

Fungal microbiomes are determined by host phylogeny and exhibit widespread associations with the bacterial microbiome

Xavier A. Harrison¹#, Allan D. McDevitt², Jenny C. Dunn³, Sarah Griffiths⁴, Chiara Benvenuto², Richard Birtles², Jean P. Boublí², Kevin Bown², Calum Bridson^{4,5}, Darren Brooks², Samuel S. Browett², Ruth F. Carden^{6,7}, Julian Chantrey⁸, Friederike Clever^{4,9}, Ilaria Coscia², Katie L. Edwards¹⁰, Natalie Ferry², Ian Goodhead², Andrew Highlands², Jane Hopper¹¹, Joseph Jackson², Robert Jehle², Mariane da Cruz Kaizer², Tony King^{11,12}, Jessica M. D. Lea⁵, Jessica L. Lenka², Alexandra McCubbin¹³, Jack McKenzie², Bárbara Lins Caldas de Moraes¹⁴, Denise B. O'Meara¹⁵, Poppy Pescod², Richard F. Preziosi⁴, Jennifer K. Rowntree⁴, Susanne Shultz⁵, Matthew J. Silk¹, Jennifer E. Stockdale^{13,16}, William O. C. Symondson¹³, Mariana Villalba de la Pena⁵, Susan L. Walker¹⁰, Michael D. Wood², Rachael E. Antwis²#

Corresponding authors:

14 Dr Rachael Antwis, University of Salford, r.e.antwis@salford.ac.uk

15 Dr Xavier Harrison, University of Exeter, x.harrison@exeter.ac.uk

16 1. School of Biosciences, University of Exeter, UK. 2. School of Science, Engineering and Environment, University of Salford,
17 UK. 3. School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, UK 4. Ecology and Environment Research
18 Centre, Department of Natural Sciences, Manchester Metropolitan University, UK. 5. School of Earth and Environmental
19 Sciences, University of Manchester, UK. 6. School of Archaeology, University College Dublin, Ireland. 7. Wildlife Ecological &
20 Osteological Consultancy, Wicklow, Ireland. 8. Institute of Veterinary Science, University of Liverpool, UK. 9. Smithsonian
21 Tropical Research Institute, Ancon, Republic of Panama. 10. North of England Zoological Society, Chester Zoo, Upton-by-
22 Chester, UK. 11. The Aspinall Foundation, Port Lympne Reserve, Hythe, Kent, UK. 12. School of Anthropology and
23 Conservation, University of Kent. 13. School of Biosciences, University of Cardiff, UK. 14. Department of Zoology, Federal
24 University of Pernambuco, Recife, Brazil. 15. School of Science & Computing, Waterford Institute of Technology, Ireland. 16.
25 School of Life Sciences, University of Nottingham, UK

26

27 **RUNNING TITLE:** Cross-kingdom microbiome phylosymbiosis and associations

28 **KEYWORDS:** amplicon sequencing, bacteria, co-occurrence, diet, diversity, fungi, host-microbe
29 interactions, mycobiome, phylosymbiosis,

30

31

32 **ABSTRACT**

33 Interactions between hosts and their resident microbial communities are a fundamental component of
34 fitness for both agents. Though recent research has highlighted the importance of interactions
35 between animals and their bacterial communities, comparative evidence for fungi is lacking,
36 especially in natural populations. Using data from 49 species, we present novel evidence of strong
37 covariation between fungal and bacterial communities across the host phylogeny, indicative of
38 recruitment by hosts for specific suites of microbes. Using co-occurrence networks, we demonstrate
39 that fungi form critical components of putative microbial interaction networks, where the strength and
40 frequency of interactions varies with host taxonomy. Host phylogeny drives differences in overall
41 richness of bacterial and fungal communities, but the effect of diet on richness was only evident in
42 mammals and for the bacterial microbiome. Collectively these data indicate fungal microbiomes may
43 play a key role in host fitness and suggest an urgent need to study multiple agents of the animal
44 microbiome to accurately determine the strength and ecological significance of host-microbe
45 interactions.

46

47 **SIGNIFICANCE STATEMENT**

48
49 Microbes perform vital metabolic functions that shape the physiology of their hosts. However, almost
50 all research to date in wild animals has focused exclusively on the bacterial microbiota, to the
51 exclusion of other microbial groups. Although likely to be critical components of the host microbiome,
52 we have limited knowledge of the drivers of fungal composition across host species. Here we show
53 that fungal community composition is determined by host species identity and phylogeny, and that
54 fungi form extensive interaction networks with bacteria in the microbiome of a diverse range of animal
55 species. This highlights the importance of microbial interactions as mediators of microbiome-health
56 relationships in the wild.

57 INTRODUCTION

58 Multicellular organisms support diverse microbial communities critical for physiological functioning,
59 immunity, development, evolution and behaviour (1–3). Variability in host-associated microbiome
60 composition may explain asymmetries among hosts in key traits including susceptibility to disease (4,
61 5), fecundity (6), and resilience to environmental change (7). Although the microbiota is a complex
62 assemblage of bacteria, fungi, archaea, viruses and protozoa, the overwhelming majority of research
63 has focused solely on the bacterial component (8, 9). Although relatively well documented in soils and
64 plants (10–13), relatively few studies have examined the dynamics of non-bacterial components of the
65 microbiome in animal hosts (but see (14–16)), especially in non-model or wild systems. As such, our
66 current understanding of host-microbe interactions is skewed by a bacteria-centric view of the
67 microbiome. Although not well understood, there is growing evidence that the fungal microbiota,
68 termed the ‘mycobiome’, may drive diverse functions such as fat, carbon and nitrogen metabolism
69 (17, 18), degradation of cellulose and other carbohydrates (19), pathogen resistance (20), initiation of
70 immune pathways and regulation of inflammatory responses (9, 21), and even host dispersal (22).

71 Host phylogeny has repeatedly been shown to be an important predictor of bacterial
72 microbiome structure in multiple vertebrate clades, a phenomenon known as ‘phylosymbiosis’ (23–
73 27). This phenomenon often reflects phylogenetic patterns in life history traits, such as diet,
74 physiology or spatial distribution (23–27). However, evidence of phylosymbiosis, and its drivers, in
75 other microbial kingdoms or domains is lacking. Addressing this major gap in our knowledge is crucial
76 as we likely underestimate the strength and importance of coevolution between animal hosts and their
77 resident communities, particularly in the context of cross-kingdom interactions within the microbiome
78 (28).

79 Here we used ITS and 16S rRNA gene amplicon sequencing to characterise fungal and
80 bacterial communities of primarily gut and faecal samples from 49 host species across eight classes,
81 including both vertebrates and invertebrates (Table S1). We predicted that both fungal and bacterial
82 microbiomes demonstrated strong signals of phylosymbiosis across the broad host taxonomic range
83 tested. Specifically, we predicted that patterns of phylosymbiosis within microbial kingdoms will also
84 drive significant positive covariance in patterns of microbial community structure between microbial
85 kingdoms within individual hosts, suggestive of evolutionary constraints that favour co-selection of

86 specific bacterial and fungal communities in tandem. We also used network analysis to identify key
87 bacteria-fungi interactions whilst quantifying variation in the frequency and strength of bacteria-fungi
88 interaction networks across host taxonomic groups. Finally, we tested the prediction that cross-
89 kingdom phylosymbiosis may be partially driven by similarity in host dietary niche across the 32 bird
90 and mammal species sampled.

91
92 **RESULTS**

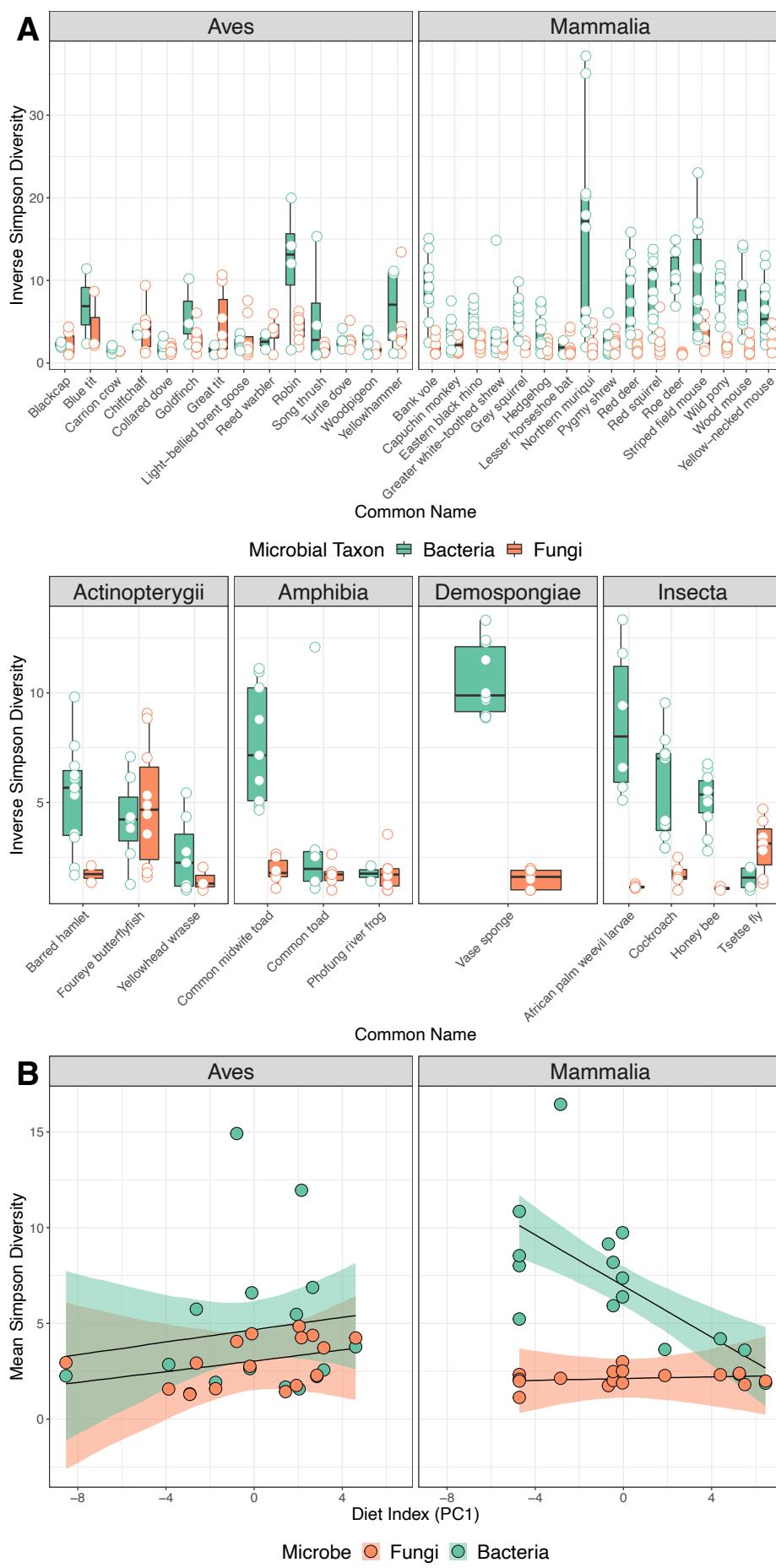
93 *Fungal and Bacterial Microbiome Diversity Varies with Host Phylogeny*

94 Our data revealed consistent patterns in fungal and bacterial alpha diversity across host taxonomic
95 groups. Bacterial community alpha-diversity was generally greater than, or similar to, fungal
96 community alpha-diversity at the host species level (Fig. 1A), although two species exhibited greater
97 fungal diversity than bacterial (great tit, tsetse fly; Fig. 1A). Comparisons between microbial richness
98 values within individuals (i.e., *relative* richness) using a binomial GLMM supported these patterns,
99 indicating that bacterial richness was higher on average than fungal in 80% of individuals [95%
100 credible interval (CI) 0.55 - 0.95]. When conditioning on Class, samples from both Mammalia and
101 Insecta were more likely to have higher bacterial diversity than fungal diversity (credible intervals not
102 crossing zero on the link scale). Mammalia were more likely to have higher bacterial relative to fungal
103 diversity than Aves in our study organisms (mean difference in probability 22.9% [1.6 - 45.7%]).
104 Variation among species in this model explained 19.5% [7.3 - 31.2%] of the variation in relative
105 microbial richness. Using a bivariate model with both fungal and bacterial diversity as response
106 variables to examine patterns of absolute microbial richness across host taxonomy, only Mammalia
107 exhibited bacterial diversity that was consistently higher than fungal diversity when controlling for
108 variation among species (mean difference in index 5.16; [3.33 - 6.96]). There was no evidence of
109 positive covariance between fungal and bacterial richness values at the species level (mean
110 correlation 0.3, 95% credible intervals -0.55 - 0.86), suggesting that high diversity of one microbial
111 group does not necessarily reflect high diversity of the other. The bivariate model also revealed that
112 species identity explained 33.9% [22.2 – 44.2%] of variation in bacterial diversity, and 22.4% [9.8 –
113 35.5%] of variation in fungal diversity.

114 Phylogenetic analyses supported these general patterns (Fig. S2). For fungi, we detected
115 phylogenetic signal in patterns of both Inverse Simpson index ($C_{mean} = 0.22$, $p = 0.021$) and number of

116 observed amplicon sequence variants (ASVs) ($C_{mean} = 0.26$, $p = 0.016$). For bacteria, phylogenetic
117 signal was evident for number of ASVs ($C_{mean} = 0.28$, $p = 0.016$) but not inverse Simpson index (C_{mean}
118 $= 0.114$, $p = 0.100$).

119



121 **FIGURE 1**

122 Host phylogeny and diet as predictors of host bacterial and fungal alpha diversity. **(A)** Boxplots and
123 raw data (points) of inverse Simpson indices for bacterial (green) and fungal (orange) communities
124 across a range of host species. **(B)** Raw data (points) and model predictions (shaded area and lines)
125 of models examining the relationship between host diet and microbiome alpha diversity. In mammals,
126 an increase the in the amount of plant material in the diet (more negative PC1 values) drives
127 increases in richness. There was no corresponding relationship between diet and richness for fungi in
128 mammals, nor for bacteria and fungi in birds. Shaded areas represent 95% credible intervals.

129

130 *Limited Evidence of Covariation Between Host Diet and Fungal Microbiome*

131 *Alpha Diversity:* Models exploring the influence of diet on microbial richness yielded mixed
132 results. In mammals, only a relationship between *bacterial* richness and diet was evident (interaction
133 between microbe (fungi vs bacteria) and the primary axis of a PCA of dietary variation; Fig 1B). This
134 indicates that bacterial alpha diversity increases in tandem with the proportion of plant matter in the
135 diet. However, this relationship was absent in birds (Fig. 1B). Similarly, there was no relationship
136 between *fungi* richness and diet for birds or mammals (credible intervals for slopes all include zero).

137 *Beta Diversity:* Patterns of variation in microbial community *structure* broadly followed those
138 for alpha diversity above. While for mammals there was a significant correlation between host-
139 associated bacterial community composition and diet ($r = 0.334$, $p = 0.002$), and a near-significant
140 relationship between fungal community composition and diet ($r = 0.142$, $p = 0.067$), for birds there
141 was no significant relationship between dietary data and bacterial community composition ($r = 0.087$,
142 $p = 0.211$) or fungal community composition ($r = 0.026$, $p = 0.386$). Further, taxonomic differences in
143 microbiome composition based on differences in crude dietary patterns were not clear for either
144 bacteria or fungi when the microbiome composition was visualised at the family level (Figs. S3, S4).
145 That said, Alphaproteobacteria and Eurotiomycete fungi were notably absent from species that
146 primarily ate vegetation (i.e. grasses etc) and Neocallimastigomycete fungi were the predominant
147 fungal class associated with two out of four of these host species (Figs. S3, S4).

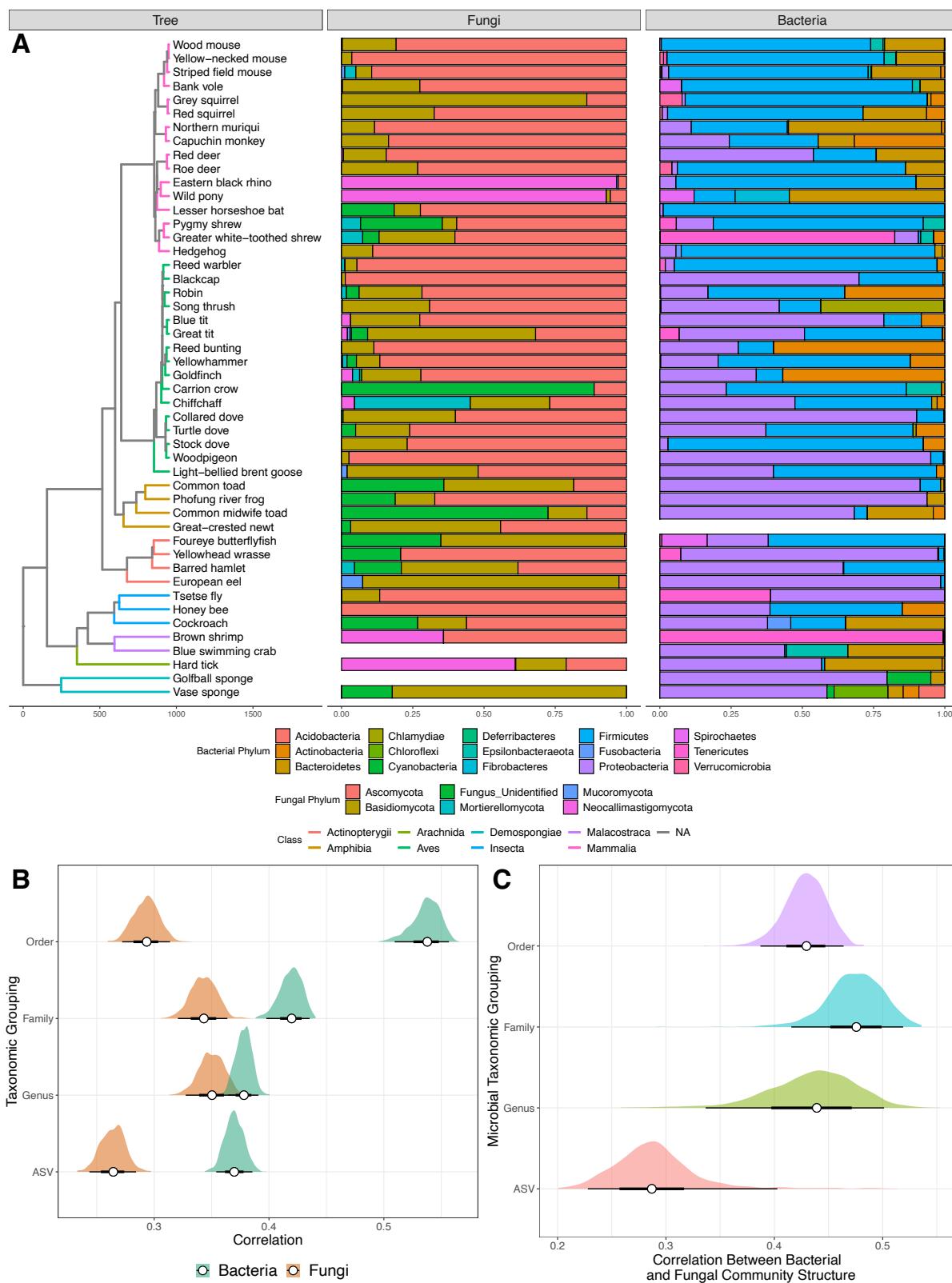
148

149 *Strong Evidence of Correlated Phylosymbiosis in Both Microbial Groups*

150 Our data revealed consistent variation in fungal and bacterial community structure across the host
151 phylogeny (Fig. 2A). PERMANOVA analyses on centred-log ratio (CLR) transformed ASV
152 abundances revealed significant phylogenetic effects of host class, order and species, as well as
153 effects of sample storage and library preparation protocol for both microbial groups (Table 2; Figs. S5
154 & S6). For both bacteria and fungi, host species identity explained more variation than host class or
155 order, and this pattern remained when re-running the models without sample preparation protocol
156 effects, though this inflated the estimate of R^2 for all taxonomic groupings (Table 2).

157 Consistent with our predictions, the similarity between the microbial communities of a given
158 pair of host species was proportional to the phylogenetic distance between them (e.g. ASV level:
159 fungal cor. = 0.26; $p = 0.001$; bacterial cor. = 0.37; $p = 0.001$; Fig. 2B). Correlations for both bacterial
160 and fungal communities became stronger when aggregating microbial taxonomy to broader
161 taxonomic levels (Fig. 2B). Notably, the bacterial correlation was stronger than the fungal equivalent
162 at most taxonomic levels (Fig. 2B), indicating stronger patterns of phylosymbiosis for bacteria.

163 We also detected a strong, significant correlation between fungal and bacterial community
164 structure of individual samples at the level of ASVs using Procrustes rotation (cor. = 0.29, $p < 0.001$;
165 Fig. 2C). Collapsing ASV taxonomy to genus, family, and order resulted in even stronger correlations
166 (cor. = 0.44, 0.48 & 0.43, respectively; all $p < 0.001$; Fig. 2C). These data indicate a coupling between
167 the structures of fungal and bacterial communities, whereby shifts in structure of one community
168 across the phylogeny also reflect consistent shifts in the other microbial group.



169

170 **FIGURE 2**

171 **(A)** Phylogenetic tree of host species, with branches coloured by class and node points coloured by
172 order. Barplots show proportional composition of fungal and bacterial phyla for each host species,

173 aligned to tree tips. **(B)** Correlation between microbial and host genetic distances (generated from the
174 phylogenetic tree in A) for both bacteria (green) and fungi (orange) across all host species. Microbial
175 taxonomy was either raw ASVs or grouped into higher taxonomic levels. Aggregation to higher
176 taxonomy tended to result in higher correlations for both microbial groups, and the correlation was
177 always stronger in bacteria. **(C)** Correlation between fungal and bacterial community structure derived
178 from Procrustes rotation on PCA ordinations of each microbial group. Microbial communities were
179 aggregated at various taxonomic groupings (order, family, genus), or as raw Amplicon Sequence
180 Variant (ASV) taxonomy. For both B and C, distributions of correlation values were generated using
181 resampling of 90% of available samples for that microbial group to generate 95% intervals (shaded
182 areas on graphs). Empty bars in panel 2A mean samples were not available for a particular species
183 and so would not have been included in the calculations in panel B or C.

184

185 **TABLE 2**

186 PERMANOVA results for (a) fungi and (b) bacteria of factors explaining variation in microbial
187 community structure. Terms were added in the order shown in the table to marginalise effects of
188 sample storage and preparation protocols before calculating % variance explained for taxonomic
189 groupings. Species ID was the dominant source of variation in the data for both taxonomic groups, but
190 there were also strong effects of sample storage and wet lab protocol, particularly for bacteria.

(a) FUNGI				Taxonomic Effects Only		
Predictor	df	R ²	p value	df	R ²	p value
Sample Type	7	0.05	0.001			
Tissue Storage	5	0.04	0.001			
Extraction Kit	7	0.07	0.001			
Class	2	0.02	0.001	6	0.05	0.001
Order	6	0.05	0.001	13	0.12	0.001
Species	18	0.09	0.001	26	0.14	0.001
Residuals	303	0.68		303	0.68	

(b) BACTERIA				Taxonomic Effects Only		
Predictor	df	R ²	p value	df	R ²	p value
Sample Type	6	0.06	0.001			
Tissue Storage	6	0.16	0.001			
Extraction Kit	7	0.12	0.001			

Class	2	0.02	0.001	6	0.09	0.001
Order	6	0.09	0.001	12	0.21	0.001
Species	18	0.12	0.001	27	0.27	0.001
Residuals	273	0.42		273	0.42	

191

192 *Strength of Interactions Between Bacteria and Fungi May Vary Across Host Taxonomy*

193 Analysis of correlations among fungal and bacterial abundances revealed differences in network
194 structure at both the host class (Fig. 3A) and host species level (Figs. S7; S8). In particular, fungi of
195 the phylum Ascomycota appeared frequently in the putative interaction networks of birds, mammals
196 and amphibians (Fig. 3A). There was also systematic variation in network structure among taxonomic
197 groups. Using the class-level network data in Fig. 3A, we estimated that Mammalia exhibited the
198 fewest components, fewest communities, and lowest modularity (Table 2), indicating lower overall
199 network subdivision relative to other animal classes. Mean betweenness of fungal nodes also varied
200 by host class; randomisations revealed that mean fungal betweenness was significantly lower than
201 expected by chance in Aves (2-tailed $p = 0.044$, Fig. 3B) but not Mammalia (2-tailed $p=0.6$, Fig 3B).
202 Models of species-level network data (Fig. S7, S8) revealed the frequency of positive co-occurrence
203 between pairs of microbes also varied by class; Mammalia exhibited the highest proportion of positive
204 edges (Fig. 3C), being significantly greater than those of birds (mean diff. 0.042 [0.017-0.067]) and
205 amphibians (mean diff. 0.05 [0.002-0.112]). Notably, insects had a markedly lower proportion of
206 positive edges compared to all other taxa (Fig. 3C). Class explained 93.2% [92.9-93.4%] of variation
207 in edge sign.

208

209

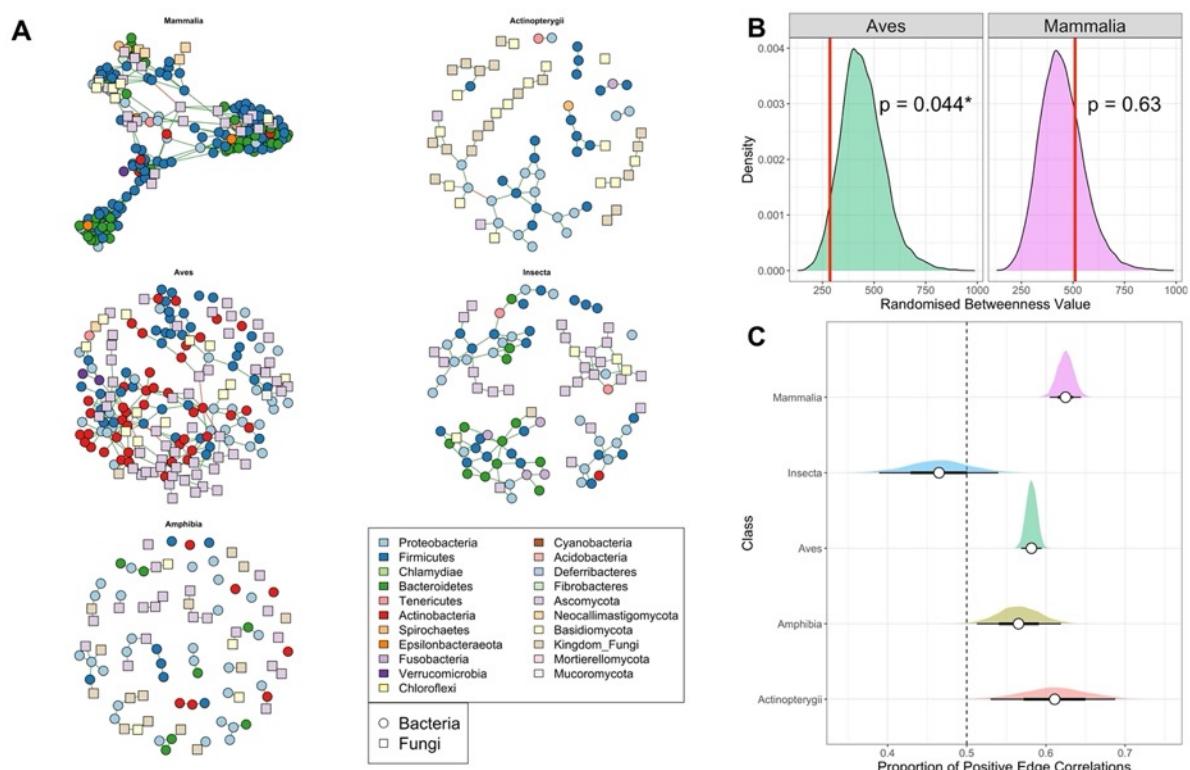
210 **TABLE 2:** Network statistics from class-specific microbial networks in Figure 3 in the main
211 manuscript. ‘Modularity’ and ‘Groups’ statistics are derived from the `cluster_fast_greedy` function
212 applied to `igraph` network objects. ‘Components’ data were extracted directly from the networks.
213 Modularity was positively correlated with both number of groups ($cor = 0.76$) and number of
214 components ($cor = 0.86$).

Class	Modularity	Groups	Components
Mammalia	0.658	7	1

Aves	0.719	23	14	215
Insecta	0.781	10	6	
Actinopterygii	0.806	16	11	216
Amphibia	0.923	35	35	217

218

219



220

221 **FIGURE 3**

222 **(A)** Putative microbial interaction networks between bacterial (circles) and fungal (squares) taxa,
223 coloured by microbial phylum. Networks were constructed using the R package *SpiecEasi* on CLR-
224 transformed abundance values to detect non-random co-occurrence between groups of microbes. **(B)**
225 Permutational testing revealed that mean fungal betweenness was significantly lower than expected
226 by chance in Aves, but not Mammalia, indicating heterogeneity in network structure. **(C)** Analysis of
227 network structural traits from species-specific networks comprising 39 species from five Classes.
228 There were significant differences in the proportion of positive edges (correlations between paired
229 microbial abundance values) among classes. Vertical dashed line indicates equal proportion of
230 positive and negative edges.

231

232 **DISCUSSION**

233 Our study represents the most wide-ranging evaluation of animal mycobiome composition, and its
234 covariation with the bacterial microbiome, undertaken to date. Our data provide novel evidence for
235 mycobiome phylosymbiosis in wild animals, indicative of close evolutionary coupling between hosts
236 and their resident fungal communities. Consistent with previous studies, we also find evidence of
237 phylosymbiosis in the bacterial microbiome (29), but crucially, we demonstrate strong and consistent
238 covariation between fungal and bacterial communities across host phylogeny, especially at higher
239 microbial taxonomic levels. These patterns are supported by complementary network analysis
240 illustrating frequent correlative links between fungal and bacterial taxa, whereby certain pairs of
241 microbes from different kingdoms are much more likely to co-occur in the microbiome than expected
242 by chance. Taken together, these data provide novel evidence of host recruitment for specific fungal
243 and bacterial communities, which in turn may reflect host selection for interactions between bacteria
244 and fungi critical for host physiology and health.

245 We found marked variation among host species in microbial community richness and
246 composition for both bacteria and fungi. Though our data suggest many species support a diverse
247 assemblage of host-associated fungi, we show that bacterial diversity tends to be higher on average
248 relative to fungal diversity, and that there is no signal of positive covariance between fungal and
249 bacterial richness within species, suggesting more ASV-rich bacterial microbiomes are not
250 consistently associated with more ASV-rich mycobiomes. These patterns could arise because of
251 competition for niche space within the gut, where high bacterial diversity may reflect stronger
252 competition that prevents proliferation of fungal diversity. Understanding patterns of niche competition
253 within and among microbial groups requires that we are able to define those niches by measuring
254 microbial gene function, and quantifying degree of overlap or redundancy in functional genomic
255 profiles across bacteria and fungi.

256 We detected strong phylosymbiosis for both fungi and bacteria across a broad host
257 phylogeny encompassing both vertebrate and invertebrate classes. This pattern was significantly
258 stronger in bacteria than for fungi. In both microbial kingdoms, the signal of phylosymbiosis
259 strengthened when aggregating microbial assignments to broader taxonomic levels, a phenomenon

260 that has previously been shown for bacterial communities (30). That this pattern also occurs in fungi
261 suggests either that host recruitment is weaker at finer-scale taxonomies, or our ability to detect that
262 signal is weaker at the relatively noisy taxonomic scale of ASVs. Stronger signals of phylosymbiosis
263 at family and order-level taxonomies may reflect the deep evolutionary relationships between hosts
264 and their bacterial and fungal communities, as well as the propensity for microbial communities to
265 allow closely related microbes to establish whilst repelling less related organisms (31). That is, higher-
266 order microbial taxonomy may better approximate functional guilds within the microbiome, such as the
267 ability to degrade cellulose (25, 30), which are otherwise obscured by taxonomic patterns of ASVs.
268 Resolving this requires the integration of functional genomic data from the fungal and bacterial
269 microbiota into the phylogeny.

270 In addition to microbe-specific patterns of phylosymbiosis, a key novel finding of our work is
271 discovery of strong covariation between fungal and bacterial community composition across the host
272 phylogeny. These patterns are consistent with host recruitment for particular suites of fungal and
273 bacterial taxa, which may represent bacteria-fungi metabolic interactions beneficial to the host.
274 Bacterial-fungal interactions have previously been demonstrated for a handful of animal species (8, 9,
275 17, 32, 33), but here we show these are widespread across multiple animal classes. Both bacteria
276 and fungi have considerable enzymatic properties that facilitate the liberation of nutrients for use by
277 other microbes, thus facilitating cross-kingdom colonisation (34–36) and promoting metabolic inter-
278 dependencies (37–39). We also identified numerous associations between bacteria and fungi for
279 many of our host species. The frequency and predicted direction of these relationships varied
280 considerably among host classes, with the mammalian network exhibiting i) a lower modularity,
281 indicating weaker clustering into fewer discrete units (both distinct components and interlinked
282 communities); and ii) a higher frequency of positive correlations between microbes compared to most
283 other classes, in particular birds and insects. Comparisons of networks are challenging when they
284 differ in size (i.e., number of nodes) and structure, and differences between classes in traits like
285 modularity will also be affected by species replication within each class. However, proportional traits
286 like interaction structure (proportion of positive interactions) are unlikely to be driven solely by sample
287 size, suggesting marked biological variation in strength of fungi-bacteria interactions across the host
288 phylogeny. These putative interaction networks provide novel candidates for further investigation in

289 controlled systems, where microbiome composition and therefore the interactions among microbes
290 can be manipulated to test the influence of such interactions on host physiology.

291 The drivers of phylosymbiosis remain unclear, even for bacterial communities; is a
292 phylogenetic signal indicative of host-microbiome coevolution, or simply a product of “ecological
293 filtering” of the microbiome in the host organism either via extrinsic (e.g. diet, habitat) or intrinsic
294 sources (e.g. gut pH, immune system function) (26, 29, 40)? Our results indicate host diet may play a
295 role in determining bacterial composition in mammals, but not fungal composition in either mammals
296 or birds. These results are broadly consistent with previous work, where the influence of diet on
297 bacterial microbiome was most evident in mammals (25). However, Li et al. (16) showed that the
298 composition and diversity of both fungal and bacterial communities of faecal samples differed
299 between phytophagous and insectivorous bats, and Heisel et al. (17) demonstrated changes in fungal
300 community composition in mice fed a high fat diet. Our study was not designed to test for the effects
301 of ecological variation in diet on fungal microbiome *within* a species, nor can we discount the
302 possibility that at finer taxonomic scales within classes, signals of the effect of *among* species
303 variation in diet on mycobiome may become stronger (e.g. (16)). It is also worth noting that the signals
304 produced from faecal and true gut samples may differ; evidence suggests faecal samples may
305 indicate diet is the predominant driver of “gut” microbiome composition when gastrointestinal samples
306 indicate host species is the predominant determinant (41). Moreover, faecal samples may only
307 represent a small proportion of the gastrointestinal microbiome (41–43). Our data also show that
308 sample type has a significant effect on both fungal and bacterial community composition (as well as
309 DNA extraction method and storage method; see (44–47) for other examples of this). As such, a more
310 thorough analysis of true gut communities is required to determine the extent to which mycobiome
311 phylosymbiosis and dietary signals occur across wild animals, and what other ecological and host-
312 associated factors influence mycobiome composition and function. We hypothesise that evolutionary
313 processes play a large role in shaping host-associated microbiomes, with selection for microbiome
314 function rather than taxonomic groupings per se.

315 Within animals, the roles of host-associated fungal communities are not well understood, yet
316 our data highlight that fungi are important components of microbiome structure that are often
317 overlooked. Our knowledge of the range of functions provided by the host mycobiome, and how these
318 alter or complement those provided by the bacterial microbiome, remains limited. We hypothesise that

319 host-associated fungi and bacteria produce mutually beneficial metabolites that facilitate the
320 colonisation, reproduction and function of cross-kingdom metabolic networks (28). Though we provide
321 evidence for consistent variation among host class in fungal community structure, and the role of fungi
322 within putative interaction networks, for many researchers the questions of key interest will focus on
323 what governs variation at the level of the individual. Clear gaps in our knowledge remain regarding the
324 relative contributions of host genomic (48–50) and environmental variation to host mycobiome
325 structure, function and stability. We argue that there is an urgent need to incorporate quantitative
326 estimates of microbial function into microbiome studies, which are crucial for understanding the forces
327 of selection shaping host-microbe interactions at both the individual and species level.

328

329

330 MATERIALS AND METHODS

331 *Sample collection*

332 DNA was extracted from tissue or faecal samples of 49 host species using a variety of DNA extraction
333 methods (Table S1) and normalised to ~10 ng/ul. Samples were largely collated from previous studies
334 and/or those available from numerous researchers and as such, DNA extraction and storage
335 techniques were not standardised across species. We sequenced a median of 10 samples per
336 species (range of 5 to 12; Table S1).

337

338 *ITS1F-2 and 16S rRNA amplicon sequencing*

339 Full details are provided in Supplementary Materials. Briefly, we amplified the ITS1F-2 rRNA gene to
340 identify fungal communities using single index reverse primers and a modified protocol of Smith &
341 Peay (51) and Nguyen et al. (52), as detailed in Griffiths et al. (13). To identify bacterial communities,
342 we amplified DNA for the 16S rRNA V4 region using dual indexed forward and reverse primers
343 according to Kozich et al. (53) and Griffiths et al. (49). The two libraries were sequenced separately
344 using paired-end reads (2 x 250bp) with v2 chemistry on an Illumina MiSeq.

345 We conducted amplicon sequence data processing in DADA2 v1.5 (54) in RStudio v1.2.1335
346 for R (55, 56) for both ITS rRNA and 16S rRNA amplicon data. After data processing, we obtained a

347 median of 1425 reads per sample (range of 153 to 424,527) from the ITS data, and a median of 3273
348 reads (range of 153 to 425,179) for the 16S rRNA data.

349 To compare alpha-diversity between species and microbial kingdoms, we rarefied libraries to
350 500 reads per sample, yielding 292 samples from 46 species and 307 samples from 47 species for
351 fungal and bacterial kingdoms respectively. Alpha-diversity measures remained relatively stable within
352 a host species whether data were rarefied to 500, 1000, or 2500 reads (Figs. 1, S1, S2; see
353 Supplementary Material for more details).

354

355 *Host phylogeny*

356 As many of our host species lack genomic resources from which to construct a genome-based
357 phylogeny, we built a dated phylogeny of host species using TimeTree (57). The phylogenetic tree
358 contained 42 species, of which 36 were directly represented in the TimeTree database. A further six
359 species had no direct match in TimeTree and so we used a congener as a substitute (*Amietia*,
360 *Glossina*, *Portunus*, *Ircinia*, *Amblyomma*, *Cinachyrella*). We calculated patristic distance among
361 species based on shared branch length in the phylogeny using the 'cophenetic' function in the *ape*
362 package (58) in R. We visualised and annotated the phylogeny using the R package *ggtree* (59). To
363 create a phylogeny for all samples, we grafted sample-level tips onto the species phylogeny with
364 negligible branch lengths following Youngblut et al. (25).

365

366 *Fungal and bacterial community analysis*

367 A fully reproducible workflow of all analyses is provided in supplementary material as an R
368 Markdown document. We used the R package *brms* (60, 61) to fit (generalized) linear mixed effects
369 models [(G)LMMs] to test for differences in alpha diversity and calculated r^2 of models using the
370 'bayes_R2' function. We assessed the importance of terms based on whether 95% credible intervals
371 of the parameter estimates of interest crossed zero. We used *ggplot* (62), *cowplot* (63) and *tidybayes*
372 (64) for raw data and plotting of posterior model estimates.

373 To support these analyses, we also used the R packages *phylobase* (65) and *phylosignal*
374 (66) to estimate the phylogenetic signal in patterns of alpha diversity for both bacteria and fungi, using

375 both Inverse Simpson Index and number of observed ASVs as outcome variables. We calculated
376 Abouheif's C_{mean} for each diversity-microbe combination and corrected p values for multiple testing
377 using Benjamini-Hochberg correction.

378 To identify taxonomic differences in microbiome and mycobiome composition between host
379 species, we used centred-log-ratio (CLR) transformation in the *microbiome* (67) package to normalise
380 microbial abundance data, which obviates the need to lose data through rarefying (68). To quantify
381 differences in beta-diversity among kingdoms and species whilst simultaneously accounting for
382 sample storage and library preparation differences among samples, we conducted a PERMANOVA
383 analysis on among-sample Euclidean distances of CLR-transformed abundances using the *adonis*
384 function in *vegan* (69) with 999 permutations. For both kingdoms, we specified effects in the following
385 order: sample type, tissue storage, extraction kit, class, order, species. This marginalises the effects
386 of sample metadata variables first, before partitioning the remaining variance into that accounted for
387 by host phylogeny. The results were similar when amplicon data were converted to relative
388 abundance or rarefied to 500 reads (data not presented).

389 To test the hypothesis that inter-individual differences in microbial community composition
390 were preserved between microbial kingdoms, we performed Procrustes rotation of the two PCA
391 ordinations for bacterial and fungal abundance matrices, respectively (n = 277 paired samples from
392 46 species). We also repeated this analysis with ASVs agglomerated into progressively higher
393 taxonomic rankings from genus to order (see (30)). To provide a formal test of differences in strength
394 of covariation at different taxonomic levels, we conducted a bootstrap resampling analysis where for
395 each kingdom at each iteration, we randomly sampled 90% of the data and recalculated the
396 correlation metric. We repeated this process 999 times to build a distribution of correlation values at
397 each taxonomic grouping. To examine the hypothesis that inter-individual distance in microbial
398 community composition varies in concert with interspecific phylogenetic distance, we performed a
399 Procrustes rotation on the paired matrix of microbial distance (Euclidean distance of CLR-transformed
400 abundances) and patristic distance from the phylogenetic tree.

401 To identify potential co-occurrence relationships between fungal and bacterial communities,
402 we conducted two analyses; 1) We used the R package *SpiecEasi* (70) to identify correlations
403 between unrarefied, CLR-transformed ASVs abundances at the host class level (with insects

404 grouped), and 2) we used co-occurrence analysis at the species level, by rarefying the bacterial and
405 fungal data sets to 500 reads each, and agglomerated taxonomy family level, resulting in 117
406 bacterial groups and 110 fungal groups. We then merged the *phyloseq* objects for bacterial and
407 fungal communities for each sample, with sufficient data retained to conduct the co-occurrence
408 analysis for 40 host species. Using these cross-kingdom data, we calculated the co-occurrence
409 between each pair of microbial genera by constructing a Spearman's correlation coefficient matrix in
410 the *bioDist* package (71, 72). We visualised those with $\rho > 0.50$ (strong positive interactions) and
411 $\rho < -0.50$ (strong negative interactions) for each host species separately using network plots
412 produced in *igraph* (73). We calculated modularity of the class-level microbial networks comprising
413 both positive and negative interactions using the modularity function after greedy clustering
414 implemented in the *igraph* package. We used binomial GLM to test the hypothesis that the proportion
415 of positive edges (correlations) varies by host class, and permutation approaches on betweenness
416 values of fungal nodes to test the hypothesis that fungi form critical components of microbial
417 networks.

418 To determine the effect of diet on bacterial and fungal community composition, we used only
419 samples from the bird and mammal species and agglomerated the data for each host species using
420 the *merge_samples* function in *phyloseq* (74). This gave us a representative microbiome for each
421 host species, which we rarefied to the lowest number of reads for each combination of kingdom and
422 host taxon (2,916 – 9,160 reads; bacterial read counts were low for lesser horseshoe bats and so this
423 species was removed from this analysis) and extracted Euclidean distance matrices for each. We
424 then correlated these with dietary data obtained from the EltonTraits database (75) using Mantel tests
425 with Kendall rank correlations in the *vegan* package (69). We agglomerated the microbial data to
426 class level and visualised the bacterial and fungal community compositions for mammals alongside
427 pie charts displaying EltonTrait dietary data for each species. We also used a primary axis of the
428 ordination of EltonTrait data to derive a 'dietary variation axis' used as a predictor for alpha diversity of
429 Birds and Mammals.

430

431 **ACKNOWLEDGEMENTS**

432 We would like to thank Miran Aprahamian, Chris Williams (Environment Agency) Patrick Abila
433 (National Livestock Resources Research Institute) and Dr Patrick Vudriko (Makerere University) for
434 providing samples, as well as BEI Resources, the US Forest Service and the University of Wisconsin-
435 Madison for providing mock communities. We are grateful to Devenish Nutrition for funding the red
436 deer research at Dowth Hall, Co. Meath, Ireland. The sampling of shrews was funded by a Heredity
437 Fieldwork Grant awarded by the Genetics Society. The collection of dove and pigeon faecal samples
438 was jointly funded by the Royal Society for the Protection of Birds and Natural England through the
439 Action for Birds in England (AfBiE) partnership. Fieldwork enabling collection of avian faecal samples
440 from Lincolnshire was funded by The Royal Society Research Grant RG170086 to JCD. Small
441 mammal sampling in the Chernobyl Exclusion Zone was supported by the TREE
442 (<https://tree.ceh.ac.uk/>) and RED FIRE (<https://www.ceh.ac.uk/redfire>) projects. TREE was funded by
443 the Natural Environment Research Council (NERC), Radioactive Waste Management Ltd. and the
444 Environment Agency as part of the RATE Programme; RED FIRE was a NERC Urgency Grant.
445 Northern muriqui research at Caparaó National Park, Brazil, was funded by CAPES (BEX 1298/15-1).

446

447 **COMPETING INTERESTS**

448 The authors have no competing interests to declare.

449

450 **DATA ACCESSIBILITY STATEMENT**

451 Sequence data are deposited in the NCBI SRA database under BioProject numbers PRJNA593927
452 and PRJNA593220. A fully-reproducible analysis workflow has been provided as supplementary
453 material at <https://github.com/xavharrison/Mycobiome2020>

454

455 **REFERENCES**

456 1. E. A. Archie, J. Tung, Social behavior and the microbiome. *Curr. Opin. Behav. Sci.* **6**, 28–34
457 (2015).

458 2. M. McFall-Ngai, *et al.*, Animals in a bacterial world, a new imperative for the life sciences.

459 *Proc. Natl. Acad. Sci. U. S. A.* **110**, 3229–3236 (2013).

460 3. S. Bahrndorff, S. Bahrndorff, T. Alemu, T. Alemneh, J. L. Nielsen, The Microbiome of Animals :
461 Implications for Conservation Biology. *Int. J. Genomics* **2016**, 5304028 (2016).

462 4. R. J. Dillon, C. T. Vennard, A. Buckling, A. K. Charnley, Diversity of locust gut bacteria
463 protects against pathogen invasion. *Ecol. Lett.* **8**, 1291–1298 (2005).

464 5. K. A. Bates, *et al.*, Amphibian chytridiomycosis outbreak dynamics are linked with host skin
465 bacterial community structure. *Nat. Commun.* **9**, 1–11 (2018).

466 6. B. S. Walsh, C. Heys, Z. Lewis, Gut microbiota influences female choice and fecundity in the
467 nuptial gift-giving species, *Drosophila subobscura* (Diptera: Drosophilidae). *Eur. J. Entomol.*
468 **114**, 439–445 (2017).

469 7. A. Apprill, Marine animal microbiomes: Toward understanding host-microbiome interactions in
470 a changing ocean. *Front. Mar. Sci.* **4**, 1–9 (2017).

471 8. Q. H. Sam, M. W. Chang, L. Y. A. Chai, The fungal mycobiome and its interaction with gut
472 bacteria in the host. *Int. J. Mol. Sci.* **18**, 330 (2017).

473 9. R. Enaud, *et al.*, The Mycobiome: A Neglected Component in the Microbiota-Gut-Brain Axis.
474 *Microorganisms* **6**, 22 (2018).

475 10. P. Frey-Klett, *et al.*, Bacterial-Fungal Interactions: Hyphens between Agricultural, Clinical,
476 Environmental, and Food Microbiologists. *Microbiol. Mol. Biol. Rev.* **75**, 583–609 (2011).

477 11. B. Jakuschkin, *et al.*, Deciphering the Pathobiome: Intra- and Interkingdom Interactions
478 Involving the Pathogen *Erysiphe alphitoides*. *Microb. Ecol.* **72**, 870–880 (2016).

479 12. L. S. van Overbeek, K. Saikkonen, Impact of Bacterial-Fungal Interactions on the Colonization
480 of the Endosphere. *Trends Plant Sci.* **21**, 230–242 (2016).

481 13. S. M. Griffiths, *et al.*, Complex associations between cross-kingdom microbial endophytes and
482 host genotype in ash dieback disease dynamics. *J. Ecol.*, 1–19 (2019).

483 14. M. A. Ghannoum, *et al.*, Characterization of the oral fungal microbiome (mycobiome) in
484 healthy individuals. *PLoS Pathog.* **6** (2010).

485 15. A. S. Liggenstoffer, N. H. Youssef, M. B. Couger, M. S. Elshahed, Phylogenetic diversity and
486 community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and
487 non-ruminant herbivores. *ISME J.* **4**, 1225–1235 (2010).

488 16. J. Li, *et al.*, Fecal Bacteriome and Mycobiome in Bats with Diverse Diets in South China. *Curr.*
489 *Microbiol.* **75**, 1352–1361 (2018).

490 17. T. Heisel, *et al.*, High-Fat Diet Changes Fungal Microbiomes and Interkingdom Relationships
491 in the Murine Gut. *mSphere* **2**, 1–14 (2017).

492 18. L. Wegley, R. Edwards, B. Rodriguez-Brito, H. Liu, F. Rohwer, Metagenomic analysis of the
493 microbial community associated with the coral *Porites astreoides*. *Environ. Microbiol.* **9**, 2707–
494 2719 (2007).

495 19. S. Yang, *et al.*, Metagenomic Analysis of Bacteria, Fungi, Bacteriophages, and Helminths in
496 the Gut of Giant Pandas. *Front. Microbiol.* **9**, 1–16 (2018).

497 20. P. J. Kearns, *et al.*, Fight fungi with fungi: Antifungal properties of the amphibian mycobiome.
498 *Front. Microbiol.* **8**, 1–12 (2017).

499 21. F. Yeung, *et al.*, Altered Immunity of Laboratory Mice in the Natural Environment Is Associated
500 with Fungal Colonization. *Cell Host Microbe*, 1–14 (2020).

501 22. M. Lu, M. J. Wingfield, N. E. Gillette, S. R. Mori, J. H. Sun, Complex interactions among host
502 pines and fungi vectored by an invasive bark beetle. *New Phytol.* **187**, 859–866 (2010).

503 23. E. R. Davenport, *et al.*, The human microbiome in evolution. *BMC Biol.* **15**, 1–12 (2017).

504 24. S. C. L. Knowles, R. M. Eccles, L. Baltrūnaitė, Species identity dominates over environment in
505 shaping the microbiota of small mammals. *Ecol. Lett.* **22**, 826–837 (2019).

506 25. N. D. Youngblut, *et al.*, Host diet and evolutionary history explain different aspects of gut
507 microbiome diversity among vertebrate clades. *Nat. Commun.* **10**, 1–15 (2019).

508 26. K. R. Amato, *et al.*, Evolutionary trends in host physiology outweigh dietary niche in structuring
509 primate gut microbiomes. *ISME J.* **13**, 576–587 (2019).

510 27. S. J. Song, *et al.*, Comparative Analyses of Vertebrate Gut Microbiomes Reveal Convergence
511 between Birds and Bats. *MBio* **11**, 1–14 (2020).

512 28. K. A. Krautkramer, J. Fan, F. Bäckhed, Gut microbial metabolites as multi-kingdom
513 intermediates. *Nat. Rev. Microbiol.* (2020) [https://doi.org/https://doi.org/10.1038/s41579-020-0438-4](https://doi.org/10.1038/s41579-020-0438-4).

515 29. A. W. Brooks, K. D. Kohl, R. M. Brucker, E. J. van Opstal, S. R. Bordenstein, Phylosymbiosis:
516 Relationships and Functional Effects of Microbial Communities across Host Evolutionary
517 History. *PLoS Biol.* **14**, 1–29 (2016).

518 30. P. Rausch, *et al.*, Comparative analysis of amplicon and metagenomic sequencing methods
519 reveals key features in the evolution of animal metaorganisms. *Microbiome* **7**, 1–19 (2019).

520 31. B. Stecher, *et al.*, Like will to like: Abundances of closely related species can predict
521 susceptibility to intestinal colonization by pathogenic and commensal bacteria. *PLoS Pathog.*
522 **6**, e1000711 (2010).

523 32. Q. S. Mcfrederick, U. G. Mueller, R. R. James, Interactions between fungi and bacteria
524 influence microbial community structure in the *Megachile rotundata* larval gut Interactions
525 between fungi and bacteria influence microbial community structure in the *Megachile*
526 *rotundata* larval gut. *Proc. R. Soc. B Biol. Sci.* **281**, 20132653 (2014).

527 33. J. D. Forbes, C. N. Bernstein, H. Tremlett, G. Van Domselaar, N. C. Knox, A fungal world:
528 Could the gut mycobiome be involved in neurological disease? *Front. Microbiol.* **10**, 1–13
529 (2019).

530 34. S. Pareek, *et al.*, Comparison of Japanese and Indian intestinal microbiota shows diet-
531 dependent interaction between bacteria and fungi. *npj Biofilms Microbiomes* **5** (2019).

532 35. K. G. Peay, P. G. Kennedy, T. D. Bruns, Fungal Community Ecology: A Hybrid Beast with a
533 Molecular Master. *Bioscience* **58**, 799–810 (2008).

534 36. N. Fierer, Embracing the unknown: Disentangling the complexities of the soil microbiome. *Nat.*
535 *Rev. Microbiol.* **15**, 579–590 (2017).

536 37. C. Hoffmann, *et al.*, Archaea and Fungi of the Human Gut Microbiome: Correlations with Diet
537 and Bacterial Residents. *PLoS One* **8**, e66019 (2013).

538 38. W. Kim, S. B. Levy, K. R. Foster, Rapid radiation in bacteria leads to a division of labour. *Nat.*

566 50. S. M. Griffiths, *et al.*, Host genetics and geography influence microbiome composition in the
567 sponge *Ircinia campana*. *J. Anim. Ecol.* **88**, 1684–1695 (2019).

568 51. D. P. Smith, K. G. Peay, Sequence depth, not PCR replication, improves ecological inference
569 from next generation DNA sequencing. *PLoS One* **9**, e90234 (2014).

570 52. N. H. Nguyen, D. Smith, K. Peay, P. Kennedy, Parsing ecological signal from noise in next
571 generation amplicon sequencing (2014).

572 53. J. J. Kozich, S. L. Westcott, N. T. Baxter, S. K. Highlander, P. D. Schloss, Development of a
573 dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on
574 the miseq illumina sequencing platform. *Appl. Environ. Microbiol.* **79**, 5112–5120 (2013).

575 54. B. J. Callahan, *et al.*, DADA2: High-resolution sample inference from Illumina amplicon data.
576 *Nat. Methods* **13**, 581–583 (2016).

577 55. RStudio Team, RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL
578 <http://www.rstudio.com> (2016).

579 56. R Core Team, R: A language and environment for statistical computing. R Foundation for
580 Statistical Computing. Vienna, Austria. URL <https://www.R-project.org/>. (2017).

581 57. S. Kumar, G. Stecher, M. Suleski, S. B. Hedges, TimeTree: A Resource for Timelines,
582 Timetrees, and Divergence Times. *Mol. Biol. Evol.* **34**, 1812–1819 (2017).

583 58. E. Paradis, K. Schliep, Ape 5.0: An environment for modern phylogenetics and evolutionary
584 analyses in R. *Bioinformatics* **35**, 526–528 (2019).

585 59. G. Yu, D. K. Smith, H. Zhu, Y. Guan, T. T. Y. Lam, Ggtree: an R Package for Visualization and
586 Annotation of Phylogenetic Trees With Their Covariates and Other Associated Data. *Methods*
587 *Ecol. Evol.* **8**, 28–36 (2017).

588 60. P. C. Bürkner, Advanced Bayesian multilevel modeling with the R package brms. *R J.* **10**,
589 395–411 (2018).

590 61. P. C. Bürkner, brms: An R package for Bayesian multilevel models using Stan. *J. Stat. Softw.*
591 **80** (2017).

592 62. H. Wickham, *ggplot2: Elegant Graphics for Data Analysis*. (Springer-Verlag New York, 2009).

593 63. C. O. Wilke, cowplot: Streamlined Plot Theme and Plot Annotations for “ggplot2”. R package
594 version 1.0.0. <https://CRAN.R-project.org/package=cowplot> (2019).

595 64. M. Kay, tidybayes: Tidy Data and Geoms for Bayesian Models. R package version 2.0.3,
596 <http://mjskay.github.io/tidybayes/> (2020).

597 65. R Hackathon, phylobase: Base Package for Phylogenetic Structures and Comparative Data. R
598 package version 0.8.10. <https://CRAN.R-project.org/package=phylobase> (2020).

599 66. F. Keck, F. Rimet, A. Bouchez, A. Franc, phylosignal: an R package to measure, test, and
600 explore the phylogenetic signal. *Ecol. Evol.* **6**, 2774–2780 (2016).

601 67. L. Lahti, S. Shetty, Tools for microbiome analysis in R. Microbiome package version
602 1.1.10013. <http://microbiome.github.com/microbiome>. (2017).

603 68. G. B. Gloor, J. M. Macklaim, V. Pawlowsky-Glahn, J. J. Egozcue, Microbiome datasets are
604 compositional: And this is not optional. *Front. Microbiol.* **8**, 1–6 (2017).

605 69. J. Oksanen, *et al.*, vegan: Community Ecology Package. (2018).

606 70. Z. D. Kurtz, *et al.*, Sparse and Compositionally Robust Inference of Microbial Ecological
607 Networks. *PLoS Comput. Biol.* **11**, 1–25 (2015).

608 71. R. J. Williams, A. Howe, K. S. Hofmockel, Demonstrating microbial co-occurrence pattern
609 analyses within and between ecosystems. *Front. Microbiol.* **5**, 1–10 (2014).

610 72. B. Ding, R. Gentleman, V. Carey, bioDist: Different distance measures. R package version
611 1.54.0. (2018).

612 73. G. Csárdi, T. Nepusz, The igraph software package for complex network research.
613 *InterJournal Complex Syst.* **1695**, 1695 (2006).

614 74. P. J. McMurdie, S. Holmes, Phyloseq: An R Package for Reproducible Interactive Analysis
615 and Graphics of Microbiome Census Data. *PLoS One* **8**, e61217 (2013).

616 75. H. Wilman, *et al.*, EltonTraits 1.0 : Species-level foraging attributes of the world’s birds and
617 mammals. *Ecology* **95**, 2027 (2014).

618