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Abstract

In this work, we investigated the regional characteristics of the dynamic interactions between oscillatory
sources of ongoing neural activity obtained using electrophysiological recordings and the corresponding changes in
the BOLD signal using simultaneous EEG-fMRI measurements acquired during a motor task, as well as under resting
conditions. We casted this problem within a system-theoretic framework, where we initially performed distributed
EEG source space reconstruction and subsequently employed block-structured linear and non-linear models to
predict the BOLD signal from the instantaneous power in narrow frequency bands of the source local field potential
(LFP) spectrum (<100 Hz). Our results suggest that the dynamics of the BOLD signal can be sufficiently described as
the convolution between a linear combination of the power profile within individual frequency bands with a
hemodynamic response function (HRF). During the motor task, BOLD signal variance was mainly explained by the
EEG oscillations in the beta band. On the other hand, during resting-state all frequency bands of EEG exhibited
significant contributions to BOLD signal variance. Moreover, the contribution of each band was found to be region
specific. Our results also revealed considerable variability of the HRF across different brain regions. Specifically,
sensory-motor cortices exhibited positive HRF shapes, whereas parietal and occipital cortices exhibited negative HRF
shapes under both experimental conditions.
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1 Introduction

Over the last 30 years blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI)
(Ogawa et al., 1990) has become the leading imaging technique for studying brain function and its organization into
brain networks in both health and disease. Although most fMRI studies use BOLD contrast imaging to determine
which parts of the brain are most active, it is only an indirect measure of neuronal activity through a series of complex
events, which is collectively referred to as the hemodynamic response to neuronal activation (Buxton et al., 2004).
Therefore, interpretation of fMRI data requires understanding of the underlying link between neuronal activity and
the hemodynamic response. To this end, using intracranial electrophysiology (Logothetis et al., 2001) confirmed
that BOLD fluctuations are associated with changes in neuronal activity, with higher correlations being observed
with changes in the local field potentials (LFP) as compared to spiking activity. However, the physiology of the BOLD
signal and its exact association with oscillations within specific narrow frequency bands of the LFP spectrum is still
poorly understood.

At the macroscopic scale, simultaneous EEG-fMRI is a commonly used non-invasive technique for the study
of the relationship between electrophysiological activity, which is a more direct measure of the underlying neural
oscillations, and the subsequent regional changes in the BOLD signal. This technique allows non-invasive recording
of brain activity with both high spatial and high temporal resolution overcoming the limitations associated with
unimodal EEG or fMRI. Many different analysis methods have been proposed for EEG-fMRI data fusion for the study
of human brain function (Abreu et al., 2018; Jorge et al., 2014). Typically, features extracted from raw EEG time-
series are transformed using a static linear or non-linear transformation and subsequently convolved with a
hemodynamic response function (HRF) to derive BOLD predictions. The accuracy of these predictions depends on
both a proper transformation of the EEG features as well as the shape of the HRF.

Two classes of algorithms for EEG feature extraction are typically found in the literature. The first class,
which has been mainly employed in task-related studies, refers to the detection of large scale neural events, such as
evoked or event-related potentials in response to motor, sensory or cognitive stimuli (Bénar et al., 2007; Fuglg et
al., 2012; Nguyen and Cunnington, 2014; Wirsich et al., 2014), as well as to epileptic discharges (Bagshaw et al., 2005;
Bénar et al., 2002; Murta et al., 2016; Thornton et al., 2010). The second class, which is the most widely used in the
literature, refers to the decomposition of the EEG data into frequency bands of rhythmically sustained oscillations
and extraction of the power profile of each band.

Along these lines, early attempts to infer BOLD signal dynamics from features extracted from the EEG
spectrum focused on the alpha band (8-12 Hz), particularly for the brain in the resting-state (de Munck et al., 2007;
Goldman et al., 2002; Laufs et al., 2006, 2003). Additional narrow frequency bands of the LFP spectrum, such as the
delta (2-4 Hz) (de Munck et al., 2009), theta (5-7 Hz) (Scheeringa et al., 2008), beta (15-30 Hz) (Laufs et al., 2006),
and gamma (30-80 Hz; Ebisch et al., 2005; Scheeringa et al., 2016, 2011) bands have also been used to this end.
However, focusing on specific EEG frequency bands while disregarding the information from additional ones may
result in less accurate BOLD signal predictions. More recently, the importance of including multiple frequency bands
in EEG-fMRI data fusion has been suggested (Bridwell et al., 2013; de Munck et al., 2009; Mantini et al., 2007; Tyvaert
et al., 2008). Other studies pointed out the importance of using broadband EEG signal transformations, such as a
linear combination of band-specific power values (Goense and Logothetis, 2008), total power (Wan et al., 2006), and
root mean square frequency (Kilner et al., 2005; M.J. Rosa et al., 2010). Higher non-linear or information theoretic
transformations have been also suggested (Portnova et al., 2018).

Most of the aforementioned studies performed EEG-fMRI data fusion after imposing constraints that
allowed the authors to restrict their attention to a certain number of EEG sensors or within specific frequency bands.
More recently, a number of studies proposed using data-driven techniques, such as spectral blind source separation
(sBSS) or multiway decomposition to detect information hidden in the structure of both EEG and fMRI, without
imposing any prior constraints with regards to the spatial, spectral, or temporal dimensions of the data (Bridwell et
al., 2013; Marecek et al., 2016). This approach yielded a set of paired EEG spatial-spectral and fMRI spatial-temporal


https://doi.org/10.1101/2020.06.29.178483
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.29.178483; this version posted July 11, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

atoms blindly derived from the data, where each pair of atoms was associated with a distinct source of underlying

80 neuronal activity. The detected pairs of spatial-spectral and spatial-temporal patterns were subsequently used to
model the coupling between the two modalities using finite impulse response (FIR) analysis. This methodology was
shown to improve BOLD signal prediction compared to alternative fusion techniques using individual EEG frequency
bands. While a finite number of active sources in the brain evoked during task execution might be a reasonable
assumption, this might not be the case for the resting-state.

85 In this work, we developed a novel methodology to investigate the regional variability of the HRF across the
brain cortical surface using simultaneous EEG-fMRI data acquired from 12 healthy subjects during the resting state
and motor task execution. To this end, we employed block-structured linear (linearized Hammerstein) and non-linear
(Hammerstein and Wiener-Hammerstein) models, aiming to identify an optimal linear or non-linear static
(memoryless) map of the power profile of multiple source EEG frequency bands, as well as an optimal linear or non-

90 linear dynamic system to model the dynamic interactions between EEG power and the BOLD signal. We initially
reconstructed the EEG source space for each subject and performed time-frequency analysis to obtain variations of
the instantaneous power within the delta (2-4 Hz), theta (5-7 Hz), alpha (8-12 Hz) and beta (15-30 Hz) frequency
bands. Using average time-series within structurally defined regions of interest (ROIls) and cross-validation, we
concluded that the dynamic interactions between EEG and BOLD-fMRI can be optimally, in the mean square sense,

95 expressed as the convolution between a linear combination of power time-series in individual frequency bands with
a linear dynamic system, which is completely characterized by a hemodynamic response function (HRF).
Subsequently, we performed vertex-specific analysis and mapped features extracted from the estimated HRF in high
spatial resolution. Our results suggest that during the motor task BOLD signal variance is mainly explained by the
EEG oscillations in the beta band. During resting-state, on the other hand, our results suggest that all EEG bands

100 contribute to the fluctuations in the BOLD signal and that the contribution of each EEG band is region specific. They
also suggest that increases in the power within lower EEG bands are followed by positive BOLD responses in the
sensory-motor cortices. In contrast, increases in the alpha power are followed by negative BOLD responses in the
parietal and occipital cortices, and increases in the beta band are followed by negative BOLD responses in most brain
regions.

105
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2 Methods

2.1 Experimental methods
Twelve healthy volunteers (age range 20-29 years) participated in this study after giving a written informed
consent in accordance with the McGill University Ethical Advisory Committee. All participants were right-handed
110 according to the Edinburgh Handedness Inventory (Oldfield, 1971). Measurements were recorded at the McConnel
Brain Imaging center (BIC) of the Montreal Neurological Institute (MNI), at McGill University.

2.1.1 Experimental paradigm
The study was divided in two scans (Fig. 1). During the first scan (resting-state experiment), subjects were
asked to perform no particular task other than to remain awake while looking at a white fixation cross displayed in
115 a dark background. During the second scan (motor task experiment), subjects were asked to perform unimanual
isometric right-hand grips to track a target as accurately as possible while receiving visual feedback. At the beginning
of each trial, an orange circle appeared on the screen and subjects had to adapt their force at 15% of their maximum
voluntary contraction (MVC) to reach a white vertical block (low force level). This force was maintained at this level
for 3 s. Subsequently, subjects had to progressively increase their force over a 3-s period following a white ramp to
120 reach 30% of their MVC and to sustain their applied force at this level for another 3 s (high force level). A single trial
lasted 11 s and was repeated 50 times. The inter-trial interval was randomly jittered between 3-5 s, during which
subjects were able to rest their hand while looking on a white fixation cross. The MVC of each participant was
obtained between the two scans, using the same hand gripper that was employed during the motor task.

Scan1

RESTING STATE MVC UNIMANUAL TASK
15 min 30s ~ 13 min (50 trials)

v

30% 30% 30%

INTER-TRIAL ADAPT LOW RAMP HIGH
Jittering between 3-5 s Duration 2s:[0,2] s Duration 3s: [2,5] s Duration 3s: [5,8] s Duration 3s: [8,11] s

Fig. 1 (a) Experimental protocol: subjects underwent a resting-state experiment with eyes open (scan 1) that was subsequently
followed by a unimanual motor task (scan 2). Between the two scans, the maximum voluntary contraction (MVC) was acquired
from each participant. (b) Unimanual motor task: in each trial subjects were initially fixated on a white crosshair, for a jittered
period lasting between 3-5 s. Subsequently, an orange circle appeared on the screen and subjects had to adapt their force at 15%
of their MVC to reach a white vertical block and sustain their force at that level (low force level) for 3 s. After that, subjects had to
adjust their grip force guided by a ramp to reach 30% of their MVC within a period of 3 s. Lastly, they had to maintain the force at
that level (high force level) for another 3 s. A single trial lasted 11 s and was repeated 50 times.
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2.1.2 Hand grip force measurements

125 A non-magnetic hand clench dynamometer (Biopac Systems Inc, USA) was used to measure the subjects’
hand grip force strength during the motor paradigm. The dynamometer was connected to an MR compatible Biopac
MP150 data acquisition system from which the signal was transferred to a computer.

2.1.3 EEG data acquisition
Scalp EEG signals were simultaneously acquired during fMRI scanning at 5 kHz using a 64 channel MR-
130 compatible EEG system with ring Ag/AgCl electrodes (Brain Products GmbH, Germany). The electrodes were placed
according to the 10/20 system and referenced to electrode FCz. The EEG data were synchronized with the MRI
scanner clock via a synchronization device to improve the effectiveness of MRI artifact removal (see section 2.2.1
below). Triggers indicating the beginning and end of each session, as well as the timing of each phase of the motor
task during the motor task experiment were sent to both the Biopac and the EEG recording devices via a TriggerBox
135 device (Brain Products GmbH, Germany). The electrodes were precisely localized using a 3-D electromagnetic
digitizer (Polhemus Isotrack, USA).

2.1.4 BOLD imaging
Whole-brain BOLD-fMRI volumes were acquired on a 3T MRl scanner (Siemens MAGNETOM Prisma fit) with
a standard T2*-weighted echo planar imaging (EPI) sequence using a 32-channel head coil for reception. EPI
140 sequence parameters: TR/TE = 2120/30 ms (Repetition/Echo Time), Voxel size = 3x3x4 mm, 35 slices, Slice thickness
=4 mm, Field of view (FOV) = 192 mm, Flip angle = 90°, Acquisition matrix = 64x64 (ROxPE), Bandwidth= 2368 Hz/Px.
A high-resolution T1-weighted MPRAGE structural image was also acquired to aid registration of the functional
volumes to a common stereotactic space. MPRAGE sequence parameters: TI/TR/TE = 900/2300/2.32 ms
(Inversion/Repetition/Echo Time), Flip angle = 8°, 0.9 mm isotropic voxels, 192 slices, Slice thickness = 0.9 mm, Field
145 of view = 240 mm, Acquisition matrix = 256x256 (ROxPE), Bandwidth = 200 Hz/Px.

2.2 Data preprocessing

2.2.1 EEG data preprocessing
EEG data acquired inside the scanner were corrected off-line for gradient and ballisto-cardiogram (BCG)
artifacts using the BrainVision Analyser 2 software package (Brainproducts GmbH, Germany). The gradient artifact
150 was removed via adaptive template subtraction (Allen et al., 2000). Gradient-free data were band-passed between
1-200 Hz, notch-filtered at 60, 120, and 180 Hz to remove power-line artifacts, and down-sampled to a 400 Hz
sampling rate. Temporal independent component analysis (ICA) (Delorme and Makeig, 2004) was performed on each
subject separately and the BCG-related component that accounted for most of the variance in the data was isolated
and used to detect heartbeat events. BCG-related artifacts were removed via pulse artifact template subtraction,
155 which was constructed using a moving average of EEG signal synchronized to the detected heartbeat events (Allen
et al., 1998). Poorly connected electrodes were detected using visual inspection, as well as evaluation of their power
spectrum, and interpolated using spherical interpolation (Delorme and Makeig, 2004). Subsequently, a second
temporal ICA was performed, and noisy components associated with non-neural sources, such as gradient and BCG
residuals, ocular, or muscle artifacts were removed. The remaining data were re-referenced to an average reference.
160 After preprocessing, one subject was excluded from further analysis due to excessive noise that remained in the
data.

2.2.2 MRl data pre-processing
Pre-processing of the BOLD images was carried out using the Oxford Center for Functional Magnetic
Resonance Imaging of the Brain Software Library (FMRIB, UK — FSL version 5.0.10) (Jenkinson et al., 2012). The
165 following pre-processing steps were applied: brain extraction, high-pass temporal filtering (cutoff point = 90 s.),
spatial smoothing using a Gaussian kernel of 5 mm FWHM, volume realignment, and normalization to the MNI-152
template space, with resolution of 2 mm3. Spatial ICA was carried out for each subject using FSL’s MELODIC
(Beckmann and Smith, 2004) and spatial maps associated with head motion, cardiac pulsatility, susceptibility and
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other MRI-related artifacts with non-physiologically meaningful temporal waveforms were removed. MRI structural

170 analysis and reconstruction of cortical surface models were performed with the FreeSurfer image analysis suite
(version 5.3.0) (Fischl, 2012). The fMRI data were co-registered to the reconstructed EEG cortical source space (see
section 2.3.1 below) using volume-to-surface registration (Dickie et al., 2019).

2.3 Data analysis
2.3.1 EEG source imaging

175 Our main aim was to model the dynamic interactions between individual EEG sources and BOLD-fMRI in
high spatial resolution. To this end, we reconstructed the EEG source space for each subject using an extension of
the linearly constrained minimum variance (LCMV) beamformer (Van Veen et al., 1997), which is implemented in
Brainstorm (Tadel et al., 2011). Beamformers are adaptive linear spatial filters that isolate the contribution of a
source located at a specific position of a 3D grid model of the cortical surface, while attenuating noise from all other

180 locations yielding a 3D map of brain activity.

A set of 15,000 current dipoles distributed over the cortical surface was used. Source activity at each target
location on the cortical surface was estimated as a linear combination of scalp field measurements, wherein the
weights, as well as the orientation of the source dipoles were optimally estimated from the EEG data in the least-
squares sense. A realistic head model for each subject was obtained using the subject’s individual cortical anatomy

185 and precise electrode locations on the scalp. Lead fields were estimated using the symmetric boundary element
method (BEM) (Gramfort et al., 2009).

2.3.2 Time-frequency analysis
EEG source waveforms were band-passed into the delta (2-4 Hz), theta (5-7 Hz), alpha (8-12 Hz) and beta
(15-30 Hz) frequency bands and the complex analytic signal of each band was obtained via the Hilbert transform
190 (Bruns et al., 2004; Le Van Quyen et al., 2001). Band-pass filtering was performed using even-order linear phase FIR
filters with zero-phase and zero-delay compensation implemented in Brainstorm. Subsequently, the instantaneous
power time-series within each EEG band was calculated as the squared amplitude of the corresponding complex
analytic signal. The EEG bandwidth was limited between 1-30 Hz, as above that frequency range MRI-related artifacts
are more difficult to remove (Mullinger et al., 2014, 2011, 2008; Ryali et al., 2009), particularly for resting-state EEG,
195 making the calculation of a signal of good quality more challenging. EEG instantaneous power time-series were
down-sampled by averaging within the BOLD sampling interval yielding one value per fMRI volume. Representative
band-specific EEG instantaneous power time-series from the left lateral occipital cortex superimposed with the
corresponding BOLD time-series obtained from one representative subject during the motor task are shown in (Fig.
S1) in the supplementary material.

200 2.3.3  Mathematical methods

2.3.3.1 Block-structured system modeling
The dynamic interactions between EEG bands and BOLD were assessed using multiple-input single-output
(MISO) block-structured linear (linearized Hammerstein) and nonlinear (Hammerstein and Hammerstein-Wiener)
models (Fig. 2). The Hammerstein (linearized Hammerstein) model (Fig. 2a) consists of the cascade connection of a
205 static non-linear (linear) map followed by a dynamic, linear time invariant (LTI) system. The Hammerstein-Wiener
model (Fig. 2b) consists of a second static nonlinearity that follows the output of the dynamical LTI system, which
allows modeling of non-linear dynamic interactions between the input and output data. These modular cascade
models, which have been extensively used for modeling of linear and nonlinear physiological systems (Westwick and
Kearney, 2003), are well suited for modeling the dynamics between EEG and BOLD-fMRI data as they provide
210 estimates of the interactions between different EEG frequency bands and their effect on the BOLD signal, as well as
the HRF without requiring a priori assumptions with regards to its shape.
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Fig. 2 (a) Multiple-input-single-output (MISO) Hammerstein model consisting of a static (memoryless) nonlinearity L(-)
followed by a linear time-invariant (LTI) system H. (b) Multiple-input-single-output (MISO) Hammerstein-Wiener model
consisting of a Hammerstein model followed by a static nonlinearity F(+).

Hammerstein model identification: The MISO Hammerstein model structure (Fig. 2a) consists of a static
(zero-memory) non-linear block L(-): RN*Q — RN in cascade with a LTI system H(-) with a finite impulse response
function of memory M denoted by h(t): [0, M] - R. The input-output relationship in discrete time is given by

M
y@) = > h(m)L(a(n = m) +e(n) (M

215 where y(n) € R denotes the output (i.e. BOLD signal) and u(n) € R® the multivariate input (i.e. instantaneous
power within Q distinct EEG frequency bands) of the system at time n = 0, ..., N. In this study, Q = 4 as the model
input consists within four distinct source EEG frequency bands (see section 2.3.2). The nonlinear block can be
described by

Q
L) =Y D aipe” () @

where gi(p)(~): RN - RN are polynomial terms of order p that allow representation of nonlinearities in the system

220 inputs, and a;, € Ris an unknown coefficient corresponding to the p-th polynomial term of the i-th input.

The MISO linear Hammerstein model is a special case of the Hammerstein model when P = 1. In this case,

the output of the system is described as the convolution between a linear combination of the multivariate input with

225 the impulse response of the LTI block. This model is consistent with the frequency response (FR) model that has

been previously proposed in the neuroimaging literature (Goense and Logothetis, 2008; M.J. Rosa et al., 2010), which
assumes that BOLD is best explained by a linear combination of synchronized activity within different EEG bands.

The Hammerstein model can be estimated efficiently from the input-output data using orthonormal basis
functions for the representation of the LTI block (Gémez and Baeyens, 2004), which is given by

L-1
235 h(m) = Z b, B, (m) 3)
=0

230 where {Bj (n);j=0,..,L—1;n=0, ...,M} is a set of L orthonormal basis functions, and b]- € R is the unknown
expansion coefficient of the j-th order basis function. The use of orthonormal bases reduces the number of required
free parameters in the model and allows parameter estimation using least-squares regression. This leads to
increased estimation accuracy in the presence of noise even from short experimental data-records. Combining (1) -
(3), the input-output relationship can be written as

y(n) = i (Z:: b;B; (m)> (Zi 1Z:=1 ai,pgi(w(ui(n))) + &(n)

m=0
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where V(p)(n) € RN denotes the convolutlon between the p-th polynomial power of the i-th input with the j-th
basis function. Equation (4) can be re-expressed as a linear regression problem

y=Vc+e (5)

— [, ® ® (€)) (P) (P) (P) (P) N LXP —

where V= [Vl_o, s VQor s Vi Lm1r e VQLm 7 ooe ven 2V10s s VQuor s Vif-1r s VO L 1] € RNX@xLxP)  and ¢ =

240 [ajqbg, -, a51by 1, -, 2Q1bos s @Q1DL_1 s s 1 pDo, s Ay pDL_1, s A pbos s aQ,PbL—l] € RQXP) js 4
vector of the unknown model parameters.

245 Power fluctuations within distinct EEG frequency bands are highly correlated as previously reported in the

literature (de Munck et al., 2009). As a result, the columns in V are strongly collinear, which makes estimation of ¢
using ordinary least-squares numerically unstable due to ill-conditioning of the Gram matrix [VTV]. Therefore, to
obtain a numerically more stable estimate of the unknown parameter vector ¢, we employed partial least-squares
regression (PLSR) (Rospiral and Kramer, 2006).

250 PLSR is performed in three phases. In phase 1, the algorithm finds projections of V and y to a new co-
ordinate system such that the covariance of these projections is maximized. This is achieved using a linear
decomposition of both V and y into a set of orthonormal latent variables (scores) and loadings given by

V=TPT + e, (6)
y=UWT +e, @)
where T and U € RNX(Q*LXP) gre matrices of latent variables associated with V and y, respectively. P €
RQLXPX(QxLXP) 3nd W € R(Q*L*P) gre the corresponding loadings for each latent variable matrix, and e; , €

255 RN are error terms. The decomposition of V and y is performed such that the covariance between T and U is
maximized. In phase 2, the algorithm performs ordinary least-squares regression analysis between the latent
variables T and system output y

y=TO+e (8)

265 ~ Bpsg = [TTT] ' TTy 9
where 0 = [91, ...,OQXLXP]T € RQxLXP) js 3 vector of the regression coefficients. Note that in this case the Gram
matrix [TTT]is well-conditioned since the columns in T are orthonormal. In phase 3, the estimated 8, coefficients

260 are projected back to the original parameter space yielding unbiased estimates of the original model parameters
Cpys (die Jong, 1993).

To uniquely identify the unknown parameters of the Hammerstein model described by (1)-(4), the bilinear
parameter vector ¢ needs to be dissociated into its constituent a; , and b; parameters. The parameter vector ¢ can

be reshaped into a block-column matrix ¢, € RYXQP) sych that

ay,1bg azibg v agibp e e ajpbg -+ agpbo
cab _ i i N . . . ‘. . _ baT (10)
a; by azib_g - aQ,lbL—l """ a;pbp_g - aQ,PbL—l
where a = [ay 4, ..., 21,872 e - ,aQ‘p_l,al’P,...,aQ’P]T € RQP and b = [by,...,b._1]T € RL. An optimal, in

270 the least-squares sense, estimate of the model parameters 4,5z and b;gz can be obtained solving the following
constrained minimization problem

(ause, byse) = argmin {||Cous — ba"||;}
a’,b’

llall, = 1,argmax{|h(m)|} > 0 (11)


https://doi.org/10.1101/2020.06.29.178483
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.29.178483; this version posted July 11, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

where h(m) is given by (3). Note that as a result of normalizing the polynomial coefficients a, the estimate a,gg
275 reflects a relative rather than absolute contribution of individual EEG bands to the BOLD signal variance. A solution
to (11) is provided by the singular value decomposition (SVD) of matrix ¢, (Gémez and Baeyens, 2004). Specifically,

aisg = Uy
280 < 12
bysg =V1-Z1 (12)
where U; € R¥*P s the first left singular vector, V; € R" the first right singular vector, and £; € R the first singular
value of the SVD of ¢&,,.

Hammerstein-Wiener model identification: The MISO Hammerstein-Wiener (HW) model structure (Fig.
2b) consists of a static non-linear block F(-): RN - RN in cascade with a Hammerstein system described by (1). The
input-output relationship of the HW model in discrete time is given by

K
290 y@) = F(y(m) = ) 2 (ya(m) +£(n) (13)
k=1

where y(n) € R denotes the system output (i.e. BOLD signal), and yy(n) € R the output of the preceding
285 Hammerstein system at time n=0,..,N. f®(): RN - RN are polynomial terms of order k that allow
representation of non-linearities in the output of the preceding Hammerstein system, and z, € R is the regression

coefficient of the k-th polynomial term. Equation (13) can be re-expressed in a compact matrix form as
y=Fz+¢ (14)
where F € RN*K denotes a matrix the columns of which are polynomial powers of y; € RN ,andz € R¥is avector

of the unknown polynomial coefficients, which can be estimated using ordinary least-squares

215e = [FTF]'Fy. (15)

Orthonormal basis functions: There are several sets of orthonormal basis functions that can be used for

modeling the impulse response function of the LTI block in the Hammerstein and Wiener-Hammerstein model

295 configuration (Heuberger et al., 2005). The selection of the appropriate basis set depends on the dynamic behavior

of the system to be modelled. One basis set that has been extensively used in the literature for modeling of

physiological systems is the Laguerre basis. Laguerre basis functions exhibit exponentially decaying structure and

constitute an orthonormal set in [0, o], which makes them suitable for modeling causal systems with finite memory
(Marmarelis, 1993).

300 In this work we employ a smoother variant of the Laguerre basis functions, the spherical Laguerre basis
functions (Leistedt and McEwen, 2012), which allow obtaining robust HRF estimates in single voxels even during
resting conditions where the signal-to-noise ratio (SNR) is particularly low. The j-th spherical Laguerre basis function
b]-(n); j=0,..,L=1; n=1,..,M is given by

TN G (16)

where a € R, is a parameter that determines the rate of exponential asymptotic decline of b;(n), and K;(n) is the
305 j-th generalized Laguerre polynomial of order two, defined as

j

Km =Y (%) (17)

r!
r=0

2.3.3.2 Model comparisons
Our goal was to compare models considering linear (linearized Hammerstein) and non-linear
310 (Hammerstein) transformation of the power within different source EEG frequency bands EEG bands, as well as
linear and non-linear dynamic behavior (Hammerstein-Wiener) that can be used to predict BOLD signal variations.
To this end, we employed a 3-fold cross validation approach as follows: band-specific EEG and BOLD time-series
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were partitioned into three segments of roughly equal length. Each segment was sequentially used as the validation
set for assessing the performance of each model and the remaining two segments were used as the training set. For

315 each segment, the parameters of the three models under consideration were estimated using the training set, and
model performance was evaluated using the testing set in terms of the mean-squared prediction error (MSE), which
is given by

N
1
mse = NZ(y(n) —9(n)),? (18)

where $(n), and y(n) denote the predicted and measured BOLD, respectively. The average mse value obtained
across the three folds, which is referred to in the literature as the generalization error, was calculated and used for

320 model comparisons. To prevent overfitting, the range for the total number L of spherical Laguerre functions used
for modeling the impulse response of the unknown system and the range for a was selected to be 2 < L. < 4 and
0.5 < a < 1, respectively. The optimal value for these parameters was determined based on model performance
using a grid search.

325 Model comparisons were performed using averaged EEG source and BOLD time-series in large structurally
defined regions of interest (ROIs) according to the Mindboggle atlas (https://mindboggle.info) (Klein and Tourville,
2012). Group-level statistical comparisons were carried out between the ROl generalization error values obtained
by each model. The optimal model for explaining the dynamic relation between source EEG frequency bands and
fMRI was determined to be the one with the statistically smallest generalization error. The comparison of the mse

330 values suggested that the linearized Hammerstein model is sufficient to describe the dynamic relations between
different source EEG bands and BOLD, for both experimental conditions (Fig. 4). Subsequently, this model was used
to investigate the contribution of individual EEG bands to BOLD signal variance, as well as the regional variability of
the HRF in a voxel-wise fashion.

2.3.4 Vertex-wise analysis

335 2.3.4.1 Contribution of individual EEG bands to BOLD signal variance

In each voxel, the contribution of individual source EEG frequency bands to the BOLD signal variance was
evaluated in two steps. In the first step, the linearized Hammerstein model, which is described by equation (1) for
P =1, was fitted to the full data set, and a BOLD prediction was obtained. In the second step, the linearized
Hammerstein model was refitted to a reduced data set from which the target EEG frequency band was excluded,

340 and a BOLD prediction was obtained. Then the F-score was calculated
(SSEg — SSEg)/(DFER — DFER)

k= SSEr/DFEg

where SSE and SSEp are respectively the residual sum of squares of the full and reduced model. Likewise, DFEg
and DFEp are respectively the number of degrees of freedom for the full and reduced model. The statistic F follows
a F(preg-DFERDFER) distribution and a large value of F indicates that the target EEG band significantly contributes

345 (19)

to BOLD signal variance.

2.3.4.2  Influence of individual EEG bands on HRF scaling
The linearized Hammerstein model described by equation (1) when P = 1 quantifies the interactions
between EEG and fMRI as a hemodynamic response function (impulse response of the LTI block) scaled by
coefficients reflecting the relative contribution of each EEG band to BOLD (static linear MISO block). To investigate
350 the influence of individual EEG bands on HRF scaling we proceeded in two steps (Fig. 3): First, we excited all inputs
of the linearized Hammerstein system at the same time using one Kronecker delta function §(n) for each input (Fig.
3a) to derive the system’s dynamic response to instantaneous changes in the power of all EEG bands (total HRF). The
scale of the total HRF was determined by the sum of the a coefficients that define the static linear MISO block.
Subsequently, we excited one input at a time (Fig. 3b). In each case, the scale of the derived response (band-specific
355 HRF), was determined only by the a; coefficient of the associated input.
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To assess the contribution of individual EEG bands on the scaling of the total HRF in different brain regions
we compared the spatial maps of the HRF peak with the spatial maps of the same feature obtained from band-
specific HRFs. The HRF peak describes the maximum instantaneous hemodynamic response to rapid changes in
neuronal activity.

hr(n)

(a) Total hemodynamic response function hp(n) (b) Band-specific hemodynamic response function h;(n)

Fig. 3 Network representation of the multiple-input-single-output linearized Hammerstein model used for quantifying the
dynamical interactions between EEG and BOLD-fMRI. (a) The total HRF ht(n) is obtained by exciting all inputs of the linearized
Hammerstein system at the same time using a Kronecker delta function 8(n). The scaling of the total HRF is determined by the
sum of all input coefficients a;,i =1, ...,Q. (b) A band-specific HRF h;(n) is obtained by exciting only the i-th input, which is
associated with the i-th EEG frequency band. The scaling of the HRF in this case is determined by coefficient a;.

360
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Fig. 4 Boxplots of mean square error (mse) values between measured versus predicted BOLD in large structurally defined ROIs
from all subjects. BOLD predictions were obtained using the block-structured Hammerstein-Wiener (HW), Hammerstein (H),
and linearized Hammerstein (LH) models, and the instantaneous power timeseries in the delta (2-4 Hz), theta (5-7 Hz), alpha
(8-12 Hz) and beta (15-30 Hz) bands. The mse values obtained from the linearized Hammerstein model were significantly smaller
(p<0.003) compared to the standard Hammerstein and Hammerstein-Wiener models, suggesting that the former is adequate
to describe the dynamics between EEG and BOLD under both experimental conditions.

3 Results

3.1 Model comparisons
The Hammerstein-Weiner, Hammerstein, and linearized Hammerstein block-structured models were
compared in terms of their mean square prediction error (mse) obtained in large structurally defined ROIs according
365 to the Mindboggle atlas. Boxplots of the mse values obtained from all subjects and ROIs for each model are shown
in (Fig. 4), for both experimental conditions. Statistical comparisons were performed using the Kruskal-Wallis
nonparametric one-way ANOVA test. According to this, the null hypothesis was that the mse values achieved by
each model originate from the same distribution. The mse values achieved by the linearized Hammerstein model
were significantly (p < 0.003) smaller compared to the standard Hammerstein and Hammerstein-Wiener models.
370 This suggests that the BOLD signal can be sufficiently described as the convolution between a linear combination of
the power profile within different frequency bands and a hemodynamic response function, which can be estimated
from the data using the functional expansion technique along with the spherical Laguerre basis as described in
section 2.3.3.1.

3.2 Contribution of individual EEG bands to BOLD signal variance

375 Fig. 5 shows group-level one-sample t-statistical maps of BOLD signal variance explained by different EEG
bands during motor task execution obtained using (i) sensor space analysis and a canonical, double-gamma HRF (Fig.
5a), (ii) source space analysis and a canonical, double-gamma HRF (Fig. 5b), and (iii) source space analysis and a
custom spherical Laguerre HRF (Fig. 5c). Custom HRF curves were estimated from the data using the linearized
Hammerstein model as described in a previous section (2.3.3.1). In each case, p-values were converted into a False

380 Discovery Rate (FDR) and the statistical maps were thresholded at p < 0.005. Sensor space analysis was performed
using the first principal component obtained after applying principle component analysis (PCA) to the EEG sensors
C1, C3, and C5, which are located above the left primary sensory and motor cortices. The results suggest that using
source space analysis with a custom HRF improves BOLD signal prediction as compared to using EEG sensor space
analysis with a custom HRF or source space analysis with a canonical HRF. Moreover, the source EEG beta band (15-

385 30 Hz) yielded the most significant contributions to the BOLD signal variance. A group-level statistical map was also
acquired for the BOLD signal variance explained by the handgrip force measured by the gripper during motor task
execution (Fig. 5d). The spatial patterns obtained by the handgrip force time-series, which reflect the dynamics of
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(a) EEG sensor space analysis (b) EEG source space analysis (Canonical HRF)
Delta band (2-4 Hz) Theta band (4-8 Hz) Delta band (2-4 Hz) Theta band (4-8 Hz)
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Alpha band (8-12 Hz) Beta band (15-30 Hz) I 2 Alpha band (8-12 Hz) Beta band (15-30 Hz)

(c) EEG source space analysis (Custom HRF) (d) Hand grip strength
Delta band (2-4 Hz) Theta band (4-8 Hz)

Alpha band (8-12 Hz) Beta band (15-30 Hz)

@@@@

Prpr < 0.0005 (corrected for multiple comparisons)

Fig. 5 Comparison of BOLD signal variance explained by each electrophysiological frequency band during motor task execution
using EEG sensor space versus source space analysis, and canonical versus custom hemodynamic response function (HRF). Group-
level one-sample t-tests (p < 0.0005, FDR corrected for multiple comparisons) were performed to detect regions in the brain
where each frequency band significantly contributed to BOLD signal variance. (a) BOLD signal variance explained by the
instantaneous power within different frequency bands of the first principal component obtained by performing PCA to the EEG
sensors C1, C3, and C5, which are located above the left primary motor and sensory cortices. BOLD predictions were obtained
using the canonical, double gamma HRF. (b) BOLD variance explained by the instantaneous power within different frequency
bands of individual sources obtained using distributed source space reconstruction. BOLD predictions were obtained using the
canonical, double gamma HRF. (c) Same analysis as in (b) performed using a custom HRF, which was estimated from the data
using the linearized Hammerstein model and spherical Laguerre basis functions. (d) BOLD variance explained by the hand grip
force time-series. BOLD predictions were obtained using a custom HRF. The spatial maps obtained in this case were used as the
gold standard, as it can be reasonably assumed that the hand grip force time-series reflect the neural dynamics in the left primary
cortex during motor task execution. The comparison of the group-level statistical maps obtained in each case revealed that using
EEG source space analysis and a custom HRF (shown in c) improves BOLD signal prediction as compared to using sensor space
analysis and a canonical HRF. Also, the EEG beta band (15-30 Hz) was found to contribute more to BOLD signal variance compared
to other frequency bands. The spatial maps obtained for the EEG beta band in (c) were similar to the maps obtained using the
hand grip force time-series shown in (d), suggesting that the proposed methodology can be used to obtain reliable HRF estimates
and BOLD signal predictions from simultaneous EEG-fMRI data.

neural activation in the left primary sensory-motor cortices in response to motor task execution, were very similar
to the patterns obtained for the beta frequency band (Fig. 5c), suggesting that the proposed methodology can be
390 used to reliably describe the dynamic relation between EEG and BOLD-fMRI.

Fig. 6 illustrates the contribution of individual frequency bands of EEG current sources to BOLD signal
variance. EEG source space reconstruction was performed using distributed source imaging, whereby dipolar current
sources were estimated along the cortical surface in high spatial resolution (see section 2.3.1). BOLD signal
predictions were obtained using the linearized Hammerstein model and the custom spherical Laguerre HRF. During

395 motor task execution (Fig. 6a), the most significant contributions to the BOLD signal were yielded by the EEG beta
band (p < 0.0005, FDR corrected for multiple comparisons). During resting state conditions (Fig. 6b), our results
suggest a significant contributions from all EEG frequency bands (p < 0.0001, FDR corrected for multiple
comparisons), and for each band the significant contributions were found to be region-specific. Specifically, lower
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(a) Motor task (b) Resting-state
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Fig. 6 Contribution of individual frequency bands of distributed EEG sources to BOLD signal variance obtained using a custom
HRF, which was estimated from the data using the linearized Hammerstein model and spherical Laguerre basis functions (a)
Group-level one-sample t-statistical maps (p < 0.0005, FDR corrected for multiple comparisons) of BOLD signal variance
explained by individual frequency bands during motor task execution. The most significant contributions in BOLD signal variance
were yielded by the beta frequency band (15-30 Hz). (b) Group-level one-sample t-statistical maps (p < 0.0001, FDR corrected
for multiple comparisons) of BOLD signal variance explained by individual frequency bands under resting state conditions. Delta
(2-4 Hz) and theta (4-8 Hz) frequency bands contributed significantly to BOLD signal variance in the primary motor and
somatosensory cortices. Alpha (8-12 Hz) and beta (15-30 Hz) frequency bands contributed significantly to BOLD signal variance
in the occipital cortex.

EEG bands, such as the delta and theta frequency bands, exhibited significant contribution to the BOLD signal in the

400 primary motor and somatosensory cortices (Fig. 6b — upper row). On the other hand, higher EEG bands, such as the
alpha and beta frequency bands, exhibited significant contribution to the BOLD signal in visual-related areas in the
occipital cortex (Fig. 6b — bottom row).

Group average HRF estimates obtained in functionally defined ROIs in which EEG explained a large fraction
of the variance in the BOLD signal under each condition are shown in (Fig. 7). These ROIs included the left primary
405 motor and superior parietal lobule cortices for the motor task (Fig. 6a), as well as the right primary motor and lateral
occipital cortices for the resting-state (Fig. 6b). Representative BOLD signal predictions obtained from one subject
for the left superior parietal lobule cortex during the motor task, and the right lateral occipital cortex during resting-
state are also shown in the same Figure. These results suggest that the linearized Hammerstein model can be used
to obtain reliable estimates of the HRF as well as BOLD signal predictions from the EEG even during the resting state,
410 where SNR is particularly low.
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Fig. 7 (a) Group average normalized HRF curve shapes obtained in the left primary motor and left superior parietal lobule cortices
during motor task execution. The red curve corresponds to the mean HRF curve across all subjects. The blue shaded area
corresponds to the standard error. The ROIs were functionally defined based on regions where EEG explained a large fraction of
the variance in the BOLD signal (Fig. 6a). A representative BOLD prediction in the left superior parietal lobule cortex obtained
from one subject is shown in the lower panel. The same plot superimposed with the instantaneous power of individual EEG bands
is shown in (Fig. S2) in the supplementary material. (b) Group average normalized HRF curves obtained in the right primary motor
and right lateral occipital cortices under resting conditions. The ROIs were functionally defined based on regions where EEG
explained a large fraction of the variance in the BOLD signal (Fig. 6b). The BOLD prediction in the right occipital cortex obtained
from the same subject as in (a) is shown in the lower panel. The same plot superimposed with the instantaneous power of
individual EEG bands is shown in (Fig. S3) in the supplementary material.
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Fig. 8 Group-level average maps of total HRF peak obtained by exciting all inputs of the linearized Hammerstein model estimated
at each voxel at the same time, using one Kronecker delta function for each input. The total HRF was determined by both the HRF
shape provided by the impulse response of the LTI block, as well as the total scaling coefficient provided by the sum of the a
coefficients that define the static linear MISO block of the linearized Hammerstein model. During motor task execution (left
column), the average total HRF peak maps suggest that the majority of brain areas along the cortical surface exhibit a negative
hemodynamic response to abrupt instantaneous changes in the EEG power. The largest negative responses were observed in
visual-related areas, such as the lateral occipital (LOC) and superior parietal lobule (SPL) cortices. On the other hand, areas in the
sensory (S1), motor (M1), and medial occipital (IntraCAL) cortices exhibited a positive hemodynamic response. Under resting-
state conditions, areas in the attention cortical network, such as the dorsal-lateral prefrontal (DLPF) and inferior parietal lobule
(IPL) cortices, as well as areas in the default mode network, such as the medial prefrontal (mPFC) and precuneus cortices (PCC),
exhibited a negative hemodynamic response to abrupt instantaneous changes in the EEG power. On the other hand, areas in the
primary somatosensory (S1), primary motor (M1), medial occipital (IntraCAL), insular (IC), and auditory cortices exhibited a
positive hemodynamic response. LOC: lateral occipital cortex, IntraCAL: intracalcarine cortex, mPFC: medial prefrontal cortex,
PCC: precuneus cortex, S1: primary sensory cortex, M1: primary motor cortex, PMC: premotor cortex, SPL: superior parietal
lobule, IPL: inferior parietal lobule, DLPF: dorsal-lateral prefrontal cortex, IC: insular cortex.

3.3 Influence of individual EEG bands on HRF scaling
To investigate the regional variability of the total HRF in high spatial resolution, we excited all inputs of the
estimated linearized Hammerstein model at each voxel at the same time using one Kronecker delta function for each
415 input. The derived dynamic response was determined from both the shape of the HRF provided by the impulse
response of the LTI block, as well as the total scaling coefficient provided by the sum of the a coefficients that define
the static linear MISO block (see section 2.3.3). Average maps of total HRF peak values obtained across subjects are
shown in (Fig. 8). During the motor task, the vast majority of brain areas spanning the cortical surface exhibited a
negative hemodynamic response to abrupt instantaneous changes of the source EEG power for all frequency bands.
420 The largest negative responses were observed in the superior parietal lobule and lateral occipital cortices. On the
other hand, areas in the primary somatosensory, primary motor and medial occipital cortices exhibited a positive
hemodynamic response. Under resting-state condition, areas in the attention cortical network, such as the dorsal
lateral prefrontal and inferior parietal lobule cortices, as well as areas in the default mode network, such as the
medial prefrontal and precuneus cortices exhibited a negative response to abrupt instantaneous changes in the
425 source EEG power. Areas in the primary sensory, primary motor, medial occipital, insular, and auditory cortices
exhibited a positive hemodynamic response.

Fig. 9 shows group-level average band-specific HRF peak maps for the delta (2-4 Hz), theta (5-7 Hz), alpha

(8-12 Hz) and beta (15-30 Hz) frequency bands obtained under both experimental conditions. Band-specific HRF

peak maps were obtained by exciting one input of the linearized Hammerstein model estimated at each voxel at a

430 time, using a Kronecker delta function. The obtained band-specific HRF associated with the i-th input was
determined by both the HRF shape provided by the impulse response of the LTI block, as well as the coefficient a;,
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Fig. 9 Group-level average maps of band-specific HRF peak values obtained by exciting one input of the linearized Hammerstein
model estimated at each voxel at a time, using a Kronecker delta function. Each input was associated with a different frequency
band, and the relative contribution of the i-th input to BOLD signal variance was quantified in terms of the coefficient a;. In each
case, the band-specific HRF was determined by both the HRF shape provided by the impulse response of the LTI block, as well as
the coefficient a; of the associated i-th input. During motor task execution, the alpha (8-12 Hz) and beta (15-30 Hz) frequency
bands exhibited a strong negative hemodynamic response in visual-related areas, such as the lateral occipital (LOC) and superior
parietal lobule (SPL) cortices. On the other hand, the delta (2-4 Hz) and theta (5-7 Hz) frequency bands exhibited a strong positive
hemodynamic response in the primary sensory (S1) and primary motor (M1) areas. Positive hemodynamic responses in the
aforementioned areas were also observed for the alpha frequency band. The medial occipital cortex exhibited a positive
hemodynamic response for all frequency bands. Under the resting-state condition, the alpha and beta frequency bands exhibited
widespread negative hemodynamic responses spanning in multiple cortical regions. For the alpha band, the largest negative
responses were observed in the lateral occipital cortex (LOC), and for the beta band in areas in the attention cortical network,
such as the dorsal lateral prefrontal (DLPF) and inferior parietal lobule (IPL) cortices. Moreover, the delta and theta frequency
bands exhibited strong positive responses in areas in the primary somatosensory (S1), motor (M1), insular (IC), and auditory
cortices, as well as in visual-related areas, such as the lateral occipital (LOC) and superior parietal lobule (SPL) cortices. LOC: lateral
occipital cortex, IntraCAL: intracalcarine cortex, mPFC: medial prefrontal cortex, PCC: precuneus cortex, S1: primary sensory
cortex, M1: primary motor cortex, PMC: premotor cortex, SPL: superior parietal lobule, IPL: inferior parietal lobule, DLPF: dorsal-
lateral prefrontal cortex, IC: insular cortex.

which reflects the relative contribution of the i-th input to the BOLD signal. During the motor task, the alpha and
beta frequency bands exhibited strong negative responses in visual related areas, such as the lateral occipital and
superior parietal lobule cortices. On the other hand, the delta and theta frequency bands exhibited strong positive

435 responses in the primary motor and somatosensory cortices. All frequency bands exhibited a positive hemodynamic
response in the medial occipital cortex, with the strongest responses being observed for the delta and beta
frequency bands. Under resting-state conditions, the alpha and beta bands exhibited widespread negative
responses. The largest negative responses for the alpha band were observed in the occipital cortex, whereas for the
beta band in areas involved in the cortical attention network, such as the dorsal lateral prefrontal cortex. On the

440 other hand, the delta and theta frequency bands exhibited strong positive responses in the motor, somatosensory,
superior parietal lobule, auditory and insular cortices. Areas in the attention cortical network exhibited negative
responses. Also, the medial occipital cortex exhibited negative responses for the alpha and beta bands, and strong
positive responses for the delta and theta frequency bands.
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445 4 Discussion
In this work, we investigated in detail the dynamic interactions between changes in neuronal activity and
the BOLD signal measured with simultaneous EEG-fMRI under resting-state conditions, as well as during a motor
task. To perform this in high spatial resolution, we reconstructed the EEG source space along the cortical surface
using distributed source space analysis, in contrast to similar previous studies, which performed this investigation
450 using EEG sensor level measurements (de Munck et al., 2009, 2007; Laufs et al., 2006, 2003; Mantini et al., 2007;
Portnova et al., 2018; M J Rosa et al., 2010; Sclocco et al., 2014). Source space reconstruction allows the spatial
information present in the multi-channel EEG to be better exploited, providing more information regarding the local
neuronal input in a given cortical area. The dynamic interactions between EEG and BOLD were investigated using
block-structured linear and non-linear models that describe the BOLD signal as the convolution between a static
455 linear (linearized Hammerstein) or non-linear (standard Hammerstein) polynomial transformation of the EEG power
within different frequency bands with a hemodynamic response function. We also investigated the possibility of
dynamic non-linearities in the BOLD signal using the Hammerstein-Weiner model. These non-linearities may result
from suppression and increased latency of present BOLD responses that are incurred by preceding changes in the
source EEG power (Friston et al., 2000).

460 The degree and coefficients of the polynomial transformation preceding (Hammerstein structure) and
following (Hammerstein-Wiener structure) the linear hemodynamic system (Fig. 2), as well as the shape of the
unknown HRF curve were determined from the data using partial least squares regression (PLSR). PLSR was
employed to account for the high collinearity in the instantaneous power of different frequency bands, as it provides
unbiased estimates of the unknown model parameters. Moreover, the unknown HRF curves estimated in both large

465 ROIs and individual voxels were estimated efficiently form the data using function expansions in terms of the
spherical Laguerre basis functions. The use of an orthonormal basis reduces the number of required free parameters
in the model and allows parameter estimation using least-squares regression, which leads to increased estimation
accuracy in the presence of noise even from short experimental data-records (Marmarelis, 2004).

Model comparisons performed between the Hammerstein-Weiner, standard Hammerstein and linearized
470 Hammerstein models revealed that the latter is sufficient to describe the dynamics observed between fluctuations
in the power of different frequency bands and the BOLD signal. Using the linearized Hammerstein model, we showed
that the contribution of different frequency bands to the BOLD signal variance strongly depends on brain region and
experimental condition. Our results suggest that the proposed methodology yields robust HRF estimates even during
resting conditions, despite the lower SNR associated with them. This has important implications particularly in the
475 context of resting-state functional connectivity, as accurate HRF estimates are important for removing the
hemodynamic blurring that is inherent in the fMRI timeseries, resulting in more accurate functional connectivity

maps (Rangaprakash et al., 2018; Wu et al., 2013).

4.1 The linearized Hammerstein block-structured model
The model comparisons shown in Fig. 4 suggest that the linearized Hammerstein model achieves smaller
480 mean squared error (mse) values compared to the standard Hammerstein and Hammerstein-Wiener model, for both
experimental conditions. In each case the mse values were obtained using a 3-fold cross-validation approach, which
was implemented to assess model performance as described in section (2.3.3.2). In this context, the linearized
Hammerstein model was found to yield the optimal balance between predictive accuracy and parsimony, which
suggests that it can sufficiently describe the dynamics between source EEG and BOLD-fMRI without overfitting.

485 The linear Hammerstein model assumes that the BOLD signal is best explained by a linear combination of
activity within different frequency bands in agreement with the frequency response (FR) model® previously used to

1 Although the idea of using multiple frequency bands of intra-cortical LFP measurements in a general linear
model to predict BOLD activity was first introduced by (Goense and Logothetis, 2008), the term “Frequency
response (FR) model” was coined by (M.J. Rosa et al., 2010).
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predict BOLD activity from intra-cortical LFP recordings in alert behaving monkeys (Goense and Logothetis, 2008).
The main difference between the FR and the linearized Hammerstein hemodynamic model proposed herein is that
the latter employs a custom HRF to describe the dynamic interactions between source EEG power and BOLD-fMRI,

490 which is estimated directly from the experimental data. This provides additional flexibility in modeling the dynamic
relation between changes in neuronal activity and BOLD as compared to the FR model. Also, it allows for the
investigation of the regional variability of the HRF in high spatial resolution.

In contrast to other linear hemodynamic models which assume a different HRF shape for each EEG
frequency band (Bridwell et al., 2013; de Munck et al., 2009), the linearized Hammerstein model employs a unique
495 HRF curve shape for all EEG bands. We hypothesized that the dynamics of the physiological mechanism that relates
changes in neuronal activity to changes in cerebral blood flow do not depend on the specific frequency of the
underlying neural oscillations. Instead, the dynamics of the hemodynamic response to changes in the EEG power,
which determine the HRF curve shape, are an intrinsic property of the local cerebral vasculature that is related to
elastance and compliance. On the other hand, the relative contribution of each EEG band to BOLD signal variance is
500 reflected on the scaling coefficient a; of the HRF that is associated with each band. Hence, a large positive scaling
coefficient corresponds to a frequency band that is positively correlated with the BOLD signal and explains a large
portion of its variance. Likewise, a large negative coefficient corresponds to a frequency band that is negatively
correlated with the BOLD signal. In contrast, a small positive (negative) scaling coefficient corresponds to a frequency

band that is weakly positively (negatively) correlated with the BOLD signal.

505 A model that has been extensively used in the literature for modelling the dynamic interactions between
neuronal activity and BOLD during task execution (Murta et al., 2015; M.J. Rosa et al., 2010; Rosa et al., 2011; Sclocco
et al., 2014), as well as during EEG epileptic activity (Leite et al., 2013) is the so called Heuristic model proposed by
(Kilner et al., 2005). This model uses the root mean square frequency of the normalized power spectrum to define a
non-linear signal transformation of the EEG power that is used to predict changes in the BOLD signal. The power

510 spectrum employed by this model is normalized with the total average power of the EEG (area under the power
spectral density) at each time instant. Hence, direct comparison between the Heuristic and the linearized
Hammerstein model employed in this work is not straightforward, as the later uses an absolute power spectrum.
However, the statistical comparisons shown in (Fig. 4) suggest that the linearized Hammerstein model would be
superior than the root mean square frequency model using an absolute power spectrum (unnormalized Heuristic

515 model), as the latter can be adequately described with a standard Hammerstein model. Moreover, (M.J. Rosa et al.,
2010) performed a comparison between the normalized FR and Heuristic models, which revealed no significant
differences. Considering the additional flexibility provided by the custom HRF in the linearized Hammerstein model,
which is estimated directly from the data as compared to the FR model, we speculate that the normalized linearized
Hammerstein model can explain a larger fraction of BOLD variance compared to the Heuristic model (Kilner et al.,

520 2005). However, this remains to be investigated in a future study.

4.2 BOLD signal variance explained by the individual frequency bands
The comparison of the BOLD variance explained by the different EEG frequency bands using sensor versus
source space analysis (Fig. 5a-b), as well as using the canonical, double gamma versus a custom HRF (Fig. 5b-c)
revealed increased detection sensitivity and region specificity of brain activation when source space analysis and a
525 custom HRF were employed. Specifically, during the handgrip task, the source EEG beta frequency band was found
to significantly contribute to the BOLD signal in the primary somatosensory and motor cortices (Fig. 6a), in
agreement with previous similar studies that showed strong correlations between beta EEG oscillations and BOLD-
fMRI in the same brain regions during motor tasks (Ohara et al., 2001; Ritter et al., 2009; Sclocco et al., 2014). Also,
our results suggest significant contributions from the beta band in the occipital and the superior parietal lobule
530 cortices, which become activated in response to the visual feedback that the subjects received during task execution.
The latter is a polymodal association area integrating motor, somesthetic and visual information. Similar activation
patterns were obtained using the handgrip force time-series (Fig. 5d), which reflect the dynamics of neural activation
in the primary motor cortex in response to a handgrip task. The similarity between the activation maps obtained
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using the handgrip force and power in the beta band during the task suggests that the proposed methodology can
535 be used to obtain reliable BOLD predictions and HRF estimates even from resting-state data, where there is no
explicit task.

The comparison of the resting-state BOLD variance explained by the different frequency bands using EEG
source space analysis and the linearized Hammerstein model revealed significant contributions from all frequency
bands, which are region specific (Fig. 6b). Oscillations in the alpha band explained significant BOLD signal variance in

540 visual-related areas. This finding agrees with previous studies in the literature which investigated the
electrophysiology corelates of the BOLD signal during resting-state with eyes closed (de Munck et al., 2007; Laufs et
al., 2006, 2003; Mantini et al., 2007), suggesting the important role of these regions in the generation of the alpha
rhythm even during resting-state with eyes open. Furthermore, we also observed significant contributions from the
beta band, which could be related to changes in the brain state associated with vigilance and alertness that occur

545 during eyes open as compared to eyes closed (Falahpour et al., 2018; Chang et al. 2013). On the other hand,
significant contributions from the delta and theta bands were detected in the primary motor cortex. We believe that
it is less likely that activation in these areas is solely due to motion-related artifacts as proposed in (Jansen et al.,
2012), since (i) we have employed stringent methods to remove motion-related artefacts from both the EEG and
fMRI data, and (ii) the neuronally plausible patterns of activation predicted by motion-related EEG artifacts shown

550 in (Jansen et al., 2012) do not include the primary motor cortices.

4.3 Influence of individual EEG bands on HRF scaling
The average maps of total HRF peak obtained across subjects shown in (Fig. 8) exhibit similar patterns
between the two experimental conditions. However, the average total HRF peak map obtained during the motor
task show higher values that are more focal in areas that become activated during the task, such as the occipital,
555 parietal, somatosensory and motor cortices.

Under resting conditions, in accordance with the results of previous studies (de Munck et al., 2007;
Goldman et al.,, 2002; Laufs et al.,, 2006, 2003; Moosmann et al., 2003) the current study shows that the
hemodynamic response to instantaneous increases in the alpha band in the occipital, parietal and frontal cortices is
mainly negative (Fig. 9). Occipital BOLD deactivation was discussed in (Goldman et al., 2002) as a result of alpha
560 synchronization and idling. It has been also linked to changes in vigilance (Moosmann et al., 2003). In the present
work, our results revealed negative responses in almost all regions spanning the cerebral cortex for both the alpha
and beta frequency bands in agreement with a previous study by (Mantini et al., 2007), which showed negative
correlations between the power profile of these bands and the BOLD signal in the default mode, dorsal attention,

visual, motor and auditory networks.

565 During the motor task, our results revealed large negative HRF peak values in the lateral occipital and
superior parietal lobule cortices for the alpha and beta bands. Large negative HRF peak values were also observed
in the left primary motor and somatosensory cortices for the beta band. These findings are consistent with
desynchronization in the alpha and beta bands observed in young adults during a handgrip task using MEG (van Wijk
et al., 2012; Xifra-Porxas et al., 2019) and EEG (Erbil and Ungan, 2007). Alpha and beta band desynchronizations are

570 associated with decreases in the instantaneous EEG power and increases in the BOLD signal, which result in negative
hemodynamic responses.

Areas in the somatosensory and motor cortices shown in (Fig. 8) exhibited large positive values under both
experimental conditions. Similar patterns were also observed in the average total HRF peak maps obtained for the
delta and theta frequency bands in both experimental conditions (Fig. 9). These findings suggest that the positive

575 hemodynamic responses observed in these areas are more strongly associated with activity in lower frequency
bands. Moreover, during the motor task, the medial occipital cortex exhibited a strong positive HRF peak values in
all frequency bands, with the strongest responses being observed for the delta and beta bands. The same area under
resting conditions exhibited positive responses for the delta and theta bands, while the alpha and beta bands
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exhibited negative responses. Although these findings suggested a shift in the spectral profile toward higher

580 frequencies (Kilner et al., 2005), which is accompanied with a shift of positive BOLD responses toward higher
frequencies, these positive responses could also be attributed to susceptibility effects that result from the high
vascular density associated with the medial occipital cortex (Bernier et al., 2018).

4.4  Limitations
The present study set out to investigate the link between changes in the level of neuronal activity as these
585 manifests in narrow frequency bands of the LFP spectrum with the corresponding changes in the BOLD signal, using
simultaneous EEG-fMRI. A large body of animal studies has pointed to the gamma band (30-80 Hz) exhibiting the
highest correlations with fluctuations in the BOLD signal (Goense and Logothetis, 2008; Logothetis et al., 2001; Magri
et al., 2012; Shmuel and Leopold, 2008). In the present study, however, the gamma band was excluded from the
analysis, as we were not able to sufficiently remove MRI-related artifacts, such as RF gradient, ballisto-cardiogram,
590 and helium pump artifacts within this frequency band. Of note, the proposed methodology for modeling the dynamic
relation between source EEG and BOLD-fMRI presented herein can be readily applied when the EEG gamma band is
available. Future work performed using gradient-free multimodal imaging techniques, such as simultaneous EEG-
FNIRS would help overcome these limitations.

In the present study we employed source space reconstruction to investigate the dynamic interactions
595 between different frequency bands of individual current sources and BOLD-fMRI. Source space reconstruction was
performed using linearly constrained minimum variance beamformers. Our results (Fig. 5, Fig. 6) suggested that
source space analysis improved BOLD signal prediction for both task-based and resting-state experimental
conditions. They also suggested that under each condition, different frequency bands may explain more BOLD signal
variance relative to others depending on brain region. However, we note that the EEG bands might be localized with
600 different errors since different EEG sensors might be affected in a different way from various sources of noise
characterized by distinct frequency content. For example, it is well known that eyeblink and BCG artefacts mainly
affect frontal sensors (Marino et al.,, 2018), whereas muscle artifacts affect more temporal sensors
(Muthukumaraswamy, 2013). In this study, although gradient and BCG artefact removal was performed on a
channel-by-channel basis, it is likely that the levels of noise that remained after preprocessing might be different for

605 each sensor, which might result in different localization error for each band.
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Conclusion
We employed linear and non-linear block-structured models to investigate the dynamic interactions
615 between distributed dipolar current sources and changes in cerebral blood flow evaluated using simultaneous EEG-
fMRI. We performed this investigation during a handgrip task, as well as during resting-state conditions with eyes
open. Our results suggest that these interactions can be sufficiently described using a linearized Hammerstein model,
which describes the BOLD signal as the convolution between a linear combination of the power profile of individual
frequency bands with a data-driven HRF. Using this model, we rigorously investigated the regional variability of the
620 HRF during both experimental conditions. Our results reveal that the regional characteristics of the HRF depend on
both brain region, as well as on specific frequency bands under each experimental condition. During the motor task,
the proposed methodology was shown to yield similar results to those obtained when using the subjects’ hand grip
force. This suggests that the proposed approach can be used to obtain reliable BOLD predictions and HRF estimates
even from resting-state data, where there is no explicit task and SNR is lower. The proposed methodology can be
625 readily applied to studying resting-state functional connectivity, as accurate resting-state HRF estimates are
important for removing the hemodynamic blurring, which is inherent in the fMRI data.
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