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ABSTRACT 

Huntington9s disease (HD) is a dominantly inherited neurodegenerative disorder 

caused by a trinucleotide expansion in exon 1 of the huntingtin (Htt) gene. Cell death in HD 
occurs primarily in striatal medium spiny neurons (MSNs), but the involvement of specific 

MSN subtypes and of other striatal cell types remains poorly understood. To gain insight into 

cell type-specific disease processes, we studied the nuclear transcriptomes of 4,524 cells from 
the striatum of a genetically precise knock-in mouse model of the HD mutation, HttQ175/+, and 

from wildtype controls. We used 14-15-month-old mice, a time point roughly equivalent to an 

early stage of symptomatic human disease. Cell type distributions indicated selective loss of 

D2 MSNs and increased microglia in aged HttQ175/+ mice. Thousands of differentially expressed 
genes were distributed across most striatal cell types, including transcriptional changes in glial 

populations that are not apparent from RNA-seq of bulk tissue. Reconstruction of cell type-

specific transcriptional networks revealed a striking pattern of bidirectional dysregulation for 
many cell type-specific genes. Typically, these genes were repressed in their primary cell type, 

yet de-repressed in other striatal cell types. Integration with existing epigenomic and 

transcriptomic data suggest that partial loss-of-function of the Polycomb Repressive Complex 
2 (PRC2) may underlie many of these transcriptional changes, leading to deficits in the 

maintenance of cell identity across virtually all cell types in the adult striatum. 
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INTRODUCTION 

 

 Huntington9s disease (HD) is a fatal neurodegenerative disorder caused by dominant inheritance of 

trinucleotide repeat expansion mutations in the huntingtin (HTT) gene1. Clinical symptoms include deficits 

in motor control and cognition, as well as psychiatric symptoms. Although the causal mutation has been 
known for >25 years, there are no existing treatments that dramatically alter disease progression. In the 

absence of treatment, symptoms progressively worsen, leading inevitably to death 10-15 years after the 

symptomatic age at onset. 
An enduring mystery in HD biology is why Huntington9s disease mutations lead to selective 

neurodegeneration in specific subtypes of neurons, while other nearby cells remain largely spared, despite 

the fact that the HTT gene is robustly expressed in most or all cell types. HD progression is linked to the 
selective cell death of medium spiny neurons (MSNs) in the striatum2. Among MSNs, Drd2-expressing 

MSNs that project to the lateral segment of the globus pallidus (termed 8D2 MSNs9) are thought to be more 

vulnerable than Drd1-expressing MSNs that project to the entopenduncular nucleus and the substantia nigra 

pars reticulata (termed 8D1 MSNs9)3. Striatal interneurons are less vulnerable than MSNs but may undergo 
disease-related changes that remain little studied4,5. Neurodegeneration in HD is accompanied by 

neuroinflammatory processes. Microglial activation occurs prior to the clinical manifestation of the 

disease6. Reactive astrogliosis occurs relatively late in the natural progression of HD pathophysiology but 
may still contribute to neurotoxicity7,8. Changes in forebrain white matter and striatal oligodendrocytes 

begin early in disease progression, including deficits in myelinated axon fibers and increased 

oligodendrocyte cell number9,10. However, the regulation and impact of these inflammatory processes 
across glial and neuronal cell types remains poorly understood. 

Transcriptional changes are among the earliest phenotypes in cells and tissues expressing mHTT 

and are highly reproducible in human HD11313. MSN-specific genes and components of synapses are down-

regulated, while up-regulated genes include signatures of neuroinflammation7,14. Notably, there is evidence 
that some transcriptional changes are directly related to functions of HTT in the nucleus, including 

interactions of both wildtype and mutant HTT with transcriptional regulatory proteins15317. However, 

previous transcriptomic studies using bulk tissue failed to illuminate the cell type-specificity of many 
disease processes. 

Single-cell transcriptomics has emerged as a scalable technology enabling an unprecedented view 

of cell types and cell states in the mammalian brain. To date, only a few published studies have applied this 

approach to any neurodegenerative disease18322. Here, we analyzed the nuclear transcriptomes of 4,524 
striatal cells from a genetically precise knock-in mouse model of a juvenile-onset HD mutation, HttQ175/+. 

Our analyses of these data reveal numerous insights into cell type-specific disease processes. 

 

RESULTS 

 

Single-nucleus RNA-seq of 14-15 month-old HttQ175/+ HD knock-in mice and wildtype controls. 

 

We generated single-nucleus RNA-seq from the striatum of four male 14-15 month-old HttQ175/+ 

mice and four male wildtype controls using the 10x Genomics Chromium system. HttQ175/+ is a widely used 

genetically precise mouse model for a mutation associated with juvenile-onset HD in which a humanized 
HTT exon 1 fragment with 140 CAG repeats was knocked into the endogenous Htt locus and the repeats 

spontaneously expanded to approximately 175 CAG repeats, which was later stabilized at ~190 repeats. 

These mice have normal lifespan, with progressive behavioral, neuroanatomical, and transcriptomic 
deficits12,23,24. At 14-15-months-old, striatal atrophy is detectable, but the presence of neuronal cell death 

has been controversial. This dataset represents, to our knowledge, the first single-nucleus RNA-seq study 

utilizing a genetically precise mouse model of the HD mutation. In addition, the mice in our study are 
considerably older than mice studied in previously published datasets from knock-in mouse models of the 

HD mutation, providing insights into a timepoint roughly equivalent to early manifest disease that has not 

been adequately modeled in previous studies utilizing these mouse models. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 9, 2020. ; https://doi.org/10.1101/2020.07.08.192880doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.08.192880
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

Following QC and normalization, we analyzed 4,524 high-quality cells, of which 3,210 were 
derived from HttQ175/+ mice and 1,314 from wildtype mice (Methods; Fig. S1). Louvain clustering and 

annotation with known marker genes25 revealed well-defined clusters corresponding to each of the major 

cell populations in the striatum, including 3,003 MSNs, 288 Sst+ interneurons, 120 Pvalb+ interneurons, 

73 Chat+ interneurons, 468 oligodendrocytes, 300 astrocytes, 112 endothelial cells, 82 microglia, and 78 
polydendrocytes (Fig. 1a,b; Fig. S1; Table S1). Sub-clustering of MSNs using 36 sub-type marker genes 

with >8-fold differences in expression in prior scRNAseq of mouse striatum25 revealed 1,809 D1 MSNs 

and 941 D2 MSNs (Fig. 1c), as well as 166 MSNs whose expression profiles match the recently described 
<eccentric= subtype25. We have created a web portal for visualization and analysis of these data at the Gene 

Expression Analysis Resource (https://umgear.org/p?l=1d76bf3e). 

While most cell types were represented at similar proportions in HttQ175/+ vs. wildtype mice, several 
differences were noted (Fig. 1d). The proportion of cells identified as D2 MSNs was ~30% lower in HttQ175/+ 

mice (odds ratio = 0.69; p = 2.3e-6). This decreased proportion of D2 MSNs was robust across a range of 

QC and clustering parameters (Fig. S2). These data suggest that D2 but not D1 MSNs may die in the 

striatum of HTTQ175/+ mice aged over one year. These results are consistent with the progression of MSN 
cell death in human HD3. However, previous studies had failed to detect cell death at earlier time points in 

knock-in mouse models of the HD mutation, a source of concern from a disease modeling perspective. We 

also observed significant increases (p < 0.01) in the proportion of microglia and Chat+ interneurons. The 
former may indicate microglial proliferation, while the significance of the latter is unknown.  

 

Cell type-specific gene expression changes in HD knock-in mice 

 

Next, we studied celltype-specific gene expression changes in HttQ175/+ vs. wildtype mice. We 

identified 13,897 celltype-specific gene expression changes, involving 8,124 distinct genes (differentially 

expressed genes, DEGs; False Discovery Rate [FDR] < 0.05; Fig. 2a; Table S1). In our primary analysis, 
we detected DEGs by applying Wilcoxon rank-sum tests to smoothed read counts. A second approach, 

applying Wilcoxon signed-rank tests to non-smoothed read counts yielded a similar rank-ordering of DEGs 

but with reduced statistical power. Microglia and Chat+ interneurons were excluded from this analysis due 
to insufficient cell numbers. 

We found 5,181, 3,666, and 685 DEGs in D1, D2, and eccentric MSNs, respectively. Comparison 

of these celltype-specific DEGs to previously described lists of DEGs from RNA-seq of bulk striatal tissue 

from ten-month-old HttQ175/+ mice vs. HttQ20/+ controls12 indicated that both up- and down-regulated DEGs 
in all MSN subtypes were strongly enriched for known DEGs from bulk tissue RNA-seq (limma 

geneSetTest: p < 1e-100 for DEGs in D1 and D2 MSNs; p < 1e-30 in eccentric MSNs; Fig. 2b; Table S3). 

Genes with the lowest p-values included Pde10a, Rgs9, Wnt8b, Trank1, Scn4b, Rap1gap, Pde1b, Ptpn5, 
Adcy5, Atp2b1, and Arpp21, all of which are also among the strongest and most-consistently observed 

DEGs from previous studies in bulk tissue. Down-regulated genes in MSNs were enriched for synaptic 

functions (e.g., <neuron spine=, p-values = 7.95e-7, 1.95e-8, and 8.1e-4 in D1, D2, and eccentric MSNs, 
respectively; Table S3). Up-regulated genes in MSNs were enriched for genes localized  to the <nucleus= 

(p = 4.1e-11, 2.0e-10, and 0.014 in D1, D2, and eccentric MSNs, respectively), especially genes related to 

<histone modification= (p = 3.8e-4, 8.8e-4, and 3.1e-3 in D1, D2, and eccentric MSNs, respectively). 

Comparing the fold changes of DEGs in D1, D2, and eccentric MSNs revealed that with very few 
exceptions these fold changes were nearly identical in magnitude and direction (Fig. 2c, left; Pearson 

correlation comparing the log2(fold changes) of the top 10% of genes ranked by p-value in D1 vs. D2 

MSNs, r = 0.97, p << 1e=308; D1 vs. eccentric MSNs, r = 0.77, p = 3.0e-242). The slope of the regression 
line is ~1 in all of these comparisons among MSN subtypes. Down-sampling analyses suggested that the 

somewhat weaker correlation coefficient in D1 vs. eccentric MSNs was primarily due to the smaller 

eccentric MSN sample size and is not biologically meaningful. Pseudotime trajectory analysis with 
Slingshot26 indicated that nearly all MSNs in these 14-15-month-old HttQ175/+ mice exist in a disease-

specific transcriptional state that is never observed in wildtype mice (Fig 2d). Thus, single-nucleus RNA-

seq revealed strong transcriptional effects of the HD mutation in all three MSN subtypes, including 
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eccentric MSNs, yet the enhanced vulnerability of D2 vs. D1 MSNs is not reflected in the magnitude of 
transcriptional effects, at least not in the current dataset. 

We found 2,351 DEGs in oligodendrocytes from HttQ175/+ vs. Htt+/+mice. Neither up-nor down-

regulated DEGs in oligodendrocytes strongly overlapped known DEGs from bulk tissue RNA-seq of 10-

month-old HttQ175/+ vs. HttQ20/+ mice (p = 0.01, 0.06, respectively). By contrast, our DEGs in 
oligodendrocytes strongly overlapped DEGs from RNA-seq of sorted oligodendrocytes in the striatum of 

BACHD mice -- a transgenic mouse model of the HD mutation -- compared to wildtype controls27 (p = 

6.6e-19, 1.8e-13, for down- and up-regulated DEGs, respectively). Down-regulated DEGs in 
oligodendrocytes were strongly enriched for oligodendrocyte-specific functions such as <myelin sheath= (p 

= 6.75e-14), as well as more basic cellular processes such as <structural constituent of ribosome= (p = 8.64e-

12) and <mitochondrion= (p = 3.16e-10). Up-regulated DEGs were enriched for several categories of genes 
that are typically associated with neurons, including <ion channel complex= (p = 2.0e-8) and <synaptic 

membrane= (p = 1.2e-6). Trajectory analysis of oligodendrocytes suggested that oligodendrocytes exist on 

a continuum from normal to disease-associated states; i.e., in contrast to the discrete disease-associated 

transcriptional states of MSNs, the disease-associated transcriptional states in oligodendrocytes are also 
present in Htt+/+ mice, but at a lower frequency (Fig. 2d). In summary, we identified thousands of 

reproducible DEGs in oligodendrocytes that are obscured in bulk tissue RNA-seq. 

We found 1,987 DEGs in astrocytes from HttQ175/+ vs. Htt+/+mice. The up-regulated genes in 
astrocytes overlapped known up-regulated DEGs from bulk tissue RNA-seq of 10-month-old HttQ175/+ vs. 

HttQ20/+ mice (p = 2.3e-12), whereas down-regulated gene sets in astrocytes did not significantly overlap 

these known DEGs (p > 0.05). Prior work has revealed neurotoxic reactive astrocytes in post-mortem 
striatal brain tissue from HD patients, but their presence in mouse models of the HD mutation is 

controversial7,8. To identify reactive astrocytes in our dataset, we sub-clustered astrocytes on the basis of 

87 genes previously shown to be induced in reactive astrocytes28, revealing a cluster of 134 reactive 

astrocytes, enriched for pan-reactive markers such as Gfap (p = 3.6e-14) and Vim (p = 1.2e-9), as well as 
two clusters of non-reactive astrocytes that do not express these markers (Fig. S2). While reactive astrocytes 

were present in both genotypes, they were significantly more abundant in HttQ175/+ mice (Fisher's exact test: 

OR = 2.3; p = 0.001). Many reactive astrocytes expressed markers of the 'A1' neurotoxic sub-type (e.g., 
H2-D1, p = 1.2e-8), whereas very few cells expressed markers of 8A29 neuroprotective reactive astrocytes. 

While these results support the presence of neurotoxic reactive astrocytes in the striatum of HttQ175/+ mice 

aged >1 year, several analyses suggest that prototypical reactive astrogliosis explains only a subset of the 

HD-related transcriptional changes in astrocytes. Trajectory analyses showed a strong shift in astrocyte cell 
states in HttQ175/+ vs. Htt+/+mice (Fig. 2d), but this trajectory was only weakly correlated with reactive vs. 

non-reactive subtypes (Fig. S3). Instead, up-regulated DEGs in astrocytes were most strongly enriched for 

the GO term <synapse= (p = 8.1e-32), while down-regulated DEGs were most strongly enriched for GO 
terms related to transcriptional regulation (e.g., <negative regulation of transcription by RNA polymerase 

II=, p = 2.7e-9). Thus, there are profound changes in the transcriptomes of astrocytes from HttQ175/+ vs. 

Htt+/+mice, only some of which reflect known neuroinflammatory processes. 
At an FDR < 0.05, we detected fewer than ten DEGs in Sst+ and Pvalb+ interneurons, endothelial 

cells, and polydendrocytes (Fig. 2a). Moreover, trajectory analysis indicated that the principal curve in these 

cell types was not correlated with genotype (p > 0.05). We note that although these cell types are relatively 

rare, we were able to detect hundreds of DEGs in comparably rare eccentric MSNs. Therefore, our data 
indicate that these cell types are less vulnerable to the transcriptional effects of the HD mutation. 

Comparisons of gene expression changes across cell types detected a marked difference in cell 

type-specificity of down-regulated vs. up-regulated genes. Down-regulated genes were largely non-
overlapping across cell types, with the only strong overlaps occurring among MSN subtypes (Fig. 2e). 

Many of these down-regulated DEGs were 8cell identity9 genes that are expressed specifically in that same 

cell type. That is, top genes down-regulated in MSNs included MSN marker genes such as Ppp1r1b, 
Pde10a, and Rgs9. Genes down-regulated in astrocytes were enriched for astrocyte marker genes (astrocyte 

marker genes (p-value = 1.11e-212), including Hes5, Gjb6, and Ddhd1. And genes down-regulated in 
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oligodendrocytes were enriched for oligodendrocyte-specific genes (p-value = 3.32e-155), including Mog, 
Gjb1, and Cldn11. 

By contrast, many up-regulated DEGs were shared across cell types. with statistically significant 

overlap among up-regulated DEGs in D1 MSNs, D2 MSNs, eccentric MSNs, astrocytes, oligodendrocytes, 

endothelial cells, polydendrocytes, and Sst+ interneurons (Fig. 2c). 30 genes were up-regulated (FDR < 
0.05) in five distinct cell types. These included inflammation-related genes such as colony stimulating 

factor 2 receptor subunit alpha (Csf2ra), histocompatibility 2, D region locus 1 (H2-D1), and myocardial 

infarction associated transcript (Miat), suggesting that some shared changes are due to the broadly acting 
effects of pro-inflammatory molecules such as cytokines. However, broadly up-regulated genes also 

included genes that are not typically associated with inflammation, including synaptic genes like the 

GABAA receptor alpha 1 subunit (Gabra1) and the voltage-gated sodium channel alpha 9 subunit (Scn9a). 
Thus, up-regulation of certain transcripts across multiple striatal cell types is a prominent feature of gene 

expression changes in HttQ175/+ vs. Htt+/+mice, involving both neuroinflammation-related and non-

neuroinflammation-related genes.  

 
Network analyses reveal principles of transcriptional dysregulation 

 

We reconstructed and analyzed gene co-expression networks to gain deeper insight into the 
processes driving transcriptional dysregulation within and across cell types. Gene co-expression networks 

are widely employed in RNA-seq with bulk tissue, but standard methods such as WGCNA do not work 

well with scRNAseq, as the sparseness of the data masks gene-gene correlation structure29. To overcome 
this issue, we used knn-smoothing30 to impute read counts across cells (k=15, nPCs = 30). We confirmed 

that this approach produced strong correlations among known markers of D1 MSNs and among known 

markers of D2 MSNs, without inducing spurious correlations among markers across subtypes (Fig. S4). 

We computed Pearson correlations among 8,971 genes for which there were non-zero counts in at least 
10% of the cells from at least one cell type prior to imputation. We then applied k-means clustering (k=150) 

to the resulting gene co-expression matrix to derive gene modules. We dropped modules for which the first 

principal component (the module <eigengene=) explained less than 10% of the variance, and we merged 
modules whose eigengenes were >85% correlated. This resulted in a final set of 77 modules spanning 5,874 

genes (Table S3). 

 Four analyses support the relevance of these gene co-expression modules to gene regulation and 

biology (Table S4). First, gene regulatory network reconstruction with GENIE331 (using the smoothed 
expression profiles from the same cells and genes) revealed TF-target gene lists that significantly 

overlapped each of the 77 gene co-expression modules (FDR < 0.05), supporting the robustness of the 

modules and predicting specific TFs as key regulators of their activity. Second, all 77 modules also 
overlapped direct target genes of TFs inferred via motif analysis with RcisTarget32 (normalized enrichment 

score >= 3.71) and/or ChIP-seq data from ChEA33 (FDR < 0.05). Third, 75 of the 77 modules were enriched 

for at least one Gene Ontology functional annotation (p < 0.001). Fourth, all 77 modules overlapped a 
published gene co-expression module from bulk RNA-seq of striatal tissue in knock-in mouse models of 

the HD mutation12.  

Notably, gene co-expression modules derived from single-nucleus RNA-seq appeared to have 

greater fidelity to specific cell types than the published network derived from bulk RNA-seq. For instance, 
genes from a large neuronally-enriched bulk RNA-seq gene co-expression module, <bulk M2=, previously 

shown to be down-regulated in HD knock-in mice, were enriched in 13 distinct snRNA-seq modules (FDR 

< 0.05; snRNA-seq modules M12, M50, M29, M101, M95, M86, M33, M46, M10, M70, M1, M76, and 
M36), all of which were down-regulated in HttQ175/+ vs. Htt+/+ mice but with varying specificity across MSN 

subtypes and in other striatal cells (Fig. 3). Similarly, a down-regulated non-neuronal bulk RNA-seq 

module, <bulk M11=, overlapped five distinct snRNA-seq modules expressed specifically in astrocytes 
(M11), oligodendrocytes (M13, M31), or endothelial cells (M43), and across all glial cell types (M32). 

Thus, network reconstruction from single-cell RNA-seq provides complementary information about 

celltype-specific gene regulation that is not readily apparent from standard RNA-seq. 
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 We characterized the activity of the 77 gene co-expression modules across cell types and genotypes 
based on their eigengenes. 55 of the 77 modules were differentially expressed (adjusted p-value < 0.01, 

>1.5-fold change; Fig. 3c) in at least one cell type. These included 13 differentially expressed modules in 

D1 MSNs, 15 in D2 MSNs, 9 in eccentric MSNs, 39 in astrocytes, and 27 oligodendrocytes. Consistent 

with findings from DEGs (above), we identified numerous <cell identity= modules that were specifically 
expressed in one cell type and down-regulated in cells of that same type from HttQ175/+ vs. Htt+/+ mice (Fig. 

4, columns 1-4). We also identified modules that were broadly expressed and up-regulated across most or 

all cell types (Fig. 4, columns 5-6). A striking and unexpected finding was that many of the cell identity 
modules were also up-regulated in incorrect cell types. For instance, the MSN identity module M12 (Fig. 

4, 1st column) was down-regulated in D1 (logFC = -0.74, p < 1e-308), D2 (logFC = -0.74, p = 7.0e-217) 

and eccentric MSNs (logFC = -0.34, p = 3.7e-6), but up-regulated in astrocytes (logFC = 0.56, p-value = 
3.5e-7) and oligodendrocytes (logFC = 0.27, p-value = 7.4e-3). The astrocyte identity module M11 (Fig. 4, 

2nd column) was down-regulated in astrocytes (logFC = -1.06, p = 2.1e-11), but slightly up-regulated in 

MSNs (logFC = 0.02, 0.03; p = 4.5e=10, 3.0e-4, in D1 and D2 subtypes, respectively). The oligodendrocyte 

identity module M13 (Fig. 4, 3rd column) was down-regulated in oligodendrocytes (logFC = -0.96, p = 1.3e-
9), but up-regulated in MSNs (logFC = 0.083, 0.08; p = 1.4e-27, 5.5e-18 in D1 and D2 subtypes) and 

astrocytes (logFC = 0.26, p = 2.0e-4). Further examples include the parvalbumin interneuron identity 

module M65 (Fig. 4; 4th column) and the endothelial cell identity module M43, among others. Examining 
the expression of individual genes from these modules confirmed that they follow these same bi-directional 

patterns of transcriptional dysregulation (Fig. 4d). Notably, our gene regulatory network model predicted 

that many of these cell identity modules are regulated by canonical cell type-specific hub transcription 
factors, such as FOXP1 in M12, SOX9 in M11, MYRF in M13, and NKX2.1 (Fig. 4a,c), which are required 

for the development of MSNs, astrocytes, oligodendrocytes, and interneurons, respectively34337. 

 We postulated that these bidirectional changes in gene expression may reflect aberrant repression 

and de-repression of cell type identity genes in HttQ175/+ mice. One mechanism by which this could occur 
is through interactions of wildtype and mutant HTT with Polycomb Repressive Complex 2 (PRC2). PRC2 

facilitates gene repression via trimethylation of histone H3 at lysine 27 (H3K27me3), particularly in the 

promoters of genes involved in the development and maintenance of cell types. The HTT protein has 
genotype-specific interactions with PRC2 in vitro15 and in vivo38, and conditional knockout of PRC2 in 

striatal MSNs causes gene expression changes that mimic the effects of HD mutations39. To test whether 

dysregulated cell type identity modules in HttQ175/+ mice involve PRC2, we assembled nine ChIP-seq 

datasets profiling the genomic occupancy for components of the PRC2 complex (EZH2, SUZ12) or for 
H3K27me3 in four disease-relevant cell types: medium spiny neurons38,39, astrocytes40, 

oligodendroocytes27, and embryonic stem cells40,41. We tested for over-representation of each of our 77 gene 

co-expression modules among putative PRC2 target genes, defined by the presence of a PRC2-related ChIP-
seq peak +/- 5kb from a gene9s transcription start site. Ten modules were robustly over-represented for 

these PRC2 target genes (adjusted p-values < 0.01 in at least four of the ChIP-seq datasets; Fig. 5A). All of 

these ten PRC2-regulated modules were expressed specifically in a single striatal cell type (Fig. 5a), 
including modules specific to MSNs (M12, M29, M50), all interneurons (M23, M52), Pvalb+ interneurons 

(M65), Chat+ interneurons (M54), endothelial cells (M43), oligodendrocytes (M13), and astrocytes (M11). 

All of these PRC2-regulated modules except for those specific to interneurons were significantly down-

regulated in that same cell type in HttQ175/+ mice (adjusted p-value < 0.01), while the expression of 
interneuron-specific modules trended downward in cells from HttQ175/+ mice (Fig. 5b). All ten PRC2-

regulated modules (including interneuron-specific modules) were significantly up-regulated in at least one 

other cell type in which these genes are not normally expressed. As expected, the dynamics of PRC2 
occupancy across cell types was negatively correlated with cell type-specific gene expression (Fig. 5c). 

PRC2 target genes in embryonic stem cells 3 in which genes for all differentiated cell types are repressed -

- were over-represented in all ten modules. PRC2 target genes in MSNs were over-represented in 
interneuron- and glial-specific modules, but not in MSN-specific modules. PRC2 target genes in astrocytes 

and oligodendrocytes were primarily enriched in neuron-specific modules, but not in glial-specific modules.  
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To more directly establish the regulation of these modules by PRC2, we analyzed published RNA-
seq of MSNs from 6-week-old, 3-month-old, and 6-month-old EZH2/EZH1 double conditional knockout 

mice, in which PRC2 was silenced specifically in adult MSNs39. PRC2 silencing in MSNs strongly 

dysregulated all ten modules in the same direction observed in MSNs from HttQ175/+ vs. Htt+/+ mice; i.e., 

modules specific to other cell types were ectopically expressed in PRC2-silenced MSNs, while MSN-
specific modules were repressed (Fig. 5D). These analyses extend prior analyses of these data, which had 

also noted the bidirectional overlap with genes dysregulated in HD -- our analysis indicates that a much 

larger proportion of the transcriptional dysregulation in HD knock-in mice may be explained by altered 
interactions with PRC2 than had previously been appreciated and suggests that these interactions occur in 

multiple striatal cell types, not just MSNs. Thus, PRC2 regulates the cell type-specific expression patterns 

of many gene co-expression modules that are bidirectionally dysregulated in HttQ175/+ vs. Htt+/+ mice, and 
our data support a model in which PRC2 loss-of-function due to the HD mutation causes both the de-

repression of these modules in inappropriate cell types, as well as their repression in their primary cell type. 

 

DISCUSSION 

 

Here, we have described a comprehensive analysis of single-nucleus RNA-seq of striatal cells from 

a genetically precise knock-in mouse model of the HD mutation. Several novel findings merit particular 
attention. First, we observe shifts in cellular abundance revealing selective loss of D2 MSNs and increased 

microglia in aged HttQ175/+ mice.  Second, we observe pronounced transcriptional dysregulation in nearly 

all striatal cell types, which we have here defined and compared to genes identified with RNA-seq in bulk 
striatal tissue.  Third, analysis of HD-associated transcriptional networks across cell types reveals a striking 

pattern of loss of cell identity genes, coupled with aberrant up-regulation of these genes in incorrect cell 

types. Integration of these analyses with existing transcriptomic and epigenomic data suggest that altered 

PRC2 function may underlie these bidirectional changes, leading to dysregulation of cell identity across 
essentially all cell types in the adult striatum.  

The early phases of disease progression in HD are dominated by hyperkinetic motor features, 

notably chorea. This has been attributed to the selective atrophy and early loss of D2 MSNs, revealed by 
the preferential loss of enkephalin-containing fibers across disease severity42344. Our data support the higher 

vulnerability of this cell type, as we observed a selective reduced proportion of D2 MSNs. Despite the 

increased vulnerability of D2 MSNs, our data do not reveal significant differences among MSN subtypes 

with respect to the genes that are differentially expressed nor in the magnitude of the fold changes. The lack 
of quantifiable differences suggests that these responses to the mutation may be universal across all MSNs. 

However, we cannot rule out differences in the transcriptional responses of MSN subtypes at earlier time 

points, which should be examined in future studies. 
The role of various types of glial cells in the progression of HD has been an important avenue of 

research. Our data reveal novel aspects of transcriptional dysregulation in glial cell types, which rely on the 

ability to examine transcriptional changes within specific cell types. Specifically, we find increased 
numbers of microglia, consistent with previous reports that microgliosis begins in presymptomatic HD 

mutation carriers6. In addition, we detected thousands of celltype-specific DEGs in glia -- especially 

astrocytes and oligodendroocytes -- many of which are not readily apparent in RNA-seq of bulk striatal 

tissue. Across glial cell types, we observed a spectrum of transcriptional states, comprising of nuclei in 
similar transcriptional states as the wild type nuclei, nuclei in discernably different transcriptional states as 

well as intermediate states between the two that may indicate a gradual shift in cell states and opens new 

areas of study. This is distinct from our trajectory analysis of MSNs, in which we observed nearly complete 
separation of wildtype and HttQ175/+ cellular states. Activation of neuroinflammatory genes is observed 

across several cell types, including astrocytes, oligodendrocytes, and MSNs. However, the transcriptional 

states of glia are distinct from classical neuroinflammatory states such as 8A19 or 8A29 reactive astrocytes, 
suggesting disease-specific mechanisms. 

Across cell types, a common feature of the transcriptional dysregulation we observe is aberrant 

maintenance of cell fate commitment. Previous studies, based on RNA-seq of bulk striatal tissue, have 
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suggested that loss of cell fate commitment may drive MSN vulnerability in HD12. Reconstruction of gene 
co-expression networks and gene regulatory networks from our data revealed numerous gene modules that 

were dysregulated in HD knock-in mice. HD-associated gene modules that are expressed primarily in MSNs 

overlapped strongly with disease-associated gene modules from bulk RNA-seq of HD and HD mouse 

models, which is to be expected since MSNs represent a large percentage of cells in the striatum.  However, 
the improved resolution of our network models across cell types provides greater insight into this mode of 

pathology. Notably, we confirm that aged MSNs expressing mHTT have reduced expression of MSN-

specific genes, e.g. the FOXP1 regulon in module M12. In addition, our findings reveal reduced cellular 
identity genes in other cell types, including oligodendrocytes (MYRF regulon in module M13) and 

astrocytes (SOX9 regulon in module 11). Here we observe, for the first time, that in addition to being 

downregulated in their correct cell type, cell identity genes are also aberrantly up-regulated in other cell 
types. This expands the model of cell fate commitment changes in HD, suggesting it may be a shared feature 

of aged cells expressing mHTT, affecting virtually all cell types in the striatum. 

Given the importance of PRC2 in establishing and maintaining cell fate and the known interactions 

between HTT and PRC2, we compared our results to PRC2-related ChIP-seq and RNA-seq datasets. We 
find that ten of our 77 gene co-expression modules are enriched with PRC2 target genes, all of which were 

expressed and down-regulated in specific cell types. Our results suggest that PRC2 helps restrict expression 

of these genes to their appropriate cell type in the adult striatum. Conditional knockout of PRC2 and the 
presence of mHTT each results in highly similar patterns of bidirectional dysregulation across cell types. 

Thus, many of the transcriptional effects of mHTT may be mediated by PRC2 loss-of-function. Consistent 

with this idea, we recently described a global decrease of H3K27me3 levels in striatal tissue from HD 
knock-in mice38. Future studies should test whether restoring PRC2 function can rescue the phenotypic 

consequences of HD mutations. 

Our study has several limitations. The relatively small size of our dataset limited our ability to 

characterize gene expression changes in rare cell types, including microglia. In addition, our analysis is 
limited to a single mouse model at a single time point in a single tissue. There will be value in generating 

additional single-nucleus data, including from earlier time points and other disease-affected brain regions, 

and to expand these analyses to human cells and brain regions. In summary, our study demonstrates the 
power of single-nucleus RNA-seq to reveal novel insights into celltype-specific mechanisms in HD, many 

of which were unknown despite decades of studies on the HD mutation. 

 

 
METHODS 

 

Mice. HttQ175/+ mice and wildtype littermate controls on the C57BL6/J background (B6J.129S1-
Htttm1.1Mfc/190ChdiJ; JAX stock #029928) were bred and aged in the colony of the Carroll lab at Western 

Washington University. The B6J.zQ175DN KI used in this study also lack a floxed neo cassette 1.3 kbp 

upstream of exon 1 that is not known to have an effect on the phenotypic characteristics of the mice. Three 
14-month-old and one 15-month-old male mice of each genotype were used to generate the primary dataset 

described here. Mice were deeply anesthetized using a phenobarbital based euthanasia solution (Fatal Plus, 

Henry Schein) and striatal tissue dissected on ice. Tissue was immediately flash frozen in liquid nitrogen 

and stored at -80°C. Experiments were performed following NIH animal care guidelines and approved by 
Western Washington University9s Institutional Animal Care and Use Committee under protocol 16-011.  

 

Isolation of nuclei from frozen brain tissue. Nuclei were isolated from flash-frozen striatal tissue as 
described in previous protocols45347, with slight modifications. A detergent-mechanical cell lysis method 

was used, involving 3 major steps: lysis, homogenization and density barrier centrifugation. In a laminar 

hood, a ~50 mg piece of frozen brain tissue was placed into a pre-frozen BioPulverizer (BioSpec) and 
smashed to a thin frozen layer, then immediately transferred to lysis buffer (250mM Sucrose, 25mM KCl, 

5mM MgCl2, 1uM DTT, 1X RNAse Inhibitor, 0.1% TritonX-100, 10mM Tricine Buffer, pH 8.0). Tissue 

was disaggregated, flushing up and down, first using a 1 ml pipette tip, then with a 30G needle in a 3ml 
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syringe. Homogenized tissue was diluted to 10ml with lysis buffer and filtered through a 70 micron filter. 
Homogenate was spun at 1,000g for 8 min at 4°C. Pellet was then re-suspended and 500 µl of pellet 

suspension was diluted with 500 µl 50% Iodixanol Solution (50% Iodixanol, 250mM Sucrose, 150 mM 

KCl, 30mM MgCl2, 1X RNAse Inhibitor, 60mM Tricine Buffer, pH 8.0), filtered for second time with a 70 

micron mesh and placed on top of 500 µl layer of 29% Iodixanol Solution (29% Iodixanol, 250mM Sucrose, 
150 mM KCl, 30mM MgCl2, 1X RNAse Inhibitor, 60mM Tricine Buffer, pH 8.0). Density barrier was 

centrifuged at 13,500g for 20 min at 4°C. The pellet was collected and washed with 10 ml of PBS, 2% 

BSA, 1X RNAse Inhibitor, centrifuged at 1,000g for 8 min at 4°C, and finally suspended in 1 ml of PBS, 
2% BSA, 1X RNAse Inhibitor and filtered using a 40 micron Flowmi cell strainer. Single nuclei 

suspensions were counted and evaluated for integrity using Propidium Iodide in a MoxiGo cytometer using 

650 nm filter. Nuclei count was adjusted to 5000 nuclei/ml.  
 

Library preparation and sequencing. 13,000 nuclei were loaded into each well of a Chromium 

microfluidics controller (10X Genomics, Pleasanton, CA) using PBS + 2% BSA. Sequencing libraries were 

generated using the Chromium Single Cell Gene Expression 39 kit with Version 3 chemistries. Samples 
were sequenced across two lanes of an Illumina HiSeq4000 sequencer to obtain 75 base pair paired-end 

reads.  

 
Cell QC and data pre-processing. Raw sequencing reads were processed to counts of unique molecular 

identifiers (UMIs) in each droplet with cellranger v3.0.2 (10X Genomics). Artifacts from ambient RNA 

were reduced with SoupX48, based on a uniform contamination fraction estimate of 10%. This 
contamination estimate was derived using marker genes >20-fold enriched in each cell type from 

DropViz25. Also using SoupX, we derived the following sample-specific thresholds at which we observed 

relatively low contamination, and we removed cells outside these ranges: 1260-6300 UMIs/cell for BBY2, 

BCR2, BCR3, BCR4, BCR5 and BCR6, and 1260-4470 nUMIs for BCR1. One Htt+/+ sample, BBY3, was 
deemed to be an outlier based on very low UMI counts across most cells and was dropped from further 

analysis. In addition, using Seurat, we removed libraries with >5% of read counts from mitochondrial genes, 

as the presence of these non-nuclear transcripts indicates both incomplete fractionation of nuclei and 
cellular stress. To obtain the final set of cells for clustering, we manually removed any remaining doublets 

with high expression of mutually exclusive markers. 

 

Normalization and batch effect correction. UMI counts from each cell were normalized to log (counts 
per million). A uniform set of highly-variable genes was selected by identifying the top 5000 most variable 

genes in each sample separately using the FindVariableFeatures() function in Seurat, then taking the 

intersect across samples, resulting in a final set of 937 highly-variable genes. Expression levels for these 
highly-variable genes were centered and scaled within each sample. Then, batch effects correction was 

performed across samples with MNN49, implemented with the mnnCorrect() function in the scran R 

package. MNN normalization is performed sequentially across samples and lacks a built-in function to 
optimize sample order. Therefore, 17 MNN iterations were performed using different sample ordering, and 

the best ordering was selected based on cell clustering results. In the final ordering, samples were in the 

order BBY2, BCR1, BCR2, BCR3, BCR4, BCR5 and BCR6. 

 
Cell type clustering and labeling. MNN-adjusted counts from 5,429 cells passing the initial QC were used 

for clustering, using the RunPCA(), FindNeighbors(), and FindClusters() functions in Seurat v3.0. The 

clusters were visualized using the RunTSNE() function in Seurat. npcs=10 principal components, k=30 
shared nearest neighbors, and a Louvain clustering resolution of 0.4 were empirically determined to produce 

optimal clustering. Marker genes identified in each cluster using the FindAllMarkers() function were then 

used to assign a cell type label to each molecularly-defined cluster based on known marker genes for striatal 
cell types (dropviz.org). Three clusters were dropped from further analysis because they included cells from 

only one sample, were marked by high expression of mitochondrial transcripts, or expressed markers from 

mixed cell types, resulting in the final set of 4,524 cells. 
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Identifying subtypes of medium spiny neurons presented a particular challenge, since the small 
number of markers distinguishing D1 vs. D2 MSNs were dwarved by the massive effects of HD mutations 

in these cells. Therefore, we performed sub-clustering of MSNs using 36 marker genes with >8-fold 

difference in expression between D1 vs. D2 MSNs in the DropViz atlas25. Using the normalized counts 

from these 36 genes, we computed pairwise Spearman rank correlations among all canonical MSNs, and 
we performed average-distance hierarchical clustering using 1 3 Spearman9s rho as a distance metric, 

revealing two major groups of cells with high expression of markers for D1 vs. D2 MSNs, respectively. 87 

MSNs were in smaller clusters that lacked high expression for either subtype and were discarded. 
Similarly, clusters of reactive vs. non-reactive astrocytes were derived by sub-clustering with 87 

markers of reactive and non-reactive subtypes28. In this case, sub-clustering was performed in Seurat v3, 

using the top 5 principal components and a Louvain modularity resolution of 0.5. 
 

Smoothing of read counts. For the purpose of assessing gene expression differences between genotypes, 

and subsequent analyses of pseudotime trajectories and gene co-expression clustering, we smoothed read 

counts to reduce dropout effects and improve gene-gene correlation structure. Smoothing was performed 
with knn-smoothing30, using k=15 neighbors and 30 PCs. Smoothed counts were normalized using the 

Seurat NormalizeData() function for downstream analyses. 

 
Celltype-specific differentially expressed genes. We identified celltype-specific differentially expressed 

genes (DEGs) in HttQ175/+ vs. wildtype mice by three methods. In our primary analysis, we compared cells 

of each genotype using Wilcoxon Rank Sum tests implemented with the Seurat FindMarkers() function, 
testing all genes with non-zero imputed counts in at least 10% of the cells from at least one of the two 

genotypes. This analysis treats the cell (not the mouse) as the primary unit of analysis. We believe this 

choice is justified, as both the neurodegenerative processes in MSNs and the activation of inflammatory 

states in glial cells are thought to occur in a relatively cell-autonomous fashion, resulting in a mosaic of cell 
states within each mouse that would not be captured in an analysis treating the mouse as the primary unit 

of analysis. To confirm that DEGs detected by our primary approach were robust, we also conducted a 

secondary analysis in which the Seurat FindMarkers() function was applied to non-smoothed read counts.  
 

Trajectory analysis. We used Seurat v3 to perform principal components analysis on the centered and 

scaled expression levels of the 5,000 most variable genes within each cell type. We eliminated any principal 

component for which the strongest loadings were dominanted by mitochondrial genes, as these vectors 
typically correspond to technical variation among cells rather than biological signal. Using the embeddings 

of the top five remaining principal components, we then identified a non-branching pseudotime trajectory 

with the slingshot() function in the Slingshot v1.4.0 R package26. We tested for associations of 
slingPseudoTime and genotype using the t.test() function in R. 

 

Gene set enrichment analysis. DEGs in each cell type and genes in each gene co-expression module were 
tested for enrichment in curated gene sets from four sources. First, we tested for enrichments in 2,368 

curated gene sets from the Huntington9s Disease molecular Signatures Database 

(https://www.hdinhd.org/2018/05/22/hdsigdb/), including lists of DEGs and WGCNA modules from RNA-
seq experiments, as well as known marker genes for striatal cell types. Second, we tested for enrichments 

in 12,177 Gene Ontology terms from the org.Mm.egGO2ALLEGS object in the org.Mm.eg.db R package. 

Third, we tested for enrichments in transcription factor regulons from ChIP-seq experiments in ChEA33 

(https://amp.pharm.mssm.edu/Enrichr/geneSetLibrary?mode=text&libraryName=ChEA_2016). Fourth, 
we tested for enrichments with evolutionarily conserved sequence motifs from RcisTarget32.  For the first 

three sources, enrichments among down- and up-regulated genes were tested separately using the 

geneSetTest() function in the limma R package with ranks.only = TRUE and type = <t= and using genes 
ranked from most strongly down-regulated to most strongly up-regulated based on the -log10(p-value) 
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multiplied by the sign of the log2(fold change). Motif analysis was performed with RcisTarget using default 
parameters. 

 

Statistical overlap of celltype-specific differentially expressed genes across cell types. Statistical 

overlap among ranked lists of down- and up-regulated genes in each pair of cell types was evaluated using 

rank-rank hypergeometric overlap (RRHO), implemented using the RRHO() function from the RRHO R 

package50. The RRHO algorithm steps through two gene lists ranked by the degree of differential expression 

in two independent experiments, successively measuring the statistical significance of the number of 

overlapping genes. Each comparisoin between cell types used the set of genes expressed with a non-zero 

read count in at least ten percent of the cells form both cell types, with the genes ranked from most strongly 

down-regualted to most strongly up-regulated within each cell type based on the -log10(p-value) multiplied 

by the sign of the log2(fold change). We used a step size such that each gene list was divided into 100 

equally sized bins. 

Gene co-expression modules. Gene-gene correlation structure in single-nucleus RNA-seq is notoriously 

weak due to the sparsity of the data. Therefore, for network analyses we used smoothed counts, as described 

above, to impute a more complete representation of gene expression in each cell. We selected 8,971 genes 
with non-zero counts in at least 10% of the cells from at least one cell type. We computed Pearson 

correlations among all pairs of genes. We then applied k-means clustering to the resulting gene co-

expression matrix to derive gene modules. k=150 was manually determined to capture some of the finer 

structure in the network without over-splitting. Each module9s eigengene -- the first principal component 3 
was computed with the moduleEigengenes() function in the WGCNA R package. We dropped modules for 

which the eigengene explained less than 10% of the variance, and we merged modules whose eigengenes 

were >85% correlated. These procedures resulted in a final set of 77 modules spanning 5,874 genes. 
 

Gene regulatory network. A gene regulatory network model describing predicted interactions between 

TFs and their potential target genes in the mouse striatum was derived using GENIE331. The GENIE3 

algorithm performs network reconstruction by using a random forest regression model to select sets of TFs 

whose combined expression predicts the expression of each gene. We started with the smoothed counts of 

8,971 genes with non-zero counts in at least 10% of the cells from at least one cell type, as for gene co-

expression networks above. We downloaded a curated list of all 1639 known and likely human TFs from 

http://humantfs.ccbr.utoronto.ca/download/v_1.01/TFs_Ensembl_v_1.01.txt. We identified 1,373 mouse 

orthologs of these TFs using the biomaRt R package (accessed April 21, 2020). We then intersected this 

list of putative mouse TFs with the 8,971 striatally-expressed genes from our dataset, producing a list of of 

589 striatally-expressed TFs. GENIE3 was run using default parameters as implemented in the GENIE3 

BioConductor package v1.1. The algorithm produces a very long list of potential TF-gene interactions 

ranked by the randomForest importance score, and many of these potential interactions are very weak. This 

importance score is agnostic to whether the TF-gene interaction is positive (<activating=) or negative 

(<inhibitory=), but it has been suggested that inhibitory interactions are less reliable. We therefore retained 

only the predicted interactions between pairs of genes whose expression were positively correlated 

(Pearson9s r > 0), and we trimmed this list to the top remaining 180,000 TF-gene interactions with the 

strongest importance scores, corresponding to a mean in-degree of ~20 TFs per gene. 

Overlap with Polycomb Repressive Complex 2 (PRC2)-related datasets. We analyzed PRC2 target 

genes derived from nine ChIP-seq datasets in four cell types to test for over-representation in gene co-

expression modules. When available, we used published target gene lists. Otherwise, we downloaded 

aligned sequence reads, performed peak-calling with MACS v2.151, and annotated peaks to genes with 

transcription start sites within +/- 5 kb. The nine datasets are as follows: (i) ChIP-seq of EZH2 in mouse 

embryonic stem cells41, obtained from ChEA33; (ii) ChIP-seq of SUZ12 in mouse embryonic stem cells41, 
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obtained from ChEA33; (iii) ChIP-seq of H3K27me3 in mouse embryonic stem cells, generated by Bing 

Ren9s lab (UCSD) for the ENCODE consortium (ENCFF055QNY); (iv) ChIP-seq of H3K27me3 in mouse 

MSNs39, obtained from HDSigDB; (v) ChIP-seq of H3K27me3 in bulk striatal tissue from four-month-old 

HttQ111/+ and Htt+/+ mice38; (vi) ChIP-seq of EZH2 in human astrocytes, generated by Bradley Bernstein9s 

lab for the ENCODE consortium (reproducible peaks from ENCFF254DFD and ENCFF831JFC); (vii) 

ChIP-seq of H3K27me3 in human astrocytes, generated by Bradley Bernstein9s lab for the ENCODE 

consortium (ENCFF315BVX); (viii) ChIP-seq of EZH2 in mouse corpus callosum (enriched for 

oligodendrocytes; Table S3 from 27); (ix) ChIP-seq of EZH2 in mouse corpus callosum (enriched for 

oligodendrocytes; Table S3 from 27). We tested for over-representation in gene co-expression modules using 

Fisher9s exact tests. We also analyzed published microarray gene expression profiles (Affymetrix 430_2 

array) of MSNs from 6-week-old, 3-month-old, and 6-month-old Ezh1-/-; Ezh2fl/fl; Camk2a-cre vs. control 

mice, in which PRC2 had been conditionally silenced in adult MSNs39. Normalized data were downloaded 

from the Gene Expression Omnibus (GSE84243). We fit a linear model using the lmFit() function in the 

limma R package, followed by post-hoc contrasts to estimate the effect of genotype at each time point, 

using contrasts.fit() and eBayes(). Over-representation analysis of gene co-expression modules among up- 

and down-regulated genes was performed with the geneSetTest() function. 

 

FIGURE LEGENDS 

Figure 1. Identification of cell types in single-nucleus RNA-seq of 4,524 cells from the striatum of 14-

15-month-old Htt
Q175/+ vs. Htt

+/+ mice. a. tSNE plot of major cell types. B. Dot plot of top marker genes 

for all cell types. c. Dot plot showing marker genes for D1 vs. D2 MSN sub-types. d. Proportion of cells 

from HttQ175/+ vs. Htt+/+ mice in each cell type. Fisher9s exact test: *** p < 0.001; ** p < 0.01. 

Figure 2. Characterization of differentially expressed genes in nine cell types from the striatum of 

14-15-month-old Htt
Q175/+ vs. Htt

+/+ mice. a. Counts of differentially expressed genes in each cell type (red 

= up-regulated; blue = down-regulated; saturated color, FDR < 0.05; desaturated color, p < 0.01. b. 

Statistical overlap of up- and down-regulated genes with published RNA-seq of bulk striatal tissue from 

ten-month-old HttQ175/+ vs. HttG20/+ mice and from HttQ140/+ vs. HttG20/+ mice. c. Scatterplots and rank-rank 

hypergeometric overlap heatmaps indicating shared and unique gene expression changes in selected pairs 

of cell types. d. Slingshot pseudotime trajectory analysis in MSN subtypes, astrocytes, oligodendroocytes, 

and SST interneurons. e. Statistical overlap of up- and down-regulated genes among pairs of cell types. 

Figure 3. Identification of 77 gene co-expression modules in mouse striatum. A. Average-linkage 

hierarchical clustering of modules based on their first principal components (module eigengenes). B. 

Mean expression level of each module eigengine in each cell type. C. log2(fold change) of module 

eigengenes in cells from HttQ175/+ vs. Htt+/+ mice. 

Figure 4. mHTT-associated cell type identity-related gene co-expression modules. a. Graphs of the top 

100 gene-gene interactions within each module. Node size corresponds to eigencentrality. Node color 

corresponds to the log2(fold change) in expression between cells from HttQ175/+ vs. Htt+/+ mice in the major 

cell type for that cluster (blue = down-regulated; red = up-regulated). b. Violin plots of module eigengenes. 

c. Over-representation of the predicted target genes from GENIE3 for the hub transcription factors in each 

module for up- and down-regulated genes in each cell type. d. Z-scores for cell type-specific up- or down-

regulation of the top 20 genes in each regulon shown in panel c.  

Figure 5. Regulation of HD-associated cell type identity modules by the Polycomb Repressive 

Complex 2 (PRC2). a. Cell type-specific expression of module eigengenes for ten gene co-expression 
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modules robustly enriched for PRC2 target genes. b. log2(fold change) of module eigengenes in cells from 

HttQ175/+ vs. Htt+/+ mice; <+= and <-< indicate statistically significant up- or down-regulation of eigengene 

expression in each cell types (adjusted p-value < 0.01. c. Over-representation of the genes in each module 

for PRC2 target genes defined by nine ChIP-seq experiments in embryonic stem cells (ESCs), MSNs, 

astrocytes (AS), and oligodendrocytes (OL). d. Over-representation of the genes in each module for up- 

and down-regulated genes in MSNs from 6-week-old, 3-month-old, and 6-month-old PRC2-silenced vs. 

control mice. 
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SUPPLEMENTARY INFORMATION 

Figure S1. Expression of cell type marker genes. From left to right and top to bottom: Ppp1r1b (medium 
spiny neurons); Cldn10 (astrocytes); Gjb1 (oligodendrocytes); Kit (Pvalb+ interneurons); Chat (Chat+ 

interneurons); Nos1 (Sst+ interneurons); Cldn5 (endothelial cells); C1qa (microglia); Pdgfra 

(polydendrocytes). 

Figure S2. Decreased proportion of D2 MSNs in Htt
Q175/+ vs. Htt

+/+ mice is robust to parameters. Left: 

Proportion of cells identified as D2 MSNs in raw data (prior to QC) based on expression of Adora2a. 
Middle: Proportion of cells identified as D2 MSNs in QC-ed based on expression of Adora2a. Right: 

Proportion of cells identified as D2 MSNs in QC-ed based on expression of 36 marker genes (duplicated 

from Fig. 1d). 

Figure S3. Characterization of reactive astrocytes in the striatum of Htt
Q175/+ vs. Htt

+/+ mice. Reactive 
astrocytes were identified by sub-clustering astrocytes on the expression of 87 markers of reactive 

populations. a-d. Expression of marker genes for all astrocytes (a, Slc1a3), pan-reactive astrocytes (b, 

Gfap), A1 reactive astrocytes (c, H2-D1), and A2 reactive astrocytes (d, Tm4sf1). e. Assignments of 

astrocyte sub-clusters as reactive vs. non-reactive based on known markers. f. Distribution of cells from 
HttQ175/+ vs. Htt+/+ mice across astrocyte sub-clusters. g. Proportion of reactive vs. non-reactive astrocytes 

in HttQ175/+ vs. Htt+/+ mice. h. Violin plots showing the relationship between the reactive state and genotype 

of astrocytes and Slingshot pseudotime. 

Figure S4. Smoothing rescues gene-gene correlation structure among markers of D1 vs. D2 MSNs. a. 
Pearson correlations among 36 marker genes for D1 vs. D2 MSNs in normalized, non-smoothed counts 

from the 4,524 cells in our dataset. b. Pearson correlations among the same 36 marker genes using smoothed 

counts. The 36 marker genes are the same genes shown in Fig. 1c and are ranked in order of subtype-

specificity based on data from the DropViz atlas. 

Table S1. Cell type marker genes and differentially expressed genes in nine striatal cell types from 

14-15-month-old Htt
Q175/+ vs. Htt

+/+ mice. Tab 1. Marker genes in each cell type. Tab 2. DEGs in each cell 

type based on smoothed counts. Tab 3. DEGs in each cell type based on non-smoothed counts. (Excel file) 

Table S2. Gene set enrichment analysis of celltype-specific differentially expressed genes. Enrichments 

in gene sets from Gene Ontology (tab 1) and HDSigDB (tab 2), and for the predicted target genes of each 

striatally expressed transcription factor in our GENIE3 gene regulatory network model (tab 3). (Excel file) 

Table S3. Gene membership in 77 gene co-expression modules. (Excel file) 

Table S4. Gene set enrichment analysis of of gene co-expression modules. Enrichments were calculated 

in the following gene sets: Tab 1. Gene Ontology terms. Tab 2. HDSigDB terms. Tab 3. WGCNA modules 

from Langfelder et al. 2016 (subset of HDSigDB). Tab 4. Predicted target genes of TFs based on ChIP-seq 

experiments in ChEA. Tab 5. Predicted target genes of striatally expressed TFs in our GENIE3 gene 

regulatory network model. Tab 6. Evolutionarily conserved cis-motifs from RcisTarget. (Excel file) 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure S1 
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Figure S2 
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Figure S3 
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Figure S4 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 9, 2020. ; https://doi.org/10.1101/2020.07.08.192880doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.08.192880
http://creativecommons.org/licenses/by-nc-nd/4.0/

