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Abstract

Endogenous steroid hormones, especially glucocorticoids and mineralocorticoids, are essential for
life regulating numerous physiological and pathological processes. These hormones derive from
the adrenal cortex, and drastic or sustained changes in their circulatory levels affect multiple organ
systems. Although a role for hypoxia pathway proteins (HPP) in steroidogenesis has been
suggested, knowledge on the true impact of the HIFs (Hypoxia Inducible Factors) and oxygen
sensors (HIF-prolyl hydroxylase domain-containing enzymes; PHDs) in the adrenocortical cells
of vertebrates is scant. By creating a unique set of transgenic mouse lines, we reveal a prominent
role for HIF1a in the synthesis of virtually all steroids under steady state conditions. Specifically,
mice deficient in HIF1a in a part of the adrenocortical cells displayed enhanced levels of enzymes
responsible for steroidogenesis and a cognate increase in circulatory steroid levels. These changes
resulted in cytokine alterations and changes in the profile of circulatory mature hematopoietic
cells. Conversely, HIF1a overexpression due to combined PHD2 and PHD3 deficiency in the
adrenal cortex resulted in the opposite phenotype of insufficient steroid production due to impaired
transcription of necessary enzymes. Based on these results, we propose HIF1a to be a central and
vital regulator of steroidogenesis as its modulation in adrenocortical cells dramatically impacts
hormone synthesis with systemic consequences. Additionally, these mice can have potential
clinical significances as they may serve as essential tools to understand the pathophysiology of
hormone modulations in a number of diseases associated with metabolic syndrome, auto-immunity

or even cancer.
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Introduction

Steroidogenesis in the adrenal gland is a complex process of sequential enzymatic reactions that
convert cholesterol into steroids, including mineralocorticoids and glucocorticoids (1). While
glucocorticoids are regulated by the hypothalamic-pituitary-adrenal axis (HPA axis) and are
essential for stress management and immune regulation (2, 3), aldosterone, the primary
mineralocorticoid, regulates the balance of water and electrolytes in the body (4). As
steroidogenesis is a tightly regulated process, proper control of adrenal cortex function relies on
appropriate endocrine signaling, tissue integrity, and homeostasis (5). Accordingly, it has been
suggested that inappropriately low pO, or hypoxia, can lead to both structural changes in the

adrenal cortex and interfere with hormone production (6-10).

Hypoxia inducible factors (HIFs) are the main transcription factors that are central to cellular
adaptation to hypoxia in virtually all cells of our body. The machinery that directly controls HIF
activity consists of the HIF-prolyl hydroxylase domain-containing enzymes (PHDs 1-3), which
are oxygen sensors that hydroxylate two prolyl residues in the HIFo subunit under normoxic
conditions, thereby marking the HIFs for proteasomal degradation. Conversely, oxygen
insufficiency renders these PHDs inactive, leading to the binding of the HIF-complex to hypoxia
responsive elements (HRE) in the promotor of multiple genes that ensure oxygen delivery and
promote adaptive responses to hypoxia such as hematopoiesis, blood pressure regulation, and
energy metabolism (reviewed in (11, 12)). Apart from directly activating hypoxia-responsive
genes (13, 14), HIFs also indirectly influence gene expression by interfering with the activity of
other transcription factors or systems. Of the most intensively studied HIFa genes, HIF1a has a
ubiquitous pattern of expression in all tissues, whereas expression of the paralogue HIF2a is

restricted to a selection of cell types (15, 16).

Recent in vitro and zebrafish studies have revealed a continuous cross talk between HIF and
steroidogenesis pathways, along with potential interference in the production of aldosterone and
glucocorticoids (17-20). There is also evidence suggesting a role for the hypoxia pathway in
modulating glucocorticoid/glucocorticoid receptor (GR) signaling (21, 22). Importantly, these
observations indicate a possible interplay of HIFs and PHDs in modulating the immune-regulatory
actions of the HPA axis. Currently, there is huge interest in the development of HIF inhibitors and

HIF stabilizers, and their influence on medicine is expected to become significant in the near future
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81  (23). However, as the role of HIFs/PHDs is both central and manifold with respect to maintaining
82  oxygen homeostasis, a better understanding of the true impact of Hypoxia Pathway Proteins
83  (HPPs) in the complex interplay of different essential physiological and pathological conditions,

84  including in the adrenal cortex, assumes great importance.

85  We describe the creation and use of a unique collection of transgenic mouse lines that enabled an
86 investigation of the role of HIFa subunits and PHDs in adrenocortical cells. Our results point
87  towards a central role for HIFla in the direct regulation of steroidogenesis in the adrenal gland
88 and consequent changes in circulatory hormone levels. Importantly, chronic exposure of mice to
89  such altered hormone levels eventually led to a dramatic decrease in essential inflammatory
90 cytokines and profound dysregulation of circulatory immune cell profiles.

91
92 Materials and Methods

93 Mice
94  All mouse strains were housed under specific pathogen-free conditions at the Experimental Centre
95  of the Medical Theoretical Center (MTZ, Technical University of Dresden - University Hospital
96  Carl-Gustav Carus, Dresden, Germany). Experiments were performed with male and female mice
97 aged between 8-16 weeks. No significant differences between the genders were observed.
98  Akrlb7:cre-PHD2/HIF1™® (P2H1) or Akr1b7:cre-PHD2/PHD3™ (P2P3) lines were generated by
99  crossing Akrlb7:cre mice (24) to PHD2", HIF1a”" or PHD2"'; PHD3"" as previously reported by
100  us (25), and/or the reporter strain mTmG (26). All mice described in this report were born in
101 normal Mendelian ratios. Mice were genotyped using primers described in supplementary Table
102 1. Histological analysis of the adrenal gland of Akr1b7:cre-mTmG"  reporter mice revealed zonal
103  variation in the penetrance of cre-recombinase activity in the adrenal cortex of all individual mice
104  (GFP* staining). Peripheral blood was drawn from mice by retro-orbital sinus puncture using
105  heparinized micro hematocrit capillaries (VWR, Darmstadt, Germany) and plasma separated and
106  stored at -80 °C until further analysis. Mice were sacrificed by cervical dislocation and adrenals
107  were isolated, snap frozen in liquid nitrogen, and stored at -80°C for hormone analysis or gene
108  expression analysis. All mice were bred and maintained in accordance with facility guidelines on
109  animal welfare and with protocols approved by the Landesdirektion Sachsen, Germany.

110
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111 Blood analysis

112 White blood cell counts were measured using a Sysmex automated blood cell counter (Sysmex
113 XE-5000) (27).

114

115  ACTH measurements

116  Plasma ACTH was determined using a radioimmunoassay, as per manufacturer’s instructions
117  (ImmuChem Double Antibody hACTH 125 I RIA kit; MP Biomedicals Germany GmbH,
118  Eschwege, Germany) (28).

119

120 Hormone detection

121 Adrenal glands were incubated in disruption buffer (component of Invitrogen™ Paris™ Kit, AM
122 1921, ThermoFisher Scientific, Dreieich, Germany) for 15min at 4°C, homogenized in a tissue
123  grinder, followed by incubation for 15 min on ice and further preparation. Adrenal steroid
124 hormones were determined by LC-MS/MS as described elsewhere (29). Catecholamines,
125 norepinephrine, epinephrine, and dopamine were measured by high pressure liquid

126 chromatography (HPLC) coupled with electrochemical detection, as previously described (30).

127

128  RNA extraction and qPCRs

129  RNA from adrenal glands and sorted cells was isolated using the RNA Easy Plus micro kit
130  (Qiagen) (Cat. # 74034Qiagen). cDNA synthesis was performed using the iScript cDNA Synthesis
131 Kit (BIO-RAD, Feldkirchen, Germany). Gene expression levels were determined by performing
132  quantitative real-time PCR using the ‘Ssofast Evagreen Supermix’ (BIO-RAD, Feldkirchen,
133  Germany). Sequences of primers used are provided in supplemental Table 2. Expression levels of
134  genes were determined using the Real-Time PCR Detection System-CFX384 (BIO-RAD,
135  Feldkirchen, Germany). AIl mRNA expression levels were calculated relative to B2M or EF2
136  housekeeping genes and were normalized using the ddCt method. Relative gene expression was
137  calculated using the 2(-ddCt) method, where ddCT was calculated by subtracting the average WT
138  dCT from dCT of all samples individually.

139

140 Immunohistochemistry and immunofluorescence
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141 For preparation of paraffin sections, adrenal glands were isolated, incubated in 4% formaldehyde
142  at 4°C overnight, dehydrated, embedded in paraffin and cut into Sum sections using a

143  microtome. Sections were rehydrated and subjected to hematoxylin and eosin staining (H&E).
144  For frozen sections, adrenal glands were embedded in O.C.T Tissue-Tek (A. Hartenstein GmbH,
145  Wiirzburg, Germany) and stored at -20°C. For H&E staining of frozen sections (7um), samples
146 were first fixed in cold acetone before staining. For immunofluorescence, sections were fixed in
147  cold acetone, air-dried, washed with phosphate-buffered saline containing 0.1% Tween-20,

148  blocked with 5% normal goat serum followed by primary antibody staining (CD31/PECAM —
149  1:500 (31)) or GFP Polyclonal (Antibody ThermoFischer Scientific — 1:200) overnight at 4°C
150  and subsequent secondary antibody staining. After counterstaining with DAPI, slides were

151 mounted in fluorescent mounting medium and stored at 4 °C until analysis.

152

153  Microscopy

154  Both brightfield and fluorescent images were acquired on an ApoTome II Colibri (Carl Zeiss, Jena,
155  Germany). Images were analyzed using either Zen software (Carl Zeiss, Jena, Germany) or Fiji
156  (Imagel distribution 1.52K). Fiji was used to quantify lipid droplet sizes and CD31 staining.

157

158  Meso Scale Discovery

159  Meso Scale Discovery (MSD, Rockville, Maryland) was used to measure cytokines in plasma
160  samples using the MSD plate reader (QuickPlex SQ 120). Cytokine concentrations were calculated
161 by converting the measured MSD signal to pg/ml using a standard curve. All values below that of
162  blank (control) were considered as zero. Finally, all cytokine concentrations in individual P2H1
163  mice were normalized to the average value of WTs for every independent experiment; and the
164  average WT value was set as 1.

165

166  Next generation sequencing

167  For RNAseq analysis, adrenal glands from Akrl1b7:cre-PHD2/HIF1/mTmG™ and Akr1b7:cre-
168  mTmG"" (control) mice were isolated directly into the lysis buffer of the RNeasy Plus Micro Kit,
169 RNA was isolated according to manufacturer’s instructions, and SmartSeq2 sequencing was
170  performed (SmartSeq2 and data analysis in Supplemental Data). Flow cytometry and cell sorting

171 were performed as described previously (32).
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172

173  Read Quantification

174  Kallisto v0.43 was first used to generate an index file from the transcript file, which can be
175  downloaded from

176 -ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode mouse/release M12/gencode.vM12.transcri

177  pts.fa.gz. Kallisto v0.43 was then run on all the fastq files using parameters “quant --single -1 75 -
178  s5-b 100” to quantify reads for the genes.

179

180  Differential Gene Expression Quantification

181  Complete cDNA sleuth v0.30.0 (an R package) was used to evaluate differential expression. The
182  command “sleuth_prep” was run with parameter “gene_mode=TRUE”. Two separate error models
183  were fit using “sleuth_fit” wherein the first was a “full” model with gender and experimental
184  condition as covariates, while the second was a “reduced” model with only gender as the covariate.
185  “sleuth_Irt” (Likelihood Ratio Test) was used to evaluate differential gene expression by
186  comparing the full model and the reduced model.

187

188  Statistical analyses

189  All data are presented as mean + SEM. Data (WT control versus transgenic line) were analyzed
190  using the Mann—Whitney U-test, unpaired t-test with Welch’s correction as appropriate (after
191 testing for normality with the F test) or as indicated in the text. All statistical analyses were
192  performed using GraphPad Prism v7.02 for Windows (GraphPad Software, La Jolla California

193  USA, www.graphpad.com). Significance was set at p<0.05; “n” in the figure legends denotes

194  individual samples.
195
196  Results

197 A new mouse model to study the effects of alterations in hypoxia pathway proteins (HPPs)
198  in the adrenal cortex

199  We took advantage of the adrenal cortex-specific Akrlb7:cre recombinase mouse line (25) to
200 investigate the effects of adrenocortical HPPs on the structure and functions of the adrenal gland.

201  When combined with the mTmG reporter strain (26), we show up to 40% targeting among all
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202 cortical cells (Figure 1A). Next, we generated the Akrlb7:cre-PHD2/HIF1™® mouse line
203  (henceforth designated P2H1) by combining Akrlb7:cre mice with PHD2 and HIF1a floxed mice
204  (24). Genomic PCRs on DNA and qPCR analysis using mRNA from whole adrenal glands
205 revealed targeting of PHD2 and HIFla, when compared to WT littermates (Figure 1B-C).
206  Importantly, in P2H1 mice, we even detected a significant increase in HIF2o. mRNA but not of
207 PHD3, which is in line with our earlier report of enhanced HIF2a-activity in PHD2/HIF1a-
208 deficient cells (24). Therefore, we explored the expression profile of a number of downstream
209  genes known to be transactivated by HIF2a (33-35) and found a significant increase in Vegfa,
210  Hmoxl, and to a lesser extent Bnip3 levels, underscoring the functionality of the P2ZH1 mouse line
211 (Figure 1E).

212

213  Morphological changes in the adrenal cortex of P2H1 mice

214 To evaluate the impact of changes in HIFla and/or HIF2a activity in adrenocortical cells, we
215  analyzed adrenal gland morphology using H&E staining on paraffin sections but found no
216  differences between P2HI1 mice and WT littermates in the structure of the adrenal gland,
217  especially, at the side of the cortex of P2ZH1 mice in comparison to WT littermates (Figure 1F). As
218  we detected a significant increase in Vegfa in the adrenal glands of P2HI mice, we used CD31
219  staining to quantify endothelial cells but detected no significant differences between P2H1 and
220  WT mice (Figure 1G). Remarkably, H&E staining on cryosections of P2H1 adrenal glands
221  revealed significantly smaller lipid droplets in the adrenocortical cells (Figure 1H), an effect that

222  is reported to be correlated with greater conversion of cholesterol into pregnenolone (10).

223

224  Modulation of HPPs in the adrenal cortex enhances synthesis and circulatory levels of steroid
225  hormones

226  Next, to verify if the observed changes in lipid droplets indeed led to changes in steroidogenesis,
227  we quantified steroid hormones and their precursor levels by LC-MS/MS in the adrenal gland and
228 in plasma. Quantification revealed a significant increase in virtually all of the hormones tested in
229  P2HI adrenal glands compared to WT littermates (Figure 2A), and importantly, a corresponding
230 increase of progesterone, corticosterone, and aldosterone was found in the plasma (Figure 2B).
231  These observations clearly indicate that central HPPs have an impact on steroidogenesis in the

232  murine adrenal gland and on circulatory levels of steroid hormones.
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233

234  Downstream effects of the chronic increase in the steroidogenesis

235 Previous reports have stated that glucocorticoids can regulate catecholamine production in the
236  adrenal medulla (36, 37); therefore, we also measured dopamine, norepinephrine, and epinephrine
237  levels in the samples used to quantify steroid levels (as above). However, we found no difference
238  between P2H1 and WT littermates in any of the catecholamines quantified (Supplementary Figure
239  1A). Further, although increased steroid levels often result in a negative feedback loop affecting
240  ACTH secretion from the pituitary (38), P2ZH1 mice displayed no such differences compared to
241 WT littermates (Supplementary Figure 1B), nor did they have any difference in serum potassium
242  levels or blood glucose levels (Supplementary Figure 1C-D). Taken together, in contrast to the
243  systemic effects induced by acute and high levels of circulatory cortical hormones (e.g.
244  corticosterone, aldosterone) (3, 4), the P2H1 mice display moderate but chronically enhanced

245  levels of cortical hormones at the described time points.
246

247 Loss of PHD2/HIFla in adrenocortical cells impacts gene expression related to
248  steroidogenesis

249  Previous in vitro studies and reports on HIFla alterations in zebrafish larvae have suggested
250 negative regulation of StAR, the mitochondrial cholesterol transporter (7, 17, 20). However, data
251 on the effects of HPP alterations in adrenal cortex of mice is scant at best. Therefore, to assess the
252  impact of HIF1a-deletion and/or HIF2a-upregulation in adrenal cortical cells, we performed broad
253 transcription analysis of proteins/enzymes involved in steroidogenesis using mRNA from whole
254  adrenals. Our results reveal that almost all of the gene products tested showed either a significant
255 increase or a tendency to do so, including key enzymes like StAR, Cypllal, Cyp2lal and Cypl1bl
256  (Figure 3A).

257 To further characterize this phenotype driven by the HPPs, we performed next generation
258  sequencing (NGS) and compared the steady state transcriptomes of P2H1 and WT littermate mice
259 . For this, we specifically created the Akr1b7:cre-PHD2/HIF1/mTmG™ mouse line
260 (P2HI1 reporter mice) to study only targeted adrenal cortex cells, with Akrlb7:cre-mTmG"f
261  animals used as controls. Bulk RNAseq was performed on GFP*-sorted adrenal gland cells as

262  described previously (39) and gene signatures of the various lineages were evaluated using Enrichr
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263  or gene set enrichment analyses (GSEA). Concurring with the previous results, we found a number
264  of significant signatures related to the process of steroid synthesis in adrenocortical cells or their
265 response to it (Figure 3C-D). Notably, GSEA also revealed known HIF-dependent associations
266  including, actin cytoskeleton (40, 41), adipogenesis (42) and oxidative phosphorylation (43)
267  (Figure 3E). Furthermore, P2H1 cortical cells also displayed a positive signature related to the
268  regulation of nuclear B-catenin signaling, which is known to be primarily activated in the zona
269  glomerulosa with potential hyperplasic effects (44) (Figure 3F).

270

271  Modulated adrenocortical HPPs skew cytokine production and leukocyte numbers.

272  As several studies have reiterated a crucial role for glucocorticoids in immunomodulation (3, 45),
273  and Cushing’s syndrome has been described to be accompanied by immune deficiency (3, 38, 46),
274  we measured circulatory cytokine levels. We report a substantial overall decrease in the levels of
275  both pro- and anti-inflammatory cytokines, with the exception of the chemokine and neutrophil
276  attractant CXCL1, which increased almost 2-fold (Figure 4A). Glucocorticoids have been
277  repeatedly shown to promote apoptosis-mediated reduction of lymphocytes (47) and eosinophil
278  reduction (48), along with neutrophilia due to enhanced recruitment from the bone marrow (49).
279  Therefore, we enumerated the various white blood cell (WBC) fractions in P2H1 mice and
280  compared it with that of their WT littermates, which revealed a significant reduction in both
281  lymphocyte and eosinophil fractions (Figure 4B) accompanied by marked elevation in neutrophils
282  (>70% compared to WT) (Figure 4C). Taken together, our data reveal a critical role for HPPs in
283  steady-state cytokine levels and leukocyte numbers, probably through alterations in
284  steroidogenesis pathways.

285

286 HIF1o inversely regulates steroidogenesis

287  To extend our understanding of the role of HIF1a and/or HIF2a in adrenocortical cells, we created
288  the Akrlb7:cre-PHD2/PHD3"™ mouse line (designated as P2P3), which showed adequate
289 activation efficiency upon genomic PCRs of whole adrenal tissue (supplementary Figure 2).
290  Intriguingly and in contrast to hormone levels in the adrenal glands of the P2H1 mice, P2P3 adrenal
291  glands displayed a marked decrease in corticosterone and aldosterone levels, along with a cognate
292  reduction in their precursors, both in the adrenal gland (Figure 5A) and in circulation (Figure 5B).

293  These results clearly suggest that steroidogenesis is dependent on HIF1a but not HIF2a. To further

10
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294  confirm this observation, we performed mRNA expression analyses to identify the levels of central
295 enzymes, similar to that performed in P2ZH1 mice, and demonstrate an overall decrease in these
296  enzymes (Figure 6A). This observation is contrary to that seen in the P2ZHI mice but fits neatly
297  with the observed reduction in steroid levels in the P2P3 mice, thereby underscoring the central
298 role of HIF1a (Figure 6B).

299

300 Discussion

301  Here, by using a unique collection of adrenocortical-specific transgenic mouse lines, we identify
302 HIFla as a central transcription factor that regulates the steroidogenesis pathway by regulating
303  key enzymes. Notably, this directly modifies the entire spectrum of steroid hormones, both in the

304  adrenal gland and in circulation, which eventually impacts the availability of a variety of cytokines.

305  Studies on the role of HIFs in the regulation of steroidogenesis in vitro are few, apart from those
306 in zebra fish larvae that describe differential regulation of the enzymes involved in the steroid
307  pathway (7, 18, 20). However, to the best of our knowledge, there are no mouse models to study
308 the role of HPPs in adrenal cortical cells. Undoubtedly, such models would help us to better
309  understand the crosstalk between HPPs and adrenal steroid metabolism, while simultaneously
310  serving as an essential tool to study the pathophysiology of multiple conditions associated with
311 dramatically altered steroid hormone levels (2). Ablation of HIF1a revealed an important role for
312  this transcription factor in steroidogenesis, which concurs with results from previous studies (20,
313  50). However, our findings that HIF1a deletion results in the upregulation of mRNA of a vast
314 majority of steroid-related enzymes is counterintuitive to the nature of this transcription factor (12,
315 51), and therefore we believe this effect is most likely indirect with potential involvement of one
316  or more transcriptional repressors (13, 52, 53). This type of transcriptional regulation of adrenal
317  steroidogenesis has already been suggested with miRNAs, which are endogenous noncoding
318  single-stranded small RNAs that suppress the expression of various target genes (54). Hu and
319  colleagues have demonstrated that a HIFla-dependent miRNA, miRNA-132, attenuates
320 steroidogenesis by reducing StAR protein levels (55), and similar mechanisms have reported for
321  CyplIB2 viamiR-193a-3p (56, 57), and CyplIBI and Cypl1B2 via miR-10b (8). Thus, these new
322  mouse lines will be of great value for in-depth studies on the complex background of HIFla

323  involvement in the expression patterns of steroidogenesis-related miRs.

11
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324  Our RNAseq analysis of Akrlb7* P2H1 adrenocortical cells not only unearthed several genetic
325  signatures directly associated with steroidogenesis, but a number of GSEAs revealed prominent
326  HIF-dependent phenotypes previously identified in a variety of other cell types. Recently, we have
327  described a significant role for HIF2a in the regulation of the actin cytoskeleton, especially in
328 facilitating enhanced neutrophil migration through very confined environments (41), HIF1a has
329 also been associated with cytoskeleton structure and functionality in a number of cell lineages
330 (reviewed in (40)); this is apart from its role in energy metabolism wherein enhanced oxidative
331  phosphorylation has been demonstrated in various HIF1a-deficient cell lineages (43). Therefore,
332 it will be of interest to further explore changes in multiple metabolites that are directly or
333 indirectly-associated with the TCA cycle to find a potential link with the overall changes described
334  here.

335  Glucocorticoids and aldosterone are both essential for homeostasis and their substantial increase
336 in P2H1 mice was intriguing, given their pivotal role in immune suppression (3, 58) and blood
337  pressure regulation, respectively. Previous studies have shown that aldosterone not only increases
338 the expression of the potassium channels that secrete potassium but also stimulates K-absorptive
339 pumps in the renal cortex and medulla, thereby stabilizing and maintaining renal potassium
340 excretion (59), a situation we also observed in the P2H1 mice. The significant increase in
341  glucocorticoids upon HIFla deletion was clearly associated with immunosuppression, as
342  demonstrated by an overall decrease in both pro- and anti-inflammatory cytokines in circulation,
343  and these observations mirror other reports of immune modulation due to enhanced glucocorticoid
344  levels. Such glucocorticoid elevation can eventually even result in dramatic immune deficiency,

345  for example, as seen in Cushing’s disease (3, 38, 45, 58).

346  Intriguingly, we found serum CXCLI1 to be significantly enhanced in P2H1 mice, probably
347  because as a central neutrophil attractant it was associated with the massive increase in circulatory
348  neutrophils seen in these mice. It is known that enhanced neutrophil recruitment from the bone

349  marrow is directly associated with glucocorticoids (49), as is their overall survival (60, 61).

350 An essential role of HIFla, but not HIF2a, in the modulation of enzymes and adrenocortical
351  hormones could be further corroborated by the contrasting results seen in the P2P3 mice.
352  Specifically, compared to P2H1 mice, the expression profile of virtually all steroidogenesis

353 regulating enzymes was dramatically inverted in the P2P3 mice, which resulted in an overall
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354  impairment of the steroidogenesis pathway. Therefore, these mouse lines will also be helpful to
355  study the potential impact of dramatically modulated steroid levels in a variety of clinically

356  relevant diseases including metabolic and auto-immune disorders.

357  Insummary, we reveal a prominent role for HIF1a as a central regulator of steroidogenesis in mice
358 as two distinct transgenic mouse lines showed persistent but contrasting changes in corticosterone
359 and aldosterone concentrations at levels sufficient to modulate systemic cytokine levels and
360 leukocyte numbers. These P2H1 and P2P3 mouse strains are of significant importance in further
361  exploring the impact of HIF1a in adrenocortical cells and as an essential component in regulation

362  of steroidogenesis-mediated systemic effects.
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576  Figure Legends

577

578 Figure 1. Characterization of the Akrlb7:cre-P2H1™T mouse line with cortex-specific
579 targeting of hypoxia pathway proteins. A: Representative immunofluorescent image of anti-
580  GFP stained (GFP+) area in the adrenal cortex of the Akrlb7:cre-mTmG mouse line. Region
581  enclosed within the white dotted line represents the medulla and it demarcates the medulla from
582  the cortex (scale bar, 100 pm). B: qPCR-based mRNA expression analysis of PHD2 and HIF1a in
583 entire adrenal tissue from P2H1 mice and WT littermates (n=10-13). Relative gene expression was
584  calculated using the 2*("ddCt) method. The graphs represent data from 2 independent experiments.
585  C: Genomic PCRs for Akrlb7:cre (650bp), PHD2 LoxP (400bp), and PHD2 KO (350bp) in DNA
586  derived from whole adrenal glands of WT and P2H1 mice. D-E: Relative gene expression analysis
587  using mRNA from the entire adrenal tissue in P2H1 mice and their WT counterparts (n=10-13).
588 All graphs represent data from 2 independent experiments. F: Representative images
589  (magnification 20x) of paraffin sections of adrenal glands (H&E) from 8-week old WT and P2H1
590 mice (scale bars represent 100um). G: Representative immunofluorescent images of CD31*
591  endothelial cell staining in adrenal gland sections from WT and P2H1 mice (scale bars represent
592  50um). Graph in the right-side panel represents quantification of CD31" area as a fraction of total
593 tissue area. Each data point represents a single measurement of the cortical area in the adrenal
594  gland (collection of n=6 vs 11 individual mice). H: Representative images of cryo-sections of WT
595 and P2HI adrenal glands (H&E) (scale bars represent 50um). Graph in the right-side panel
596  represents the normalized average size of an individual lipid droplet per section of adrenal gland
597  tissue in WT versus P2H1 mice. Measurements were made from 6 sections per mouse. (n=8
598 individual adrenals per genotype). The graphs in panels G and H are representative of 2
599 independent experiments. Statistical significance was defined using the Mann-Whitney U test
600  (*p<0.05; **p<0.005; ***p<0.001; ****p<0.0001).

601

602  Figure 2: Adrenal cortex-specific loss of PHD2 and HIF1 leads to enhanced steroidogenesis
603 in P2H1 mice. A: Box and whisker plots showing steroid hormone measurements in adrenal
604  glands from WT mice and compared to littermate P2H1 mice (n=20-31 individual adrenal glands).
605 B:Box and whisker plots showing steroid hormone measurements in the plasma of individual mice

606 (n=5-17). All data were normalized to average measurements in WT mice. The graphs are a
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607  representative result of at least 3 independent experiments. Statistical significance was defined

608 using the Mann-Whitney U test (*p<0.05; **p<0.005).

609 Figure 3: Gene expression analysis of P2H1 adrenocortical cells. A: Gene expression analysis
610  of enzymes involved in the steroidogenesis pathway using mRNA from whole adrenals from P2H1
611  mice and WT counterparts (n=10-13). All graphs are the result of 2 independent experiments.
612  Statistical significance was defined using the Mann-Whitney U test (*p<0.05; **p<0.005). B:
613  Schematic overview of the RNAseq approach which compared sorted GFP* cells from WT
614  controls and P2H1 mice (n=3). C: Gene signature analysis using Enrichr. D. Gene set enrichment
615 analyses (GSEA) showed positive signatures for steroidogenesis related pathways. E: prominent

616  HIF-related pathways. F: the B-catenin nuclear pathway.

617  Figure 4: Immune system changes in P2H1 mice. A: Box and whisker plots representing levels
618  of pro/anti-inflammatory cytokines measured in the plasma of P2H1 mice and WT littermate
619  controls (n=7-12). All data were normalized to the average value seen in WT mice. Each dot
620  represents data from one animal. B: Box and whisker plots showing percentage lymphocytes and
621  eosinophils in circulation which revealed reduced fractions in P2H1 mice compared to WT
622  controls. C: Greater numbers of circulating neutrophils in P2ZH1 mice compared to WT littermates.
623  All graphs represent pooled results of 2 independent experiments. Statistical significance for
624  cytokines in panels A and B was defined using the Mann-Whitney U test, except for TNFa, where
625 the Unpaired t test with Welch's correction was used after verifying data normality. (*p<0.05;
626  **p<0.005; ***p<0.001).

627  Figure 5: Adrenal cortex-specific loss of PHD2 and PHD3 leads to reduced steroidogenesis
628 in mice. A: Box and whisker plots showing steroid hormone levels in the adrenal glands of WT
629  mice and compared to that of littermate P2H1 mice (n=14-16 individual adrenal glands). B: Box
630 and whisker plots showing steroid hormone measurements in the plasma of individual mice (n=10-
631  12). All data were normalized to the average value of WT mice and graphs are representative of at
632 least 3 independent experiments. Statistical significance was defined using the Mann-Whitney U
633 test for progesterone, 11-deoxycorticosterone, and 18-OH corticosterone. Unpaired t test with
634  Welch's correction was used for corticosterone and aldosterone after verification of data normality

635  (*p<0.05; **p<0.005; ***p<0.001).
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Figure 6: Inverse regulation of steroidogenesis in P2P3 mice compared to P2H1 mice A: Gene
expression analysis of enzymes involved in the steroidogenesis pathway in P2P3 mice and their
WT counterparts (n=12-13) was performed in mRNA from entire adrenal glands. All graphs
represent pooled data from at least 3 independent experiments. Statistical significance was defined
using the Mann-Whitney U test (*p<0.05). B: Relative expression profile of all genes analyzed
from the adrenal glands of P2H1 and P2P3 mice and compared to their respective WT littermates.
Statistical significance was defined using an unpaired multiple t-test (n=13; Benjamini, Krieger
and Yekutieli method; *p<0.0001 for all individual genes). C: schematic overview of all changes
in adrenocortical enzymes and their corresponding hormones and intermediates reported here in

P2HI1 (red) and P2P3 (yellow) mice.
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Supplementary figure 1: Downstream effects of increased steroidogenesis.
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A. Box and whisker plots showing normalized concentrations of all catecholamines (dopamine, norepinephrine (NEPI), and epinephrine
(EPI) measured in entire adrenal glands of P2H1 mice and their WT counterparts (n=14-28). Bar graphs represent, respectively, B. Plasma
ACTH concentration (n=7-14), C. potassium levels in the serum of WT vs P2H1 mice (n=9-11), D. Blood glucose levels in P2H1 mice vs
WT littermate controls (n=5-8). Statistical significance was defined using the Mann-Whitney U test.
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Supplementary figure 2: Genetic identification of the Akrlb7:cre-P2P3 strain. A. Genomic PCRs for Akr1b7:cre, PHD2 LoxP (400bp),
PHD2 KO (350 bp), PHD3 LoxP (840bp) and PHD2 KO (1000bp) in entire adrenal gland tissue from P2P3 mice and their WT counterparts. B.
Relative gene expression analysis by qPCR for PHD2, PHD3, HIFIa and HIF2 o. in mRNA from entire adrenal glands of P2P3 and WT
counterparts (n=12-13) C. gPCR as in panel B, but for VEGFA, HMOXI, BNIP3 (E). Relative gene expression was calculated using the 2*(-ddCt)
method. The graphs are a representative result of 3 independent experiments. Statistical significance was defined using the Mann-Whitney U test
—one tailed (*p<0.05).
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Table I : Primers for genotyping of mouse strains

Primer name Primer sequence (5’ —3’)

Akrlb7_Fw GAAAGCAGGCATTTCATCTGC
Akrlb7_Rev CAGGGTGTTATAAGCAATCCC
mPHD2_exo2 CGCATCTTCCATCTCCATTT
mPHD?2_Intronl CTCACTGACCTACGCCGTGT
mPHD2_Intronl CTCACTGACCTACGCCGTGT
mPHD?2_Intron3.3 GGCAGTGATAACAGGTGCAA
PHD3mFw ATGGCCGCTGTATCACCTGTAT
PHD3mRev CCACGTTAACTCTAGAGCCACTGA
PHD3Rec55 CTCAGACCCCCTAAGTATGT
PHD3mouseRev CCACGTTAACTCTAGAGCCACTGA
HIF1a.For GCAGTTAAGAGCACTAGTTG

HIF1a.Rev GGAGCTATCTCTCTAGACC
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Table II: Primers for qPCR analysis

Primer name

StAR_Fwd
StAR_Rev

Primer sequence (5’ — 3’)

TCGCTACGTTCAAGCTGTGT
GCTTCCAGTTGAGAACCAAGC

Cybllal_Fwd
Cybllal_Fwd

AGGTCCTTCAATGAGATCCCTT
TCCCTGTAAATGGGGCCATAC

3_HSDI1_Fwd TGGACAAAGTATTCCGACCAGA
3_HSD1_Rev GGCACACTTGCTTGAACACAG
3_HSD2_Fwd GGTTTTTGGGGCAGAGGATCA
3B_HSD2_Rev GGTACTGGGTGTCAAGAATGTCT

mCyp2lal_Fwd
mCyp2lal_Rev

AACAGAACCATTGAGGAGGCCTTGA
TCTCCAAAAGTGAGGCAGGAGATGA

Cypllbl_Fwd
Cypllbl_Rev

CAGATTGTGTTTGTGACGTTGC
CGGTTGAAGTACCATTCTGGC

mCYP11b2_Fwd
mCYP11b2_Rev

CAGTGGCATTGTGGCGGAACTAATA
GGTCTGACATGGCCTTCTGAGGATT

HIFlo_Fwd GGCGAGAACGAGAAGAAAAA
HIF1o_Rev AAGTGGCAACTGATGAGCAA
mPHD2_Fwd AAGCCCAGTTTGCTGACATT
mPHD2_Rev CTCGCTCATCTGCATCAAAA
mPHD3_Fwd GGCCGCTGTATCACCTGTAT
mPHD3_Rev TTCTGCCCTTTCTTCAGCAT
HIF20_Fwd CTGAGGAAGGAGAAATCCCGT
HIF20_Rev TGTGTCCGAAGGAAGCTGATG
HMOX1_Fwd AAGCCGAGAATGCTGAGTTCA
HMOXI1_Rev GCCGTGTAGATATGGTACAAGGA
BNIP3_Fwd TCCTGGGTAGAACTGCACTTC
BNIP3_Rev GCTGGGCATCCAACAGTATTT
VEGFA_Fwd GCACTGGACCCTGGCTTTAC

VEGFA_Rev

AACTTGATCACTTCATGGGACTTCT
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