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ABSTRACT

Interactions between hosts and their resident microbial communities are a fundamental component of
fitness for both agents. Though recent research has highlighted the importance of interactions
between animals and their bacterial communities, comparative evidence for fungi is lacking,
especially in natural populations. Using data from 49 species, we present novel evidence of strong
covariation between fungal and bacterial communities across the host phylogeny, indicative of
recruitment by hosts for specific suites of microbes. Using co-occurrence networks, we demonstrate
that fungi form critical components of putative microbial interaction networks, where the strength and
frequency of interactions varies with host taxonomy. Host phylogeny drives differences in overall
richness of bacterial and fungal communities, but the effect of diet on richness was only evident in
mammals and for the bacterial microbiome. Collectively these data indicate fungal microbiomes may
play a key role in host fitness and suggest an urgent need to study multiple agents of the animal
microbiome to accurately determine the strength and ecological significance of host-microbe

interactions.

SIGNIFICANCE STATEMENT

Microbes perform vital metabolic functions that shape the physiology of their hosts. However, almost
all research to date in wild animals has focused exclusively on the bacterial microbiota, to the
exclusion of other microbial groups. Although likely to be critical components of the host microbiome,
we have limited knowledge of the drivers of fungal composition across host species. Here we show
that fungal community composition is determined by host species identity and phylogeny, and that
fungi form extensive interaction networks with bacteria in the microbiome of a diverse range of animal
species. This highlights the importance of microbial interactions as mediators of microbiome-health

relationships in the wild.
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INTRODUCTION

Multicellular organisms support diverse microbial communities critical for physiological functioning,
immunity, development, evolution and behaviour (1-3). Variability in host-associated microbiome
composition may explain asymmetries among hosts in key traits including susceptibility to disease (4,
5), fecundity (6), and resilience to environmental change (7). Although the microbiota is a complex
assemblage of bacteria, fungi, archaea, viruses and protozoa, the overwhelming majority of research
has focused solely on the bacterial component (8, 9). Although relatively well documented in soils and
plants (10-13), relatively few studies have examined the dynamics of non-bacterial components of the
microbiome in animal hosts (but see (14—16)), especially in non-model or wild systems. As such, our
current understanding of host-microbe interactions is skewed by a bacteria-centric view of the
microbiome. Although not well understood, there is growing evidence that the fungal microbiota,
termed the ‘mycobiome’, may drive diverse functions such as fat, carbon and nitrogen metabolism
(17, 18), degradation of cellulose and other carbohydrates (19), pathogen resistance (20), initiation of

immune pathways and regulation of inflammatory responses (9, 21), and even host dispersal (22).

Host phylogeny has repeatedly been shown to be an important predictor of bacterial
microbiome structure in multiple vertebrate clades, a phenomenon known as ‘phylosymbiosis’ (23—
27). This phenomenon often reflects phylogenetic patterns in life history traits, such as diet,
physiology or spatial distribution (23-27). However, evidence of phylosymbiosis, and its drivers, in
other microbial kingdoms or domains is lacking. Addressing this major gap in our knowledge is crucial
as we likely underestimate the strength and importance of coevolution between animal hosts and their
resident communities, particularly in the context of cross-kingdom interactions within the microbiome

(28).

Here we used ITS and 16S rRNA gene amplicon sequencing to characterise fungal and
bacterial communities of primarily gut and faecal samples from 49 host species across eight classes,
including both vertebrates and invertebrates (Table S1). We predicted that both fungal and bacterial
microbiomes demonstrated strong signals of phylosymbiosis across the broad host taxonomic range
tested. Specifically, we predicted that patterns of phylosymbiosis within microbial kingdoms will also
drive significant positive covariance in patterns of microbial community structure between microbial

kingdoms within individual hosts, suggestive of evolutionary constraints that favour co-selection of
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specific bacterial and fungal communities in tandem. We also used network analysis to identify key
bacteria-fungi interactions whilst quantifying variation in the frequency and strength of bacteria-fungi
interaction networks across host taxonomic groups. Finally, we tested the prediction that cross-
kingdom phylosymbiosis may be partially driven by similarity in host dietary niche across the 32 bird

and mammal species sampled.

RESULTS

Fungal and Bacterial Microbiome Diversity Varies with Host Phylogeny

Our data revealed consistent patterns in fungal and bacterial alpha diversity across host taxonomic
groups. Bacterial community alpha-diversity was generally greater than, or similar to, fungal
community alpha-diversity at the host species level (Fig. 1A), although two species exhibited greater
fungal diversity than bacterial (great tit, tsetse fly; Fig. 1A). Comparisons between microbial richness
values within individuals (i.e., relative richness) using a binomial GLMM supported these patterns,
indicating that bacterial richness was higher on average than fungal in 80% of individuals [95%
credible interval (Cl) 0.55 - 0.95]. When conditioning on Class, samples from both Mammalia and
Insecta were more likely to have higher bacterial diversity than fungal diversity (credible intervals not
crossing zero on the link scale). Mammalia were more likely to have higher bacterial relative to fungal
diversity than Aves in our study organisms (mean difference in probability 22.9% [1.6 - 45.7%)]).
Variation among species in this model explained 19.5% [7.3 - 31.2%] of the variation in relative
microbial richness. Using a bivariate model with both fungal and bacterial diversity as response
variables to examine patterns of absolute microbial richness across host taxonomy, only Mammalia
exhibited bacterial diversity that was consistently higher than fungal diversity when controlling for
variation among species (mean difference in index 5.16; [3.33 - 6.96]). There was no evidence of
positive covariance between fungal and bacterial richness values at the species level (mean
correlation 0.3, 95% credible intervals -0.55 - 0.86), suggesting that high diversity of one microbial
group does not necessarily reflect high diversity of the other. The bivariate model also revealed that
species identity explained 33.9% [22.2 — 44.2%)] of variation in bacterial diversity, and 22.4% [9.8 —

35.5%] of variation in fungal diversity.

Phylogenetic analyses supported these general patterns (Fig. S2). For fungi, we detected

phylogenetic signal in patterns of both Inverse Simpson index (Cmean = 0.22, p = 0.021) and number of
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observed amplicon sequence variants (ASVs) (Cmean = 0.26, p = 0.016). For bacteria, phylogenetic
signal was evident for number of ASVs (Cmean = 0.28, p = 0.016) but not inverse Simpson index (Cmean

=0.114, p = 0.100).
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FIGURE 1

Host phylogeny and diet as predictors of host bacterial and fungal alpha diversity. (A) Boxplots and
raw data (points) of inverse Simpson indices for bacterial (green) and fungal (orange) communities
across a range of host species. (B) Raw data (points) and model predictions (shaded area and lines)
of models examining the relationship between host diet and microbiome alpha diversity. In mammals,
an increase the in the amount of plant material in the diet (more negative PC1 values) drives
increases in richness. There was no corresponding relationship between diet and richness for fungi in

mammals, nor for bacteria and fungi in birds. Shaded areas represent 95% credible intervals.

Limited Evidence of Covariation Between Host Diet and Fungal Microbiome

Alpha Diversity: Models exploring the influence of diet on microbial richness yielded mixed
results. In mammals, only a relationship between bacterial richness and diet was evident (interaction
between microbe (fungi vs bacteria) and the primary axis of a PCA of dietary variation; Fig 1B). This
indicates that bacterial alpha diversity increases in tandem with the proportion of plant matter in the
diet. However, this relationship was absent in birds (Fig. 1B). Similarly, there was no relationship

between fungal richness and diet for birds or mammals (credible intervals for slopes all include zero).

Beta Diversity: Patterns of variation in microbial community structure broadly followed those
for alpha diversity above. While for mammals there was a significant correlation between host-
associated bacterial community composition and diet (r = 0.334, p = 0.002), and a near-significant
relationship between fungal community composition and diet (r = 0.142, p = 0.067), for birds there
was no significant relationship between dietary data and bacterial community composition (r = 0.087,
p = 0.211) or fungal community composition (r = 0.026, p = 0.386). Further, taxonomic differences in
microbiome composition based on differences in crude dietary patterns were not clear for either
bacteria or fungi when the microbiome composition was visualised at the family level (Figs. S3, S4).
That said, Alphaproteobacteria and Eurotiomycete fungi were notably absent from species that
primarily ate vegetation (i.e. grasses etc) and Neocallimastigomycete fungi were the predominant

fungal class associated with two out of four of these host species (Figs. S3, S4).
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149  Strong Evidence of Correlated Phylosymbiosis in Both Microbial Groups

150  Our data revealed consistent variation in fungal and bacterial community structure across the host
151  phylogeny (Fig. 2A). PERMANOVA analyses on centred-log ratio (CLR) transformed ASV

152 abundances revealed significant phylogenetic effects of host class, order and species, as well as

153 effects of sample storage and library preparation protocol for both microbial groups (Table 2; Figs. S5
154 & S6). For both bacteria and fungi, host species identity explained more variation than host class or
155 order, and this pattern remained when re-running the models without sample preparation protocol

156 effects, though this inflated the estimate of R? for all taxonomic groupings (Table 2).

157 Consistent with our predictions, the similarity between the microbial communities of a given
158  pair of host species was proportional to the phylogenetic distance between them (e.g. ASV level:
159  fungal cor. = 0.26; p = 0.001; bacterial cor. = 0.37; p = 0.001; Fig. 2B). Correlations for both bacterial
160  and fungal communities became stronger when aggregating microbial taxonomy to broader

161 taxonomic levels (Fig. 2B). Notably, the bacterial correlation was stronger than the fungal equivalent

162  at most taxonomic levels (Fig. 2B), indicating stronger patterns of phylosymbiosis for bacteria.

163 We also detected a strong, significant correlation between fungal and bacterial community
164  structure of individual samples at the level of ASVs using Procrustes rotation (cor. = 0.29, p < 0.001;
165 Fig. 2C). Collapsing ASV taxonomy to genus, family, and order resulted in even stronger correlations
166  (cor.=0.44, 0.48 & 0.43, respectively; all p < 0.001; Fig. 2C). These data indicate a coupling between
167 the structures of fungal and bacterial communities, whereby shifts in structure of one community

168  across the phylogeny also reflect consistent shifts in the other microbial group.
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173  aligned to tree tips. (B) Correlation between microbial and host genetic distances (generated from the
174  phylogenetic tree in A) for both bacteria (green) and fungi (orange) across all host species. Microbial
175 taxonomy was either raw ASVs or grouped into higher taxonomic levels. Aggregation to higher

176  taxonomy tended to result in higher correlations for both microbial groups, and the correlation was
177  always stronger in bacteria. (C) Correlation between fungal and bacterial community structure derived
178 from Procrustes rotation on PCA ordinations of each microbial group. Microbial communities were
179  aggregated at various taxonomic groupings (order, family, genus), or as raw Amplicon Sequence

180  Variant (ASV) taxonomy. For both B and C, distributions of correlation values were generated using
181  resampling of 90% of available samples for that microbial group to generate 95% intervals (shaded
182 areas on graphs). Empty bars in panel 2A mean samples were not available for a particular species

183  and so would not have been included in the calculations in panel B or C.

184

185 TABLE 2

186 PERMANOVA results for (a) fungi and (b) bacteria of factors explaining variation in microbial

187  community structure. Terms were added in the order shown in the table to marginalise effects of

188 sample storage and preparation protocols before calculating % variance explained for taxonomic

189  groupings. Species ID was the dominant source of variation in the data for both taxonomic groups, but

190 there were also strong effects of sample storage and wet lab protocol, particularly for bacteria.

(a) FUNGI Taxonomic Effects Only
Predictor df R? pvalue df R? p value
Sample Type 0.05 0.001

Tissue Storage 0.04 0.001

7
5
Extraction Kit 7 0.07 0.001
2
6

Class 0.02 0.001 6 0.05 0.001
Order 0.05 0.001 13 0.12 0.001
Species 18 0.09 0.001 26 0.14 0.001
Residuals 303 0.68 303 0.68
(b) BACTERIA Taxonomic Effects Only
Predictor df R? pvalue df R? p value

Sample Type 6 0.06 0.001
Tissue Storage 6 0.16 0.001
Extraction Kit 7 0.12 0.001
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Class 2 0.02  0.001 6 0.09 0.001

Order 6 0.09  0.001 12 0.21 0.001
Species 18  0.12  0.001 27 0.27 0.001
Residuals 273  0.42 273 042

Strength of Interactions Between Bacteria and Fungi May Vary Across Host Taxonomy

Analysis of correlations among fungal and bacterial abundances revealed differences in network
structure at both the host class (Fig. 3A) and host species level (Figs. S7; S8). In particular, fungi of
the phylum Ascomycota appeared frequently in the putative interaction networks of birds, mammals
and amphibians (Fig. 3A). There was also systematic variation in network structure among taxonomic
groups. Using the class-level network data in Fig. 3A, we estimated that Mammalia exhibited the
fewest components, fewest communities, and lowest modularity (Table 2), indicating lower overall
network subdivision relative to other animal classes. Mean betweenness of fungal nodes also varied
by host class; randomisations revealed that mean fungal betweenness was significantly lower than
expected by chance in Aves (2-tailed p = 0.044, Fig. 3B) but not Mammalia (2-tailed p=0.6, Fig 3B).
Models of species-level network data (Fig. S7, S8) revealed the frequency of positive co-occurrence
between pairs of microbes also varied by class; Mammalia exhibited the highest proportion of positive
edges (Fig. 3C), being significantly greater than those of birds (mean diff. 0.042 [0.017-0.067]) and
amphibians (mean diff. 0.05 [0.002-0.112]). Notably, insects had a markedly lower proportion of
positive edges compared to all other taxa (Fig. 3C). Class explained 93.2% [92.9-93.4%] of variation

in edge sign.

TABLE 2: Network statistics from class-specific microbial networks in Figure 3 in the main
manuscript. ‘Modularity’ and ‘Groups’ statistics are derived from the cluster_fast_greedy function
applied to igraph network objects. ‘Components’ data were extracted directly from the networks.
Modularity was positively correlated with both number of groups (cor = 0.76) and number of

components (cor = 0.86).

Class Modularity Groups Components
Mammalia 0.658 7 1
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Aves 0.719 23 14 215
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221  FIGURE 3
222 (A) Putative microbial interaction networks between bacterial (circles) and fungal (squares) taxa,
223 coloured by microbial phylum. Networks were constructed using the R package SpiecEasi on CLR-
224  transformed abundance values to detect non-random co-occurrence between groups of microbes. (B)
225 Permutational testing revealed that mean fungal betweenness was significantly lower than expected
226 by chance in Aves, but not Mammalia, indicating heterogeneity in network structure. (C) Analysis of
227 network structural traits from species-specific networks comprising 39 species from five Classes.
228  There were significant differences in the proportion of positive edges (correlations between paired
229 microbial abundance values) among classes. Vertical dashed line indicates equal proportion of
230  positive and negative edges.
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DISCUSSION

Our study represents the most wide-ranging evaluation of animal mycobiome composition, and its
covariation with the bacterial microbiome, undertaken to date. Our data provide novel evidence for
mycobiome phylosymbiosis in wild animals, indicative of close evolutionary coupling between hosts
and their resident fungal communities. Consistent with previous studies, we also find evidence of
phylosymbiosis in the bacterial microbiome (29), but crucially, we demonstrate strong and consistent
covariation between fungal and bacterial communities across host phylogeny, especially at higher
microbial taxonomic levels. These patterns are supported by complementary network analysis
illustrating frequent correlative links between fungal and bacterial taxa, whereby certain pairs of
microbes from different kingdoms are much more likely to co-occur in the microbiome than expected
by chance. Taken together, these data provide novel evidence of host recruitment for specific fungal
and bacterial communities, which in turn may reflect host selection for interactions between bacteria

and fungi critical for host physiology and health.

We found marked variation among host species in microbial community richness and
composition for both bacteria and fungi. Though our data suggest many species support a diverse
assemblage of host-associated fungi, we show that bacterial diversity tends to be higher on average
relative to fungal diversity, and that there is no signal of positive covariance between fungal and
bacterial richness within species, suggesting more ASV-rich bacterial microbiomes are not
consistently associated with more ASV-rich mycobiomes. These patterns could arise because of
competition for niche space within the gut, where high bacterial diversity may reflect stronger
competition that prevents proliferation of fungal diversity. Understanding patterns of niche competition
within and among microbial groups requires that we are able to define those niches by measuring
microbial gene function, and quantifying degree of overlap or redundancy in functional genomic

profiles across bacteria and fungi.

We detected strong phylosymbiosis for both fungi and bacteria across a broad host
phylogeny encompassing both vertebrate and invertebrate classes. This pattern was significantly
stronger in bacteria than for fungi. In both microbial kingdoms, the signal of phylosymbiosis

strengthened when aggregating microbial assignments to broader taxonomic levels, a phenomenon
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260 that has previously been shown for bacterial communities (30). That this pattern also occurs in fungi
261 suggests either that host recruitment is weaker at finer-scale taxonomies, or our ability to detect that
262  signal is weaker at the relatively noisy taxonomic scale of ASVs. Stronger signals of phylosymbiosis
263  at family and order-level taxonomies may reflect the deep evolutionary relationships between hosts
264 and their bacterial and fungal communities, as well as the propensity for microbial communities to
265  allow closely related microbes to establish whilst repelling less related organisms (31). That is, higher-
266 order microbial taxonomy may better approximate functional guilds within the microbiome, such as the
267  ability to degrade cellulose (25, 30), which are otherwise obscured by taxonomic patterns of ASVs.
268 Resolving this requires the integration of functional genomic data from the fungal and bacterial

269  microbiota into the phylogeny.

270 In addition to microbe-specific patterns of phylosymbiosis, a key novel finding of our work is
271  discovery of strong covariation between fungal and bacterial community composition across the host
272  phylogeny. These patterns are consistent with host recruitment for particular suites of fungal and

273 bacterial taxa, which may represent bacteria-fungi metabolic interactions beneficial to the host.

274  Bacterial-fungal interactions have previously been demonstrated for a handful of animal species (8, 9,
275 17, 32, 33), but here we show these are widespread across multiple animal classes. Both bacteria
276 and fungi have considerable enzymatic properties that facilitate the liberation of nutrients for use by
277 other microbes, thus facilitating cross-kingdom colonisation (34—36) and promoting metabolic inter-
278  dependencies (37-39). We also identified numerous associations between bacteria and fungi for
279 many of our host species. The frequency and predicted direction of these relationships varied

280  considerably among host classes, with the mammalian network exhibiting i) a lower modularity,

281 indicating weaker clustering into fewer discrete units (both distinct components and interlinked

282  communities); and ii) a higher frequency of positive correlations between microbes compared to most
283  other classes, in particular birds and insects. Comparisons of networks are challenging when they
284  differ in size (i.e., number of nodes) and structure, and differences between classes in traits like

285  modularity will also be affected by species replication within each class. However, proportional traits
286 like interaction structure (proportion of positive interactions) are unlikely to be driven solely by sample
287 size, suggesting marked biological variation in strength of fungi-bacteria interactions across the host

288 phylogeny. These putative interaction networks provide novel candidates for further investigation in
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controlled systems, where microbiome composition and therefore the interactions among microbes

can be manipulated to test the influence of such interactions on host physiology.

The drivers of phylosymbiosis remain unclear, even for bacterial communities; is a
phylogenetic signal indicative of host-microbiome coevolution, or simply a product of “ecological
filtering” of the microbiome in the host organism either via extrinsic (e.g. diet, habitat) or intrinsic
sources (e.g. gut pH, immune system function) (26, 29, 40)? Our results indicate host diet may play a
role in determining bacterial composition in mammals, but not fungal composition in either mammals
or birds. These results are broadly consistent with previous work, where the influence of diet on
bacterial microbiome was most evident in mammals (25). However, Li et al. (16) showed that the
composition and diversity of both fungal and bacterial communities of faecal samples differed
between phytophagous and insectivorous bats, and Heisel et al. (17) demonstrated changes in fungal
community composition in mice fed a high fat diet. Our study was not designed to test for the effects
of ecological variation in diet on fungal microbiome within a species, nor can we discount the
possibility that at finer taxonomic scales within classes, signals of the effect of among species
variation in diet on mycobiome may become stronger (e.g. (16)). It is also worth noting that the signals
produced from faecal and true gut samples may differ; evidence suggests faecal samples may
indicate diet is the predominant driver of “gut” microbiome composition when gastrointestinal samples
indicate host species is the predominant determinant (41). Moreover, faecal samples may only
represent a small proportion of the gastrointestinal microbiome (41-43). Our data also show that
sample type has a significant effect on both fungal and bacterial community composition (as well as
DNA extraction method and storage method; see (44—47) for other examples of this). As such, a more
thorough analysis of true gut communities is required to determine the extent to which mycobiome
phylosymbiosis and dietary signals occur across wild animals, and what other ecological and host-
associated factors influence mycobiome composition and function. We hypothesise that evolutionary
processes play a large role in shaping host-associated microbiomes, with selection for microbiome

function rather than taxonomic groupings per se.

Within animals, the roles of host-associated fungal communities are not well understood, yet
our data highlight that fungi are important components of microbiome structure that are often
overlooked. Our knowledge of the range of functions provided by the host mycobiome, and how these

alter or complement those provided by the bacterial microbiome, remains limited. We hypothesise that


https://doi.org/10.1101/2020.07.07.177535
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.07.177535; this version posted February 24, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

319 host-associated fungi and bacteria produce mutually beneficial metabolites that facilitate the

320 colonisation, reproduction and function of cross-kingdom metabolic networks (28). Though we provide
321 evidence for consistent variation among host class in fungal community structure, and the role of fungi
322 within putative interaction networks, for many researchers the questions of key interest will focus on
323  what governs variation at the level of the individual. Clear gaps in our knowledge remain regarding the
324 relative contributions of host genomic (48-50) and environmental variation to host mycobiome

325 structure, function and stability. We argue that there is an urgent need to incorporate quantitative

326  estimates of microbial function into microbiome studies, which are crucial for understanding the forces

327  of selection shaping host-microbe interactions at both the individual and species level.

328

329

330 MATERIALS AND METHODS

331  Sample collection

332  DNA was extracted from tissue or faecal samples of 49 host species using a variety of DNA extraction
333 methods (Table S1) and normalised to ~10 ng/ul. Samples were largely collated from previous studies
334  and/or those available from numerous researchers and as such, DNA extraction and storage

335 techniques were not standardised across species. We sequenced a median of 10 samples per

336  species (range of 5 to 12; Table S1).

337

338 ITS1F-2 and 16S rRNA amplicon sequencing

339  Full details are provided in Supplementary Materials. Briefly, we amplified the ITS1F-2 rRNA gene to
340 identify fungal communities using single index reverse primers and a modified protocol of Smith &
341  Peay (51) and Nguyen et al. (52), as detailed in Griffiths et al. (13). To identify bacterial communities,
342  we amplified DNA for the 16S rRNA V4 region using dual indexed forward and reverse primers

343  according to Kozich et al. (53) and Griffiths et al. (49). The two libraries were sequenced separately

344  using paired-end reads (2 x 250bp) with v2 chemistry on an lllumina MiSeq.

345 We conducted amplicon sequence data processing in DADA2 v1.5 (54) in RStudio v1.2.1335

346  for R (55, 56) for both ITS rRNA and 16S rRNA amplicon data. After data processing, we obtained a
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347  median of 1425 reads per sample (range of 153 to 424,527) from the ITS data, and a median of 3273

348 reads (range of 153 to 425,179) for the 16S rRNA data.

349 To compare alpha-diversity between species and microbial kingdoms, we rarefied libraries to
350 500 reads per sample, yielding 292 samples from 46 species and 307 samples from 47 species for
351 fungal and bacterial kingdoms respectively. Alpha-diversity measures remained relatively stable within
352  ahost species whether data were rarefied to 500, 1000, or 2500 reads (Figs. 1, S1, S2; see

353  Supplementary Material for more details).
354
355  Host phylogeny

356  As many of our host species lack genomic resources from which to construct a genome-based

357  phylogeny, we built a dated phylogeny of host species using TimeTree (57). The phylogenetic tree
358  contained 42 species, of which 36 were directly represented in the TimeTree database. A further six
359 species had no direct match in TimeTree and so we used a congener as a substitute (Amietia,

360  Glossina, Portunus, Ircinia, Amblyomma, Cinachyrella). We calculated patristic distance among
361  species based on shared branch length in the phylogeny using the ‘cophenetic’ function in the ape
362  package (58) in R. We visualised and annotated the phylogeny using the R package ggtree (59). To
363 create a phylogeny for all samples, we grafted sample-level tips onto the species phylogeny with

364  negligible branch lengths following Youngblut et al. (25).
365
366  Fungal and bacterial community analysis

367 A fully reproducible workflow of all analyses is provided in supplementary material as an R
368  Markdown document. We used the R package brms (60, 61) to fit (generalized) linear mixed effects
369 models [(G)LMMs] to test for differences in alpha diversity and calculated r? of models using the

370 ‘bayes_R2’ function. We assessed the importance of terms based on whether 95% credible intervals
371  of the parameter estimates of interest crossed zero. We used ggplot (62), cowplot (63) and tidybayes

372  (64) for raw data and plotting of posterior model estimates.

373 To support these analyses, we also used the R packages phylobase (65) and phylosignal

374 (66) to estimate the phylogenetic signal in patterns of alpha diversity for both bacteria and fungi, using
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both Inverse Simpson Index and number of observed ASVs as outcome variables. We calculated
Abouheif's Cmean for each diversity-microbe combination and corrected p values for multiple testing

using Benjamini-Hochberg correction.

To identify taxonomic differences in microbiome and mycobiome composition between host
species, we used centred-log-ratio (CLR) transformation in the microbiome (67) package to normalise
microbial abundance data, which obviates the need to lose data through rarefying (68). To quantify
differences in beta-diversity among kingdoms and species whilst simultaneously accounting for
sample storage and library preparation differences among samples, we conducted a PERMANOVA
analysis on among-sample Euclidean distances of CLR-transformed abundances using the adonis
function in vegan (69) with 999 permutations. For both kingdoms, we specified effects in the following
order: sample type, tissue storage, extraction kit, class, order, species. This marginalises the effects
of sample metadata variables first, before partitioning the remaining variance into that accounted for
by host phylogeny. The results were similar when amplicon data were converted to relative

abundance or rarefied to 500 reads (data not presented).

To test the hypothesis that inter-individual differences in microbial community composition
were preserved between microbial kingdoms, we performed Procrustes rotation of the two PCA
ordinations for bacterial and fungal abundance matrices, respectively (n = 277 paired samples from
46 species). We also repeated this analysis with ASVs agglomerated into progressively higher
taxonomic rankings from genus to order (see (30)). To provide a formal test of differences in strength
of covariation at different taxonomic levels, we conducted a bootstrap resampling analysis where for
each kingdom at each iteration, we randomly sampled 90% of the data and recalculated the
correlation metric. We repeated this process 999 times to build a distribution of correlation values at
each taxonomic grouping. To examine the hypothesis that inter-individual distance in microbial
community composition varies in concert with interspecific phylogenetic distance, we performed a
Procrustes rotation on the paired matrix of microbial distance (Euclidean distance of CLR-transformed

abundances) and patristic distance from the phylogenetic tree.

To identify potential co-occurrence relationships between fungal and bacterial communities,
we conducted two analyses; 1) We used the R package SpiecEasi (70) to identify correlations

between unrarefied, CLR-transformed ASVs abundances at the host class level (with insects
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404  grouped), and 2) we used co-occurrence analysis at the species level, by rarefying the bacterial and
405  fungal data sets to 500 reads each, and agglomerated taxonomy family level, resulting in 117

406 bacterial groups and 110 fungal groups. We then merged the phyloseq objects for bacterial and
407  fungal communities for each sample, with sufficient data retained to conduct the co-occurrence

408 analysis for 40 host species. Using these cross-kingdom data, we calculated the co-occurrence

409  between each pair of microbial genera by constructing a Spearman’s correlation coefficient matrix in
410 the bioDist package (71, 72). We visualised those with rho > 0.50 (strong positive interactions) and
411 rho <-0.50 (strong negative interactions) for each host species separately using network plots

412 produced in igraph (73). We calculated modularity of the class-level microbial networks comprising
413 both positive and negative interactions using the modularity function after greedy clustering

414 implemented in the igraph package. We used binomial GLM to test the hypothesis that the proportion
415 of positive edges (correlations) varies by host class, and permutation approaches on betweenness
416  values of fungal nodes to test the hypothesis that fungi form critical components of microbial

417 networks.

418 To determine the effect of diet on bacterial and fungal community composition, we used only
419  samples from the bird and mammal species and agglomerated the data for each host species using
420 the merge_samples function in phyloseq (74). This gave us a representative microbiome for each
421  host species, which we rarefied to the lowest number of reads for each combination of kingdom and
422  host taxon (2,916 — 9,160 reads; bacterial read counts were low for lesser horseshoe bats and so this
423 species was removed from this analysis) and extracted Euclidean distance matrices for each. We
424  then correlated these with dietary data obtained from the EltonTraits database (75) using Mantel tests
425  with Kendall rank correlations in the vegan package (69). We agglomerated the microbial data to

426 class level and visualised the bacterial and fungal community compositions for mammals alongside
427  pie charts displaying EltonTrait dietary data for each species. We also used a primary axis of the

428  ordination of EltonTrait data to derive a ‘dietary variation axis’ used as a predictor for alpha diversity of

429 Birds and Mammals.

430


https://doi.org/10.1101/2020.07.07.177535
http://creativecommons.org/licenses/by-nc-nd/4.0/

431

432
433
434
435
436
437
438
439
440
441
442
443
444
445

446

447
448
449

450

451
452
453

454

455

456
457

458

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.07.177535; this version posted February 24, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

ACKNOWLEDGEMENTS

We would like to thank Miran Aprahamian, Chris Williams (Environment Agency) Patrick Abila
(National Livestock Resources Research Institute) and Dr Patrick Vudriko (Makerere University) for
providing samples, as well as BEI Resources, the US Forest Service and the University of Wisconsin-
Madison for providing mock communities. We are grateful to Devenish Nutrition for funding the red
deer research at Dowth Hall, Co. Meath, Ireland. The sampling of shrews was funded by a Heredity
Fieldwork Grant awarded by the Genetics Society. The collection of dove and pigeon faecal samples
was jointly funded by the Royal Society for the Protection of Birds and Natural England through the
Action for Birds in England (AfBiE) partnership. Fieldwork enabling collection of avian faecal samples
from Lincolnshire was funded by The Royal Society Research Grant RG170086 to JCD. Small
mammal sampling in the Chernobyl Exclusion Zone was supported by the TREE
(https://tree.ceh.ac.uk/) and RED FIRE (https://www.ceh.ac.uk/redfire) projects. TREE was funded by
the Natural Environment Research Council (NERC), Radioactive Waste Management Ltd. and the
Environment Agency as part of the RATE Programme; RED FIRE was a NERC Urgency Grant.

Northern muriqui research at Caparad National Park, Brazil, was funded by CAPES (BEX 1298/15-1).

COMPETING INTERESTS

The authors have no competing interests to declare.

DATA ACCESSIBILITY STATEMENT

Sequence data are deposited in the NCBI SRA database under BioProject numbers PRINA593927
and PRJNA593220. A fully-reproducible analysis workflow has been provided as supplementary

material at https://github.com/xavharrison/Mycobiome2020

REFERENCES
1. E. A. Archie, J. Tung, Social behavior and the microbiome. Curr. Opin. Behav. Sci. 6, 28-34
(2015).

2. M. McFall-Ngai, et al., Animals in a bacterial world, a new imperative for the life sciences.


https://doi.org/10.1101/2020.07.07.177535
http://creativecommons.org/licenses/by-nc-nd/4.0/

459

460
461

462
463

464
465

466
467
468

469
470

471
472

473
474

475
476

477
478

479
480

481
482

483
484

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.07.177535; this version posted February 24, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

10.

11.

12.

13.

14.

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Proc. Natl. Acad. Sci. U. S. A. 110, 3229-3236 (2013).

S. Bahrndorff, S. Bahrndorff, T. Alemu, T. Alemneh, J. L. Nielsen, The Microbiome of Animals :

Implications for Conservation Biology. Int. J. Genomics 2016, 5304028 (2016).

R. J. Dillon, C. T. Vennard, A. Buckling, A. K. Charnley, Diversity of locust gut bacteria

protects against pathogen invasion. Ecol. Lett. 8, 1291-1298 (2005).

K. A. Bates, et al., Amphibian chytridiomycosis outbreak dynamics are linked with host skin

bacterial community structure. Nat. Commun. 9, 1-11 (2018).

B. S. Walsh, C. Heys, Z. Lewis, Gut microbiota influences female choice and fecundity in the
nuptial gift-giving species, Drosophila subobscura (Diptera: Drosophilidae). Eur. J. Entomol.

114, 439-445 (2017).

A. Apprill, Marine animal microbiomes: Toward understanding host-microbiome interactions in

a changing ocean. Front. Mar. Sci. 4, 1-9 (2017).

Q. H. Sam, M. W. Chang, L. Y. A. Chai, The fungal mycobiome and its interaction with gut

bacteria in the host. Int. J. Mol. Sci. 18, 330 (2017).

R. Enaud, et al., The Mycobiome: A Neglected Component in the Microbiota-Gut-Brain Axis.

Microorganisms 6, 22 (2018).

P. Frey-Klett, et al., Bacterial-Fungal Interactions: Hyphens between Agricultural, Clinical,

Environmental, and Food Microbiologists. Microbiol. Mol. Biol. Rev. 75, 583-609 (2011).

B. Jakuschkin, et al., Deciphering the Pathobiome: Intra- and Interkingdom Interactions

Involving the Pathogen Erysiphe alphitoides. Microb. Ecol. 72, 870-880 (2016).

L. S. van Overbeek, K. Saikkonen, Impact of Bacterial-Fungal Interactions on the Colonization

of the Endosphere. Trends Plant Sci. 21, 230-242 (2016).

S. M. Giriffiths, et al., Complex associations between cross-kingdom microbial endophytes and

host genotype in ash dieback disease dynamics. J. Ecol., 1-19 (2019).

M. A. Ghannoum, et al., Characterization of the oral fungal microbiome (mycobiome) in

healthy individuals. PLoS Pathog. 6 (2010).


https://doi.org/10.1101/2020.07.07.177535
http://creativecommons.org/licenses/by-nc-nd/4.0/

485
486
487

488
489

490
491

492
493
494

495
496

497
498

499
500

501
502

503

504
505

506
507

508
509

510
511

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.07.177535; this version posted February 24, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A. S. Liggenstoffer, N. H. Youssef, M. B. Couger, M. S. Elshahed, Phylogenetic diversity and
community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and

non-ruminant herbivores. ISME J. 4, 1225-1235 (2010).

J. Li, et al., Fecal Bacteriome and Mycobiome in Bats with Diverse Diets in South China. Curr.

Microbiol. 75, 1352-1361 (2018).

T. Heisel, et al., High-Fat Diet Changes Fungal Microbiomes and Interkingdom Relationships

in the Murine Gut. mSphere 2, 1-14 (2017).

L. Wegley, R. Edwards, B. Rodriguez-Brito, H. Liu, F. Rohwer, Metagenomic analysis of the
microbial community associated with the coral Porites astreoides. Environ. Microbiol. 9, 2707—

2719 (2007).

S. Yang, et al., Metagenomic Analysis of Bacteria, Fungi, Bacteriophages, and Helminths in

the Gut of Giant Pandas. Front. Microbiol. 9, 1-16 (2018).

P. J. Kearns, et al., Fight fungi with fungi: Antifungal properties of the amphibian mycobiome.

Front. Microbiol. 8, 1-12 (2017).

F. Yeung, et al., Altered Immunity of Laboratory Mice in the Natural Environment Is Associated

with Fungal Colonization. Cell Host Microbe, 1-14 (2020).

M. Lu, M. J. Windfield, N. E. Gillette, S. R. Mori, J. H. Sun, Complex interactions among host

pines and fungi vectored by an invasive bark beetle. New Phytol. 187, 859-866 (2010).

E. R. Davenport, et al., The human microbiome in evolution. BMC Biol. 15, 1-12 (2017).

S. C. L. Knowles, R. M. Eccles, L. Baltrinaité, Species identity dominates over environment in

shaping the microbiota of small mammals. Ecol. Lett. 22, 826—-837 (2019).

N. D. Youngblut, et al., Host diet and evolutionary history explain different aspects of gut

microbiome diversity among vertebrate clades. Nat. Commun. 10, 1-15 (2019).

K. R. Amato, et al., Evolutionary trends in host physiology outweigh dietary niche in structuring

primate gut microbiomes. ISME J. 13, 576-587 (2019).

S. J. Song, et al., Comparative Analyses of Vertebrate Gut Microbiomes Reveal Convergence

between Birds and Bats. MBio 11, 1-14 (2020).


https://doi.org/10.1101/2020.07.07.177535
http://creativecommons.org/licenses/by-nc-nd/4.0/

512
513
514

515
516
517

518
519

520
521
522

523
524
525
526

527
528
529

530
531

532
533

534
535

536
537

538

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.07.177535; this version posted February 24, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

K. A. Krautkramer, J. Fan, F. Backhed, Gut microbial metabolites as multi-kingdom
intermediates. Nat. Rev. Microbiol. (2020) https:/doi.org/https://doi.org/10.1038/s41579-020-

0438-4.

A. W. Brooks, K. D. Kohl, R. M. Brucker, E. J. van Opstal, S. R. Bordenstein, Phylosymbiosis:
Relationships and Functional Effects of Microbial Communities across Host Evolutionary

History. PLoS Biol. 14, 1-29 (2016).

P. Rausch, et al., Comparative analysis of amplicon and metagenomic sequencing methods

reveals key features in the evolution of animal metaorganisms. Microbiome 7, 1-19 (2019).

B. Stecher, et al., Like will to like: Abundances of closely related species can predict
susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog.

6, 1000711 (2010).

Q. S. Mcfrederick, U. G. Mueller, R. R. James, Interactions between fungi and bacteria
influence microbial community structure in the Megachile rotundata larval gut Interactions
between fungi and bacteria influence microbial community structure in the Megachile

rotundata larval gut. Proc. R. Soc. B Biol. Sci. 281, 20132653 (2014).

J. D. Forbes, C. N. Bernstein, H. Tremlett, G. Van Domselaar, N. C. Knox, A fungal world:
Could the gut mycobiome be involved in neurological disease? Front. Microbiol. 10, 1-13

(2019).

S. Pareek, et al., Comparison of Japanese and Indian intestinal microbiota shows diet-

dependent interaction between bacteria and fungi. npj Biofilms Microbiomes 5 (2019).

K. G. Peay, P. G. Kennedy, T. D. Bruns, Fungal Community Ecology: A Hybrid Beast with a

Molecular Master. Bioscience 58, 799-810 (2008).

N. Fierer, Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat.

Rev. Microbiol. 15, 579-590 (2017).

C. Hoffmann, et al., Archaea and Fungi of the Human Gut Microbiome: Correlations with Diet

and Bacterial Residents. PLoS One 8, e66019 (2013).

W. Kim, S. B. Levy, K. R. Foster, Rapid radiation in bacteria leads to a division of labour. Nat.


https://doi.org/10.1101/2020.07.07.177535
http://creativecommons.org/licenses/by-nc-nd/4.0/

539

540
541

542
543

544
545
546

547
548
549

550
551
552

553
554

555
556

557
558
559

560
561
562

563

564
565

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.07.177535; this version posted February 24, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Commun. 7, 10508 (2016).

S. Rakoff-Nahoum, K. R. Foster, L. E. Comstock, The evolution of cooperation within the gut

microbiota. Nature 533, 255-259 (2016).

F. Mazel, et al., Is Host Filtering the Main Driver of Phylosymbiosis across the Tree of Life?

mSystems 3, 1-15 (2018).

M. R. Ingala, et al., Comparing microbiome sampling methods in a wild mammal: Fecal and
intestinal samples record different signals of host ecology, evolution. Front. Microbiol. 9, 1-13

(2018).

E. Videvall, M. Strandh, A. Engelbrecht, S. Cloete, C. K. Cornwallis, Measuring the gut
microbiome in birds: Comparison of faecal and cloacal sampling. Mol. Ecol. Resour. 18, 424—

434 (2018).

G. Leite, et al., Sa1911 — Analysis of the Small Intestinal Microbiome Reveals Marked
Differences from Stool Microbiome in a Large Scale Human Cohort: Redefining the “Gut

Microbiome.” Gastroenterology 156, S-449-S-450 (2019).

S. Yuan, D. B. Cohen, J. Ravel, Z. Abdo, L. J. Forney, Evaluation of methods for the extraction

and purification of DNA from the human microbiome. PLoS One 7 (2012).

L. Weber, E. DeForce, A. Apprill, Optimization of DNA extraction for advancing coral

microbiota investigations. Microbiome 5, 1-14 (2017).

X. Zhou, S. Nanayakkara, J. L. Gao, K. A. Nguyen, C. J. Adler, Storage media and not
extraction method has the biggest impact on recovery of bacteria from the oral microbiome.

Sci. Rep. 9, 1-10 (2019).

A. E. Asangba, et al., Variations in the microbiome due to storage preservatives are not large
enough to obscure variations due to factors such as host population, host species, body site,

and captivity. Am. J. Primatol. 81, 1-12 (2019).

J. K. Goodrich, et al., Human genetics shape the gut microbiome. Cell 159, 789799 (2014).

S. M. Griffiths, et al., Genetic variability and ontogeny predict microbiome structure in a

disease-challenged montane amphibian. ISME J. 12, 2506-2517 (2018).


https://doi.org/10.1101/2020.07.07.177535
http://creativecommons.org/licenses/by-nc-nd/4.0/

566
567

568
569

570
571

572
573
574

575
576

577
578

579
580

581
582

583
584

585
586
587

588
589

590
5901

592

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.07.177535; this version posted February 24, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

S. M. Griffiths, et al., Host genetics and geography influence microbiome composition in the

sponge Ircinia campana. J. Anim. Ecol. 88, 1684—1695 (2019).

D. P. Smith, K. G. Peay, Sequence depth, not PCR replication, improves ecological inference

from next generation DNA sequencing. PLoS One 9, €90234 (2014).

N. H. Nguyen, D. Smith, K. Peay, P. Kennedy, Parsing ecological signal from noise in next

generation amplicon sequencing (2014).

J. J. Kozich, S. L. Westcott, N. T. Baxter, S. K. Highlander, P. D. Schloss, Development of a
dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on

the miseq illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112-5120 (2013).

B. J. Callahan, et al., DADA2: High-resolution sample inference from Illlumina amplicon data.

Nat. Methods 13, 581-583 (2016).

RStudio Team, RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL

http://www.rstudio.c (2016).

R Core Team, R: A language and environment for statistical computing. R Foundation for

Statistical Computing. Vienna, Austria. URL https://www.R-project.org/. (2017).

S. Kumar, G. Stecher, M. Suleski, S. B. Hedges, TimeTree: A Resource for Timelines,

Timetrees, and Divergence Times. Mol. Biol. Evol. 34, 1812-1819 (2017).

E. Paradis, K. Schliep, Ape 5.0: An environment for modern phylogenetics and evolutionary

analyses in R. Bioinformatics 35, 526528 (2019).

G. Yu, D. K. Smith, H. Zhu, Y. Guan, T. T. Y. Lam, Ggtree: an R Package for Visualization and
Annotation of Phylogenetic Trees With Their Covariates and Other Associated Data. Methods

Ecol. Evol. 8, 28-36 (2017).

P. C. Burkner, Advanced Bayesian multilevel modeling with the R package brms. R J. 10,

395-411 (2018).

P. C. Burkner, brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw.

80 (2017).

H. Wickham, ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag New York, 2009).


https://doi.org/10.1101/2020.07.07.177535
http://creativecommons.org/licenses/by-nc-nd/4.0/

593
594

595
596

597
598

599
600

601
602

603
604

605

606
607

608
609

610
611

612
613

614
615

616
617

618

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.07.177535; this version posted February 24, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

C. O. Wilke, cowplot: Streamlined Plot Theme and Plot Annotations for “ggplot2”. R package

version 1.0.0. https://CRAN.R-project.org/package=cowplot (2019).

M. Kay, tidybayes: Tidy Data and Geoms for Bayesian Models. R package version 2.0.3,

http://mjskay.github.io/tidybayes/ (2020).

R Hackathon, phylobase: Base Package for Phylogenetic Structures and Comparative Data. R

package version 0.8.10. https://CRAN.R-project.org/package=phylobase (2020).

F. Keck, F. Rimet, A. Bouchez, A. Franc, phylosignal: an R package to measure, test, and

explore the phylogenetic signal. Ecol. Evol. 6, 2774-2780 (2016).

L. Lahti, S. Shetty, Tools for microbiome analysis in R. Microbiome package version

1.1.10013. http://microbiome.github.com/microbiome. (2017).

G. B. Gloor, J. M. Macklaim, V. Pawlowsky-Glahn, J. J. Egozcue, Microbiome datasets are

compositional: And this is not optional. Front. Microbiol. 8, 1-6 (2017).

J. Oksanen, et al., vegan: Community Ecology Package. (2018).

Z. D. Kurtz, et al., Sparse and Compositionally Robust Inference of Microbial Ecological

Networks. PLoS Comput. Biol. 11, 1-25 (2015).

R. J. Williams, A. Howe, K. S. Hofmockel, Demonstrating microbial co-occurrence pattern

analyses within and between ecosystems. Front. Microbiol. 5, 1-10 (2014).

B. Ding, R. Gentleman, V. Carey, bioDist: Different distance measures. R package version

1.54.0. (2018).

G. Csardi, T. Nepusz, The igraph software package for complex network research.

InterdJournal Complex Syst. 1695, 1695 (2006).

P. J. McMurdie, S. Holmes, Phyloseq: An R Package for Reproducible Interactive Analysis

and Graphics of Microbiome Census Data. PLoS One 8, 61217 (2013).

H. Wilman, et al., EltonTraits 1.0 : Species-level foraging attributes of the world’s birds and

mammals. Ecology 95, 2027 (2014).


https://doi.org/10.1101/2020.07.07.177535
http://creativecommons.org/licenses/by-nc-nd/4.0/

