AUC clusters over the whole set of time points to keep the autocorrelation
753 structure in the shuffled data.

754 Confidence was decoded at the time point corresponding to the highest AUC. Decoded confidence was
755 defined as the absolute distance of a sample to the separating hyperplane. We assessed confidence
756  decoding by correlating (Spearman) decoded confidence with observed confidence and assessing
757 significance using permutation tests (one-sided, as we could reasonably expect positive correlations). As
758  this procedure was carried out on out-of-sample data, our results were not affected by overfitting. Finally,
759  for maximal evidence decoding, we used the same decoder to decode firing rates between 0.5 and 3 s
760 post-cue. We excluded the first 0.5 s due to some neurons showing post-cue activity. We then took the
761 maximum of the decoder over that time window, correlated it with confidence observed in the data and
762 assessed significance using permutation tests (one-sided). Again, this procedure was carried out on out-

763 of-sample data so our results cannot be affected by overfitting.

764 Scalp EEG data preprocessing (Experiment 4)

765  All channels were high-pass filtered using a Hamming window with a cutoff frequency of 0.1 Hz. We
766  defined an epoch as the 3 seconds of data centered around the event corresponding to the vibrotactile
767  stimuli recorded using an auxiliary channel. EEG and EOG data were then lowpass filtered using a
768 Hamming window with a cutoff frequency of 40 Hz and visually inspected to remove trials and channels
769 containing artifacts. We computed the independent component analysis (ICA) (Makeig et al., 1996) on a
770 copy of the EEG epochs that were highpass filtered at 1Hz. The number of independent components (ICs)
771 computed corresponded to 99% of the variance, which resulted in 14.78 + 1.27 ICs per subject. We used
772 SASICA (Chaumon et al., 2015) with default parameters to automatically select ICs for rejection and
773  visually inspected all components scheduled for rejection before actually rejecting them. IC weights kept
774  were then back-projected to the original EEG epochs. Any channel rejected prior to the ICA was
775 reinterpolated using spherical interpolation (N = 0.67 + 0.23, max 3). Finally, we visually inspected all
776 channels and rejected artifactual epochs. All pre-processing was done with the EEGLAB toolbox
777 (Delorme & Makeig, 2004). The final dataset comprised 464.17 + 13.73 epochs per subject.

778 To assess which electrodes were detection- and/or confidence-selective, we used a linear mixed model to

779 regress single-trial average EEG responses in the 0.5 to 1.5 time-window used for single-neuron analysis.

780  For each electrode, we tried different random factors and kept the model with the lowest Bayesian
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781 Information Criterion. P-values were Bonferroni corrected for multiple comparisons. To compute the
782 electrophysiological correlate of evidence accumulation, we sought to find the best weighting of EEG
783 electrodes in terms of discriminability between hits and misses. For this, we trained decoders of hits
784 versus misses between -0.5 and 1.5 s from stimulus onset with 20 ms steps in a 10-fold cross-validation
785 scheme. We repeated this procedure 10 times and searched for the time point with highest average
786  discriminability. We then retrained one decoder using the EEG at this time point and used the weights of
787  this decoder to construct one single value at every time point, representing a proxy to the amount of

788  evidence for hits. We baselined this proxy signal using the 300 ms pre-stimulus.

789 Ornstein-Uhlenbeck bounded accumulation model

790 To test whether the observed electrophysiological correlate of conscious detection could index evidence
791 accumulation, we used an Ornstein—Uhlenbeck process which consists of a drift diffusion model with a
792 leakage parameter driving the accumulated evidence back to zero (Busemeyer & Townsend, 1993). The
793 model consisted of an evidence accumulation process EA(t) integrating a time-varying drift rate d(t) with a
794 leakage factor A plus additive white noise W(t) with a fixed standard deviation of o= 0.1 (Eq. 1). The
795  evidence accumulation process EA(t) was bounded by zero to be more biologically plausible (since firing

796  rates are positive).

797 EA(t+1) =max([1 —Axdt]x EA(t) + d(t) + oW (t),0)
798 (1)

799 To model temporal uncertainty, the accumulation process started at the beginning of the stimulus window
800 (Devine et al., 2019) with a drift of zero and ended 3 s later, as in our experimental paradigm. On stimulus
801 onset, and after a non-decision time (ndft), the drift rate d(t) rose to a level y for 100 ms (stimulus duration)
802  and then decayed exponentially with a factor k (Eq. 2). We used the same distribution of stimulus onsets
803 as in the data (from 0 to 2 s after the cue). To model variability in the drift rate for a detection task (Ratcliff
804 & Van Dongen, 2011), y was sampled from a half-normal distribution with mean y _pu and standard
805 deviation y_o (i.e. absolute value of a normal distribution). This allowed us to have variability in the drift

806 rate while keeping it positive.

Oif t <s +ndt
807 d(t)f(x)={ lif(s+ndt)<t<(s+ndt + 0.1) 2)
v(t) ift > (s +ndt + 0.1), v(t) = pelt-s—ndt-0.1/k

808 With s the onset of the stimulus. Stimuli were considered to be detected if the accumulated evidence

809 reached a decision bound 6.
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810 Confidence c(t) was simulated as the accumulated evidence EA(t), scaled by a factor a and shifted by a
811 factor B(confidence bias), inverted if the decision bound was not reached (invert(x) = 1 - x) before being
812  saturated to the 0 - 1 interval by a sigmoidal function (Pereira et al., 2020) (Eqg. 3). The time at which
813 confidence c(t) was read-out corresponded to the maximum of EA(t) over the 3s stimulation time window.
814 Of note, we expressed the confidence readout in percentage of the decision bound. This scaling did not
815 affect simulated confidence but normalized the readout across participants and helped restrain the grid

816 search for good initial parameters.

817 C(t) — ea*EA(t)+B/ea*EA(t)+B+1 (3)

818 Model fitting
819 We used a two-stage fitting procedure: We first fitted the parameters of the decisional process to
820  detection responses and to the pEA described above and then fitted a second set of parameters to

821 predict confidence ratings.

822 In the first stage, we simulated (N=500) trials of EA(t) along with the corresponding detection responses.
823 The objective function of the optimization procedure was based on the likelihood of the model with
824 respect to the hit rate and false-alarm rate observed in the data and the shape of the average of pEA(t)
825  for hits and misses. Since our model is agnostic to the scale of pEA(t) and EA(t), we scaled them both by
826 their average over time and realizations (trials or simulations). The log-likelihood thus corresponded to the
827 normal probability of observing such a hit-rate and false-alarm rate and the normal probability of
828 observing such an electrophysiological response for hits and misses. We used a Nelder-Mead simplex
829  optimization with 756 different initial parameters sampling a broad range of values for y_p1, y_o, A and k.
830 For each such iteration, we first did a grid search on ndt and 6 to find plausible starting values. We kept
831 the parameters corresponding to the model with the best likelihood. To ensure a good fit, we did a final
832  fitting with N=10’000 simulated trials.

833 In the second stage, we also simulated (N=500) trials of EA(t) along with the corresponding detection
834 responses and used these to simulate confidence ratings. We used a Kolmogorov-Smirnov test for the
835 log-likelihood of confidence for hits, misses and correct rejections. We used a Nelder-Mead simplex
836 optimization with 66 different initial parameters sampling a broad range of values for a and 3. We kept
837 the parameters corresponding to the model with the best likelihood. To ensure a good fit, we did a final
838 fitting with N=10’000 simulated trials.

839 Metacognitive sensitivity

840  We evaluated metacognitive sensitivity or how well confidence predicted task performance (Fleming &

841 Lau, 2014). For this, we assessed the relation between confidence ratings and detection accuracy using
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842  the area under the curve, computed independently for “yes” responses (hits and false alarms) and “no”

843 responses (correct rejections and misses) (Mazor et al., 2020; Meuwese et al., 2014)

844 Alternative model

845 We compared our maximal evidence model with an alternative model which assumed that confidence
846  was readout at a fixed timing (t_RO) post-decision for perceived stimuli. For unperceived stimuli (i.e. with
847 no decision), this alternative model assumed that participants reported random confidence estimates,
848 based on Gaussian noise with mean Q and unit standard deviation. As in the maximal evidence model,
849 confidence corresponded to evidence scaled by a factor a and shifted by a factor B (confidence bias)
850 before being saturated to the 0 - 1 interval by a sigmoidal function. The model thus comprised four
851 parameters: a, B, t RO and Q which were fitted with the same procedure as for the maximal evidence
852 model, except that the grid search for optimal initial parameters was extended to include two initial values

853 fort RO: 0.25 and 0.5 s. We used the Bayesian Information Criterion to compare the two models.
854  DATA AND SOFTWARE AVAILABILITY

855 Behavioral, electrocorticographic and electroencephalographic data with the corresponding analyses

856 scripts will be made available upon publication. Single-neuron data are available upon request.
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