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ABSTRACT

Huntington’s disease (HD) is a dominantly inherited neurodegenerative disorder
caused by a trinucleotide expansion in exon 1 of the huntingtin (Htf) gene. Cell death in HD
occurs primarily in striatal medium spiny neurons (MSNs), but the involvement of specific
MSN subtypes and of other striatal cell types remains poorly understood. To gain insight into
cell type-specific disease processes, we studied the nuclear transcriptomes of 4,524 cells from
the striatum of a genetically precise knock-in mouse model of the HD mutation, Ht°'”"*, and
from wildtype controls. We used 14-15-month-old mice, a time point roughly equivalent to an
early stage of symptomatic human disease. Cell type distributions indicated selective loss of
D2 MSNs and increased microglia in aged Htt°'”*" mice. Thousands of differentially expressed
genes were distributed across most striatal cell types, including transcriptional changes in glial
populations that are not apparent from RNA-seq of bulk tissue. Reconstruction of cell type-
specific transcriptional networks revealed a striking pattern of bidirectional dysregulation for
many cell type-specific genes. Typically, these genes were repressed in their primary cell type,
yet de-repressed in other striatal cell types. Integration with existing epigenomic and
transcriptomic data suggest that partial loss-of-function of the Polycomb Repressive Complex
2 (PRC2) may underlie many of these transcriptional changes, leading to deficits in the
maintenance of cell identity across virtually all cell types in the adult striatum.
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INTRODUCTION

Huntington’s disease (HD) is a fatal neurodegenerative disorder caused by dominant inheritance of
trinucleotide repeat expansion mutations in the huntingtin (HTT) gene'. Clinical symptoms include deficits
in motor control and cognition, as well as psychiatric symptoms. Although the causal mutation has been
known for >25 years, there are no existing treatments that dramatically alter disease progression. In the
absence of treatment, symptoms progressively worsen, leading inevitably to death 10-15 years after the
symptomatic age at onset.

An enduring mystery in HD biology is why Huntington’s disease mutations lead to selective
neurodegeneration in specific subtypes of neurons, while other nearby cells remain largely spared, despite
the fact that the HTT gene is robustly expressed in most or all cell types. HD progression is linked to the
selective cell death of medium spiny neurons (MSNs) in the striatum®. Among MSNs, Drd2-expressing
MSNss that project to the lateral segment of the globus pallidus (termed ‘D2 MSNs’) are thought to be more
vulnerable than Drd-expressing MSNs that project to the entopenduncular nucleus and the substantia nigra
pars reticulata (termed ‘D1 MSNs’)®. Striatal interneurons are less vulnerable than MSNs but may undergo
disease-related changes that remain little studied®’. Neurodegeneration in HD is accompanied by
neuroinflammatory processes. Microglial activation occurs prior to the clinical manifestation of the
disease®. Reactive astrogliosis occurs relatively late in the natural progression of HD pathophysiology but
may still contribute to neurotoxicity”®. Changes in forebrain white matter and striatal oligodendrocytes
begin early in disease progression, including deficits in myelinated axon fibers and increased
oligodendrocyte cell number”'®. However, the regulation and impact of these inflammatory processes
across glial and neuronal cell types remains poorly understood.

Transcriptional changes are among the earliest phenotypes in cells and tissues expressing mHTT
and are highly reproducible in human HD'"**. MSN-specific genes and components of synapses are down-
regulated, while up-regulated genes include signatures of neuroinflammation”'*. Notably, there is evidence
that some transcriptional changes are directly related to functions of HTT in the nucleus, including
interactions of both wildtype and mutant HTT with transcriptional regulatory proteins'>'’. However,
previous transcriptomic studies using bulk tissue failed to illuminate the cell type-specificity of many
disease processes.

Single-cell transcriptomics has emerged as a scalable technology enabling an unprecedented view
of cell types and cell states in the mammalian brain. To date, only a few published studies have applied this
approach to any neurodegenerative disease'®**. Here, we analyzed the nuclear transcriptomes of 4,524
striatal cells from a genetically precise knock-in mouse model of a juvenile-onset HD mutation, H#<'7".
Our analyses of these data reveal numerous insights into cell type-specific disease processes.

RESULTS

Single-nucleus RNA-seq of 14-15 month-old Htt?'”>" HD knock-in mice and wildtype controls.

We generated single-nucleus RNA-seq from the striatum of four male 14-15 month-old H2'”"*
mice and four male wildtype controls using the 10x Genomics Chromium system. Htt'7”* is a widely used
genetically precise mouse model for a mutation associated with juvenile-onset HD in which a humanized
HTT exon 1 fragment with 140 CAG repeats was knocked into the endogenous Htt locus and the repeats
spontaneously expanded to approximately 175 CAG repeats, which was later stabilized at ~190 repeats.
These mice have normal lifespan, with progressive behavioral, neuroanatomical, and transcriptomic
deficits'*****, At 14-15-months-old, striatal atrophy is detectable, but the presence of neuronal cell death
has been controversial. This dataset represents, to our knowledge, the first single-nucleus RNA-seq study
utilizing a genetically precise mouse model of the HD mutation. In addition, the mice in our study are
considerably older than mice studied in previously published datasets from knock-in mouse models of the
HD mutation, providing insights into a timepoint roughly equivalent to early manifest disease that has not
been adequately modeled in previous studies utilizing these mouse models.
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Following QC and normalization, we analyzed 4,524 high-quality cells, of which 3,210 were
derived from Htt?'”" mice and 1,314 from wildtype mice (Methods; Fig. S1). Louvain clustering and
annotation with known marker genes® revealed well-defined clusters corresponding to each of the major
cell populations in the striatum, including 3,003 MSNs, 288 Sst+ interneurons, 120 Pvalb+ interneurons,
73 Chat+ interneurons, 468 oligodendrocytes, 300 astrocytes, 112 endothelial cells, 82 microglia, and 78
polydendrocytes (Fig. 1a,b; Fig. S1; Table S1). Sub-clustering of MSNs using 36 sub-type marker genes
with >8-fold differences in expression in prior scRNAseq of mouse striatum® revealed 1,809 D1 MSNs
and 941 D2 MSNs (Fig. 1c), as well as 166 MSNs whose expression profiles match the recently described
“eccentric” subtype”’. We have created a web portal for visualization and analysis of these data at the Gene
Expression Analysis Resource (https://umgear.org/p?1=1d76bf3e).

While most cell types were represented at similar proportions in Ht? vs. wildtype mice, several
differences were noted (Fig. 1d). The proportion of cells identified as D2 MSNs was ~30% lower in Ht2' 7"
mice (odds ratio = 0.69; p = 2.3e-6). This decreased proportion of D2 MSNs was robust across a range of
QC and clustering parameters (Fig. S2). These data suggest that D2 but not DI MSNs may die in the
striatum of HTT?”"" mice aged over one year. These results are consistent with the progression of MSN
cell death in human HD?. However, previous studies had failed to detect cell death at earlier time points in
knock-in mouse models of the HD mutation, a source of concern from a disease modeling perspective. We
also observed significant increases (p < 0.01) in the proportion of microglia and Chat+ interneurons. The
former may indicate microglial proliferation, while the significance of the latter is unknown.

Q175/+

Cell type-specific gene expression changes in HD knock-in mice

Next, we studied celltype-specific gene expression changes in Htt?'”"* vs. wildtype mice. We
identified 13,897 celltype-specific gene expression changes, involving 8,124 distinct genes (differentially
expressed genes, DEGs; False Discovery Rate [FDR] < 0.05; Fig. 2a; Table S1). In our primary analysis,
we detected DEGs by applying Wilcoxon rank-sum tests to smoothed read counts. A second approach,
applying Wilcoxon signed-rank tests to non-smoothed read counts yielded a similar rank-ordering of DEGs
but with reduced statistical power. Microglia and Chat+ interneurons were excluded from this analysis due
to insufficient cell numbers.

We found 5,181, 3,666, and 685 DEGs in D1, D2, and eccentric MSNs, respectively. Comparison
of these celltype-specific DEGs to previously described lists of DEGs from RNA-seq of bulk striatal tissue
from ten-month-old H#2'”"* mice vs. Htt%’”" controls'? indicated that both up- and down-regulated DEGs
in all MSN subtypes were strongly enriched for known DEGs from bulk tissue RNA-seq (limma
geneSetTest: p < 1e-100 for DEGs in D1 and D2 MSNSs; p < 1e-30 in eccentric MSNs; Fig. 2b; Table S3).
Genes with the lowest p-values included PdelOa, Rgs9, Wnt8b, Trankl, Scn4b, Raplgap, Pdelb, Ptpn),
Adcy5, Atp2bl, and Arpp21, all of which are also among the strongest and most-consistently observed
DEGs from previous studies in bulk tissue. Down-regulated genes in MSNs were enriched for synaptic
functions (e.g., “neuron spine”, p-values = 7.95e-7, 1.95¢-8, and 8.1e-4 in D1, D2, and eccentric MSNs,
respectively; Table S3). Up-regulated genes in MSNs were enriched for genes localized to the “nucleus”
(p=4.1e-11, 2.0e-10, and 0.014 in D1, D2, and eccentric MSNs, respectively), especially genes related to
“histone modification” (p = 3.8e-4, 8.8e-4, and 3.1e-3 in D1, D2, and eccentric MSNs, respectively).
Comparing the fold changes of DEGs in D1, D2, and eccentric MSNs revealed that with very few
exceptions these fold changes were nearly identical in magnitude and direction (Fig. 2c, left; Pearson
correlation comparing the log2(fold changes) of the top 10% of genes ranked by p-value in D1 vs. D2
MSNs, r=0.97, p << 1e=308; D1 vs. eccentric MSNs, r = 0.77, p = 3.0e-242). The slope of the regression
line is ~1 in all of these comparisons among MSN subtypes. Down-sampling analyses suggested that the
somewhat weaker correlation coefficient in D1 vs. eccentric MSNs was primarily due to the smaller
eccentric MSN sample size and is not biologically meaningful. Pseudotime trajectory analysis with
Slingshot* indicated that nearly all MSNs in these 14-15-month-old Ht%'”"* mice exist in a disease-
specific transcriptional state that is never observed in wildtype mice (Fig 2d). Thus, single-nucleus RNA-
seq revealed strong transcriptional effects of the HD mutation in all three MSN subtypes, including
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eccentric MSNs, yet the enhanced vulnerability of D2 vs. D1 MSNs is not reflected in the magnitude of
transcriptional effects, at least not in the current dataset.

We found 2,351 DEGs in oligodendrocytes from Htt?'7""* vs. Htt"*mice. Neither up-nor down-
regulated DEGs in oligodendrocytes strongly overlapped known DEGs from bulk tissue RNA-seq of 10-
month-old Ht?'™* vs. Htt?”" mice (p = 0.01, 0.06, respectively). By contrast, our DEGs in
oligodendrocytes strongly overlapped DEGs from RNA-seq of sorted oligodendrocytes in the striatum of
BACHD mice -- a transgenic mouse model of the HD mutation -- compared to wildtype controls?’ (p =
6.6e-19, 1.8e-13, for down- and up-regulated DEGs, respectively). Down-regulated DEGs in
oligodendrocytes were strongly enriched for oligodendrocyte-specific functions such as “myelin sheath” (p
=6.75¢e-14), as well as more basic cellular processes such as “structural constituent of ribosome” (p = 8.64¢-
12) and “mitochondrion” (p = 3.16e-10). Up-regulated DEGs were enriched for several categories of genes
that are typically associated with neurons, including “ion channel complex” (p = 2.0e-8) and “synaptic
membrane” (p = 1.2e-6). Trajectory analysis of oligodendrocytes suggested that oligodendrocytes exist on
a continuum from normal to disease-associated states; i.e., in contrast to the discrete disease-associated
transcriptional states of MSNs, the disease-associated transcriptional states in oligodendrocytes are also
present in Htt"" mice, but at a lower frequency (Fig. 2d). In summary, we identified thousands of
reproducible DEGs in oligodendrocytes that are obscured in bulk tissue RNA-seq.

We found 1,987 DEGs in astrocytes from Ht?'””" vs. Htt""mice. The up-regulated genes in
astrocytes overlapped known up-regulated DEGs from bulk tissue RNA-seq of 10-month-old Ht2'7* vs.
Htt??"" mice (p = 2.3e-12), whereas down-regulated gene sets in astrocytes did not significantly overlap
these known DEGs (p > 0.05). Prior work has revealed neurotoxic reactive astrocytes in post-mortem
striatal brain tissue from HD patients, but their presence in mouse models of the HD mutation is
controversial”®. To identify reactive astrocytes in our dataset, we sub-clustered astrocytes on the basis of
87 genes previously shown to be induced in reactive astrocytes™, revealing a cluster of 134 reactive
astrocytes, enriched for pan-reactive markers such as Gfap (p = 3.6e-14) and Vim (p = 1.2e-9), as well as
two clusters of non-reactive astrocytes that do not express these markers (Fig. S2). While reactive astrocytes
were present in both genotypes, they were significantly more abundant in H#2'”*"* mice (Fisher's exact test:
OR = 2.3; p = 0.001). Many reactive astrocytes expressed markers of the 'A1' neurotoxic sub-type (e.g.,
H2-DI,p=1.2e-8), whereas very few cells expressed markers of ‘A2’ neuroprotective reactive astrocytes.
While these results support the presence of neurotoxic reactive astrocytes in the striatum of Ht%'””* mice
aged >1 year, several analyses suggest that prototypical reactive astrogliosis explains only a subset of the
HD-related transcriptional changes in astrocytes. Trajectory analyses showed a strong shift in astrocyte cell
states in H#?'7"" vs. Htt""mice (Fig. 2d), but this trajectory was only weakly correlated with reactive vs.
non-reactive subtypes (Fig. S3). Instead, up-regulated DEGs in astrocytes were most strongly enriched for
the GO term “synapse” (p = 8.1e-32), while down-regulated DEGs were most strongly enriched for GO
terms related to transcriptional regulation (e.g., “negative regulation of transcription by RNA polymerase
II”, p = 2.7e-9). Thus, there are profound changes in the transcriptomes of astrocytes from Htt?'7"* vs.
Htt""mice, only some of which reflect known neuroinflammatory processes.

At an FDR < 0.05, we detected fewer than ten DEGs in Sst+ and Pvalb+ interneurons, endothelial
cells, and polydendrocytes (Fig. 2a). Moreover, trajectory analysis indicated that the principal curve in these
cell types was not correlated with genotype (p > 0.05). We note that although these cell types are relatively
rare, we were able to detect hundreds of DEGs in comparably rare eccentric MSNs. Therefore, our data
indicate that these cell types are less vulnerable to the transcriptional effects of the HD mutation.

Comparisons of gene expression changes across cell types detected a marked difference in cell
type-specificity of down-regulated vs. up-regulated genes. Down-regulated genes were largely non-
overlapping across cell types, with the only strong overlaps occurring among MSN subtypes (Fig. 2e).
Many of these down-regulated DEGs were ‘cell identity’ genes that are expressed specifically in that same
cell type. That is, top genes down-regulated in MSNs included MSN marker genes such as Pppirib,
Pdel0a, and Rgs9. Genes down-regulated in astrocytes were enriched for astrocyte marker genes (astrocyte
marker genes (p-value = 1.11e-212), including Hes3, Gjb6, and Ddhdl. And genes down-regulated in
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oligodendrocytes were enriched for oligodendrocyte-specific genes (p-value = 3.32e-155), including Mog,
Gjbl, and Cldnl 1.

By contrast, many up-regulated DEGs were shared across cell types. with statistically significant
overlap among up-regulated DEGs in D1 MSNs, D2 MSNs, eccentric MSNs, astrocytes, oligodendrocytes,
endothelial cells, polydendrocytes, and Ssz+ interneurons (Fig. 2¢). 30 genes were up-regulated (FDR <
0.05) in five distinct cell types. These included inflammation-related genes such as colony stimulating
factor 2 receptor subunit alpha (Csf2ra), histocompatibility 2, D region locus 1 (H2-D1), and myocardial
infarction associated transcript (Miat), suggesting that some shared changes are due to the broadly acting
effects of pro-inflammatory molecules such as cytokines. However, broadly up-regulated genes also
included genes that are not typically associated with inflammation, including synaptic genes like the
GABAA receptor alpha 1 subunit (Gabral) and the voltage-gated sodium channel alpha 9 subunit (Scn9a).
Thus, up-regulation of certain transcripts across multiple striatal cell types is a prominent feature of gene
expression changes in Ht?'" vs. Htt""'mice, involving both neuroinflammation-related and non-
neuroinflammation-related genes.

Network analyses reveal principles of transcriptional dysregulation

We reconstructed and analyzed gene co-expression networks to gain deeper insight into the
processes driving transcriptional dysregulation within and across cell types. Gene co-expression networks
are widely employed in RNA-seq with bulk tissue, but standard methods such as WGCNA do not work
well with scRNAseq, as the sparseness of the data masks gene-gene correlation structure®”. To overcome
this issue, we used knn-smoothing®® to impute read counts across cells (k=15, nPCs = 30). We confirmed
that this approach produced strong correlations among known markers of DI MSNs and among known
markers of D2 MSNs, without inducing spurious correlations among markers across subtypes (Fig. S4).
We computed Pearson correlations among 8,971 genes for which there were non-zero counts in at least
10% of the cells from at least one cell type prior to imputation. We then applied k-means clustering (k=150)
to the resulting gene co-expression matrix to derive gene modules. We dropped modules for which the first
principal component (the module “eigengene”) explained less than 10% of the variance, and we merged
modules whose eigengenes were >85% correlated. This resulted in a final set of 77 modules spanning 5,874
genes (Table S3).

Four analyses support the relevance of these gene co-expression modules to gene regulation and
biology (Table S4). First, gene regulatory network reconstruction with GENIE3?' (using the smoothed
expression profiles from the same cells and genes) revealed TF-target gene lists that significantly
overlapped each of the 77 gene co-expression modules (FDR < 0.05), supporting the robustness of the
modules and predicting specific TFs as key regulators of their activity. Second, all 77 modules also
overlapped direct target genes of TFs inferred via motif analysis with RcisTarget*” (normalized enrichment
score >= 3.71) and/or ChIP-seq data from ChEA* (FDR < 0.05). Third, 75 of the 77 modules were enriched
for at least one Gene Ontology functional annotation (p < 0.001). Fourth, all 77 modules overlapped a
published gene co-expression module from bulk RNA-seq of striatal tissue in knock-in mouse models of
the HD mutation'?.

Notably, gene co-expression modules derived from single-nucleus RNA-seq appeared to have
greater fidelity to specific cell types than the published network derived from bulk RNA-seq. For instance,
genes from a large neuronally-enriched bulk RNA-seq gene co-expression module, “bulk M2”, previously
shown to be down-regulated in HD knock-in mice, were enriched in 13 distinct snRNA-seq modules (FDR
< 0.05; snRNA-seq modules M12, M50, M29, M101, M95, M86, M33, M46, M10, M70, M1, M76, and
M36), all of which were down-regulated in Htt?'”"* vs. Htt""* mice but with varying specificity across MSN
subtypes and in other striatal cells (Fig. 3). Similarly, a down-regulated non-neuronal bulk RNA-seq
module, “bulk M11”, overlapped five distinct snRNA-seq modules expressed specifically in astrocytes
(M11), oligodendrocytes (M13, M31), or endothelial cells (M43), and across all glial cell types (M32).
Thus, network reconstruction from single-cell RNA-seq provides complementary information about
celltype-specific gene regulation that is not readily apparent from standard RNA-seq.
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We characterized the activity of the 77 gene co-expression modules across cell types and genotypes
based on their eigengenes. 55 of the 77 modules were differentially expressed (adjusted p-value < 0.01,
>1.5-fold change; Fig. 3c) in at least one cell type. These included 13 differentially expressed modules in
D1 MSNs, 15 in D2 MSNSs, 9 in eccentric MSNs, 39 in astrocytes, and 27 oligodendrocytes. Consistent
with findings from DEGs (above), we identified numerous “cell identity” modules that were specifically
expressed in one cell type and down-regulated in cells of that same type from Ht?'”"* vs. Htt""" mice (Fig.
4, columns 1-4). We also identified modules that were broadly expressed and up-regulated across most or
all cell types (Fig. 4, columns 5-6). A striking and unexpected finding was that many of the cell identity
modules were also up-regulated in incorrect cell types. For instance, the MSN identity module M12 (Fig.
4, 1* column) was down-regulated in D1 (logFC = -0.74, p < 1e-308), D2 (logFC = -0.74, p = 7.0e-217)
and eccentric MSNs (logFC = -0.34, p = 3.7¢-6), but up-regulated in astrocytes (logFC = 0.56, p-value =
3.5e-7) and oligodendrocytes (logFC = 0.27, p-value = 7.4e-3). The astrocyte identity module M11 (Fig. 4,
2" column) was down-regulated in astrocytes (logFC = -1.06, p = 2.1e-11), but slightly up-regulated in
MSNs (logFC =0.02, 0.03; p=4.5e=10, 3.0e-4, in D1 and D2 subtypes, respectively). The oligodendrocyte
identity module M13 (Fig. 4, 3™ column) was down-regulated in oligodendrocytes (logFC = -0.96, p = 1.3e-
9), but up-regulated in MSNs (logFC = 0.083, 0.08; p = 1.4e-27, 5.5¢-18 in D1 and D2 subtypes) and
astrocytes (logFC = 0.26, p = 2.0e-4). Further examples include the parvalbumin interneuron identity
module M65 (Fig. 4; 4™ column) and the endothelial cell identity module M43, among others. Examining
the expression of individual genes from these modules confirmed that they follow these same bi-directional
patterns of transcriptional dysregulation (Fig. 4d). Notably, our gene regulatory network model predicted
that many of these cell identity modules are regulated by canonical cell type-specific hub transcription
factors, such as FOXP1 in M12, SOX9 in M11, MYRF in M13, and NKX2.1 (Fig. 4a,c), which are required
for the development of MSNSs, astrocytes, oligodendrocytes, and interneurons, respectively™*’.

We postulated that these bidirectional changes in gene expression may reflect aberrant repression
and de-repression of cell type identity genes in Htt?'”* mice. One mechanism by which this could occur
is through interactions of wildtype and mutant HTT with Polycomb Repressive Complex 2 (PRC2). PRC2
facilitates gene repression via trimethylation of histone H3 at lysine 27 (H3K27me3), particularly in the
promoters of genes involved in the development and maintenance of cell types. The HTT protein has
genotype-specific interactions with PRC2 in vitro'® and in vivo®®, and conditional knockout of PRC2 in
striatal MSNs causes gene expression changes that mimic the effects of HD mutations®’. To test whether
dysregulated cell type identity modules in H#?'””" mice involve PRC2, we assembled nine ChIP-seq
datasets profiling the genomic occupancy for components of the PRC2 complex (EZH2, SUZ12) or for
H3K27me3 in four disease-relevant cell types: medium spiny neurons’™*’ astrocytes®,
oligodendroocytes®’, and embryonic stem cells***!. We tested for over-representation of each of our 77 gene
co-expression modules among putative PRC2 target genes, defined by the presence of a PRC2-related ChIP-
seq peak +/- 5kb from a gene’s transcription start site. Ten modules were robustly over-represented for
these PRC2 target genes (adjusted p-values < 0.01 in at least four of the ChIP-seq datasets; Fig. SA). All of
these ten PRC2-regulated modules were expressed specifically in a single striatal cell type (Fig. Sa),
including modules specific to MSNs (M 12, M29, M50), all interneurons (M23, M52), Pvalb+ interneurons
(M65), Chat+ interneurons (M54), endothelial cells (M43), oligodendrocytes (M13), and astrocytes (M11).
All of these PRC2-regulated modules except for those specific to interneurons were significantly down-
regulated in that same cell type in Ht?'””" mice (adjusted p-value < 0.01), while the expression of
interneuron-specific modules trended downward in cells from Ht?’””" mice (Fig. 5b). All ten PRC2-
regulated modules (including interneuron-specific modules) were significantly up-regulated in at least one
other cell type in which these genes are not normally expressed. As expected, the dynamics of PRC2
occupancy across cell types was negatively correlated with cell type-specific gene expression (Fig. 5c).
PRC2 target genes in embryonic stem cells — in which genes for all differentiated cell types are repressed -
- were over-represented in all ten modules. PRC2 target genes in MSNs were over-represented in
interneuron- and glial-specific modules, but not in MSN-specific modules. PRC2 target genes in astrocytes
and oligodendrocytes were primarily enriched in neuron-specific modules, but not in glial-specific modules.


https://doi.org/10.1101/2020.07.08.192880
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.192880; this version posted July 9, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

To more directly establish the regulation of these modules by PRC2, we analyzed published RNA-
seq of MSNs from 6-week-old, 3-month-old, and 6-month-old EZH2/EZH1 double conditional knockout
mice, in which PRC2 was silenced specifically in adult MSNs*. PRC2 silencing in MSNs strongly
dysregulated all ten modules in the same direction observed in MSNs from Ht?'”"" vs. Htt""" mice; i.e.,
modules specific to other cell types were ectopically expressed in PRC2-silenced MSNs, while MSN-
specific modules were repressed (Fig. 5D). These analyses extend prior analyses of these data, which had
also noted the bidirectional overlap with genes dysregulated in HD -- our analysis indicates that a much
larger proportion of the transcriptional dysregulation in HD knock-in mice may be explained by altered
interactions with PRC2 than had previously been appreciated and suggests that these interactions occur in
multiple striatal cell types, not just MSNs. Thus, PRC2 regulates the cell type-specific expression patterns
of many gene co-expression modules that are bidirectionally dysregulated in H#?'”"" vs. Htt""" mice, and
our data support a model in which PRC2 loss-of-function due to the HD mutation causes both the de-
repression of these modules in inappropriate cell types, as well as their repression in their primary cell type.

DISCUSSION

Here, we have described a comprehensive analysis of single-nucleus RNA-seq of striatal cells from
a genetically precise knock-in mouse model of the HD mutation. Several novel findings merit particular
attention. First, we observe shifts in cellular abundance revealing selective loss of D2 MSNs and increased
microglia in aged Ht°"”""* mice. Second, we observe pronounced transcriptional dysregulation in nearly
all striatal cell types, which we have here defined and compared to genes identified with RNA-seq in bulk
striatal tissue. Third, analysis of HD-associated transcriptional networks across cell types reveals a striking
pattern of loss of cell identity genes, coupled with aberrant up-regulation of these genes in incorrect cell
types. Integration of these analyses with existing transcriptomic and epigenomic data suggest that altered
PRC2 function may underlie these bidirectional changes, leading to dysregulation of cell identity across
essentially all cell types in the adult striatum.

The early phases of disease progression in HD are dominated by hyperkinetic motor features,
notably chorea. This has been attributed to the selective atrophy and early loss of D2 MSNs, revealed by
the preferential loss of enkephalin-containing fibers across disease severity****. Our data support the higher
vulnerability of this cell type, as we observed a selective reduced proportion of D2 MSNs. Despite the
increased vulnerability of D2 MSNs, our data do not reveal significant differences among MSN subtypes
with respect to the genes that are differentially expressed nor in the magnitude of the fold changes. The lack
of quantifiable differences suggests that these responses to the mutation may be universal across all MSNs.
However, we cannot rule out differences in the transcriptional responses of MSN subtypes at earlier time
points, which should be examined in future studies.

The role of various types of glial cells in the progression of HD has been an important avenue of
research. Our data reveal novel aspects of transcriptional dysregulation in glial cell types, which rely on the
ability to examine transcriptional changes within specific cell types. Specifically, we find increased
numbers of microglia, consistent with previous reports that microgliosis begins in presymptomatic HD
mutation carriers’. In addition, we detected thousands of celltype-specific DEGs in glia -- especially
astrocytes and oligodendroocytes -- many of which are not readily apparent in RNA-seq of bulk striatal
tissue. Across glial cell types, we observed a spectrum of transcriptional states, comprising of nuclei in
similar transcriptional states as the wild type nuclei, nuclei in discernably different transcriptional states as
well as intermediate states between the two that may indicate a gradual shift in cell states and opens new
areas of study. This is distinct from our trajectory analysis of MSNs, in which we observed nearly complete
separation of wildtype and Ht?'”"" cellular states. Activation of neuroinflammatory genes is observed
across several cell types, including astrocytes, oligodendrocytes, and MSNs. However, the transcriptional
states of glia are distinct from classical neuroinflammatory states such as ‘A1’ or ‘A2’ reactive astrocytes,
suggesting disease-specific mechanisms.

Across cell types, a common feature of the transcriptional dysregulation we observe is aberrant
maintenance of cell fate commitment. Previous studies, based on RNA-seq of bulk striatal tissue, have
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suggested that loss of cell fate commitment may drive MSN vulnerability in HD'2. Reconstruction of gene
co-expression networks and gene regulatory networks from our data revealed numerous gene modules that
were dysregulated in HD knock-in mice. HD-associated gene modules that are expressed primarily in MSNs
overlapped strongly with disease-associated gene modules from bulk RNA-seq of HD and HD mouse
models, which is to be expected since MSNs represent a large percentage of cells in the striatum. However,
the improved resolution of our network models across cell types provides greater insight into this mode of
pathology. Notably, we confirm that aged MSNs expressing mHTT have reduced expression of MSN-
specific genes, e.g. the FOXP1 regulon in module M12. In addition, our findings reveal reduced cellular
identity genes in other cell types, including oligodendrocytes (MYRF regulon in module M13) and
astrocytes (SOX9 regulon in module 11). Here we observe, for the first time, that in addition to being
downregulated in their correct cell type, cell identity genes are also aberrantly up-regulated in other cell
types. This expands the model of cell fate commitment changes in HD, suggesting it may be a shared feature
of aged cells expressing mHTT, affecting virtually all cell types in the striatum.

Given the importance of PRC2 in establishing and maintaining cell fate and the known interactions
between HTT and PRC2, we compared our results to PRC2-related ChIP-seq and RNA-seq datasets. We
find that ten of our 77 gene co-expression modules are enriched with PRC2 target genes, all of which were
expressed and down-regulated in specific cell types. Our results suggest that PRC2 helps restrict expression
of these genes to their appropriate cell type in the adult striatum. Conditional knockout of PRC2 and the
presence of mHTT each results in highly similar patterns of bidirectional dysregulation across cell types.
Thus, many of the transcriptional effects of mHTT may be mediated by PRC2 loss-of-function. Consistent
with this idea, we recently described a global decrease of H3K27me3 levels in striatal tissue from HD
knock-in mice*®. Future studies should test whether restoring PRC2 function can rescue the phenotypic
consequences of HD mutations.

Our study has several limitations. The relatively small size of our dataset limited our ability to
characterize gene expression changes in rare cell types, including microglia. In addition, our analysis is
limited to a single mouse model at a single time point in a single tissue. There will be value in generating
additional single-nucleus data, including from earlier time points and other disease-affected brain regions,
and to expand these analyses to human cells and brain regions. In summary, our study demonstrates the
power of single-nucleus RNA-seq to reveal novel insights into celltype-specific mechanisms in HD, many
of which were unknown despite decades of studies on the HD mutation.

METHODS

Mice. Ht?'""* mice and wildtype littermate controls on the C57BL6/J background (B6J.129S1-
Htt"™"™%/190ChdiJ; JAX stock #029928) were bred and aged in the colony of the Carroll lab at Western
Washington University. The B6J.zQ175DN KI used in this study also lack a floxed neo cassette 1.3 kbp
upstream of exon 1 that is not known to have an effect on the phenotypic characteristics of the mice. Three
14-month-old and one 15-month-old male mice of each genotype were used to generate the primary dataset
described here. Mice were deeply anesthetized using a phenobarbital based euthanasia solution (Fatal Plus,
Henry Schein) and striatal tissue dissected on ice. Tissue was immediately flash frozen in liquid nitrogen
and stored at -80°C. Experiments were performed following NIH animal care guidelines and approved by
Western Washington University’s Institutional Animal Care and Use Committee under protocol 16-011.

Isolation of nuclei from frozen brain tissue. Nuclei were isolated from flash-frozen striatal tissue as
described in previous protocols**’, with slight modifications. A detergent-mechanical cell lysis method
was used, involving 3 major steps: lysis, homogenization and density barrier centrifugation. In a laminar
hood, a ~50 mg piece of frozen brain tissue was placed into a pre-frozen BioPulverizer (BioSpec) and
smashed to a thin frozen layer, then immediately transferred to lysis buffer (250mM Sucrose, 25mM KCl,
SmM MgCl,, 1uM DTT, 1X RNAse Inhibitor, 0.1% TritonX-100, 10mM Tricine Buffer, pH 8.0). Tissue
was disaggregated, flushing up and down, first using a 1 ml pipette tip, then with a 30G needle in a 3ml
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syringe. Homogenized tissue was diluted to 10ml with lysis buffer and filtered through a 70 micron filter.
Homogenate was spun at 1,000g for 8 min at 4°C. Pellet was then re-suspended and 500 pl of pellet
suspension was diluted with 500 pl 50% lodixanol Solution (50% lodixanol, 250mM Sucrose, 150 mM
KCl, 30mM MgCl,, 1X RNAse Inhibitor, 60mM Tricine Buffer, pH 8.0), filtered for second time with a 70
micron mesh and placed on top of 500 pl layer of 29% lodixanol Solution (29% lodixanol, 250mM Sucrose,
150 mM KCI, 30mM MgCl,, 1X RNAse Inhibitor, 60mM Tricine Buffer, pH 8.0). Density barrier was
centrifuged at 13,500g for 20 min at 4°C. The pellet was collected and washed with 10 ml of PBS, 2%
BSA, 1X RNAse Inhibitor, centrifuged at 1,000g for 8 min at 4°C, and finally suspended in 1 ml of PBS,
2% BSA, 1X RNAse Inhibitor and filtered using a 40 micron Flowmi cell strainer. Single nuclei
suspensions were counted and evaluated for integrity using Propidium lodide in a MoxiGo cytometer using
650 nm filter. Nuclei count was adjusted to 5000 nuclei/ml.

Library preparation and sequencing. 13,000 nuclei were loaded into each well of a Chromium
microfluidics controller (10X Genomics, Pleasanton, CA) using PBS + 2% BSA. Sequencing libraries were
generated using the Chromium Single Cell Gene Expression 3’ kit with Version 3 chemistries. Samples
were sequenced across two lanes of an Illumina HiSeq4000 sequencer to obtain 75 base pair paired-end
reads.

Cell QC and data pre-processing. Raw sequencing reads were processed to counts of unique molecular
identifiers (UMIs) in each droplet with cellranger v3.0.2 (10X Genomics). Artifacts from ambient RNA
were reduced with SoupX48, based on a uniform contamination fraction estimate of 10%. This
contamination estimate was derived using marker genes >20-fold enriched in each cell type from
DropViz®. Also using SoupX, we derived the following sample-specific thresholds at which we observed
relatively low contamination, and we removed cells outside these ranges: 1260-6300 UMIs/cell for BBY?2,
BCR2, BCR3, BCR4, BCR5 and BCR6, and 1260-4470 nUMIs for BCR1. One Htt™* sample, BBY3, was
deemed to be an outlier based on very low UMI counts across most cells and was dropped from further
analysis. In addition, using Seurat, we removed libraries with >5% of read counts from mitochondrial genes,
as the presence of these non-nuclear transcripts indicates both incomplete fractionation of nuclei and
cellular stress. To obtain the final set of cells for clustering, we manually removed any remaining doublets
with high expression of mutually exclusive markers.

Normalization and batch effect correction. UMI counts from each cell were normalized to log (counts
per million). A uniform set of highly-variable genes was selected by identifying the top 5000 most variable
genes in each sample separately using the FindVariableFeatures() function in Seurat, then taking the
intersect across samples, resulting in a final set of 937 highly-variable genes. Expression levels for these
highly-variable genes were centered and scaled within each sample. Then, batch effects correction was
performed across samples with MNN*, implemented with the mnnCorrect() function in the scran R
package. MNN normalization is performed sequentially across samples and lacks a built-in function to
optimize sample order. Therefore, 17 MNN iterations were performed using different sample ordering, and
the best ordering was selected based on cell clustering results. In the final ordering, samples were in the
order BBY2, BCR1, BCR2, BCR3, BCR4, BCRS and BCR6.

Cell type clustering and labeling. MNN-adjusted counts from 5,429 cells passing the initial QC were used
for clustering, using the RunPCA(), FindNeighbors(), and FindClusters() functions in Seurat v3.0. The
clusters were visualized using the RunTSNE() function in Seurat. npcs=10 principal components, k=30
shared nearest neighbors, and a Louvain clustering resolution of 0.4 were empirically determined to produce
optimal clustering. Marker genes identified in each cluster using the FindAllMarkers() function were then
used to assign a cell type label to each molecularly-defined cluster based on known marker genes for striatal
cell types (dropviz.org). Three clusters were dropped from further analysis because they included cells from
only one sample, were marked by high expression of mitochondrial transcripts, or expressed markers from
mixed cell types, resulting in the final set of 4,524 cells.
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Identifying subtypes of medium spiny neurons presented a particular challenge, since the small
number of markers distinguishing D1 vs. D2 MSNs were dwarved by the massive effects of HD mutations
in these cells. Therefore, we performed sub-clustering of MSNs using 36 marker genes with >8-fold
difference in expression between D1 vs. D2 MSNs in the DropViz atlas®. Using the normalized counts
from these 36 genes, we computed pairwise Spearman rank correlations among all canonical MSNs, and
we performed average-distance hierarchical clustering using 1 — Spearman’s rho as a distance metric,
revealing two major groups of cells with high expression of markers for D1 vs. D2 MSNs, respectively. 87
MSNs were in smaller clusters that lacked high expression for either subtype and were discarded.

Similarly, clusters of reactive vs. non-reactive astrocytes were derived by sub-clustering with 87
markers of reactive and non-reactive subtypes®®. In this case, sub-clustering was performed in Seurat v3,
using the top 5 principal components and a Louvain modularity resolution of 0.5.

Smoothing of read counts. For the purpose of assessing gene expression differences between genotypes,
and subsequent analyses of pseudotime trajectories and gene co-expression clustering, we smoothed read
counts to reduce dropout effects and improve gene-gene correlation structure. Smoothing was performed
with knn-smoothing®®, using k=15 neighbors and 30 PCs. Smoothed counts were normalized using the
Seurat NormalizeData() function for downstream analyses.

Celltype-specific differentially expressed genes. We identified celltype-specific differentially expressed
genes (DEGs) in Htt?"7"* vs. wildtype mice by three methods. In our primary analysis, we compared cells
of each genotype using Wilcoxon Rank Sum tests implemented with the Seurat FindMarkers() function,
testing all genes with non-zero imputed counts in at least 10% of the cells from at least one of the two
genotypes. This analysis treats the cell (not the mouse) as the primary unit of analysis. We believe this
choice is justified, as both the neurodegenerative processes in MSNs and the activation of inflammatory
states in glial cells are thought to occur in a relatively cell-autonomous fashion, resulting in a mosaic of cell
states within each mouse that would not be captured in an analysis treating the mouse as the primary unit
of analysis. To confirm that DEGs detected by our primary approach were robust, we also conducted a
secondary analysis in which the Seurat FindMarkers() function was applied to non-smoothed read counts.

Trajectory analysis. We used Seurat v3 to perform principal components analysis on the centered and
scaled expression levels of the 5,000 most variable genes within each cell type. We eliminated any principal
component for which the strongest loadings were dominanted by mitochondrial genes, as these vectors
typically correspond to technical variation among cells rather than biological signal. Using the embeddings
of the top five remaining principal components, we then identified a non-branching pseudotime trajectory
with the slingshot() function in the Slingshot v1.4.0 R package®. We tested for associations of
slingPseudoTime and genotype using the t.test() function in R.

Gene set enrichment analysis. DEGs in each cell type and genes in each gene co-expression module were
tested for enrichment in curated gene sets from four sources. First, we tested for enrichments in 2,368
curated gene sets from the Huntington’s Disease molecular Signatures Database
(https://www.hdinhd.org/2018/05/22/hdsigdb/), including lists of DEGs and WGCNA modules from RNA-
seq experiments, as well as known marker genes for striatal cell types. Second, we tested for enrichments
in 12,177 Gene Ontology terms from the org. Mm.egGO2ALLEGS object in the org.Mm.eg.db R package.
Third, we tested for enrichments in transcription factor regulons from ChIP-seq experiments in ChEA™
(https://amp.pharm.mssm.edu/Enrichr/geneSetLibrary?mode=text&libraryName=ChEA 2016).  Fourth,
we tested for enrichments with evolutionarily conserved sequence motifs from RcisTarget’. For the first
three sources, enrichments among down- and up-regulated genes were tested separately using the
geneSetTest() function in the limma R package with ranks.only = TRUE and type = “t” and using genes
ranked from most strongly down-regulated to most strongly up-regulated based on the -log10(p-value)
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multiplied by the sign of the log2(fold change). Motif analysis was performed with RcisTarget using default
parameters.

Statistical overlap of celltype-specific differentially expressed genes across cell types. Statistical
overlap among ranked lists of down- and up-regulated genes in each pair of cell types was evaluated using
rank-rank hypergeometric overlap (RRHO), implemented using the RRHO() function from the RRHO R
package™. The RRHO algorithm steps through two gene lists ranked by the degree of differential expression
in two independent experiments, successively measuring the statistical significance of the number of
overlapping genes. Each comparisoin between cell types used the set of genes expressed with a non-zero
read count in at least ten percent of the cells form both cell types, with the genes ranked from most strongly
down-regualted to most strongly up-regulated within each cell type based on the -log10(p-value) multiplied
by the sign of the log2(fold change). We used a step size such that each gene list was divided into 100
equally sized bins.

Gene co-expression modules. Gene-gene correlation structure in single-nucleus RNA-seq is notoriously
weak due to the sparsity of the data. Therefore, for network analyses we used smoothed counts, as described
above, to impute a more complete representation of gene expression in each cell. We selected 8,971 genes
with non-zero counts in at least 10% of the cells from at least one cell type. We computed Pearson
correlations among all pairs of genes. We then applied k-means clustering to the resulting gene co-
expression matrix to derive gene modules. k=150 was manually determined to capture some of the finer
structure in the network without over-splitting. Each module’s eigengene -- the first principal component —
was computed with the moduleEigengenes() function in the WGCNA R package. We dropped modules for
which the eigengene explained less than 10% of the variance, and we merged modules whose eigengenes
were >85% correlated. These procedures resulted in a final set of 77 modules spanning 5,874 genes.

Gene regulatory network. A gene regulatory network model describing predicted interactions between
TFs and their potential target genes in the mouse striatum was derived using GENIE3*'. The GENIE3
algorithm performs network reconstruction by using a random forest regression model to select sets of TFs
whose combined expression predicts the expression of each gene. We started with the smoothed counts of
8,971 genes with non-zero counts in at least 10% of the cells from at least one cell type, as for gene co-
expression networks above. We downloaded a curated list of all 1639 known and likely human TFs from
http://humantfs.ccbr.utoronto.ca/download/v_1.01/TFs_Ensembl v_1.01.txt. We identified 1,373 mouse
orthologs of these TFs using the biomaRt R package (accessed April 21, 2020). We then intersected this
list of putative mouse TFs with the 8,971 striatally-expressed genes from our dataset, producing a list of of
589 striatally-expressed TFs. GENIE3 was run using default parameters as implemented in the GENIE3
BioConductor package v1.1. The algorithm produces a very long list of potential TF-gene interactions
ranked by the randomForest importance score, and many of these potential interactions are very weak. This
importance score is agnostic to whether the TF-gene interaction is positive (“activating”) or negative
(“inhibitory”), but it has been suggested that inhibitory interactions are less reliable. We therefore retained
only the predicted interactions between pairs of genes whose expression were positively correlated
(Pearson’s r > 0), and we trimmed this list to the top remaining 180,000 TF-gene interactions with the
strongest importance scores, corresponding to a mean in-degree of ~20 TFs per gene.

Overlap with Polycomb Repressive Complex 2 (PRC2)-related datasets. We analyzed PRC2 target
genes derived from nine ChIP-seq datasets in four cell types to test for over-representation in gene co-
expression modules. When available, we used published target gene lists. Otherwise, we downloaded
aligned sequence reads, performed peak-calling with MACS v2.1°!, and annotated peaks to genes with
transcription start sites within +/- 5 kb. The nine datasets are as follows: (i) ChIP-seq of EZH2 in mouse
embryonic stem cells*!, obtained from ChEA?**; (ii) ChIP-seq of SUZ12 in mouse embryonic stem cells*',
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obtained from ChEA*; (iii) ChIP-seq of H3K27me3 in mouse embryonic stem cells, generated by Bing
Ren’s lab (UCSD) for the ENCODE consortium (ENCFFO55QNY); (iv) ChIP-seq of H3K27me3 in mouse
MSNs*’, obtained from HDSigDB; (v) ChIP-seq of H3K27me3 in bulk striatal tissue from four-month-old
Ht?"'"" and Htt"" mice®®; (vi) ChIP-seq of EZH2 in human astrocytes, generated by Bradley Bernstein’s
lab for the ENCODE consortium (reproducible peaks from ENCFF254DFD and ENCFF831JFC); (vii)
ChIP-seq of H3K27me3 in human astrocytes, generated by Bradley Bernstein’s lab for the ENCODE
consortium (ENCFF315BVX); (viii) ChIP-seq of EZH2 in mouse corpus callosum (enriched for
oligodendrocytes; Table S3 from *7); (ix) ChIP-seq of EZH2 in mouse corpus callosum (enriched for
oligodendrocytes; Table S3 from *’). We tested for over-representation in gene co-expression modules using
Fisher’s exact tests. We also analyzed published microarray gene expression profiles (Affymetrix 430 2
array) of MSNs from 6-week-old, 3-month-old, and 6-month-old Ezhl”"; Ezh2™; Camk2a-cre vs. control
mice, in which PRC2 had been conditionally silenced in adult MSNs*. Normalized data were downloaded
from the Gene Expression Omnibus (GSE84243). We fit a linear model using the ImFit() function in the
limma R package, followed by post-hoc contrasts to estimate the effect of genotype at each time point,
using contrasts.fit() and eBayes(). Over-representation analysis of gene co-expression modules among up-
and down-regulated genes was performed with the geneSetTest() function.

FIGURE LEGENDS

Figure 1. Identification of cell types in single-nucleus RNA-seq of 4,524 cells from the striatum of 14-
15-month-old Htt?'”>* vs. Htt'"* mice. a. tSNE plot of major cell types. B. Dot plot of top marker genes
for all cell types. c. Dot plot showing marker genes for D1 vs. D2 MSN sub-types. d. Proportion of cells
from Ht?'?"" vs. Htt"* mice in each cell type. Fisher’s exact test: *** p < 0.001; ** p <0.01.

Figure 2. Characterization of differentially expressed genes in nine cell types from the striatum of
14-15-month-old Htf?'* vs. Htt"* mice. a. Counts of differentially expressed genes in each cell type (red
= up-regulated; blue = down-regulated; saturated color, FDR < 0.05; desaturated color, p < 0.01. b.
Statistical overlap of up- and down-regulated genes with published RNA-seq of bulk striatal tissue from
ten-month-old Ht"™"" vs. Htt%”" mice and from Ht2"*"" vs. Htt“*”" mice. c. Scatterplots and rank-rank
hypergeometric overlap heatmaps indicating shared and unique gene expression changes in selected pairs
of cell types. d. Slingshot pseudotime trajectory analysis in MSN subtypes, astrocytes, oligodendroocytes,
and SST interneurons. e. Statistical overlap of up- and down-regulated genes among pairs of cell types.

Figure 3. Identification of 77 gene co-expression modules in mouse striatum. A. Average-linkage
hierarchical clustering of modules based on their first principal components (module eigengenes). B.
Mean expression level of each module eigengine in each cell type. C. log2(fold change) of module
eigengenes in cells from Ht?'”"" vs. Htt"* mice.

Figure 4. mHTT-associated cell type identity-related gene co-expression modules. a. Graphs of the top
100 gene-gene interactions within each module. Node size corresponds to eigencentrality. Node color
corresponds to the log2(fold change) in expression between cells from Htt%'7* vs. Htt""* mice in the major
cell type for that cluster (blue = down-regulated; red = up-regulated). b. Violin plots of module eigengenes.
c. Over-representation of the predicted target genes from GENIE3 for the hub transcription factors in each
module for up- and down-regulated genes in each cell type. d. Z-scores for cell type-specific up- or down-
regulation of the top 20 genes in each regulon shown in panel c.

Figure S. Regulation of HD-associated cell type identity modules by the Polycomb Repressive
Complex 2 (PRC2). a. Cell type-specific expression of module eigengenes for ten gene co-expression
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modules robustly enriched for PRC2 target genes. b. log2(fold change) of module eigengenes in cells from
HtP'™" vs. Htt"" mice; “+” and “-* indicate statistically significant up- or down-regulation of eigengene
expression in each cell types (adjusted p-value < 0.01. c. Over-representation of the genes in each module
for PRC2 target genes defined by nine ChIP-seq experiments in embryonic stem cells (ESCs), MSNs,
astrocytes (AS), and oligodendrocytes (OL). d. Over-representation of the genes in each module for up-
and down-regulated genes in MSNs from 6-week-old, 3-month-old, and 6-month-old PRC2-silenced vs.
control mice.
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SUPPLEMENTARY INFORMATION

Figure S1. Expression of cell type marker genes. From left to right and top to bottom: Ppp/rIb (medium
spiny neurons); Cldnl0 (astrocytes); Gjbl (oligodendrocytes); Kit (Pvalb+ interneurons); Chat (Chat+
interneurons); Nos!I (Sst+ interneurons); Cldn5 (endothelial cells); Clga (microglia); Pdgfra
(polydendrocytes).

Figure S2. Decreased proportion of D2 MSNs in Htf?'”>* vs. Htf"* mice is robust to parameters. Left:
Proportion of cells identified as D2 MSNs in raw data (prior to QC) based on expression of AdoraZa.
Middle: Proportion of cells identified as D2 MSNs in QC-ed based on expression of Adora’a. Right:
Proportion of cells identified as D2 MSNs in QC-ed based on expression of 36 marker genes (duplicated
from Fig. 1d).

Figure S3. Characterization of reactive astrocytes in the striatum of Htf?'””* vs. Htt”* mice. Reactive
astrocytes were identified by sub-clustering astrocytes on the expression of 87 markers of reactive
populations. a-d. Expression of marker genes for all astrocytes (a, Slcla3), pan-reactive astrocytes (b,
Gfap), Al reactive astrocytes (c, H2-DI), and A2 reactive astrocytes (d, Tm4sf1). e. Assignments of
astrocyte sub-clusters as reactive vs. non-reactive based on known markers. f. Distribution of cells from
Ht?'"" vs. Htt""" mice across astrocyte sub-clusters. g. Proportion of reactive vs. non-reactive astrocytes
in Ht?"7"" vs. Htt""" mice. h. Violin plots showing the relationship between the reactive state and genotype
of astrocytes and Slingshot pseudotime.

Figure S4. Smoothing rescues gene-gene correlation structure among markers of D1 vs. D2 MSN:s. a.
Pearson correlations among 36 marker genes for D1 vs. D2 MSNs in normalized, non-smoothed counts
from the 4,524 cells in our dataset. b. Pearson correlations among the same 36 marker genes using smoothed
counts. The 36 marker genes are the same genes shown in Fig. 1c and are ranked in order of subtype-
specificity based on data from the DropViz atlas.

Table S1. Cell type marker genes and differentially expressed genes in nine striatal cell types from
14-15-month-old Htf?"* vs. Htt'"* mice. Tab 1. Marker genes in each cell type. Tab 2. DEGs in each cell
type based on smoothed counts. Tab 3. DEGs in each cell type based on non-smoothed counts. (Excel file)

Table S2. Gene set enrichment analysis of celltype-specific differentially expressed genes. Enrichments
in gene sets from Gene Ontology (tab 1) and HDSigDB (tab 2), and for the predicted target genes of each
striatally expressed transcription factor in our GENIE3 gene regulatory network model (tab 3). (Excel file)

Table S3. Gene membership in 77 gene co-expression modules. (Excel file)

Table S4. Gene set enrichment analysis of of gene co-expression modules. Enrichments were calculated
in the following gene sets: Tab 1. Gene Ontology terms. Tab 2. HDSigDB terms. Tab 3. WGCNA modules
from Langfelder et al. 2016 (subset of HDSigDB). Tab 4. Predicted target genes of TFs based on ChIP-seq
experiments in ChEA. Tab 5. Predicted target genes of striatally expressed TFs in our GENIE3 gene
regulatory network model. Tab 6. Evolutionarily conserved cis-motifs from RcisTarget. (Excel file)
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