

1 Human B cell clonal expansion and convergent antibody responses to SARS- 2 CoV-2

3 **Authors:** Sandra C. A. Nielsen^{1,12}, Fan Yang^{1,12}, Katherine J. L. Jackson^{2,12}, Ramona A. Hoh^{1,12},
4 Katharina Röltgen¹, Bryan Stevens¹, Ji-Yeun Lee¹, Arjun Rustagi³, Angela J. Rogers⁴, Abigail E.
5 Powell⁵, Javaria Najeeb⁶, Ana R. Otrelo-Cardoso⁶, Kathryn E. Yost⁷, Bence Daniel¹, Howard Y.
6 Chang^{7,8}, Ansuman T. Satpathy¹, Theodore S. Jardetzky^{6,9}, Peter S. Kim^{5,10}, Taia T. Wang^{3,10,11},
7 Benjamin A. Pinsky¹, Catherine A. Blish^{3,10*}, Scott D. Boyd^{1,9,13*}

8 **Affiliations:**

9 ¹Department of Pathology, Stanford University, Stanford, CA 94305, USA.

10 ²Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.

11 ³Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford
12 University, Stanford, CA 94305, USA.

13 ⁴Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford
14 University, Stanford, CA 94305, USA.

15 ⁵Stanford ChEM-H and Department of Biochemistry, Stanford University, Stanford, CA 94305,
16 USA.

17 ⁶Department of Structural Biology, Stanford University, Stanford, CA 94305, USA.

18 ⁷Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA.

19 ⁸Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.

20 ⁹Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA 94305, USA.

21 ¹⁰Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.

22 ¹¹Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305,
23 USA.

24 ¹²These authors contributed equally

25 ¹³Lead Contact

26 *Correspondence: cblish@stanford.edu (C.A.B.), sboyd1@stanford.edu (S.D.B.)

27

28 **SUMMARY**

29 During virus infection B cells are critical for the production of antibodies and protective
30 immunity. Here we show that the human B cell compartment in patients with diagnostically
31 confirmed SARS-CoV-2 and clinical COVID-19 is rapidly altered with the early recruitment of
32 B cells expressing a limited subset of IGHV genes, progressing to a highly polyclonal response
33 of B cells with broader IGHV gene usage and extensive class switching to IgG and IgA
34 subclasses with limited somatic hypermutation in the initial weeks of infection. We identify
35 extensive convergence of antibody sequences across SARS-CoV-2 patients, highlighting
36 stereotyped naïve responses to this virus. Notably, sequence-based detection in COVID-19
37 patients of convergent B cell clonotypes previously reported in SARS-CoV infection predicts the
38 presence of SARS-CoV/SARS-CoV-2 cross-reactive antibody titers specific for the receptor-
39 binding domain. These findings offer molecular insights into shared features of human B cell
40 responses to SARS-CoV-2 and other zoonotic spillover coronaviruses.

41

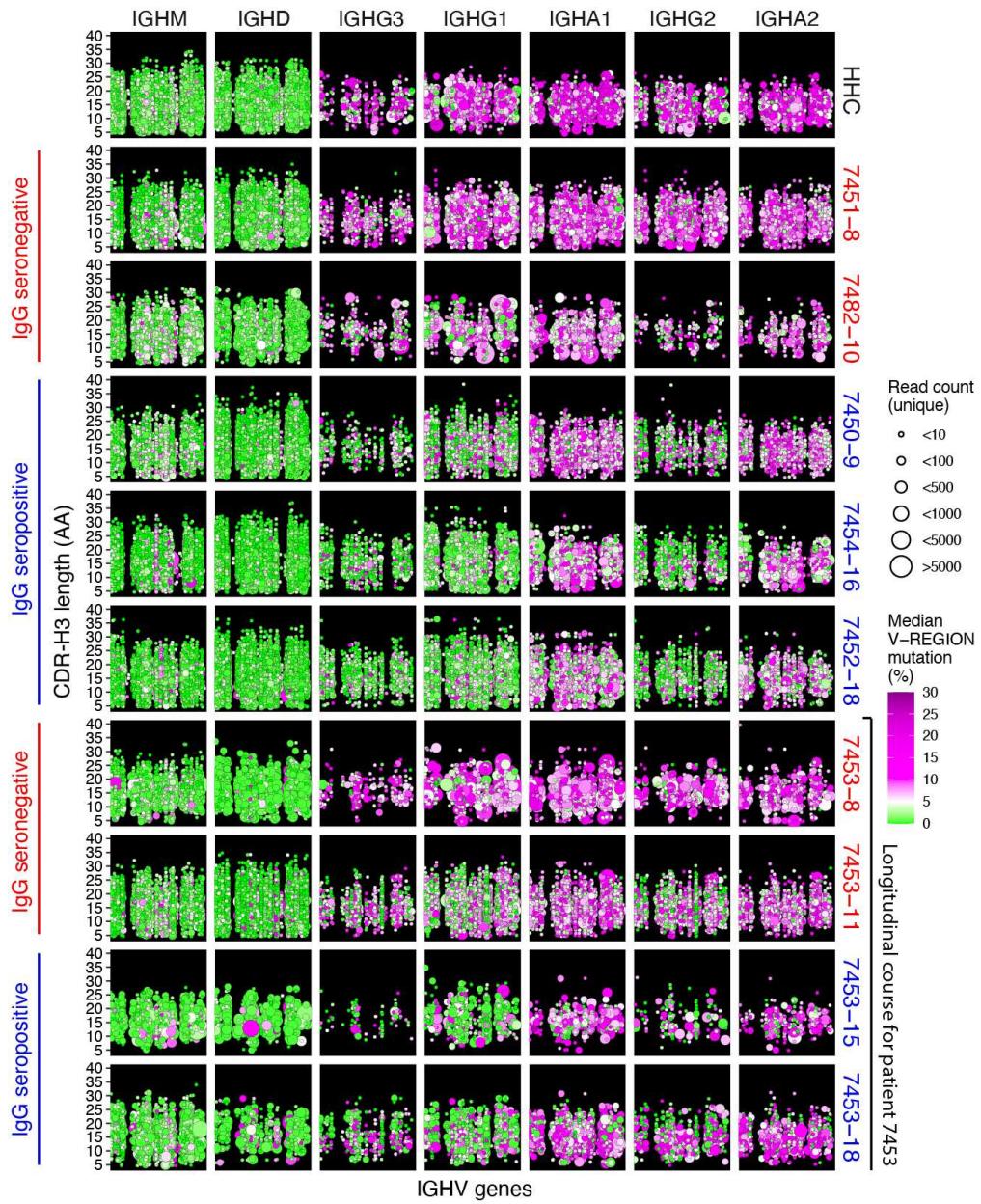
42 **KEYWORDS**

43 COVID-19, SARS-CoV-2, B cells, clonal expansion, antibodies, immunogenetics, convergent
44 antibody response, primary infection, immunology, antibody repertoire.

45

46 **INTRODUCTION**

47 The novel human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the
48 etiological agent of the coronavirus disease 2019 (COVID-19) (Huang et al., 2020; Zhu et al.,
49 2020) pandemic. Prior to the emergence of SARS-CoV-2, six human coronaviruses (hCoVs)
50 were known; four seasonal hCoVs (hCoV-229E, -NL63, -HKU1, and -OC43) (Su et al., 2016)
51 causing usually mild upper respiratory illness, and the two more recently discovered SARS-CoV
52 (Peiris et al., 2003) and MERS-CoV (Zaki et al., 2012) viruses that arose from spillover events of
53 virus from animals into humans. It is expected that humans are naïve to SARS-CoV-2 and will
54 display a primary immune response to infection. Humoral immune responses will likely be
55 critical for the development of protective immunity to SARS-CoV-2. Recently, many novel
56 SARS-CoV-2 neutralizing antibodies from convalescent COVID-19 patients have been reported
57 (Cao et al., 2020; Ju et al., 2020; Robbiani et al., 2020b; Wu et al., 2020b), which offer an
58 important resource to identify potential protective or therapeutic antibodies. However, a deeper
59 understanding of the B cell antigen receptors that are stimulated and specific to this acute
60 infection is needed to define the shared or distinct features of humoral responses elicited
61 compared to other viral infections, and to assess the extent to which responses to SARS-CoV-2
62 have breadth extending to other coronaviruses within the subgenus Sarbecovirus.

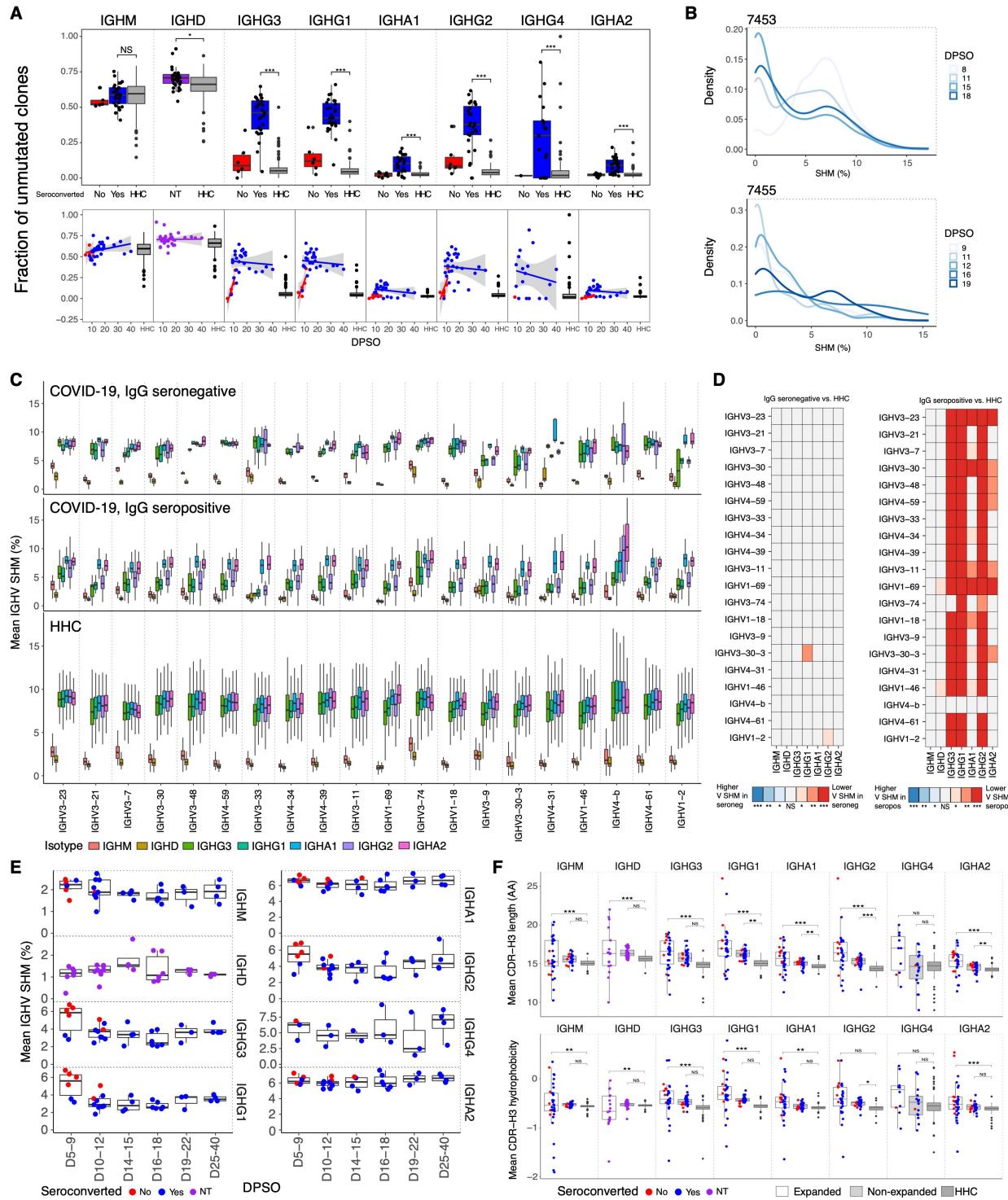

63

64 **RESULTS**

65 **SARS-CoV-2 infection causes global changes in the antibody repertoire**

66 High-throughput DNA sequencing of B cell receptor heavy chain genes defines clonal B cell
67 lineages based on their unique receptor sequences, and captures the hallmarks of clonal

68 evolution, such as somatic hypermutation (SHM) and class switch recombination during the
69 evolving humoral response (Zhou and Kleinstein, 2019). To study the development of SARS-
70 CoV-2-specific humoral responses, we collected a total of 38 longitudinal peripheral blood
71 specimens from 13 patients, sampled at a median of 3 time points (range 1-5) admitted to
72 Stanford Hospital with COVID-19 confirmed by quantitative reverse transcription PCR (RT-
73 qPCR) testing. The times of blood sampling were measured as days post symptom onset
74 (DPSO). All patients exhibited SARS-CoV-2 receptor-binding domain (RBD)-specific IgA, IgG,
75 and IgM antibodies (Table 1). Immunoglobulin heavy chain (IGH) repertoires were sequenced
76 and compared to a healthy human control (HHC) data set from 114 individuals (Nielsen et al.,
77 2019). An example of data from a HHC individual matched by mean sequencing depth of reads
78 and B cell clones across the COVID-19 cohort is shown in Figure 1 (top panel). In healthy
79 subjects at baseline, IgM and IgD sequences are primarily derived from naïve B cells with
80 unmutated IGHV genes, whereas class switched cells expressing IgA or IgG subtypes have
81 elevated SHM. In contrast, SARS-CoV-2 seroconverted patients (blue labels in Figure 1), show a
82 highly polyclonal burst of B cell clones expressing IgG, and to a lesser extent IgA, with little to
83 no SHM. Longitudinal data from a patient prior to and after seroconversion shows an increase in
84 the proportion of class switched low SHM clones (bottom panels in Figure 1). Seronegative
85 samples (red labels in Figure 1) show IGH repertoires similar to uninfected HHC, suggesting an
86 earlier stage in the infection for these particular patients at these time points.


87 **Figure 1. COVID-19 patient IGH repertoires show early and extensive class-switching to**
88 **IgG and IgA subclasses without significant somatic mutation.** Points indicate B cell clonal
89 lineages, with the position denoting the clone's isotype (panel column), human healthy control
90 (HHC) or patient ID (panel row), IGHV gene (x-axis, with IGHV gene in the same order and
91 position in panels, but not listed by name due to space constraints), and CDR-H3 length in amino
92 acids (AA) (y-axis within each panel). The point color indicates the median IGHV SHM
93 frequency for each clone and the size indicates the number of unique reads grouped into the
94 clone. Points are jittered to decrease over-plotting of clones with same IGHV gene and CDR-H3
95 length. Patient label colors indicate sample IgG seroconversion (blue) or seronegative (red) for
96 the displayed sample with the number following the patient ID corresponding to days post
97 symptom onset. The final four rows of panels show the IGH repertoire changes within a single
98 participant (7453) prior to and after seroconversion.

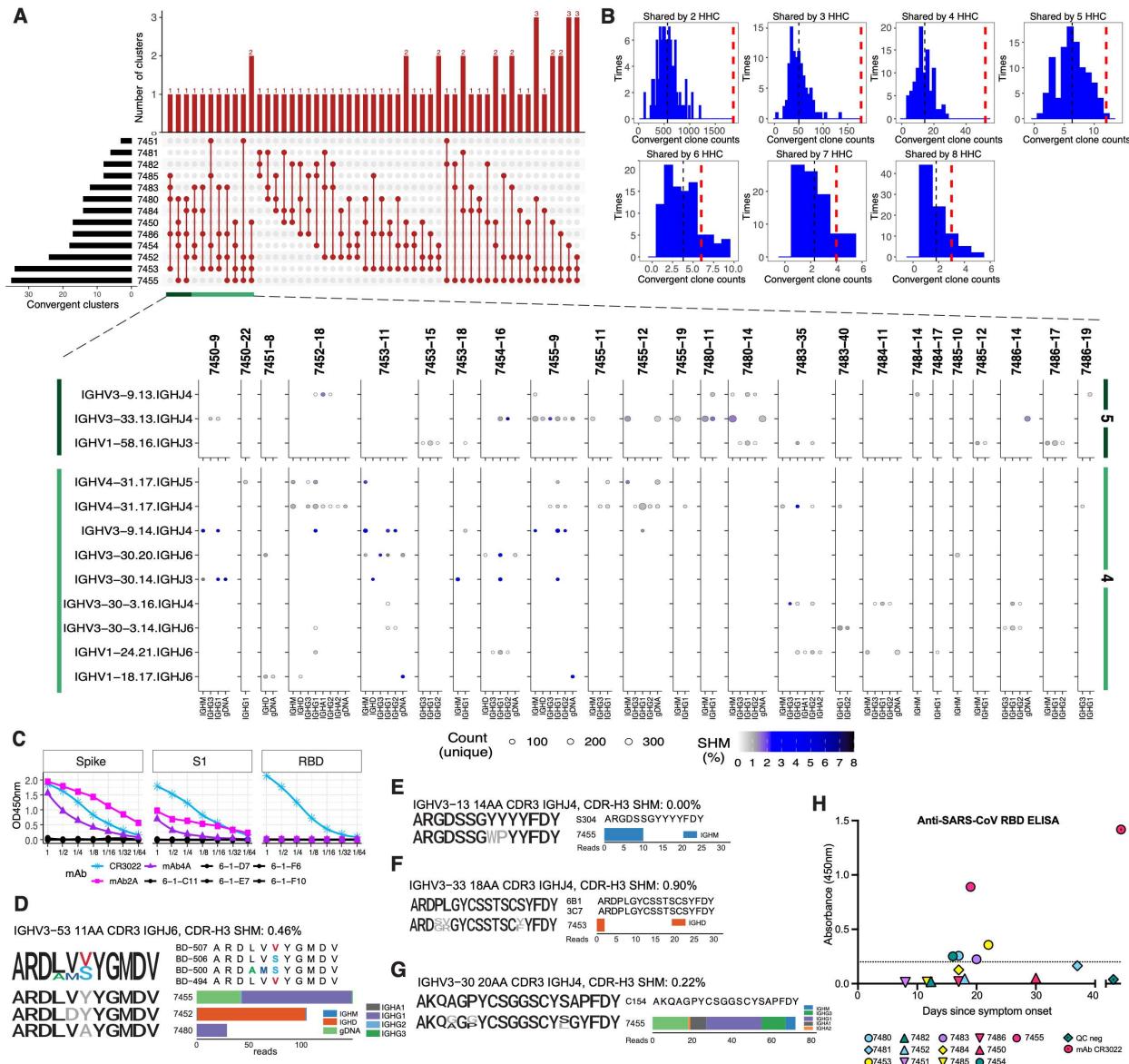
99 The increased fraction of unmutated and low mutation (<1% SHM in IGHV gene) clones among
100 the class switched IgG subclasses in seroconverted COVID-19 patients compared to HHC was
101 statistically significant (IgG1: p-value = 1.884e-08; IgG2: 1.554e-08; IgG3: 3.754e-08; IgG4:
102 0.00044) (Figures 2A and 2B). The detailed SHM frequencies and fractions of unmutated clones
103 of each sample are shown in Figure S1. While most B cells in COVID-19 patients prior to
104 seroconversion showed IgG SHM frequencies comparable to HHC, there is a rapid increase in
105 the proportion of IgG-expressing (IgG+) B cells with low SHM during the DPSO (Figure 2A,
106 lower panels). Notably, prior to seroconversion, B cells expressing a few IGHV genes,
107 particularly IGHV3-30-3 and IGHV1-2, showed earlier changes than the rest of the repertoire,
108 with increased IgG class switched low-SHM clones (Figures 2C and 2D). IGHV3-9 showed a
109 similar trend but was not significant (Figures 2C and 2D).

110 We previously observed a similar influx of low mutation clones into the IgG compartment in
111 acute Ebola virus (EBOV) infection (Davis et al., 2019), but in EBOV acute viral infection there
112 was a prolonged delay (lasting months) in accumulation of SHM in those clones. In contrast,
113 examination of clones detected at two or more time points show that after the initial appearance
114 of low-SHM clones, the COVID-19 patients show increases in the proportion of IgG+ B cells
115 with intermediate SHM frequencies (2-5%) within the first three weeks post-onset of symptoms
116 in the patients for whom the longest time courses were observed (patients 7453 and 7455, Figure
117 2B). Similarly, examination of the total clones within each isotype shows the appearance of low-
118 SHM clones post-seroconversion within the first two weeks post-onset of symptoms, and
119 subsequent increases in SHM over the following two weeks (Figure 2E). In further contrast to
120 EBOV, COVID-19 primary infection stimulated polyclonal B cell responses with both IgG and,
121 in some patients, IgA subclasses, rather than IgG alone (Figure 1). Overall, among IgG+ B cells

122 in COVID-19 patients, the proportion of IgG1+ cells was increased, with decreases in IgG2 and
123 IgG3, and median usage of IgG1 was 1.7-fold greater than that seen in HHC B cells (Table S1).
124 Comparison of the IGHV genes used by COVID-19 and HHC individuals (Figure S2) revealed
125 skewing of the responding IGH repertoires away from frequently utilized IGHV genes in HHC,
126 such as IGHV3-7, IGHV3-23, and IGHV5-51, and enrichment of IGHV1-24, IGHV3-9, IGHV3-
127 13, and IGHV3-20 in IgG+ B cells. The preferential selection of B cells using particular IGHV
128 genes has been observed in other antiviral responses, such as the preference for IGHV1-69 in
129 response to some influenza virus antigens (Avnir et al., 2016). Highly utilized IGHV genes in
130 IgG-seroconverted COVID-19 patients display low median SHM in IgG1-switched B cells
131 (range 2.4-7.5%), compared to higher median IgA1 SHM (range 5.8-9.5%) (Figure 2C).
132 In the SARS-CoV-2 stimulated B cell proliferations, high-frequency expanded clones detected in
133 two or more replicate IGH sequence libraries generated from separate aliquots of template
134 showed increased proportions of low-SHM members (Figures S3A and S3B, IgG1: p-value =
135 0.005, IgG2: 0.014, IgG3: 0.036). Expanded clones also had longer and more hydrophobic IGH
136 complementarity-determining region-3 (CDR-H3) sequences in the class switched isotypes
137 compared to HHC (Figure 2F), highlighting IGHV features selected in B cells responding to
138 SARS-CoV-2 infection and consistent with a rapid proliferation of cells recently differentiated
139 from naïve B cells (Grimsholm et al., 2020). CDR-H3 charge and aromaticity showed modest
140 differences in COVID-19 patients compared to HHC, including more negative charge in non-
141 expanded clones (Figure S3C). Notably, the relative IGHV gene usage frequencies in expanded
142 clones compared to non-expanded clones of COVID-19 patients showed a different pattern than
143 overall IGHV gene usage, with IGHV1-24, IGHV3-13, and IGHV3-20 frequencies that were
144 increased in the total repertoire but used less often in expanded clones, suggesting that the B

145 cells expressing these IGHV genes are highly polyclonal with small clone sizes. Eleven IGHV
146 genes were significantly enriched in expanded clones versus non-expanded clones (Figure S3D)
147 suggesting preferential recruitment of B cells and viral epitope binding by IGH using these
148 germline IGHV segments.

150 **Figure 2. IGH repertoire signatures of SARS-CoV-2 infection.** (A) Fraction of unmutated
151 (<1% SHM) B cell lineages for each isotype subclass grouped by seroconversion status (top
152 panel) or plotted by days post symptom onset (DPSO, bottom panel). Colors indicate patient
153 sample serology: not tested (NT, purple), seronegative (red), and seropositive (blue) and are
154 plotted specific to the isotype tested. Points are shown for all COVID-19 samples, whereas only


155 outliers are displayed for the 114 healthy human controls (HHCs). Differences between the
156 seropositive group and HHC was tested using two-sided Wilcoxon–Mann-Whitney (for patients
157 with more than one sample, the mean value of these was used). (B) Distribution of clone
158 percentage SHM plotted as kernel density for clones detected at multiple time points from
159 patients 7453 and 7455. Lines are colored by DPSO. (C) Mean IGHV SHM percent for each
160 isotype subclass observed for the IgG seronegative patient samples (top), IgG seropositive
161 samples (middle) or HHCs (bottom). IGHV order is based on the 20 most common IGHV genes
162 in IgM in the patients and isotypes are plotted by their chromosomal ordering. The plot axes
163 were chosen to show the box-whiskers on a readable scale; rare outlier points with extreme
164 values are not shown but were included in all analyses. (D) Heatmap of patient IGHV gene SHM
165 for seroconverted and non-seroconverted samples compared to HHC using paired Wilcoxon tests
166 with Bonferroni correction for multiple hypothesis testing. The color scale encodes the
167 significance level and whether the SHM was higher (blues) or lower (reds) in COVID-19 relative
168 to HHC. (E) Longitudinal SHM for each isotype subclass for COVID-19 patients are plotted
169 binned by DPSO. Points are colored for each sample's seroconversion status and boxplots
170 summarize median and interquartile ranges. (F) Mean CDR-H3 length (top panel) and mean
171 CDR-H3 hydrophobicity (bottom panel), COVID-19 patient samples grouped by expanded
172 clones (white) or non-expanded clones (light grey), and total clones from HHC (dark grey).
173 Differences between the expanded/non-expanded groups and HHC were tested using one-way
174 ANOVA with Tukey's HSD test. (A), (D), and (F) ***p-value < 0.001; **p-value < 0.01; *p-
175 value ≤ 0.05; NS: p-value > 0.05.
176

177 **Convergent antibody rearrangements are elicited in COVID-19 patients**

178 Despite the diversity of antigen-driven antibody responses, we and others have previously
179 identified patterns of highly similar, “convergent” antibodies shared by different individuals in
180 response to pathogens such as EBOV (Davis et al., 2019) or Dengue virus (Parameswaran et al.,
181 2013). Such convergent antibodies make up a small proportion of the total virus-specific B cell
182 response in each individual (Davis et al., 2019). To identify putative SARS-CoV-2-specific
183 antibody signatures, we analyzed clones with shared IGHV,IGHJ, and CDR-H3 region length,
184 and clustered the CDR-H3 sequences at 85% amino acid identity using CD-HIT (Fu et al., 2012),
185 to find clusters spanning two or more COVID-19 patients and absent from the 114 HHC
186 individuals. 1,236 convergent clusters met these criteria and showed SHM frequencies averaging
187 1.7% (range 0.5% to 5.5%). An average of 196 convergent clusters were found per patient,
188 ranging from 69 clusters in patient 7485 to 477 clusters in patient 7455. 1,171 clusters were

189 shared pairwise between two patients, 53 clusters spanned three patients, nine clusters spanned
190 four patients, and three clusters spanned five patients (Figure 3A). To assess the significance of
191 these shared convergent clones in COVID-19 patients, we undertook an analysis of 13 randomly
192 selected HHCs with the same parameters and 100 permutations. The number of convergent
193 clones shared by COVID-19 patients greatly exceeded the mean convergent clone counts from
194 the HHC subsampling (Figure 3B), consistent with antigen-driven shared selection of the
195 convergent clones identified in COVID-19 patients. To directly test the antigen specificity of
196 these convergent clones, we expressed human IgG1 monoclonal antibodies (mAbs 2A and 4A,
197 Table S2) belonging to two COVID-19 convergent antibody groups identified in two patients
198 from whom paired immunoglobulin heavy and light chain sequences were obtained from single
199 B cells using the 10x Genomics platform. mAb2A had a single nonsynonymous mutation in the
200 CDR-H2 of IGHV3-30-3 and mAb4A was fully germline and used IGHV3-15. In ELISA testing,
201 both mAbs bound the SARS-CoV-2 spike protein and spike S1 domain, but not the RBD (Figure
202 3C), establishing their antigen specificity. We further validated the robustness of detection of
203 convergent clonotypes in the COVID-19 patients, and the wide distribution of these antibody
204 types in different individuals, by identifying ten SARS-CoV-2 spike RBD-specific sequence
205 clusters shared with independent external COVID-19 patient data sets (Cao et al., 2020; Noy-
206 Porat et al., 2020; Shi et al., 2020). Nine of the thirteen COVID-19 patients (69%) in our study
207 (7450, 7452, 7454, 7455, 7480, 7483, 7484, 7485, and 7486) showed these RBD-specific
208 clonotypes, highlighting the high frequency of these shared antibodies (Figure 3D and Figure
209 S4). Notably, RBD-specific antibodies are primary candidates for virus neutralizing, potentially
210 protective antibodies in recovered patients (Ju et al., 2020; Robbiani et al., 2020a).

211 We hypothesized that in addition to sharing common RBD-binding antibody types, some
212 COVID-19 patients might also demonstrate breadth in their antibody responses and recognize
213 antigens from the distinct but related sarbecovirus, SARS-CoV that was responsible for SARS.
214 Comparison of COVID-19 patient IGH sequences to published SARS patient IGH data revealed
215 convergent SARS-CoV RBD-specific antibodies in two COVID-19 patients, 7453 and 7455
216 (Coughlin et al., 2007; Pinto et al., 2020; Robbiani et al., 2020a) (Figures 3E-3G). None of these
217 SARS-CoV-specific convergent IGH sequences were detected in the 114 HHC. To evaluate
218 whether such *in silico* IGH sequence comparisons could predict the serological responses of
219 patients, we tested the plasma samples from our 13 COVID-19 patients in ELISA assays with
220 SARS-CoV RBD antigen and detected cross-reactivity in five of the 13 patients (Figure 3H).
221 Strikingly, the two patients with the highest ELISA OD₄₅₀ values were those who had
222 demonstrated convergent IGH sequences specific for SARS-CoV RBD. The three additional
223 COVID-19 patients who were seropositive for SARS-CoV RBD antibodies had convergent IGH
224 sequences to SARS-CoV-2 in their repertoires, suggesting that the presence of these convergent
225 antibodies could be a marker of more extensive or broadly-reactive humoral immune responses
226 in patients.

227

228 **Figure 3. Convergent IGH sequences between COVID-19 patients and to reported antigen-**
 229 **specific IGH correlate with SARS-CoV/SARS-CoV-2 plasma cross-reactivity.** (A) The

230 distribution of convergent clusters among patient samples (top panel). The sample distribution is
 231 indicated by the lines and dots with the number of clusters sharing that sample distribution
 232 indicated by the vertical histogram bars. The total number of convergent clusters identified in
 233 each sample is indicated in the histogram to the left of the plot. (bottom panel) Lineages
 234 belonging to convergent clusters (y-axis) shared across four or five patients (columns, four-
 235 patient clusters are highlighted in light green, five-patient clusters in dark green) are plotted by
 236 the expressed isotype (x-axis). Fill color indicates the average SHM and point size shows the
 237 number of unique reads. (B) Distribution of the number of convergent clones identified in two to
 238 eight HHC subjects, determined using 100 permutations. The histogram shows the distribution of
 239 convergent clones shared by a given number of HHC samples each time. The black dashed line
 240 is the mean value, and the wide red dashed line is the number of convergent clones shared among

241 the same number of COVID-19 participants. (C) ELISA assay results for human IgG1 mAb
242 binding to SARS-CoV-2 spike ectodomain protein, spike S1 domain, or RBD. Negative control
243 mAbs 6-1-C11,D7,E7,F6, and F10 are overplotted in black. The SARS-CoV-2 RBD-binding
244 mAb CR3022 (ter Meulen et al., 2006; Tian et al., 2020) was used as positive control. Starting
245 concentration for mAbs was 100 ug/mL save for CR3022, which started at 0.506 ug/mL. (D-G)
246 Sequence logos of CDR-H3 AA residues from anti-SARS-CoV-2 (D, see also Figure S4) anti-
247 SARS-CoV/CoV-2 cross-neutralizing (E) or anti-SARS-CoV (F-G) convergent IGHs. For each
248 set of convergent IGH the sequence logo and alignment for the reported antigen-specific CDR-
249 H3 is shown at the top, sequence logos for clones from each patient are aligned below (colored
250 black where they match a conserved residue in the reported CDR-H3, colored for non-conserved
251 as depicted in the alignment, or gray if no match). To the side the read count per patient that
252 contributed to the sequence logo, by isotype, is graphed. The SHM frequency for the dominant
253 isotype is shown after the convergent IGH label. (H) Anti-SARS-CoV IgG ELISA detection in
254 plasma samples from COVID-19 patients. Plasma samples were analyzed for the presence of
255 anti-SARS-CoV spike RBD-binding IgG antibodies in the latest sample timepoint available for
256 each patient. A SARS-CoV-2 pre-pandemic sample pool from healthy blood donors was used as
257 a negative quality control (QC) as well as a positive control for SARS-CoV RBD (mAb
258 CR3022) (ter Meulen et al., 2006). The dotted line denotes the cut-off value for seroconversion.
259 Assays were performed in duplicate and mean OD values are shown.
260

261 DISCUSSION

262 In these initial months of the COVID-19 pandemic, understanding human antibody responses to
263 SARS-CoV-2 has become a global priority. Our results provide several key findings that may
264 lend some support for vaccine strategies currently under development and suggest that
265 individuals convalescent from SARS-CoV-2 infection may be, at least for some time, protected
266 against reinfection by commonly-elicited RBD-specific antibodies. The IGH repertoires of
267 patients with diagnostically confirmed SARS-CoV-2 reveal robust polyclonal responses with
268 early class switching to IgG, and to a lesser extent, IgA isotypes, and evidence of accumulating
269 SHM in responding clones within the first month after onset of symptoms, rather than the
270 delayed SHM seen in Ebola patients (Davis et al., 2019). We note that the current COVID-19
271 study and prior analysis of EBOV infection are among very few published studies of human IGH
272 repertoire longitudinal responses to primary infections; examples from acute infection with
273 Dengue virus (Appanna et al., 2016; Godoy-Lozano et al., 2016) or H5N6 avian influenza virus

274 (Peng et al., 2019), have either had few patients with true primary infection, or did not analyze
275 SHM development in responding B cells.

276

277 Nine of thirteen COVID-19 patients (69%) demonstrated convergent antibodies specific for the
278 viral RBD, a major target for potentially neutralizing antibodies. SARS-CoV-2 neutralizing
279 serum antibodies are reported to be present in 67-90% of patients post-infection, depending on
280 the severity of disease, neutralization assay and threshold for positive results (Robbiani et al.,
281 2020b; Suthar et al., 2020; Wu et al., 2020a). It seems reasonable to predict that vaccines based
282 on spike or RBD antigens will also stimulate B cells expressing these common antibody types in
283 a significant fraction of the human population. The response to SARS-CoV-2 infection in a
284 subset of patients also contained B cell clones expressing convergent IGH to previously
285 described SARS-CoV RBD antibodies; strikingly, the patients with these SARS-CoV-2/SARS-
286 CoV clonotypes also had the highest SARS-CoV RBD binding serum antibody IgG levels. This
287 association suggests that it may become possible to predict the fine specificity of human
288 serological responses from IGH sequence data, as the number of documented antigen-specific
289 clonotypes in public databases increases. This example also highlights the possibility that
290 common modes of human antibody response may enable some breadth of protection or humoral
291 memory against other sarbecoviruses in the future. Longitudinal tracking of IGH repertoires in
292 larger patient cohorts, further investigation into the binding properties, functional activity and
293 serum antibody levels produced by convergent responding clones in patients, and assessment of
294 clinical outcomes under conditions of exposure to infection will be important next steps toward
295 determining the immunological correlates of protection against SARS-CoV-2 infection.

296

297 **ACKNOWLEDGMENTS**

298 We thank the patients, Hannah K. Frank for initial advice on sequence alignments, Shilpa A. Joshi for editing the paper, Jonasel Roque, Philip Grant, Aruna Subramanian for assistance with 299 recruiting and consenting subjects, Aaron J. Wilk, Nancy Q. Zhao, Giovanny J. Martinez-Colon, 300 Julia L. McKechnie, Geoffrey Ivison, Thanmayi Ranganath, Rosemary Vergara, and Laura J. 301 Simpson for processing of samples. **Funding:** This work was supported by NIH/NIAID 302 T32AI007502-23 (A.R.); NIH/NHLBI K23HL125663 (A.J.R.); NIH/NHGRI RM1-HG007735 303 (H.Y.C.); NIH/NCI K08CA230188 (A.T.S.); Burroughs Wellcome Fund Career Award for 304 Medical Scientists (A.T.S.); Cancer Research Institute Technology Impact Award (A.T.S.); 305 NIH/NIDA DP1DA04608902 (C.A.B.); Burroughs Wellcome Fund Investigators in the 306 Pathogenesis of Infectious Diseases #1016687 (C.A.B.); the Searle Scholars Program (T.T.W.); 307 NIH/NIAID U19AI111825 (T.T.W.); NIH/NIAID R01AI139119 (T.T.W.); NIH/NIAID 308 R01AI127877 (S.D.B.); NIH/NIAID R01AI130398 (S.D.B.), an endowment to S.D.B. from the 309 Crown Family Foundation and a gift from an anonymous donor. H.Y.C. is an Investigator of the 310 Howard Hughes Medical Institute. C.A.B. is the Tashia and John Morgridge Faculty Scholar in 311 Pediatric Translational Medicine from the Stanford Maternal Child Health Research Institute. 312

313

314 **AUTHOR CONTRIBUTIONS**

315 C.A.B. and S.D.B. conceived the project. A.R., A.J.R. recruited, enrolled, and consented patients 316 and contributed to clinical sampling and processing. S.C.A.N., R.A.H., K.R., B.S., J-Y.L., 317 A.E.P., J.N., A.R.O-C., K.E.Y., B.D. and B.A.P. performed the experiments. H.Y.C., A.T.S., 318 T.S.J., P.S.K. and T.T.W. contributed to serological or 10x assays, and analysis. S.C.A.N., F.Y.,

319 R.A.H., K.J.L.J., K.R., and B.A.P. contributed to data analysis. S.C.A.N., F.Y., R.A.H., K.J.L.J.,

320 K.R., C.A.B., and S.D.B. wrote the manuscript. All authors edited the manuscript.

321

322 **DECLARATION OF INTERESTS**

323 A.T.S. is a scientific founder of Immunai and receives research funding from Arsenal

324 Biosciences not related to this study. The remaining authors declare that they have no competing

325 interests.

326

327

328 **Table 1. Individual COVID-19 patient sample information in days post symptom onset**
329 **(DPSO).** Seroconversion was determined by ELISA to the SARS-CoV-2 RBD antigen (STAR
330 METHODS).

Patient ID	DPSO	IgA seroconversion	IgG seroconversion	IgM seroconversion	gDNA library	cDNA library
7450	9	Yes	Yes	Yes	Yes	Yes
7450	22	Yes	Yes	Yes	Yes	Yes
7450	25	Yes	Yes	Yes	Yes	No
7450	27	Yes	Yes	Yes	Yes	Yes
7451	8	No	No	No	Yes	Yes
7452	18	Yes	Yes	Yes	Yes	Yes
7453	8	No	No	No	Yes	Yes
7453	11	No	No	No	Yes	Yes
7453	15	Yes	Yes	Yes	Yes	Yes
7453	18	Yes	Yes	Yes	Yes	Yes
7453	20	Yes	Yes	Yes	Yes	No
7454	16	Yes	Yes	Yes	Yes	Yes
7455	9	Yes	Yes	Yes	Yes	Yes
7455	11	Yes	Yes	Yes	Yes	Yes
7455	12	Yes	Yes	Yes	Yes	Yes
7455	16	Yes	Yes	Yes	Yes	Yes
7455	19	Yes	Yes	Yes	Yes	Yes
7480	11	Yes	Yes	Yes	Yes	Yes
7480	14	Yes	Yes	Yes	Yes	Yes
7480	17	Yes	Yes	Yes	Yes	No
7481	32	Yes	Yes	Yes	Yes	Yes
7481	35	Yes	Yes	Yes	Yes	No
7481	37	Yes	Yes	Yes	Yes	No
7482	5	No	No	No	Yes	Yes
7482	8	No	No	No	Yes	Yes
7482	10	No	No	Yes	Yes	Yes
7482	12	No	Yes	Yes	Yes	Yes
7483	35	Yes	Yes	Yes	Yes	Yes
7483	40	Yes	Yes	Yes	Yes	Yes
7484	11	Yes	Yes	Yes	Yes	Yes
7484	14	Yes	Yes	Yes	Yes	Yes
7484	17	Yes	Yes	Yes	Yes	Yes
7485	8	No	Yes	Yes	No	No
7485	10	Yes	Yes	Yes	Yes	Yes
7485	12	Yes	Yes	Yes	Yes	Yes
7486	14	No	Yes	Yes	Yes	Yes
7486	17	Yes	Yes	Yes	Yes	Yes
7486	19	Yes	Yes	Yes	Yes	Yes

331

332 **CONTACT FOR REAGENT AND RESOURCE SHARING**

333 Further information and requests for resources and reagents should be directed to the Lead

334 Contact, Scott D. Boyd (sboyd1@stanford.edu).

335

336 **DATA AND SOFTWARE AVAILABILITY**

337 All data is available in the main text or the extended materials. The IGH repertoire data for this

338 study have been deposited to SRA with accession number PRJNA628125.

339

340 **EXPERIMENTAL MODELS AND SUBJECT DETAILS**

341 Patients admitted to Stanford Hospital with signs and symptoms of COVID-19 and confirmed

342 SARS-CoV-2 infection by RT-qPCR of nasopharyngeal swabs were recruited. Venipuncture

343 blood samples were collected in K₂EDTA- or sodium heparin-coated vacutainers for peripheral

344 blood mononuclear cell (PBMC) isolation or serology on plasma, respectively. Recruitment of

345 COVID-19 patients, documentation of informed consent, collections of blood samples, and

346 experimental measurements were carried out with Institutional Review Board approval (IRB-

347 55689). The data set containing healthy adult control immunoglobulin receptor repertoires has

348 been described previously (Nielsen et al., 2019). In summary, healthy adults with no signs or

349 symptoms of acute illness or disease were recruited as volunteer blood donors at the Stanford

350 Blood Center. Pathogen diagnostics were performed for CMV, HIV, HCV, HBV, West Nile

351 virus, HTLV, TPPA (Syphilis), and *T. cruzi*. Volunteer age range was 17-87 with median and
352 mean of 52 and 49, respectively.

353

354 **METHOD DETAILS**

355 **Molecular and serological testing on COVID-19 patient samples**

356 SARS-CoV-2 infection in patients was confirmed by reverse-transcription polymerase chain
357 reaction testing of nasopharyngeal swab specimens, using the protocols described in (Corman et
358 al., 2020; Hogan et al., 2020). An enzyme-linked immunosorbent assay (ELISA) based on a
359 protocol described in (Stadlbauer et al., 2020) was performed to detect anti-SARS-CoV and anti-
360 SARS-CoV-2 spike RBD antibodies in plasma samples from COVID-19 patients. Briefly, 96-well
361 high binding plates (Thermo Fisher) were coated with either SARS-CoV or SARS-CoV-2 spike
362 RBD protein (0.1 µg per well) overnight at 4°C. After blocking plates with 3% non-fat milk in
363 PBS containing 0.1% Tween 20, plasma samples were incubated at a dilution of 1:100 and bound
364 antibodies were detected with goat anti-human IgM/HRP (Sigma: cat. A6907, 1:6'000 dilution),
365 goat anti-human IgG/HRP (Thermo Fisher: cat. 62-8420, 1:6'000 dilution), or rabbit anti-human
366 IgA/HRP (Dako: cat. P0216, 1:5'000 dilution). Assays were developed by addition of 3,3',5,5'-
367 Tetramethylbenzidine (TMB) substrate solution. After stopping the reaction with 0.16 M sulfuric
368 acid, the optical density (OD) at 450 nanometers was read using an EMax Plus microplate reader
369 (Molecular Devices). The cut-off value for seroconversion was calculated as $OD_{450} = 0.2$ for the
370 anti-SARS-CoV IgG assay and as $OD_{450} = 0.3$ for anti-SARS-CoV-2 IgM, IgG, and IgA assays
371 after analyzing SARS-CoV-2 pre-pandemic negative control samples from healthy blood donors.

372

373 **HTS of immunoglobulin heavy chain (IGH) libraries prepared from genomic DNA and**
374 **cDNA**

375 The AllPrep DNA/RNA kit (Qiagen) was used to extract genomic DNA (gDNA) and total RNA
376 from PBMCs. For each blood sample, six independent gDNA library PCRs were set up using
377 100 ng template/library (25ng/library for 7453-D0). Multiplexed primers to IGHJ and the FR1 or
378 FR2 framework regions (3 FR1 and 3 FR2 libraries), per the BIOMED-2 design were used (van
379 Dongen et al., 2003) with additional sequence representing the first part of the Illumina linkers.
380 In addition, for each sample, total RNA was reverse-transcribed to cDNA using Superscript III
381 RT (Invitrogen) with random hexamer primers (Promega). Total RNA yield varied between
382 patients and between 6 ng-100 ng was used for each of the isotype PCRs using IGHV FR1
383 primers based on the BIOMED-2 design (van Dongen et al., 2003) and isotype specific primers
384 located in the first exon of the constant region for each isotype category (IgM, IgD, IgE, IgA,
385 IgG). Primers contain additional sequence representing the first part of the Illumina linkers. The
386 different isotypes were amplified in separate reaction tubes. Eight-nucleotide barcode sequences
387 were included in the primers to indicate sample (isotype and gDNA libraries) and replicate
388 identity (gDNA libraries). Four randomized bases were included upstream of the barcodes on the
389 IGHJ primer (gDNA libraries) and constant region primer (isotype libraries) for Illumina
390 clustering. PCR was carried out with AmpliTaq Gold (Applied Biosystems) following the
391 manufacturer's instructions, and used a program of: 95°C 7 min; 35 cycles of 94°C 30 sec, 58°C
392 45 sec, 72°C 60 sec; and final extension at 72°C for 10 min. A second round of PCR using
393 Qiagen's Multiplex PCR Kit was performed to complete the Illumina sequencing adapters at the

394 5' and 3' ends of amplicons; cycling conditions were: 95°C 15 min; 12 cycles of 95°C 30 sec,
395 60°C 45 sec, 72°C 60 sec; and final extension at 72°C for 10 min. Products were subsequently
396 pooled, gel purified (Qiagen), and quantified with the Qubit fluorometer (Invitrogen). Samples
397 were sequenced on the Illumina MiSeq (PE300) using 600 cycle kits.

398

399 **Sequence quality assessment, filtering, and analysis**

400 Paired-end reads were merged using FLASH (Magoc and Salzberg, 2011), demultiplexed (100%
401 barcode match), and primer trimmed. The V, D, and J gene segments and V-D (N1), and D-J
402 (N2) junctions were identified using the IgBLAST alignment program (Ye et al., 2013). Quality
403 filtering of sequences included keeping only productive reads with a CDR-H3 region, and
404 minimum V-gene alignment score of 200. Sample cDNA or gDNA libraries with poor read
405 coverage were excluded from further analysis (Table 1). For cDNA-templated IGH reads,
406 isotypes and subclasses were called by exact matching to the constant region gene sequence
407 upstream from the primer. Clonal identities within each subject were inferred using single-
408 linkage clustering and the following definition: same IGHV andIGHJ usage (disregarding allele
409 call), equal CDR-H3 length, and minimum 90% CDR-H3 nucleotide identity. A total of
410 1,259,882 clones (per sample, mean number of clones: 33,154; median number of clones:
411 18,503) were identified. A total of 24,888,790 IGH sequences amplified from cDNA were
412 analyzed for the COVID-19 subjects (mean: 754,205 per sample; median: 650,812) and
413 68,831,446 sequences from healthy adult controls (mean: 603,785 per individual; median:
414 637,269). Each COVID-19 patient had on average 372,304 in-frame gDNA sequences and each
415 adult control had an average of 8,402 in-frame gDNA sequences.

416

417 For each clone, the median somatic mutation frequency of reads was calculated. Mean mutation
418 frequencies for all clonal lineages from a sample for each isotype were calculated from the
419 median mutation frequency within each clone, and so represent the mean of the median values.
420 Clones with <1% mutation were defined as unmutated and clones with $\geq 1\%$ were defined as
421 being mutated. Subclass fractions were determined for each subject by dividing the number of
422 clones for a given subclass by the total number of clones for that isotype category. Expanded
423 clones within each sample were defined as clones that were present in two or more of the gDNA
424 replicate libraries. Clonal expansion in the isotype data was inferred from the gDNA data.
425 Analyses were conducted in R (Team, 2017) using base packages for statistical analysis and the
426 ggplot2 package for graphics (Wickham, 2016).

427
428 To determine convergent rearranged IGH among patients with SARS-CoV-2 infection, we
429 clustered heavy-chain sequences annotated with the same IGHV and IGHJ segment (not
430 considering alleles) and the same CDR-H3 length were clustered based on 85% CDR-H3 amino
431 acid sequence similarity using CD-HIT (Fu et al., 2012). To exclude IGH that are generally
432 shared between humans and to enrich the SARS-CoV-2-specific IGH that are likely shared
433 among the patients, clusters were selected as informative if (1) they contained at least five IGH
434 sequences from each COVID-19 patient and were present in at least two subjects; (2) no IGH
435 sequences from HHC samples (collected prior to the 2019 SARS-CoV-2 outbreak) were
436 identified in the same convergent cluster. The same selection criteria were used to determine the
437 convergent clusters between the COVID-19 samples and previously reported IGH sequences
438 specific to SARS-CoV and SARS-CoV-2. Convergent IGH sequences between the deeply

439 sequenced COVID-19 patients and 10x Genomics single B cell immune profiling on two
440 COVID-19 patients were selected for mAb expression.

441

442 **Single-cell immunoglobulin (Ig) library preparation, sequencing, and data processing**

443 Single-cell immunoglobulin libraries were prepared using the 10x Single Cell Immune Profiling
444 Solution Kit (v1.1 Chemistry), according to the manufacturer's instructions. Briefly, cells were
445 washed once with PBS + 0.04% BSA. Following reverse transcription and cell barcoding in
446 droplets, emulsions were broken and cDNA purified using Dynabeads MyOne SILANE followed
447 by PCR amplification (98°C for 45 sec; 15 cycles of 98°C for 20 sec, 67°C for 30 sec, 72°C for 1
448 min; 72°C for 1 min). For targeted Ig library construction, 2 µL of amplified cDNA was used for
449 target enrichment by PCR (Human B cell primer sets 1 and 2: 98°C for 45 sec; 6 and 8 cycles of
450 98°C for 20 sec, 67°C for 30 sec, 72°C for 1 min; 72°C for 1 min). Following Ig enrichment, up
451 to 50 ng of enriched PCR product was fragmented and end-repaired, size selected with SPRIselect
452 beads, PCR amplified with sample indexing primers (98°C for 45 sec; 9 cycles of 98°C for 20 sec,
453 54°C for 30 sec, 72°C for 20 sec; 72°C for 1 min), and size selected with SPRIselect beads.
454 Targeted single-cell Ig libraries were sequenced on an Illumina MiSeq to a minimum sequencing
455 depth of 5,000 reads/cell using the read lengths 26bp Read1, 8bp i7 Index, 91bp Read2 and reads
456 were aligned to the GRCh38 reference genome and consensus Ig annotation was performed using
457 cellranger vdj (10x Genomics, version 3.1.0).

458

459 **Identification of convergent IGH sequences for mAb expression**

460 IGH sequences from single cells with paired productive heavy and light chains were searched
461 against COVID-19 patient bulk IGH repertoires to identify convergent sequences according to

462 the following criteria: utilization of the same IGHV and IGHJ genes; same CDR-H3 lengths; and
463 CDR-H3 amino acid sequences that were within a Hamming distance cutoff of 15% of the length
464 of the CDR-H3. Two native heavy and light chain pairs, designated mAb2A and mAb4A, which
465 were found in convergent clusters characterized by low- to mid-SHM frequencies and included
466 at least one class-switched member, were selected for cloning and expression.

467

468 **mAb cloning**

469 Paired heavy and light chain sequences from 10x single cell RNA-seq datasets were synthesized
470 by IDT as gBlocks encoding full-length heavy and light chain V(D)J regions. gBlocks were
471 resuspended at 50 ng/µL and amplified with AmpliTaq Gold (Applied Biosystems) following the
472 manufacturer's instructions, using a program of: 95°C 7 min; 30 cycles of 94°C for 30 sec, 55°C
473 for 45 sec, 72°C for 60 sec; and final extension at 72°C for 10 min. Products were gel purified
474 (Qiagen) and cloned as in-frame fusions to human IgG1, IgK or IgL constant regions into the
475 pYD7 vector (National Research Council (NRC), Canada) using Gibson Assembly Master Mix
476 (NEB) for 45 minutes at 50°C. Assembled constructs were verified by Sanger sequencing.

477

478 **mAb expression and purification**

479 Constructs were transiently transfected in HEK293-EBNA1-6E cells (NRC) at a density of 1.2-
480 1.6 million cells/mL using 25 kDa linear polyethylenimine (PEI) at a 3:1 PEI:DNA ratio in
481 OptiMEM reduced serum medium (Gibco), with a heavy chain: light chain ratio of 1:1. Cells
482 were maintained in Freestyle 293 Expression Medium (Gibco) and were supplemented with
483 0.5% tryptone 24-36 hours after transfection. Cell supernatants were harvested after 96 hours and
484 filtered through 0.45-µM filters (Millipore). Antibodies were purified via HiTrap Protein A HP

485 columns (GE Healthcare) run at a flow rate of 0.5-1 mL/min on Äkta Start protein purification
486 system (GE Healthcare). Antibodies were eluted using 0.1M glycine pH 2, dialyzed with 3
487 changes of PBS pH 7.4 using Slide-A-Lyzer-G2 10K dialysis cassettes (Thermo Fisher), and
488 concentrated using 30,000 kDa molecular weight cutoff polyethersulfone membrane spin
489 columns (Pierce). Final concentrations of purified antibodies were quantified with Nanodrop
490 2000 (Thermo Fisher).

491

492 **ELISA testing of mAbs**

493 ELISA conditions for mAbs were as described for COVID-19 plasma samples with the
494 following modifications: two-fold serial dilutions of mAbs were tested, starting at 100 µg/mL for
495 intra-COVID-19 convergent antibodies or peanut-specific negative mAb controls, or at 0.506
496 µg/mL for mAb CR3022; plates were coated overnight with RBD (0.1 µg per well), S1 (0.1 µg
497 per well), or spike protein (0.3 µg per well); and bound mAbs were detected with rabbit anti-
498 human IgG gamma chain-specific/HRP (Agilent: cat. P0214, 1:15,000 dilution).

499

500 **SUPPLEMENTAL INFORMATION**

501 Supplemental Information includes two tables and four figures.

502

503 **REFERENCES**

504 Appanna, R., Kg, S., Xu, M.H., Toh, Y.X., Velumani, S., Carbajo, D., Lee, C.Y., Zuest, R.,
505 Balakrishnan, T., Xu, W., et al. (2016). Plasmablasts During Acute Dengue Infection Represent a
506 Small Subset of a Broader Virus-specific Memory B Cell Pool. *EBioMedicine* 12, 178-188.
507 Avnir, Y., Watson, C.T., Glanville, J., Peterson, E.C., Tallarico, A.S., Bennett, A.S., Qin, K., Fu,
508 Y., Huang, C.Y., Beigel, J.H., et al. (2016). IGHV1-69 polymorphism modulates anti-influenza

509 antibody repertoires, correlates with IGHV utilization shifts and varies by ethnicity. *Sci Rep* 6,
510 20842.

511 Cao, Y., Su, B., Guo, X., Sun, W., Deng, Y., Bao, L., Zhu, Q., Zhang, X., Zheng, Y., Geng, C.,
512 et al. (2020). Potent Neutralizing Antibodies against SARS-CoV-2 Identified by High-
513 Throughput Single-Cell Sequencing of Convalescent Patients' B Cells. *Cell*.

514 Corman, V.M., Landt, O., Kaiser, M., Molenkamp, R., Meijer, A., Chu, D.K., Bleicker, T.,
515 Brünink, S., Schneider, J., Schmidt, M.L., et al. (2020). Detection of 2019 novel coronavirus
516 (2019-nCoV) by real-time RT-PCR. *Eurosurveillance* 25, 2000045.

517 Coughlin, M., Lou, G., Martinez, O., Masterman, S.K., Olsen, O.A., Moksa, A.A., Farzan, M.,
518 Babcock, J.S., and Prabhakar, B.S. (2007). Generation and characterization of human
519 monoclonal neutralizing antibodies with distinct binding and sequence features against SARS
520 coronavirus using XenoMouse. *Virology* 361, 93-102.

521 Davis, C.W., Jackson, K.J.L., McElroy, A.K., Halfmann, P., Huang, J., Chennareddy, C., Piper,
522 A.E., Leung, Y., Albarino, C.G., Crozier, I., et al. (2019). Longitudinal Analysis of the Human B
523 Cell Response to Ebola Virus Infection. *Cell* 177, 1566-1582 e1517.

524 Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. (2012). CD-HIT: accelerated for clustering the next-
525 generation sequencing data. *Bioinformatics* 28, 3150-3152.

526 Godoy-Lozano, E.E., Téllez-Sosa, J., Sánchez-González, G., Sámano-Sánchez, H., Aguilar-
527 Salgado, A., Salinas-Rodríguez, A., Cortina-Ceballos, B., Vivanco-Cid, H., Hernández-Flores,
528 K., Pfaff, J.M., et al. (2016). Lower IgG somatic hypermutation rates during acute dengue virus
529 infection is compatible with a germinal center-independent B cell response. *Genome Medicine* 8,
530 23.

531 Grimsholm, O., Piano Mortari, E., Davydov, A.N., Shugay, M., Obraztsova, A.S., Bocci, C.,
532 Marasco, E., Marcellini, V., Aranburu, A., Farroni, C., et al. (2020). The Interplay between
533 CD27dull and CD27bright B Cells Ensures the Flexibility, Stability, and Resilience of Human B
534 Cell Memory. *Cell Reports* 30, 2963-2977.e2966.

535 Hogan, C.A., Sahoo, M.K., and Pinsky, B.A. (2020). Sample Pooling as a Strategy to Detect
536 Community Transmission of SARS-CoV-2. *JAMA*.

537 Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., et al.
538 (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *The
539 Lancet* 395, 497-506.

540 Ju, B., Zhang, Q., Ge, J., Wang, R., Sun, J., Ge, X., Yu, J., Shan, S., Zhou, B., Song, S., et al.
541 (2020). Human neutralizing antibodies elicited by SARS-CoV-2 infection. *Nature*.

542 Magoc, T., and Salzberg, S.L. (2011). FLASH: fast length adjustment of short reads to improve
543 genome assemblies. *Bioinformatics* 27, 2957-2963.

544 Nielsen, S.C.A., Roskin, K.M., Jackson, K.J.L., Joshi, S.A., Nejad, P., Lee, J.Y., Wagar, L.E.,
545 Pham, T.D., Hoh, R.A., Nguyen, K.D., et al. (2019). Shaping of infant B cell receptor repertoires
546 by environmental factors and infectious disease. *Sci Transl Med* 11.

547 Noy-Porat, T., Makdasi, E., Alcalay, R., Mechaly, A., Levi, Y., Bercovich-Kinori, A.,
548 Zauberman, A., Tamir, H., Yahalom-Ronen, Y., Israeli, M.a., et al. (2020). Tiger team: a panel
549 of human neutralizing mAbs targeting SARS-CoV-2 spike at multiple epitopes. (bioRxiv).

550 Parameswaran, P., Liu, Y., Roskin, K.M., Jackson, K.K., Dixit, V.P., Lee, J.Y., Artiles, K.L.,
551 Zompi, S., Vargas, M.J., Simen, B.B., et al. (2013). Convergent antibody signatures in human
552 dengue. *Cell Host Microbe* 13, 691-700.

553 Peiris, J.S.M., Lai, S.T., Poon, L.L.M., Guan, Y., Yam, L.Y.C., Lim, W., Nicholls, J., Yee,
554 W.K.S., Yan, W.W., Cheung, M.T., et al. (2003). Coronavirus as a possible cause of severe acute
555 respiratory syndrome. *The Lancet* *361*, 1319-1325.

556 Peng, W., Liu, S., Meng, J., Huang, J., Huang, J., Tang, D., and Dai, Y. (2019). Profiling the
557 TRB and IGH repertoire of patients with H5N6 Avian Influenza Virus Infection by high-
558 throughput sequencing. *Scientific Reports* *9*, 7429.

559 Pinto, D., Park, Y.J., Beltramello, M., Walls, A.C., Tortorici, M.A., Bianchi, S., Jaconi, S.,
560 Culap, K., Zatta, F., De Marco, A., et al. (2020). Cross-neutralization of SARS-CoV-2 by a
561 human monoclonal SARS-CoV antibody. *Nature*.

562 Robbiani, D.F., Gaebler, C., Muecksch, F., Lorenzi, J.C.C., Wang, Z., Cho, A., Agudelo, M.,
563 Barnes, C.O., Gazumyan, A., Finkin, S., et al. (2020a). Convergent Antibody Responses to
564 SARS-CoV-2 Infection in Convalescent Individuals. *bioRxiv*, 2020.2005.2013.092619.

565 Robbiani, D.F., Gaebler, C., Muecksch, F., Lorenzi, J.C.C., Wang, Z., Cho, A., Agudelo, M.,
566 Barnes, C.O., Gazumyan, A., Finkin, S., et al. (2020b). Convergent antibody responses to SARS-
567 CoV-2 in convalescent individuals. *Nature*.

568 Shi, R., Shan, C., Duan, X., Chen, Z., Liu, P., Song, J., Song, T., Bi, X., Han, C., Wu, L., et al.
569 (2020). A human neutralizing antibody targets the receptor binding site of SARS-CoV-2. *Nature*.

570 Stadlbauer, D., Amanat, F., Chromikova, V., Jiang, K., Strohmeier, S., Arunkumar, G.A., Tan,
571 J., Bhavsar, D., Capuano, C., Kirkpatrick, E., et al. (2020). SARS-CoV-2 Seroconversion in
572 Humans: A Detailed Protocol for a Serological Assay, Antigen Production, and Test Setup. *Curr*
573 *Protoc Microbiol* *57*, e100.

574 Su, S., Wong, G., Shi, W., Liu, J., Lai, A.C.K., Zhou, J., Liu, W., Bi, Y., and Gao, G.F. (2016).
575 Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. *Trends Microbiol*
576 *24*, 490-502.

577 Suthar, M.S., Zimmerman, M., Kauffman, R., Mantus, G., Linderman, S., Vanderheiden, A.,
578 Nyhoff, L., Davis, C., Adekunle, S., Affer, M., et al. (2020). Rapid generation of neutralizing
579 antibody responses in COVID-19 patients. *medRxiv*, 2020.2005.2003.20084442.

580 Team, R.C. (2017). R: A Language and Environment for Statistical Computing.

581 ter Meulen, J., van den Brink, E.N., Poon, L.L.M., Marissen, W.E., Leung, C.S.W., Cox, F.,
582 Cheung, C.Y., Bakker, A.Q., Bogaards, J.A., van Deventer, E., et al. (2006). Human Monoclonal
583 Antibody Combination against SARS Coronavirus: Synergy and Coverage of Escape Mutants.
584 *PLOS Medicine* *3*, e237.

585 Tian, X., Li, C., Huang, A., Xia, S., Lu, S., Shi, Z., Lu, L., Jiang, S., Yang, Z., Wu, Y., et al.
586 (2020). Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific
587 human monoclonal antibody. *Emerging Microbes & Infections* *9*, 382-385.

588 van Dongen, J.J., Langerak, A.W., Bruggemann, M., Evans, P.A., Hummel, M., Lavender, F.L.,
589 Delabesse, E., Davi, F., Schuuring, E., Garcia-Sanz, R., et al. (2003). Design and standardization
590 of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene
591 recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action
592 BMH4-CT98-3936. *Leukemia* *17*, 2257-2317.

593 Wickham, H. (2016). *ggplot2: Elegant Graphics for Data Analysis*. (Springer-Verlag New York).

594 Wu, F., Wang, A., Liu, M., Wang, Q., Chen, J., Xia, S., Ling, Y., Zhang, Y., Xun, J., Lu, L., et
595 al. (2020a). Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient
596 cohort and their implications. *medRxiv*, 2020.2003.2030.20047365.

597 Wu, Y., Wang, F., Shen, C., Peng, W., Li, D., Zhao, C., Li, Z., Li, S., Bi, Y., Yang, Y., et al.
598 (2020b). A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding
599 to its receptor ACE2. *Science* *368*, 1274.

600 Ye, J., Ma, N., Madden, T.L., and Ostell, J.M. (2013). IgBLAST: an immunoglobulin variable
601 domain sequence analysis tool. *Nucleic Acids Res* *41*, W34-40.

602 Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., and Fouchier, R.A. (2012).
603 Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. *N Engl J Med* *367*,
604 1814-1820.

605 Zhou, J.Q., and Kleinstein, S.H. (2019). Cutting Edge: Ig H Chains Are Sufficient to Determine
606 Most B Cell Clonal Relationships. *J Immunol* *203*, 1687-1692.

607 Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R.,
608 et al. (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. *N Engl J Med*
609 *382*, 727-733.

610

611