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A fundamental scientific question concerns the neuronal basis of perceptual1
consciousness, which encompasses the perceptual experience and reflexive monitoring2
associated with a sensory event. Although recent human studies identified individual3
neurons reflecting stimulus visibility, their functional role for perceptual consciousness4
remains unknown. Here, we provide neuronal and computational evidence indicating that5
perceptual and reflexive consciousness are governed by an all-or-none process6
involving accumulation of perceptual evidence. We recorded single-neuron activity in a7
participant with a microelectrode implant in the posterior parietal cortex, considered a8
substrate for evidence accumulation, while he detected vibrotactile stimuli around9
detection threshold and provided confidence estimates. We found that detected stimuli10
elicited firing rate patterns resembling evidence accumulation during decision-making,11
irrespective of response effectors. Similar neurons encoded the intensity of task-12
irrelevant stimuli, suggesting their role for consciousness per se, irrespective of report.13
We generalized these findings in healthy volunteers using electroencephalography and14
reproduced their behavioral and neural responses with a computational model. This15
model considered stimulus detection if accumulated evidence reached a bound, and16
confidence as the distance between maximal evidence and that bound. Applying this17
mechanism to our neuronal data, we were able to decode single-trial confidence ratings18
both for detected and undetected stimuli. Our results show that the specific gradual19
changes in neuronal dynamics during evidence accumulation govern perceptual20
consciousness and reflexive monitoring in humans.21

The processing of sensory signals by the human brain gives rise to two interrelated phenomena:22

perceptual consciousness, defined as the subjective experience associated with a sensory23

event (Chalmers, 1995; Nagel, 1974; Block 2011), and perceptual monitoring, defined as the24

capacity to introspect and reflect upon the subjective experience associated with a sensory25

event (Flavell, 1979; Koriat, 2006; Fleming, Dolan, and Frith 2012). The main strategy employed26

to study conscious processing consists in relating first-order subjective reports to neural activity27

to identify the minimal set of neuronal events and mechanisms sufficient for a specific conscious28

percept (i.e., neural correlates of consciousness or NCCs : Koch et al., 2016). To identify NCCs,29

most experimental paradigms have adopted a contrastive approach, whereby distinct30

phenomenal experiences induced by constant sensory stimulation are compared (Baars, 1998).31

One of the simplest contrasts is obtained when stimuli are presented at low intensity or32

embedded in noise so that only a certain proportion of them is detected (Dehaene et al., 2006).33

A comparison of neural activity elicited by detected and missed stimuli allows distinguishing the34

neural correlates of conscious vs. unconscious sensory processing, and therefore identifying35

NCCs given that specific confounds are ruled out (Aru et al., 2012). However, although rare36

investigations in humans have described single neurons in the temporal lobe encoding stimulus37

detection (Quiroga et al., 2008; Reber et al., 2017), the mechanistic role of neuronal activity for38
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perceptual consciousness remains unknown. One prominent theory of consciousness, the39

global neuronal workspace, proposes that a stimulus is consciously perceived when its40

corresponding neural activity is globally broadcasted across the cortex (Mashour, et al., 2020).41

This theory assumes that this global broadcast is triggered when an (unconscious) evidence42

accumulation process reaches a threshold (Dehaene et al., 2014; Dehaene, 2009; Shadlen43

2011), similar to the physiological processes underlying decision-making (Bollimunta & Ditterich,44

2012; Katz et al., 2016; Roitman & Shadlen, 2002; Zhou & Freedman, 2019). Although various45

neuroimaging studies have interpreted increases in neural activity elicited by detected stimuli46

(versus missed stimuli) as evidence accumulation (Salti et al., 2015; Tagliabue et al., 2019;47

Wyart & Tallon-Baudry, 2009), little empirical evidence supports an evidence accumulation48

account of perceptual consciousness, especially at the single neuron level.49

Besides perceptual consciousness, the main strategy to study perceptual monitoring consists in50

assessing how second-order reports like confidence judgments co-vary with the accuracy of a51

given perceptual task (first-order reports; Fleming & Lau, 2014). As most studies investigating52

perceptual monitoring rely on first-order discrimination tasks with stimuli that are always53

detected, less is known regarding how the brain monitors the presence or absence of subjective54

experience (Li et al., 2014; Mazor et al., 2020). Moreover, the interdependencies between55

perceptual consciousness and monitoring remain to be described empirically: while some56

theories of consciousness argue that conscious access requires a higher order representation57

of a stimulus (Brown et al., 2019; Lau & Rosenthal, 2011), or necessarily comes with a sense of58

confidence (Shea & Frith, 2019), other theories argue that first-order representations may be59

sufficient (Lamme, 2010; Zeki, 2007). Like for perceptual consciousness, several models60

propose that evidence accumulation plays an important role for the formation of perceptual61

confidence (Kvam et al., 2015; Pereira et al., 2020; Pleskac & Busemeyer, 2010; van den Berg62

et al., 2016). Yet, to our knowledge the underlying neural mechanisms remain to be described.63

Here, we sought to investigate the role of evidence accumulation in perceptual consciousness64

and perceptual monitoring by asking participants to detect weak vibrotactile stimuli and rate their65

confidence in having detected them. We reasoned that both detection and confidence underlie66

decision-making processes whereby participants accumulate perceptual evidence over time and67

gauge its level relative to decision criteria. We examined this possibility in a patient implanted68

with a microelectrode array in the posterior parietal cortex (PPC, Fig. 1A), considered as one of69

the functional hotspots of evidence accumulation in the non-human primate brain (Bollimunta &70
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Ditterich, 2012; Gold & Shadlen, 2007; Katz et al., 2016; Roitman & Shadlen, 2002; Zhou &71

Freedman, 2019). We isolated 368 putative single neurons (Fig. S1) in three different72

experiments with immediate, delayed, and no-responses in order to characterize the neural73

correlates of detection and confidence at the single-neuron and population levels and link74

evidence accumulation in the PPC to perceptual consciousness irrespective of response75

effectors. These results were generalized in a fourth experiment involving a group of healthy76

volunteers in whom we recorded scalp electroencephalography, perceptual consciousness and77

monitoring responses while they detected the same vibrotactile stimuli. In a final step, we test78

and propose an evidence accumulation computational model that reproduced the behavioral79

and neural markers of both detection and confidence. Together, these results indicate that80

subjective reports of perceptual consciousness and monitoring involve a common mechanism of81

evidence accumulation orchestrated by the PPC.82

Results83

Experiment 1: immediate-response task84

In Experiment 1, the participant was asked to detect vibrotactile stimuli applied to the right wrist85

(contralateral to the PPC implant) with an intensity around detection threshold. Responses were86

provided by a keypress with the left hand, immediately after perceiving a stimulus. A trial was87

considered a hit when the participant responded within 2 s following stimulus onset (41.20% of88

trials; mean response time (RT) and 95% confidence interval: 0.71 ± 0.02s), otherwise, it was89

considered a miss (58.80% of trials Fig. 1B). The participant rarely responded “yes” in the90

absence of stimuli (0.36%; false-alarms), indicative of conservative behavior. We found 94/18691

detection-selective neurons (50.54%; p = 0.001, Poisson GLM with permutation test across92

neurons) with spike counts explained by detection (yes/no responses) between 0.5 to 1.5 s after93

the stimulus onset. Some neurons were characterized by a hallmark of evidence accumulation94

where increases in firing rates preceded detection reports depending on their response times95

(Bollimunta & Ditterich, 2012; Katz et al., 2016; Roitman & Shadlen, 2002; Zhou & Freedman,96

2019): the cumulative sum of spikes following stimulus onset correlated with the corresponding97

RT in 67/94 detection-selective neurons (71.28%; p = 0.001; Fig. 1C) with some neurons98

showing gradually increasing spike counts prior to the keypress (Fig. 1D). To further support99

that increased spike counts represent an evidence accumulation process, we verified that the100

proportion of variance not attributed to the point process increased after stimulus onset (Fig. 1E)101

and that the corresponding covariance decayed with increasing time lag (Fig. 1F), in line with102
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what is expected for a diffusion process (Churchland et al., 2011). Finally, we replicated the103

increase in firing rate with electrocorticography (ECoG) by showing that the strongest effect of104

detection was localized in the PPC and pre-central gyrus (Fig. 1G). To summarize, we105

uncovered individual neurons in the human PPC with firing rates ramping up prior to detection106

reports, consistent with evidence accumulation.107

Fig.1. Neuronal correlates of detection in an immediate-response task (Experiment 1). (A) Intraoperative photo of the108
microelectrode array posterior to the postcentral sulcus and dorsal to the intraparietal sulcus. (B) The participant109
pressed a key as soon as he felt a stimulus (dashed vertical lines). In this example, the first stimulus is a miss (i.e. no110
key press within 2s following stimulus onset) and the second stimulus is a hit. ISI: inter-stimulus interval. Inset: RT111
distribution. (C) Example selective neurons with a latency effect for RT. Top: raster plot time-locked to stimulus onset112
with spike waveform and shaded standard deviation above. Hits were reordered according to RT (black dashed trace).113
Bottom: average firing rate for three terciles of RT (blue) and for misses (red). Statistics were performed on114
continuous data. (D) Top: RT-aligned spike count histograms for neurons in C (50 ms bins). Bottom: corresponding115
raster plots. (E) VarCE increases during the putative decision process for detection– and RT–selective neurons116
(N=47). Shaded areas represent 95%-confidence intervals (95%-CI) across selective neurons. (F) Corresponding117
analysis of covariance representing CorCE as heat maps, averaged across detection– and RT–selective neurons118
(N=47). (G) Left: Average ECoG response, aligned to stimulus onset from one electrode posterior to the119
microelectrode array for three terciles of RT. Right: ECoG grid with beta coefficients for detection. Non-significant120
electrodes are in black. All shaded areas represent 95%-CI and black horizontal bars represent the analysis window121
for statistics.122
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Experiment 2: delayed-response task123

Next, we tested whether neuronal responses relate to conscious perception irrespective of124

motor actions by imposing a delay between stimulus onset and reports. We also assessed125

whether the strength of these neuronal representations co-vary with reported confidence126

(Rutishauser et al., 2015, 2018). In Experiment 2, we asked the participant to report vocally the127

detection of the stimuli with a minimal delay of 1 s after stimulus onset (Fig. 2A, upper panel).128

To assess the role of evidence accumulation for conscious monitoring, we also asked the129

participant to vocally report his confidence (high, medium, low) in his response. Similar to130

Experiment 1, 50.5% of stimuli were detected (hits) (20% trials had no stimuli, of which 5% were131

false-alarms, confirming his conservative strategy). When a stimulus was presented, confidence132

was higher following hits (2.46 ± 0.10) than misses (2.00 ± 0.08; X² = 20.09, p = 4.3*10-5),133

indicative of accurate detection monitoring processes (Fig. 2A, lower panel).134

We ran a factorial analysis to identify neurons encoding detection and/or confidence. We found135

17/86 neurons showing an interaction between detection and confidence (19.77%, p = 0.002,136

permutation test) driven by an increased firing rate for hits with high confidence (Fig. 2B). Only137

one neuron showed only a main effect of detection (1.16%, p = 0.57) and two a main effect of138

confidence (2.33%, p = 0.88). A similar interaction between detection and confidence was found139

in ECoG electrodes surrounding the microelectrode array (Fig. 2D) and in140

electroencephalography (EEG) signals from 18 healthy volunteers recruited from Experiment 4141

(Fig. 2C), consistent with previous EEG studies (Herding et al., 2019; Tagliabue et al., 2019). To142

characterize how neuronal population activity relates to detection and confidence, we trained143

decoders on the firing rate of all neurons and evaluated them out-of-sample. We decoded hits144

from misses better than chance for both high confidence (Fig. 2E; max. area under the curve145

(AUC): 0.88, 1.16s after stimulus onset) and low confidence (max. AUC: 0.63 accuracy at 0.77146

s). This indicates that although low confidence hits and misses were indistinguishable based on147

individual neurons they could be discriminated at the population-level, which confirms that our148

results were not driven by high-confidence trials only. Finally, the output of the best decoder (at149

1.13 s) correlated with confidence for hits (R = 0.59; p < 0.001, permutation test) but not for150

misses (R = 0.16; p = 0.13), confirming that the neuronal signal driving detection also explains151

confidence for detected stimuli. Together, results from Experiments 1 and 2 show that PPC152

neurons exhibit evidence accumulation behavior and encode detection and confidence reports153

irrespective of motor actions and report effector (i.e., keypress in Experiment 1, voice in154

Experiment 2). Of note, the latency of the evidence accumulation process we uncovered in155
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Experiment 2 is qualitatively compatible with the distribution of RTs measured in Experiment 1,156

which suggests that conscious access occurs with a delay of up to 1 s following weak157

vibrotactile stimulation.158

Fig.2. Neuronal correlates of detection and confidence in a delayed-response task (Experiment 2). (A) Top:159
Vibrotactile stimuli were applied during a 2s window following an auditory cue. After 1s delay, the participant was160
prompted to give detection and confidence reports. Bottom: Distribution of confidence. For display purposes hereafter,161
signals corresponding to confidence values of 1 and 2 were merged into low-confidence, while confidence values of 3162
were considered as high-confidence. Statistics were done on the three levels. (B) Example selective neuron. Top:163
Raster plot time-locked to stimulus onset with spike waveform with shaded standard deviation above. Bottom:164
Corresponding firing rates. (C) EEG data showing a topographic map of beta coefficient for the interaction between165
detection and confidence for hits (dashed trace). The EEG amplitude time-locked to stimulus onset and averaged166
over 18 healthy controls is shown below. (D) Left: ECoG grid with beta coefficients for detection x confidence. Non-167
significant electrodes are in black. Right: Average ECoG amplitudes, aligned to stimulus onset from the electrode168
next to the microelectrode array (E) Decoding performance for different confidence levels. Horizontal lines show169
times of significant performance (permutation tests). All shaded areas represent 95%-CI and black horizontal bars170
represent the analysis window for statistics.171
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Experiment 3: no-report paradigm172

To distinguish neuronal activity associated with subjective experience from activity associated173

with subjective report (Aru et al., 2012; Pitts et al., 2014; Tsuchiya et al., 2015), in Experiment 3174

we let the participant mind-wander while he was exposed to stimuli ranging between 0.5 to 5175

times the perceptual-threshold intensity. We reasoned that neuronal activity would still encode176

the intensity even for task-irrelevant stimuli if evidence accumulation determines conscious177

perception beyond mere reports. While no behavioral task was enforced, we found that the178

activity of 14/96 neurons increased with increasing stimulus intensity (14.58%, p = 0.008; Fig.179

3C), similar to hits in Experiments 1-2 (Fig. 3A, B). The fact that stimulus intensity was180

represented at the single-neuron level although the participant was not engaged in the task181

argues against the possibility that our previous results in Experiments 1-2 reflected task activity182

rather than perceptual processing leading to conscious access (Aru et al., 2012; Pitts et al.,183

2014; Tsuchiya et al., 2015).184

Fig. 3. Average firing rates of responsive neurons. Firing rates were normalized using a 0.3 s pre-stimulus baseline.185
(A) Normalized firing rate for three bins of RT (hits; blue) and for misses (red), averaged across detection-selective186
and RT-selective neurons with higher firing rates for hits (N=47). In Experiment 1, the participant answered with a187
keypress for hits. (B) Normalized firing rate for high and low confidence for hits (blue) and for misses (red), averaged188
across all detection- and confidence- selective neurons with higher firing rates for hits (N=10). In Experiment 2, the189
participant waited at least one second before reporting detection and confidence vocally. (C) Normalized firing rate for190
three bins of stimulus intensity, averaged across intensity-selective neurons (N=14). In Experiment 3, the participant191
provided no detection or confidence report and was let to mind wander.192
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Experiment 4: computational model of detection and confidence193

Informed by these human single-neuron data from Experiments 1-3, we sought to generalize194

our decisional account of perceptual consciousness by identifying evidence accumulation195

mechanisms underlying detection and confidence in EEG data (18 healthy volunteers, task196

similar to Experiment 2). Participants behaved similarly to the aforementioned patient, with a197

balanced number of hits and misses (Supplementary results) and EEG responses also showed198

an interaction effect between detection and confidence (Fig. 2C). We developed an evidence199

accumulation model to fit the behavioral and EEG data, assuming that participants attempted to200

detect the stimulus by continuously accumulating evidence during a 3s stimulation window (from201

trial onset until the response cue). To model the time uncertainty in our task (participants did not202

know when a stimulus could be applied), we assumed that participants started accumulating203

evidence before the stimulus onset (Devine et al., 2019). This was modelled as a null drift rate204

across time except for a short-lasting boost triggered by the stimulus. A stimulus was perceived205

if the simulated evidence accumulation (EA) process reached a bound (Kang et al., 2017) at any206

time during the stimulus window (Fig. 4A), compatible with all-or-none views of conscious207

access (Dehaene et al., 2014).208

Confidence was read out from the distance between accumulated evidence and the decision209

threshold (Pereira et al., 2020; Pleskac & Busemeyer, 2010). Importantly, we sampled210

confidence when evidence reached a maximum across the stimulation window, which allowed211

implementing a confidence readout for misses and correct rejections, for which no decision212

threshold is crossed. To fit the model parameters to the data, we considered the shape of the213

electrophysiological signature for hits and misses as a neural correlate of evidence214

accumulation (O’Connell et al., 2012; Philiastides et al., 2014; Tagliabue et al., 2019), defined215

by the weighted average of all EEG electrodes that maximally discriminated hits from misses.216

We first fitted the parameters of a detection model to these electrophysiological responses (Fig.217

4B, S2) as well as to hit and false alarm rates (Fig. 4B, inset; Fig. S3). We then fitted two218

additional parameters for confidence bias and sensitivity to observed confidence distributions.219

The resulting model fitted the confidence ratings well (average R across participants 0.83±0.03220

for hits, 0.85±0.03 for misses, 0.81±0.04 for correct rejections and 0.45±0.09 for false alarms;221

Fig. 4C, S4), suggesting that evidence accumulation is a plausible mechanism underlying222

perceptual consciousness and its electrophysiological correlates. The data and the model were223

still consistent when stratifying per confidence level. Metacognitive sensitivity predicted by our224

model and observed in the data were correlated for both “yes” responses (R=0.60, p=0.001,225
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permutation test) and “no” responses (R=0.61, p=0.009; Fig. 4E), showing that our model also226

successfully predicted metacognitive performance. Finally, an alternative model assuming that227

confidence for detected stimuli is sampled at a fixed latency after crossing the decision228

threshold and confidence for undetected stimuli is sampled from a random distribution led to a229

worse fit of the data (BIC = 229.31 ± 43.19 compared to BIC = 178.82 ± 38.86 for the maximal230

evidence model; z = -2.33, p = 0.020; Fig. 4F). This difference in goodness of fit was also231

observable in the correspondence between observed and simulated averaged confidence for232

hits (R = 0.81 ± 0.03 for the maximal evidence model compared to R = 0.63 ± 0.09 for the233

alternative model; z = 2.29; p = 0.022).234

Fig. 4. Computational model based on evidence accumulation. (A) Time-varying drift rate (d; thick black trace) had a235
short-lasting boost after a non-decision time following stimulus onset (dashed vertical line). Example evidence236
accumulation for one trial (EA; cyan trace for a hit, red trace for a miss) rises sharply after the drift boost and is237
attracted back to zero due to leakage. A stimulus is considered as perceived (hit) if EA reaches a decision threshold238
(horizontal line), and as non-perceived (miss) if not. The maximum of accumulated evidence with respect to the239
decision threshold is used as a confidence readout. (B) Model fit of the pEA locked on stimulus onset for hits (cyan240
trace) and misses (red trace). The corresponding observed EEG data is shown in grey. Average scalp topography of241
pEA weights is shown above. (C) Hit rate (HR) and false alarm rate (FAR). Datapoints are represented as ‘o’ and242
model simulations as ‘x’. (D) Left: Average confidence for hits (cyan), misses (red), correct rejections (green) and243
false alarms (black). Right: Model fits of the confidence distributions. Histograms show confidence distributions with244
95%-CI whiskers. Colored traces show model simulations. All shaded areas represent 95%-CI. (E). Area under the245
curve (AUC) correlation between observed data (horizontal axis) and simulated data (vertical axis) for “yes”246
responses (hits and false alarms; left) and “no” responses (correct rejections and misses; right). Regression line is247
shown in red with shaded areas representing 95%-CI). (F). Model comparison in terms of Bayesian information248
criterion (BIC) between the maximal evidence model and the alternative model. Whiskers represent 95%-CI and249
asterisk indicates statistical significance (p<0.05).250
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Informed by our modelling results in healthy participants, we set out to verify whether we could251

decode confidence for misses from single-neuron data in Experiment 2 using a decoder defining252

confidence as the maximum of accumulated evidence. We took the best decoder for hits and253

misses (trained on stimulus-locked data) and applied it out-of-sample across the stimulation254

window (i.e. cue-locked). We decoded confidence for hits (R = 0.49, p = 0.001, permutation test)255

and confidence for misses (R = -0.31, p = 0.015), which the aforementioned stimulus-locked256

decoder could not achieve. The time corresponding to the decoded maximal evidence257

correlated with stimulus onset for hits (R = 0.37, p = 0.001) but not for misses (R = 0.03, p =258

0.58), suggesting that evidence for confidence in misses was not sampled synchronously with259

the stimulus, thereby verifying the plausibility of the maximal evidence decoder on our patient’s260

single-neuron data.261

Discussion262

We propose a mechanism of evidence accumulation to explain the behavioral and neural263

markers of perceptual consciousness and monitoring. We show that tactile detection relates to264

an increase of the firing rate of single neurons in the posterior parietal cortex of a human265

participant, as well as an increased scalp EEG response recorded in a group of healthy266

participants. In both cases, the amplitude of the corresponding neural response was dependent267

on the confidence in hits. This increase in neural response as well as in the detection reports268

were well described by a computational model indicating that a plausible mechanism underlying269

the building of confidence in both the presence and absence of a stimulus is for the brain to take270

the maximal evidence accumulated over time.271

Encoding of detection by individual neurons in the posterior parietal cortex272

We had the opportunity to collect data from individual neurons in the human PPC, at the273

junction between the postcentral and intraparietal sulcus in the superior parietal lobule. The274

PPC has been associated with a multitude of functions linking perception to planning and action275

(Andersen & Cui, 2009) and receives multisensory inputs including those from the primary276

somatosensory cortex (Pearson & Powell, 1985). In Experiment 1, we found individual neurons277

in the PPC with higher firing rates following detected stimuli. We argue that these neurons are278

responsible for evidence accumulation based on the following three findings. Firstly, in279

Experiment 1 we found neurons whose increase in firing rate for hits was synchronized to280
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response times (Gold & Shadlen, 2007). Secondly, in Experiment 1 the variance of the281

corresponding spike rates increased after stimulus onset (Churchland et al., 2011). Thirdly, in282

Experiment 3, we observed an increase in the firing rates for increasing intensities of (task-283

irrelevant) stimuli (Gold & Shadlen, 2007). Based on these three hallmarks of evidence284

accumulation, we argue that our results consist in the first single-neuron account of perceptual285

evidence accumulation in a human subject capable of subjective reports. Indeed, although286

electrophysiological correlates of evidence accumulation have been found in various regions of287

non-human primate brains, including the frontal cortex or subcortical structures (Ding & Gold,288

2010; Hanks et al., 2015; Odegaard et al., 2018), the arguably most common region studied in289

relation with neural accumulation of perceptual evidence is the lateral intraparietal (LIP) area of290

the PPC (Bollimunta & Ditterich, 2012; Katz et al., 2016; Roitman & Shadlen, 2002; Zhou &291

Freedman, 2019). However, whether perceptual evidence accumulation neurons such as those292

reported in non-human primate studies could support conscious reports is unclear, as subjective293

experience cannot be measured explicitly in non-human species, and because such neurons294

were – to our knowledge – not reported in humans yet.295

Encoding of confidence by individual neurons in the posterior parietal cortex296

In Experiment 2, we asked the participant again to detect stimuli and found neurons similar to297

those in Experiment 1 with higher firing rates after stimuli reported as perceived. The finding of298

detection-selective neurons when responses were provided by key press (Experiment 1) or299

orally (Experiment 2) suggests that the mechanism of evidence accumulation we propose is300

response-invariant. Importantly, we asked the participant to report the confidence he had in his301

responses, and found that the change in firing rates for detected stimuli was modulated by302

confidence, showing that confidence relates to the strength of single neuron’s responses to303

detected stimuli. This mechanistic overlap, which – to our knowledge – was not yet shown in304

humans capable of reporting subjective confidence was confirmed at the neuronal population305

level: multivariate decoders trained to discriminate hits vs. misses allowed us to decode306

confidence for hits when time-locking to the stimulus onset and for both hits and misses when307

locking on the onset of maximal evidence.308

Computational modelling and replication at the scalp level309

Because microelectrode implants in parietal regions are extremely rare in humans, we sought to310

generalize our findings by recording behavioral and neural data in a group of healthy volunteers311

in Experiment 4. Behavioral results revealed highly similar patterns between the two samples,312
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indicating that detection and confidence reports in Experiments 1-2 were not impacted by the313

clinical condition. Experiment 4 also allowed us to generalize our single-neuron findings at a314

larger scale based on EEG recordings. EEG data showed a similar dependence of detection-315

related activity on confidence for hits, similar to previous work in the visual domain using a316

different awareness scale (Tagliabue et al., 2019) and a discrimination task (Boldt & Yeung,317

2015; Gherman & Philiastides, 2015). Of note, both neural responses recorded at the318

intracranial (single-neuron, EcoG; Experiment 1-3) and scalp levels (Experiment 4) were319

observed at a rather late latency following stimulus onset (>200 ms), suggesting that these320

responses were not related to early somatosensory perceptual processes. We then reasoned321

that since similar increases in neural activity are assumed to reflect accumulation of evidence322

(O’Connell et al., 2012, 2018; Tagliabue et al., 2019), an evidence accumulation model should323

predict both behavioral results (hit rate, false-alarm rate and confidence for hits, misses, correct324

rejections and false-alarms) and corresponding neural responses. Using neural data to fit the325

model instead of response times allowed us to fit a leakage parameter (Yu et al., 2015) and to326

compensate for the fact that, in a detection task, response times are unavailable for undetected327

stimuli. The model derives confidence as the distance between the maximal evidence328

accumulated over time and the decision bound. This flexible readout provides a major329

advantage when computing confidence in the absence of stimulus detection (i.e. misses) as well330

as in the absence of a stimulus (i.e. correct rejections and false-alarms), which cannot be331

achieved with models using decision-locked confidence readouts in discrimination tasks332

(Pereira et al., 2020; Pleskac & Busemeyer, 2010; van den Berg et al., 2016). An alternative333

model with a fixed-timing readout and a random confidence for unperceived stimuli performed334

significantly worse. Our modelling results corroborate our electrophysiological results across335

Experiments 1-4 and are consistent with decision-making models of confidence applied to336

animal data, postulating a shared encoding of evidence for decision and confidence (Kiani &337

Shadlen, 2009), possibly enriched by post-decisional evidence (Fleming et al., 2018; Pleskac &338

Busemeyer, 2010; van den Berg et al., 2016). Moreover, a recent study comparing models339

based on signal detection theory showed that the model that best fit observed data involves a340

second-order “metacognitive” noise to the decisional evidence (Maniscalco & Lau, 2016). Our341

model implicitly implements this metacognitive noise through the influence of first-order342

parameters such as leakage on post-decisional evidence readouts. Indeed, in participant with343

strong leakage, accumulated evidence rises and decays fast, leading to low metacognitive noise.344

On the contrary, in participants with little leakage, once no more informative evidence is345

accumulated, the level of evidence accumulation tends to oscillate around the reached346
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maximum, leading to higher metacognitive noise. A-posteriori analyses showed that the leakage347

parameter correlated with metacognitive sensitivity (Supplementary information). Our model348

thus provides a simple mechanism supporting metacognition, including subliminal stimuli,349

explains neural responses and was verified at the single neuron and EEG level, as we were350

able to decode confidence ratings above chance using this procedure.351

Implications for perceptual consciousness352

Our results posit that stimulus detectability involves the accumulation of sampled evidence353

towards a decision bound, as previously discussed for discrimination tasks (Kang et al., 2017).354

Of note, the use of a detection task is compatible with a contrastive study of consciousness355

(Baars, 1998), as opposed to two-alternative forced choice discrimination tasks for which356

confidence ratings are well characterized, but which do not offer a direct contrast between357

perceived and unperceived stimuli. The view of conscious access as an all-or-none process358

involving a decision bound is compatible with the ignition mechanism put forward by the global359

workspace theory of consciousness (Mashour et al., 2020), according to which sufficiently360

activated encapsulated networks may coalesce into a single network responsible for361

broadcasting neural signals throughout the brain and thereby making them accessible to362

conscious reports. One could speculate that the triggering of an ignition is governed by363

bounded-evidence accumulation similar to the one operated by neuronal populations in the364

posterior parietal cortex. Recently, the use of classical contrastive approaches to delineate the365

neural correlates of consciousness has been criticized, on the basis that it may be confounding366

the cognitive and neural mechanisms associated with phenomenal experience per se, and367

those associated with reporting phenomenal experience (Aru et al., 2012). Some authors have368

proposed the use of “no-report paradigms”, in which perceptual experience is not inferred from369

participants’ responses, but from neural or peripheral signals while participants are passively370

exposed to stimuli (Frassle et al., 2014; Tsuchiya et al., 2015; but see Block, 2019; Phillips &371

Morales, 2020). Importantly, we found a population of neurons encoding perceptual evidence372

through a putative evidence accumulation process in Experiment 3, in which the participant was373

passively exposed to the stimuli similar to such no-report paradigms. Although these effects374

were weaker than the ones found in Experiment 1-2, they indicate that evidence accumulation375

operated by a neuronal population in the posterior parietal cortex is involved in conscious376

perception, even when the stimuli are task-irrelevant. In addition, the mechanistic overlap377

between detection and confidence we report cannot be due to similar motor responses378

associated with detection and confidence reports in Experiment 2, as those were collected379
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separately, seconds after the end of the stimulation window on which our analysis was based in380

the delayed detection task.381

To conclude, our results posit that both detection and confidence for near-threshold stimuli382

involve the accumulation of evidence towards a criterion orchestrated by the PPC. We argue383

that this neuronal mechanism involving a decision bound may serve as a trigger for the neural384

ignition underlying conscious access (Moutard et al., 2015; van Vugt et al., 2018) and explains385

how contents remaining inaccessible to consciousness may still be subject to self-monitoring386

(Mazor et al., 2020; Meuwese et al., 2014). Our behavioral, neural, and modeling results clarify387

how perceptual consciousness and reflexive self-monitoring are intertwined mechanistically.388
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STAR METHODS606

KEY RESSOURCE TABLE607

REAGENT or RESSOURCE SOURCE IDENTIFIER

Software and Algorithms

MATLAB 2018a MathWorks RRID:SCR_001622;

http://www.mathworks.com/products/matlab/

Osort RRID:SCR_015869;

http://www.rutishauserlab.org/osort

EEGLAB 2019.1.0 RRID:SCR_007292;

http://sccn.ucsd.edu/eeglab/index.html

iELVis RRID:SCR_016109;

http://ielvis.pbworks.com/w/page/116347253/FrontPage

Psychophysics toolbox 3 RRID:SCR_002881; http://psychtoolbox.org/

Algorithm to fit an evidence
accumulation model to
behavioral and neural data

Upon acceptance

Other

Neuroport recording system Blackrock

Microsystems

https://www.blackrockmicro.com/

Brain Quick LTM Micromed http://www.micromed.eu/en-us/

WaveGuard EEG ANTNeuro http://www.ant-neuro.com

CONTACT FOR REAGENT AND RESSOURCE SHARING608

Further information and requests for ressources should be addressed directly to the Lead Contact,609

Nathan Faivre (nathan.faivre@univ-grenoble-alpes.fr)610

EXPERIMENTAL MODEL AND SUBJECT DETAILS611

In experiments 1–3, the participant was a 23-year-old right-handed man suffering from drug-resistant612

epilepsy due to a focal cortical dysplasia in the left central sulcus. As part of the clinical management of613
his condition, he received a 4x6 ECoG grid covering the left premotor, motor, sensory and posterior614

parietal cortices. He accepted to participate in a clinical trial on neuronal recordings during invasive615

epilepsy monitoring at the Geneva University Hospitals (IN-MAP; NCT02932839) and a Utah616
microelectrode array was additionally implanted in the left posterior parietal cortex. The patient provided617
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informed written consent and the study was approved by the Commission Cantonale d’Ethique de la618
Recherche de la République et Canton de Genève (2016-01856). Eighteen healthy participants (7619

females; age: 25.2 years, SD = 4.1) took part in Experiment 4 for a monetary compensation. Participants620

gave written informed consent prior to participating and all experimental procedures were approved by621
the Commission Cantonale d’Ethique de la Recherche de la République et Canton de Genève (2015-622

00092 15-273).623

METHOD DETAILS624

Experimental paradigms were written in Matlab (Mathworks) using the Psychophysics toolbox (Brainard,625

1997; Kleiner, n.d.; Pelli, 1997). In all experiments, stimuli were applied on the lateral palmar side of the626
right wrist using a MMC3 Haptuator vibrotactile device from TactileLabs Inc. (Montréal, Canada) driven by627

a 230 Hz sinusoid audio signal lasting 100 ms. Experiments started by a simple estimation of the628

individual detection threshold. The tactile stimulus was applied with decreasing intensity with steps629

corresponding to 2% of the initial intensity until the participant reported not feeling it anymore three times630
in a row. We then repeated the same procedure but with increasing intensity and until the participant631

reported feeling the vibration three times in a row. The perceptual threshold was estimated to be the632

average between the two thresholds found using this procedure. This approximation was then used as a633

seed value for an adaptive staircase during the main experiments (see below). Experiments 1-3 were634
performed on different days at the patient’s bedside.635

Experiment 1636

Stimuli were applied in a pseudo-random way with an inter-stimulus interval of two seconds plus an637
exponentially distributed time (mean: 2 s). The participant was provided with a keypad and asked to press638

a key every time he felt a stimulus. Answers provided during the two seconds following a stimulus were639

considered as hits. Only one keypress occurred out of this two second post-stimulus window.640

Experiment 2641

An auditory cue signaled the start of the two seconds stimulus window during which the stimulus could be642

applied at any time (uniform distribution) in 80% of trials (the remaining 20% served as catch trials,643

unbeknownst to the participant). Stimulus onset was followed by a one second delay to ensure that644
stimulus-locked activity was not contaminated by the detection response. After this delay, a second645

auditory cue probed the participant for his detection response (“yes” or “no”), followed by a three levels646

confidence rating (1: “unsure”, 2: “somewhat sure”, 3: “very sure”). Detection and confidence ratings were647
provided vocally and registered by the experimenter.648
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Experiment 3649
Stimuli were applied in a pseudo-random way with an inter-stimulus interval of two seconds plus an650

exponentially distributed time (mean: 2 s) with a random amplitude sampled from 11 intensities ranging651

from zero to five times the participant’s perceptual threshold. The participant was not given any652
instructions and was left free to mind-wander during the experiment.653

Experiment 4654

Participants sat in front of a computer screen. A white fixation cross appeared in the middle of the screen655
for 2 s. From the moment the fixation cross turned green, participants were told that a tactile stimulus656

could be applied at any moment during the next 2 s. During this period, stimulus onset was uniformly657

distributed in 80% of trials, the 20% remaining trials served as catch trials, as in Experiment 2. In all trials,658

1 second after the green cross disappeared, participants were prompted to answer with the keyboard659
whether they felt the stimulus or not. Following a 500 ms stimulus onset asynchrony, participants were660

asked to report the confidence in their first order response by moving a slider on a visual analog scale661

with marks at 0 (certainty that the first-order response was erroneous), 0.5 (unsure about the first-order662

response) and 1.0 (certainty that the first-order response was correct). Detection and confidence reports663
were provided with the left (non-stimulated) hand, using different keys. The total experiment included 500664

trials divided in 10 blocks, and lasted about 2 hours.665

Electrophysiological data acquisition666
A 96-channel silicon-based microelectrode array (“Utah array”; Blackrock Microsystems, Salt Lake City,667

USA) was implanted in the posterior parietal cortex, immediately posterior to the postcentral sulcus and668

the hand representation of sensorimotor cortex (Fig. 1A). The location was confirmed through post-hoc669

electrode localization (Fig. 1G), performed through a coregistration of a preoperative MRI structural T1670
scan and a postoperative CT scan using the iELVIS toolbox (Groppe et al., 2017). The data from each of671

the 96 channels was amplified and sampled at 30 KHz for offline analysis (NeuroPort system, Blackrock672

Microsystems LLC, Salt Lake City, USA). Additionally, a 24 electrode ECoG grid (Ad-Tech Medical)673

covered the left hemisphere from the premotor cortex to the superior parietal lobule (Fig.1G, 2D). The674
data was amplified and sampled at 2048 Hz (Brain Quick LTM, Micromed, Treviso, Italy). In Experiment 4,675

electroencephalographic data were acquired from 62 active electrodes (10-20 montage) using a676

WaveGuard EEG cap and amplifier (ANTNeuro, Hengelo, The Netherlands) and digitized at a sampling677

rate of 1024 Hz. Horizontal and vertical electrooculography (EOG) was derived using bipolar referenced678
electrodes placed around participants’ eyes. The audio signal driving the vibrotactile actuator was679

recorded as an extra channel to precisely realign data to stimulus onset.680

QUANTIFICATION AND STATISTICAL ANALYSIS681
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Invasive electrophysiological data processing and univariate analysis682
The raw signal from the microelectrode array was bandpass filtered between 300 and 3000 Hz for spike683

sorting. Trials with epileptic activity or other artifacts were removed from further analysis following visual684

inspection of ECoG data. Spikes were extracted and sorted using the semi-automatic template matching685
‘Osort’ algorithm (Rutishauser et al., 2006). Standard quality metrics were computed for each putative686

single unit in order to assess their quality (Fig. S1). We computed the firing rate every 1ms with a 100 ms687

standard deviation Gaussian sliding window.688

In Experiment 1, a neuron was considered detection-selective when a significant (two-sided test) effect of689
detection was found on the number of spikes during a time window between 0.5 and 1.5 seconds after690

stimulus onset using a generalized linear model (GLM) with a Poisson distribution (Fu et al., 2019;691

Rutishauser et al., 2018). For this, we fitted a model with one beta regressor: #spikes ~ β0 + β1*detection692

(hit or miss). For the latency analysis, we computed the cumulative sum of spikes starting at stimulus693
onset and correlated (Spearman) it with RTs for every time step (1 ms) between 0 and 1.5 s after stimulus694

onset. A neuron was considered RT-selective if the correlation was significant within this time range after695

correcting for false-discovery rate (FDR). To ensure that there was no overfitting and that our results were696

not driven by outliers, we used a non-parametric permutation test to assess whether the number of697
selective neurons was significantly above chance; we repeatedly (N=1000) applied the same tests on698

shuffled data and counted the number of selective neurons. We defined the p-value as the proportion of699

times that the number of selective neurons for shuffled data was higher than the number of selective700

neurons found in the data (Fu et al., 2019; Kamiński et al., 2017; Rutishauser et al., 2018). When no701
selective neuron was found in the shuffled data, we set p = 1/N = 0.001. In Experiment 2, we also used a702

Poisson GLM to regress the number of spikes during a time window between 0.5 and 1.5 seconds after703

stimulus onset. We fitted a model with three beta regressors: #spikes ~ β0 + β1*detection +704

β2*confidence + β3*detection*confidence. We only interpreted main effects (β1, β2) in the absence of705
interactions (β3). If β3 was significant (two-sided test), we considered the neuron as detection- and706

confidence-selective. If β1 was significant but β3 was not, we considered the neuron only detection-707

selective (idem for confidence-selective). We applied the same permutation test as for Experiment 1. In708

Experiment 3, we fitted a Poisson GLM with one beta regressors: #spikes ~ β0 + β1*intensity to find709
intensity-selective neurons showing an increased firing rate with increasing stimulus intensity and applied710

the same permutation test as for Experiment 1 and 2.711

For ECoG analyses, we re-referenced the channels to a common average and applied a lowpass filter712
(Hamming window with a cutoff frequency of 40 Hz). Trials with epileptic activity or other artifacts were713

removed from further analysis following visual inspection. We used linear models (LM) for statistics using714

the same regressors as for spike counts (see above). For display purposes only, we additionally715
smoothed the data with a 200 ms Savitzky-Golay filter (Savitzky & Golay, 1964).716

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 11, 2020. ; https://doi.org/10.1101/2020.07.10.196659doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.10.196659
http://creativecommons.org/licenses/by-nc-nd/4.0/


24

Analysis of variance for Experiment 1717
To further relate our results to evidence accumulation, we analyzed some typical signatures of drift718

diffusion-like processes: the variance in the number of spikes during an epoch can be decomposed into i)719

the variance of the point process expected if the neuron had a constant firing rate across trials, and ii) the720
remaining variance of the conditional expectation (VarCE) which is due to the variability of the neuron’s721

underlying firing rate across trials. If neuronal activity follows a diffusion process, then VarCE should722

increase with decision time. Similarly, the correlation between conditional expectations (CorCE) should be723

stronger between adjacent time windows and decrease with time lag between time windows (Churchland724
et al., 2011). We followed the approach in Churchland and colleagues. In brief, we relied on an upper725

bound estimate of VarCE, assuming that the point process variance is proportional to the spike count so:726

�2 = ����� +�N,727

with �2 the total variance and N the average number of spikes for one 50 ms epoch. We used 10 non-728

overlapping epochs ranging from 0 to 1.5 s post-stimulus. The variance of the point process was729
computed as is a weighted average of the variance of the point process for hits and for misses. The730

constant � can be set based on some heuristics such as by considering that VarCE is zero when the ratio731

of variance and mean firing rate is minimal (e.g. at the beginning of the decision process). Due to the732
limited number of trials available in this study, we preferred this approach to more complex methods733

involving data fitting.734

We computed CorCE by dividing the covariance of the number of spikes for different epochs by the735
square root of the product of the VarCE:736

�����
�� = ����� / �����

� ∗�����
� ,737

with �����the covariance between epoch i and j and �����
� the VarCE for epoch i. For all computations,738

we reduced � by 20% to have positive semi-definite covariance matrices.739

Multivariate decoding (Experiment 2)740

We fed single neurons firing rates sampled every 10 ms into linear discriminant decoders with a L2741

regularization factor of 0.8 (similar results were obtained with different regularization factors). These742

decoders separated the space of input features with a linear hyperplane that best discriminates hits and743
misses. The decoders predict a hit when the distance of a sample to the separating hyperplane is higher744

than zero and a miss otherwise. To avoid overfitting, we separated our data in 10 cross-validation folds so745

that for each fold we trained decoders on the 90% of the data and tested them on the 10% remaining (i.e.746
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out-of-sample). The distance to the separating hyperplane was also used to compute the area under the747
curve (AUC) for out-of-sample data at each time point. We used permutation tests to assess whether748

similar AUC could have been obtained by chance while correcting for multiple comparisons across time749

points. We selected contiguous clusters of time points when AUC was higher than 0.6 or lower than 0.4750
and then computed the proportion of similar or bigger clusters obtained with shuffled labels. For each751

permutation, we computed AUC clusters over the whole set of time points to keep the autocorrelation752

structure in the shuffled data.753

Confidence was decoded at the time point corresponding to the highest AUC. Decoded confidence was754

defined as the absolute distance of a sample to the separating hyperplane. We assessed confidence755

decoding by correlating (Spearman) decoded confidence with observed confidence and assessing756

significance using permutation tests (one-sided, as we could reasonably expect positive correlations). As757
this procedure was carried out on out-of-sample data, our results were not affected by overfitting. Finally,758

for maximal evidence decoding, we used the same decoder to decode firing rates between 0.5 and 3 s759

post-cue. We excluded the first 0.5 s due to some neurons showing post-cue activity. We then took the760

maximum of the decoder over that time window, correlated it with confidence observed in the data and761
assessed significance using permutation tests (one-sided). Again, this procedure was carried out on out-762

of-sample data so our results cannot be affected by overfitting.763

Scalp EEG data preprocessing (Experiment 4)764
All channels were high-pass filtered using a Hamming window with a cutoff frequency of 0.1 Hz. We765

defined an epoch as the 3 seconds of data centered around the event corresponding to the vibrotactile766

stimuli recorded using an auxiliary channel. EEG and EOG data were then lowpass filtered using a767

Hamming window with a cutoff frequency of 40 Hz and visually inspected to remove trials and channels768
containing artifacts. We computed the independent component analysis (ICA) (Makeig et al., 1996) on a769

copy of the EEG epochs that were highpass filtered at 1Hz. The number of independent components (ICs)770

computed corresponded to 99% of the variance, which resulted in 14.78 ± 1.27 ICs per subject. We used771

SASICA (Chaumon et al., 2015) with default parameters to automatically select ICs for rejection and772
visually inspected all components scheduled for rejection before actually rejecting them. IC weights kept773

were then back-projected to the original EEG epochs. Any channel rejected prior to the ICA was774

reinterpolated using spherical interpolation (N = 0.67 ± 0.23, max 3). Finally, we visually inspected all775

channels and rejected artifactual epochs. All pre-processing was done with the EEGLAB toolbox776
(Delorme & Makeig, 2004). The final dataset comprised 464.17 ± 13.73 epochs per subject.777

To assess which electrodes were detection- and/or confidence-selective, we used a linear mixed model to778
regress single-trial average EEG responses in the 0.5 to 1.5 time-window used for single-neuron analysis.779

For each electrode, we tried different random factors and kept the model with the lowest Bayesian780
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Information Criterion. P-values were Bonferroni corrected for multiple comparisons. To compute the781
electrophysiological correlate of evidence accumulation, we sought to find the best weighting of EEG782

electrodes in terms of discriminability between hits and misses. For this, we trained decoders of hits783

versus misses between -0.5 and 1.5 s from stimulus onset with 20 ms steps in a 10-fold cross-validation784
scheme. We repeated this procedure 10 times and searched for the time point with highest average785

discriminability. We then retrained one decoder using the EEG at this time point and used the weights of786

this decoder to construct one single value at every time point, representing a proxy to the amount of787

evidence for hits. We baselined this proxy signal using the 300 ms pre-stimulus.788

Ornstein-Uhlenbeck bounded accumulation model789

To test whether the observed electrophysiological correlate of conscious detection could index evidence790

accumulation, we used an Ornstein–Uhlenbeck process which consists of a drift diffusion model with a791
leakage parameter driving the accumulated evidence back to zero (Busemeyer & Townsend, 1993). The792

model consisted of an evidence accumulation process EA(t) integrating a time-varying drift rate d(t) with a793

leakage factor � plus additive white noise W(t) with a fixed standard deviation of �= 0.1 (Eq. 1). The794
evidence accumulation process EA(t) was bounded by zero to be more biologically plausible (since firing795

rates are positive).796

�‸(� + 1) = ���([1 − � ∗ ��] ∗ �‸(�) + �(�) + ��(�), 0)797
(1)798

To model temporal uncertainty, the accumulation process started at the beginning of the stimulus window799

(Devine et al., 2019) with a drift of zero and ended 3 s later, as in our experimental paradigm. On stimulus800

onset, and after a non-decision time (ndt), the drift rate d(t) rose to a level � for 100 ms (stimulus duration)801
and then decayed exponentially with a factor k (Eq. 2). We used the same distribution of stimulus onsets802

as in the data (from 0 to 2 s after the cue). To model variability in the drift rate for a detection task (Ratcliff803

& Van Dongen, 2011), � was sampled from a half-normal distribution with mean � _� and standard804

deviation �_� (i.e. absolute value of a normal distribution). This allowed us to have variability in the drift805

rate while keeping it positive.806

� � � � =
0 if � < � + ���

1 if � + ��� ≤ � ≤ � + ��� + 0.1
� � if � > (� + ��� + 0.1), � � = ��[�−�−���−0.1 �]2

(2)807

With s the onset of the stimulus. Stimuli were considered to be detected if the accumulated evidence808

reached a decision bound �.809
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Confidence c(t) was simulated as the accumulated evidence EA(t), scaled by a factor � and shifted by a810

factor �(confidence bias), inverted if the decision bound was not reached (invert(x) = 1 - x) before being811

saturated to the 0 - 1 interval by a sigmoidal function (Pereira et al., 2020) (Eq. 3). The time at which812

confidence c(t) was read-out corresponded to the maximum of EA(t) over the 3s stimulation time window.813

Of note, we expressed the confidence readout in percentage of the decision bound. This scaling did not814
affect simulated confidence but normalized the readout across participants and helped restrain the grid815

search for good initial parameters.816

�(�) = ��∗�‸(�)+� ��∗�‸(�)+�+1 (3)817

Model fitting818

We used a two-stage fitting procedure: We first fitted the parameters of the decisional process to819
detection responses and to the pEA described above and then fitted a second set of parameters to820

predict confidence ratings.821

In the first stage, we simulated (N=500) trials of EA(t) along with the corresponding detection responses.822
The objective function of the optimization procedure was based on the likelihood of the model with823

respect to the hit rate and false-alarm rate observed in the data and the shape of the average of pEA(t)824

for hits and misses. Since our model is agnostic to the scale of pEA(t) and EA(t), we scaled them both by825

their average over time and realizations (trials or simulations). The log-likelihood thus corresponded to the826
normal probability of observing such a hit-rate and false-alarm rate and the normal probability of827

observing such an electrophysiological response for hits and misses. We used a Nelder-Mead simplex828

optimization with 756 different initial parameters sampling a broad range of values for �_�, �_�, � and k.829

For each such iteration, we first did a grid search on ndt and � to find plausible starting values. We kept830

the parameters corresponding to the model with the best likelihood. To ensure a good fit, we did a final831
fitting with N=10’000 simulated trials.832

In the second stage, we also simulated (N=500) trials of EA(t) along with the corresponding detection833

responses and used these to simulate confidence ratings. We used a Kolmogorov-Smirnov test for the834

log-likelihood of confidence for hits, misses and correct rejections. We used a Nelder-Mead simplex835

optimization with 66 different initial parameters sampling a broad range of values for � and � . We kept836

the parameters corresponding to the model with the best likelihood. To ensure a good fit, we did a final837

fitting with N=10’000 simulated trials.838

Metacognitive sensitivity839

We evaluated metacognitive sensitivity or how well confidence predicted task performance (Fleming &840

Lau, 2014). For this, we assessed the relation between confidence ratings and detection accuracy using841
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the area under the curve, computed independently for “yes” responses (hits and false alarms) and “no”842
responses (correct rejections and misses) (Mazor et al., 2020; Meuwese et al., 2014)843

Alternative model844
We compared our maximal evidence model with an alternative model which assumed that confidence845

was readout at a fixed timing (t_RO) post-decision for perceived stimuli. For unperceived stimuli (i.e. with846

no decision), this alternative model assumed that participants reported random confidence estimates,847

based on Gaussian noise with mean Ω and unit standard deviation. As in the maximal evidence model,848
confidence corresponded to evidence scaled by a factor α and shifted by a factor β (confidence bias)849

before being saturated to the 0 - 1 interval by a sigmoidal function. The model thus comprised four850

parameters: α, β, t_RO and Ω which were fitted with the same procedure as for the maximal evidence851

model, except that the grid search for optimal initial parameters was extended to include two initial values852
for t_RO: 0.25 and 0.5 s. We used the Bayesian Information Criterion to compare the two models.853

DATA AND SOFTWARE AVAILABILITY854

Behavioral, electrocorticographic and electroencephalographic data with the corresponding analyses855
scripts will be made available upon publication. Single-neuron data are available upon request.856
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